1
|
Cheng Y, Su J, Jiao Q, Jia T, Hu X. Recent advance on the physiological functions of proteases in chloroplast. Biochem Biophys Res Commun 2025; 765:151813. [PMID: 40262467 DOI: 10.1016/j.bbrc.2025.151813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
Chloroplast proteases play an essential role in orchestrating chloroplast biogenesis and maintaining the homeostasis of diverse metabolic pathways within these organelles, including photosynthesis, amino acid biosynthesis, and stress response regulation. Recent advances in chloroplast proteostasis research have systematically elucidated the physiological functions of key protease families (e.g., FtsH, Deg, and CLP complexes) within chloroplast. This review systematically integrates cutting-edge advances in the physiological functions of chloroplast proteolytic systems, including protein maturation, protein quantity control, protein quality control, and amino acid recovery, and provide a fresh perspective to understand proteases in chloroplasts. According to the latest research progress, the key remaining problems and future research directions in this field are highlighted.
Collapse
Affiliation(s)
- Yuting Cheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Jinling Su
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsong Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Hong ZH, Zhu L, Gao LL, Zhu Z, Su T, Krall L, Wu XN, Bock R, Wu GZ. Chloroplast precursor protein preClpD overaccumulation triggers multilevel reprogramming of gene expression and a heat shock-like response. Nat Commun 2025; 16:3777. [PMID: 40263324 PMCID: PMC12015282 DOI: 10.1038/s41467-025-59043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Thousands of nucleus-encoded chloroplast proteins are synthesized as precursors on cytosolic ribosomes and posttranslationally imported into chloroplasts. Cytosolic accumulation of unfolded chloroplast precursor proteins (e.g., under stress conditions) is hazardous to the cell. The global cellular responses and regulatory pathways involved in triggering appropriate responses are largely unknown. Here, by inducible and constitutive overexpression of ClpD-GFP to result in precursor protein overaccumulation, we present a comprehensive picture of multilevel reprogramming of gene expression in response to chloroplast precursor overaccumulation stress (cPOS), reveal a critical role of translational activation in the expression of cytosolic chaperones (heat-shock proteins, HSPs), and demonstrate that chloroplast-derived reactive oxygen species act as retrograde signal for the transcriptional activation of small HSPs. Furthermore, we reveal an important role of the chaperone ClpB1/HOT1 in maintaining cellular proteostasis upon cPOS. Together, our observations uncover a cytosolic heat shock-like response to cPOS and provide insights into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liyu Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Zhu
- School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Tong Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Leonard Krall
- School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Xu-Na Wu
- School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Hu L, Wu Q, Wu C, Zhang C, Wu Z, Shi M, Zhang M, Duan S, Wang HB, Jin HL. Light signaling-dependent regulation of plastid RNA processing in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:375-390. [PMID: 39352303 DOI: 10.1111/jipb.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/02/2024] [Indexed: 02/13/2025]
Abstract
Light is a vital environmental signal that regulates the expression of plastid genes. Plastids are crucial organelles that respond to light, but the effects of light on plastid RNA processing following transcription remain unclear. In this study, we systematically examined the influence of light exposure on plastid RNA processing, focusing on RNA splicing and RNA editing. We demonstrated that light promotes the splicing of transcripts from the plastid genes rps12, ndhA, atpF, petB, and rpl2. Additionally, light increased the editing rate of the accD transcript at nucleotide 794 (accD-794) and the ndhF transcript at nucleotide 290 (ndhF-290), while decreasing the editing rate of the clpP transcript at nucleotide 559 (clpP-559). We have identified key regulators of signaling pathways, such as CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), ELONGATED HYPOCOTYL 5 (HY5), and PHYTOCHROME-INTERACTING FACTORs (PIFs), as important players in the regulation of plastid RNA splicing and editing. Notably, COP1 was required for GENOMES UNCOUPLED1 (GUN1)-dependent repression of clpP-559 editing in the light. We showed that HY5 and PIF1 bind to the promoters of nuclear genes encoding plastid-localized RNA processing factors in a light-dependent manner. This study provides insight into the mechanisms underlying light-mediated post-transcriptional regulation of plastid gene expression.
Collapse
Affiliation(s)
- Lili Hu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qian Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chunyu Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chunmei Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziying Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Meihui Shi
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Man Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Ministry of Education, Guangzhou, 510006, China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510375, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
4
|
Tang Q, Xu D, Lenzen B, Brachmann A, Yapa MM, Doroodian P, Schmitz-Linneweber C, Masuda T, Hua Z, Leister D, Kleine T. GENOMES UNCOUPLED PROTEIN1 binds to plastid RNAs and promotes their maturation. PLANT COMMUNICATIONS 2024; 5:101069. [PMID: 39169625 PMCID: PMC11671767 DOI: 10.1016/j.xplc.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Plastid biogenesis and the coordination of plastid and nuclear genome expression through anterograde and retrograde signaling are essential for plant development. GENOMES UNCOUPLED1 (GUN1) plays a central role in retrograde signaling during early plant development. The putative function of GUN1 has been extensively studied, but its molecular function remains controversial. Here, we evaluate published transcriptome data and generate our own data from gun1 mutants grown under signaling-relevant conditions to show that editing and splicing are not relevant for GUN1-dependent retrograde signaling. Our study of the plastid (post)transcriptome of gun1 seedlings with white and pale cotyledons demonstrates that GUN1 deficiency significantly alters the entire plastid transcriptome. By combining this result with a pentatricopeptide repeat code-based prediction and experimental validation by RNA immunoprecipitation experiments, we identified several putative targets of GUN1, including tRNAs and RNAs derived from ycf1.2, rpoC1, and rpoC2 and the ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD gene cluster. The absence of plastid rRNAs and the significant reduction of almost all plastid transcripts in white gun1 mutants account for the cotyledon phenotype. Our study provides evidence for RNA binding and maturation as the long-sought molecular function of GUN1 and resolves long-standing controversies. We anticipate that our findings will serve as a basis for subsequent studies on mechanisms of plastid gene expression and will help to elucidate the function of GUN1 in retrograde signaling.
Collapse
Affiliation(s)
- Qian Tang
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
| | - Duorong Xu
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
| | - Benjamin Lenzen
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Andreas Brachmann
- Biocenter of the LMU Munich, Genetics Section, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Madhura M Yapa
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Paymon Doroodian
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku 153-8902, Tokyo, Japan
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany.
| |
Collapse
|
5
|
Yuan B, van Wijk KJ. The chloroplast protease system degrades stromal DUF760-1 and DUF760-2 domain-containing proteins at different rates. PLANT PHYSIOLOGY 2024; 196:1788-1801. [PMID: 39155062 DOI: 10.1093/plphys/kiae431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024]
Abstract
The chloroplast chaperone CLPC1 aids to select, unfold, and deliver hundreds of proteins to the CLP protease for degradation. Through in vivo CLPC1, trapping we previously identified dozens of proteins that are (potential) substrate adaptors or substrates for the CLP chaperone-protease system. In this study, we show that two of these highly trapped proteins, DUF760-1 and DUF760-2, are substrates for the CLP protease in Arabidopsis (Arabidopsis thaliana). Loss-of-function mutants and transgenic plants were created for phenotyping, protein expression, and localization using immunoblotting and confocal microscopy. In planta BiFC, cycloheximide chase assays, and yeast 2-hybrid analyses were conducted to determine protein interactions and protein half-life. Both DUF760 proteins directly interacted with the N-domain of CLPC1 and both were highly enriched in clpc1-1 and clpr2-1 mutants. Accordingly, in vivo cycloheximide chase assays demonstrated that both DUF760 proteins are degraded by the CLP protease. The half-life of DUF760-1 was 4 to 6 h, whereas DUF760-2 was highly unstable and difficult to detect unless CLP proteolysis was inhibited. Null mutants for DUF760-1 and DUF760-2 showed weak but differential pigment phenotypes and differential sensitivity to protein translation inhibitors. This study demonstrates that DUF760-1 and DUF760-2 are substrates of the CLP chaperone-protease system and excellent candidates for the determination of CLP substrate degrons.
Collapse
Affiliation(s)
- Bingjian Yuan
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Loudya N, Barkan A, López-Juez E. Plastid retrograde signaling: A developmental perspective. THE PLANT CELL 2024; 36:3903-3913. [PMID: 38546347 PMCID: PMC11449110 DOI: 10.1093/plcell/koae094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/01/2024] [Indexed: 10/05/2024]
Abstract
Chloroplast activities influence nuclear gene expression, a phenomenon referred to as retrograde signaling. Biogenic retrograde signals have been revealed by changes in nuclear gene expression when chloroplast development is disrupted. Research on biogenic signaling has focused on repression of Photosynthesis-Associated Nuclear Genes (PhANGs), but this is just one component of a syndrome involving altered expression of thousands of genes involved in diverse processes, many of which are upregulated. We discuss evidence for a framework that accounts for most of this syndrome. Disruption of chloroplast biogenesis prevents the production of signals required to progress through discrete steps in the program of photosynthetic differentiation, causing retention of juvenile states. As a result, expression of PhANGs and other genes that act late during photosynthetic differentiation is not initiated, while expression of genes that act early is retained. The extent of juvenility, and thus the transcriptome, reflects the disrupted process: lack of plastid translation blocks development very early, whereas disruption of photosynthesis without compromising plastid translation blocks development at a later stage. We discuss implications of these and other recent observations for the nature of the plastid-derived signals that regulate photosynthetic differentiation and the role of GUN1, an enigmatic protein involved in biogenic signaling.
Collapse
Affiliation(s)
- Naresh Loudya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Enrique López-Juez
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
7
|
Rolo D, Schöttler MA, Sandoval-Ibáñez O, Bock R. Structure, function, and assembly of PSI in thylakoid membranes of vascular plants. THE PLANT CELL 2024; 36:4080-4108. [PMID: 38848316 PMCID: PMC11449065 DOI: 10.1093/plcell/koae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The photosynthetic apparatus is formed by thylakoid membrane-embedded multiprotein complexes that carry out linear electron transport in oxygenic photosynthesis. The machinery is largely conserved from cyanobacteria to land plants, and structure and function of the protein complexes involved are relatively well studied. By contrast, how the machinery is assembled in thylakoid membranes remains poorly understood. The complexes participating in photosynthetic electron transfer are composed of many proteins, pigments, and redox-active cofactors, whose temporally and spatially highly coordinated incorporation is essential to build functional mature complexes. Several proteins, jointly referred to as assembly factors, engage in the biogenesis of these complexes to bring the components together in a step-wise manner, in the right order and time. In this review, we focus on the biogenesis of the terminal protein supercomplex of the photosynthetic electron transport chain, PSI, in vascular plants. We summarize our current knowledge of the assembly process and the factors involved and describe the challenges associated with resolving the assembly pathway in molecular detail.
Collapse
Affiliation(s)
- David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
8
|
Li Y, Liu Y, Ran G, Yu Y, Zhou Y, Zhu Y, Du Y, Pi L. The pentatricopeptide repeat protein DG1 promotes the transition to bilateral symmetry during Arabidopsis embryogenesis through GUN1-mediated plastid signals. THE NEW PHYTOLOGIST 2024; 244:542-557. [PMID: 39140987 DOI: 10.1111/nph.20056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
During Arabidopsis embryogenesis, the transition of the embryo's symmetry from radial to bilateral between the globular and heart stage is a crucial event, involving the formation of cotyledon primordia and concurrently the establishment of a shoot apical meristem (SAM). However, a coherent framework of how this transition is achieved remains to be elucidated. In this study, we investigated the function of DELAYED GREENING 1 (DG1) in Arabidopsis embryogenesis using a newly identified dg1-3 mutant. The absence of chloroplast-localized DG1 in the mutants led to embryos being arrested at the globular or heart stage, accompanied by an expansion of WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM) expression. This finding pinpoints the essential role of DG1 in regulating the transition to bilateral symmetry. Furthermore, we showed that this regulation of DG1 may not depend on its role in plastid RNA editing. Nevertheless, we demonstrated that the DG1 function in establishing bilateral symmetry is genetically mediated by GENOMES UNCOUPLED 1 (GUN1), which represses the transition process in dg1-3 embryos. Collectively, our results reveal that DG1 functionally antagonizes GUN1 to promote the transition of the Arabidopsis embryo's symmetry from radial to bilateral and highlight the role of plastid signals in regulating pattern formation during plant embryogenesis.
Collapse
Affiliation(s)
- Yajie Li
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yiqiong Liu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Guiping Ran
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yue Yu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yifan Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxian Zhu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yujuan Du
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Limin Pi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
9
|
Zhu Y, Narsai R, He C, Štaka Z, Bai C, Berkowitz O, Liew LC, Whelan J. Overexpression of the transcription factor ANAC017 results in a genomes uncoupled phenotype under lincomycin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:91-108. [PMID: 39145415 DOI: 10.1111/tpj.16973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/18/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Over-expression (OE) lines for the ER-tethered NAC transcription factor ANAC017 displayed de-repression of gun marker genes when grown on lincomycin (lin). RNA-seq revealed that ANAC017OE2 plants constitutively expressed greater than 40% of the genes induced in wild-type with lin treatment, including plastid encoded genes ycf1.2 and the gene cluster ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD, documented as direct RNA targets of GUN1. Genes encoding components involved in organelle translation were enriched in constitutively expressed genes in ANAC017OE2. ANAC017OE resulted in constitutive location in the nucleus and significant constitutive binding of ANAC017 was detected by ChIP-Seq to target genes. ANAC017OE2 lines maintained the ability to green on lin, were more ABA sensitive, did not show photo-oxidative damage after exposure of de-etiolated seedlings to continuous light and the transcriptome response to lin were as much as 80% unique compared to gun1-1. Both double mutants, gun1-1:ANAC017OE and bzip60:ANAC017OE (but not single bzip60), have a gun molecular gene expression pattern and result in variegated and green plants, suggesting that ANAC017OE may act through an independent pathway compared to gun1. Over-expression of ANAC013 or rcd1 did not produce a GUN phenotype or green plants on lin. Thus, constitutive ANAC017OE2 establishes an alternative transcriptional program that likely acts through a number of pathways, that is, maintains plastid gene expression, and induction of a variety of transcription factors involved in reactive oxygen species metabolism, priming plants for lin tolerance to give a gun phenotype.
Collapse
Affiliation(s)
- Yanqiao Zhu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, People's Republic of China
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, People's Republic of China
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Zorana Štaka
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chen Bai
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, People's Republic of China
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| |
Collapse
|
10
|
van Wijk KJ. Intra-chloroplast proteases: A holistic network view of chloroplast proteolysis. THE PLANT CELL 2024; 36:3116-3130. [PMID: 38884601 PMCID: PMC11371162 DOI: 10.1093/plcell/koae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Different proteases and peptidases are present within chloroplasts and nonphotosynthetic plastids to process precursor proteins and to degrade cleaved chloroplast transit peptides and damaged, misfolded, or otherwise unwanted proteins. Collectively, these proteases and peptidases form a proteolysis network, with complementary activities and hierarchies, and build-in redundancies. Furthermore, this network is distributed across the different intra-chloroplast compartments (lumen, thylakoid, stroma, envelope). The challenge is to determine the contributions of each peptidase (system) to this network in chloroplasts and nonphotosynthetic plastids. This will require an understanding of substrate recognition mechanisms, degrons, substrate, and product size limitations, as well as the capacity and degradation kinetics of each protease. Multiple extra-plastidial degradation pathways complement these intra-chloroplast proteases. This review summarizes our current understanding of these intra-chloroplast proteases in Arabidopsis and crop plants with an emphasis on considerations for building a qualitative and quantitative network view.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Isono E, Li J, Pulido P, Siao W, Spoel SH, Wang Z, Zhuang X, Trujillo M. Protein degrons and degradation: Exploring substrate recognition and pathway selection in plants. THE PLANT CELL 2024; 36:3074-3098. [PMID: 38701343 PMCID: PMC11371205 DOI: 10.1093/plcell/koae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Proteome composition is dynamic and influenced by many internal and external cues, including developmental signals, light availability, or environmental stresses. Protein degradation, in synergy with protein biosynthesis, allows cells to respond to various stimuli and adapt by reshaping the proteome. Protein degradation mediates the final and irreversible disassembly of proteins, which is important for protein quality control and to eliminate misfolded or damaged proteins, as well as entire organelles. Consequently, it contributes to cell resilience by buffering against protein or organellar damage caused by stresses. Moreover, protein degradation plays important roles in cell signaling, as well as transcriptional and translational events. The intricate task of recognizing specific proteins for degradation is achieved by specialized systems that are tailored to the substrate's physicochemical properties and subcellular localization. These systems recognize diverse substrate cues collectively referred to as "degrons," which can assume a range of configurations. They are molecular surfaces recognized by E3 ligases of the ubiquitin-proteasome system but can also be considered as general features recognized by other degradation systems, including autophagy or even organellar proteases. Here we provide an overview of the newest developments in the field, delving into the intricate processes of protein recognition and elucidating the pathways through which they are recruited for degradation.
Collapse
Affiliation(s)
- Erika Isono
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jianming Li
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Pablo Pulido
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Wei Siao
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zhishuo Wang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Marco Trujillo
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| |
Collapse
|
12
|
Sun X, Singla-Rastogi M, Wang J, Zhao C, Wang X, Li P. The uS10c-BPG2 module mediates ribosomal RNA processing in chloroplast nucleoids. Nucleic Acids Res 2024; 52:7893-7909. [PMID: 38686791 PMCID: PMC11260468 DOI: 10.1093/nar/gkae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
In plant chloroplasts, certain ribosomal proteins (RPs) and ribosome biogenesis factors (RBFs) are present in nucleoids, implying an association between nucleoids and ribosome biogenesis. In Arabidopsis, the YqeH-type GTPase Brassinazole-Insensitive Pale Green2 (BPG2) is a chloroplast nucleoid-associated RBF. Here, we investigated the relationship between nucleoids and BPG2-involved ribosome biogenesis steps by exploring how BPG2 targets ribosomes. Our findings demonstrate that BPG2 interacts with an essential plastid RP, uS10c, in chloroplast nucleoids in a ribosomal RNA (rRNA)-independent manner. We also discovered that uS10c is a haploinsufficient gene, as the heterozygous deletion of this gene leads to variegated shoots and chlorophyll aggregation. uS10c is integrated into 30S ribosomal particles when rRNA is relatively exposed and also exists in polysome fractions. In contrast, BPG2 exclusively associates with 30S ribosomal particles. Notably, the interaction between BPG2 and 30S particles is influenced by the absence of uS10c, resulting in BPG2 diffusing in chloroplasts instead of targeting nucleoids. Further, our results reveal that the loss of BPG2 function and the heterozygous deletion of uS10c impair the processing of 16S and 23S-4.5S rRNAs, reduce plastid protein accumulation, and trigger the plastid signaling response. Together, these findings indicate that the uS10c-BPG2 module mediates ribosome biogenesis in chloroplast nucleoids.
Collapse
Affiliation(s)
- Xueping Sun
- Institute of Crop Germplasm Resources (Biotechnology Research Center), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong 250100, PR China
- College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, PR China
| | | | - Jingwen Wang
- Institute of Crop Germplasm Resources (Biotechnology Research Center), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong 250100, PR China
- College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, PR China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Biotechnology Research Center), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong 250100, PR China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Biotechnology Research Center), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong 250100, PR China
| | - Pengcheng Li
- Institute of Crop Germplasm Resources (Biotechnology Research Center), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong 250100, PR China
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
13
|
Fujii S, Wada H, Kobayashi K. Orchestration of Photosynthesis-Associated Gene Expression and Galactolipid Biosynthesis during Chloroplast Differentiation in Plants. PLANT & CELL PHYSIOLOGY 2024; 65:1014-1028. [PMID: 38668647 PMCID: PMC11209550 DOI: 10.1093/pcp/pcae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 06/28/2024]
Abstract
The chloroplast thylakoid membrane is composed of membrane lipids and photosynthetic protein complexes, and the orchestration of thylakoid lipid biosynthesis and photosynthesis-associated protein accumulation is considered important for thylakoid development. Galactolipids consist of ∼80% of the thylakoid lipids, and their biosynthesis is fundamental for chloroplast development. We previously reported that the suppression of galactolipid biosynthesis decreased the expression of photosynthesis-associated nuclear-encoded genes (PhAPGs) and photosynthesis-associated plastid-encoded genes (PhAPGs). However, the mechanism for coordinative regulation between galactolipid biosynthesis in plastids and the expression of PhANGs and PhAPGs remains largely unknown. To elucidate this mechanism, we investigated the gene expression patterns in galactolipid-deficient Arabidopsis seedlings during the de-etiolation process. We found that galactolipids are crucial for inducing both the transcript accumulation of PhANGs and PhAPGs and the accumulation of plastid-encoded photosynthesis-associated proteins in developing chloroplasts. Genetic analysis indicates the contribution of the GENOMES UNCOUPLED1 (GUN1)-mediated plastid-to-nucleus signaling pathway to PhANG regulation in response to galactolipid levels. Previous studies suggested that the accumulation of GUN1 reflects the state of protein homeostasis in plastids and alters the PhANG expression level. Thus, we propose a model that galactolipid biosynthesis determines the protein homeostasis in plastids in the initial phase of de-etiolation and optimizes GUN1-dependent signaling to regulate the PhANG expression. This mechanism might contribute to orchestrating the biosynthesis of lipids and proteins for the biogenesis of functional chloroplasts in plants.
Collapse
Affiliation(s)
- Sho Fujii
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561 Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Koichi Kobayashi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 Japan
- Faculty of Liberal Arts, Science and Global Education, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 Japan
| |
Collapse
|
14
|
Su T, Zhang XF, Wu GZ. Functional conservation of GENOMES UNCOUPLED1 in plastid-to-nucleus retrograde signaling in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112053. [PMID: 38417718 DOI: 10.1016/j.plantsci.2024.112053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/20/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Retrograde signaling between plastids and the nucleus is vital for chloroplast biogenesis and environmental responses. GENOMES UNCOUPLED1 (GUN1) was proposed to be a central integrator of multiple retrograde signaling pathways in the model plant Arabidopsis thaliana (Arabidopsis). However, the function of GUN1 orthologs in other plant species has not been well studied. Here, we found that many GUN1 orthologs from the Solanaceae family have a short N-terminus before the first pentatricopeptide repeat (PPR) motif which is predicted as intrinsically disordered regions (IDRs). Functional analyses of tomato (Solanum lycopersicum L.) GUN1 (SlGUN1), which does not contain N-terminal IDRs, show that it can complement the GUN phenotype of the Arabidopsis gun1 mutant (Atgun1). However, in contrast to the AtGUN1 protein, which does contain the N-terminal IDRs, the SlGUN1 protein is highly accumulated even after chloroplast biogenesis is completed, suggesting that the N-terminal IDRs may determine the stability of the GUN1 protein. Furthermore, we generated tomato Slgun1 genome-edited mutants via the CRISPR-Cas9 system. The Slgun1 mutants exhibited a typical GUN phenotype under lincomycin (Lin) or norflurazon (NF) treatment. Moreover, Slgun1 mutants are hypersensitive to low concentrations of Lin or NF. Taken together, our results suggest that, although lacking the N-terminal IDRs, SlGUN1 plays conserved roles in plastid retrograde signaling in tomato plants.
Collapse
Affiliation(s)
- Tong Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Xiao-Fan Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
15
|
Sun M, Shen Y. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111892. [PMID: 37821024 DOI: 10.1016/j.plantsci.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), β-CC (β-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.
Collapse
Affiliation(s)
- Mimi Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China.
| |
Collapse
|
16
|
Sajib SA, Kandel M, Prity SA, Oukacine C, Gakière B, Merendino L. Role of plastids and mitochondria in the early development of seedlings in dark growth conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1272822. [PMID: 37841629 PMCID: PMC10570830 DOI: 10.3389/fpls.2023.1272822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Establishment of the seedlings is a crucial stage of the plant life cycle. The success of this process is essential for the growth of the mature plant. In Nature, when seeds germinate under the soil, seedlings follow a dark-specific program called skotomorphogenesis, which is characterized by small, non-green cotyledons, long hypocotyl, and an apical hook-protecting meristematic cells. These developmental structures are required for the seedlings to emerge quickly and safely through the soil and gain autotrophy before the complete depletion of seed resources. Due to the lack of photosynthesis during this period, the seed nutrient stocks are the primary energy source for seedling development. The energy is provided by the bioenergetic organelles, mitochondria, and etioplast (plastid in the dark), to the cell in the form of ATP through mitochondrial respiration and etio-respiration processes, respectively. Recent studies suggest that the limitation of the plastidial or mitochondrial gene expression induces a drastic reprogramming of the seedling morphology in the dark. Here, we discuss the dark signaling mechanisms involved during a regular skotomorphogenesis and how the dysfunction of the bioenergetic organelles is perceived by the nucleus leading to developmental changes. We also describe the probable involvement of several plastid retrograde pathways and the interconnection between plastid and mitochondria during seedling development. Understanding the integration mechanisms of organellar signals in the developmental program of seedlings can be utilized in the future for better emergence of crops through the soil.
Collapse
Affiliation(s)
- Salek Ahmed Sajib
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Margot Kandel
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Sadia Akter Prity
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Cylia Oukacine
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Bertrand Gakière
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Livia Merendino
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| |
Collapse
|
17
|
Susila H, Nasim Z, Gawarecka K, Jung JY, Jin S, Youn G, Ahn JH. Chloroplasts prevent precocious flowering through a GOLDEN2-LIKE-B-BOX DOMAIN PROTEIN module. PLANT COMMUNICATIONS 2023; 4:100515. [PMID: 36597356 DOI: 10.1016/j.xplc.2023.100515] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 05/11/2023]
Abstract
The timing of flowering is tightly controlled by signals that integrate environmental and endogenous cues. Sugars produced by carbon fixation in the chloroplast are a crucial endogenous cue for floral initiation. Chloroplasts also convey information directly to the nucleus through retrograde signaling to control plant growth and development. Here, we show that mutants defective in chlorophyll biosynthesis and chloroplast development flowered early, especially under long-day conditions, although low sugar accumulation was seen in some mutants. Plants treated with the bleaching herbicide norflurazon also flowered early, suggesting that chloroplasts have a role in floral repression. Among retrograde signaling mutants, the golden2-like 1 (glk1) glk2 double mutants showed early flowering under long-day conditions. This early flowering was completely suppressed by constans (co) and flowering locus t (ft) mutations. Leaf vascular-specific knockdown of both GLK1 and GLK2 phenocopied the glk1 glk2 mutants. GLK1 and GLK2 repress flowering by directly activating the expression of B-BOX DOMAIN PROTEIN 14 (BBX14), BBX15, and BBX16 via CCAATC cis-elements in the BBX genes. BBX14/15/16 physically interact with CO in the nucleus, and expression of BBXs hampered CO-mediated FT transcription. Simultaneous knockdown of BBX14/15/16 by artificial miRNA (35S::amiR-BBX14/15/16) caused early flowering with increased FT transcript levels, whereas BBX overexpression caused late flowering. Flowering of glk1/2 and 35S::amiR-BBX14/15/16 plants was insensitive to norflurazon treatment. Taking these observations together, we propose that the GLK1/2-BBX14/15/16 module provides a novel mechanism explaining how the chloroplast represses flowering to balance plant growth and reproductive development.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Katarzyna Gawarecka
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Yul Jung
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
18
|
Winckler LI, Dissmeyer N. Molecular determinants of protein half-life in chloroplasts with focus on the Clp protease system. Biol Chem 2023; 404:499-511. [PMID: 36972025 DOI: 10.1515/hsz-2022-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Abstract
Proteolysis is an essential process to maintain cellular homeostasis. One pathway that mediates selective protein degradation and which is in principle conserved throughout the kingdoms of life is the N-degron pathway, formerly called the ‘N-end rule’. In the cytosol of eukaryotes and prokaryotes, N-terminal residues can be major determinants of protein stability. While the eukaryotic N-degron pathway depends on the ubiquitin proteasome system, the prokaryotic counterpart is driven by the Clp protease system. Plant chloroplasts also contain such a protease network, which suggests that they might harbor an organelle specific N-degron pathway similar to the prokaryotic one. Recent discoveries indicate that the N-terminal region of proteins affects their stability in chloroplasts and provides support for a Clp-mediated entry point in an N-degron pathway in plastids. This review discusses structure, function and specificity of the chloroplast Clp system, outlines experimental approaches to test for an N-degron pathway in chloroplasts, relates these aspects into general plastid proteostasis and highlights the importance of an understanding of plastid protein turnover.
Collapse
Affiliation(s)
- Lioba Inken Winckler
- Department of Plant Physiology and Protein Metabolism Laboratory, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
- Center of Cellular Nanoanalytics (CellNanOs), Barbarastrasse 11, D-49076 Osnabruck, Germany
- Faculty of Biology, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
| | - Nico Dissmeyer
- Department of Plant Physiology and Protein Metabolism Laboratory, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
- Center of Cellular Nanoanalytics (CellNanOs), Barbarastrasse 11, D-49076 Osnabruck, Germany
- Faculty of Biology, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
| |
Collapse
|
19
|
Redox Signaling in Plant Heat Stress Response. Antioxidants (Basel) 2023; 12:antiox12030605. [PMID: 36978852 PMCID: PMC10045013 DOI: 10.3390/antiox12030605] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The increase in environmental temperature due to global warming is a critical threat to plant growth and productivity. Heat stress can cause impairment in several biochemical and physiological processes. Plants sense and respond to this adverse environmental condition by activating a plethora of defense systems. Among them, the heat stress response (HSR) involves an intricate network of heat shock factors (HSFs) and heat shock proteins (HSPs). However, a growing amount of evidence suggests that reactive oxygen species (ROS), besides potentially being responsible for cellular oxidative damage, can act as signal molecules in HSR, leading to adaptative responses. The role of ROS as toxic or signal molecules depends on the fine balance between their production and scavenging. Enzymatic and non-enzymatic antioxidants represent the first line of defense against oxidative damage and their activity is critical to maintaining an optimal redox environment. However, the HS-dependent ROS burst temporarily oxidizes the cellular environment, triggering redox-dependent signaling cascades. This review provides an overview of the redox-activated mechanisms that participate in the HSR.
Collapse
|
20
|
Gao LL, Hong ZH, Wang Y, Wu GZ. Chloroplast proteostasis: A story of birth, life, and death. PLANT COMMUNICATIONS 2023; 4:100424. [PMID: 35964157 PMCID: PMC9860172 DOI: 10.1016/j.xplc.2022.100424] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/02/2023]
Abstract
Protein homeostasis (proteostasis) is a dynamic balance of protein synthesis and degradation. Because of the endosymbiotic origin of chloroplasts and the massive transfer of their genetic information to the nucleus of the host cell, many protein complexes in the chloroplasts are constituted from subunits encoded by both genomes. Hence, the proper function of chloroplasts relies on the coordinated expression of chloroplast- and nucleus-encoded genes. The biogenesis and maintenance of chloroplast proteostasis are dependent on synthesis of chloroplast-encoded proteins, import of nucleus-encoded chloroplast proteins from the cytosol, and clearance of damaged or otherwise undesired "old" proteins. This review focuses on the regulation of chloroplast proteostasis, its interaction with proteostasis of the cytosol, and its retrograde control over nuclear gene expression. We also discuss significant issues and perspectives for future studies and potential applications for improving the photosynthetic performance and stress tolerance of crops.
Collapse
Affiliation(s)
- Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinsong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
21
|
Richter AS, Nägele T, Grimm B, Kaufmann K, Schroda M, Leister D, Kleine T. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond. PLANT COMMUNICATIONS 2023; 4:100511. [PMID: 36575799 PMCID: PMC9860301 DOI: 10.1016/j.xplc.2022.100511] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.
Collapse
Affiliation(s)
- Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
22
|
Lasorella C, Fortunato S, Dipierro N, Jeran N, Tadini L, Vita F, Pesaresi P, de Pinto MC. Chloroplast-localized GUN1 contributes to the acquisition of basal thermotolerance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1058831. [PMID: 36618674 PMCID: PMC9813751 DOI: 10.3389/fpls.2022.1058831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Heat stress (HS) severely affects different cellular compartments operating in metabolic processes and represents a critical threat to plant growth and yield. Chloroplasts are crucial for heat stress response (HSR), signaling to the nucleus the environmental challenge and adjusting metabolic and biosynthetic functions accordingly. GENOMES UNCOUPLED 1 (GUN1), a chloroplast-localized protein, has been recognized as one of the main players of chloroplast retrograde signaling. Here, we investigate HSR in Arabidopsis wild-type and gun1 plantlets subjected to 2 hours of HS at 45°C. In wild-type plants, Reactive Oxygen Species (ROS) accumulate promptly after HS, contributing to transiently oxidize the cellular environment and acting as signaling molecules. After 3 hours of physiological recovery at growth temperature (22°C), the induction of enzymatic and non-enzymatic antioxidants prevents oxidative damage. On the other hand, gun1 mutants fail to induce the oxidative burst immediately after HS and accumulate ROS and oxidative damage after 3 hours of recovery at 22°C, thus resulting in enhanced sensitivity to HS. These data suggest that GUN1 is required to oxidize the cellular environment, participating in the acquisition of basal thermotolerance through the redox-dependent plastid-to-nucleus communication.
Collapse
Affiliation(s)
- Cecilia Lasorella
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Stefania Fortunato
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Nunzio Dipierro
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Nicolaj Jeran
- Department of Biosciences, University of Milano, Milano, Italy
| | - Luca Tadini
- Department of Biosciences, University of Milano, Milano, Italy
| | - Federico Vita
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Paolo Pesaresi
- Department of Biosciences, University of Milano, Milano, Italy
| | - Maria Concetta de Pinto
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
23
|
Lu K, Li C, Guan J, Liang WH, Chen T, Zhao QY, Zhu Z, Yao S, He L, Wei XD, Zhao L, Zhou LH, Zhao CF, Wang CL, Zhang YD. The PPR-Domain Protein SOAR1 Regulates Salt Tolerance in Rice. RICE (NEW YORK, N.Y.) 2022; 15:62. [PMID: 36463341 PMCID: PMC9719575 DOI: 10.1186/s12284-022-00608-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Previous studies in Arabidopsis reported that the PPR protein SOAR1 plays critical roles in plant response to salt stress. In this study, we reported that expression of the Arabidopsis SOAR1 (AtSOAR1) in rice significantly enhanced salt tolerance at seedling growth stage and promoted grain productivity under salt stress without affecting plant productivity under non-stressful conditions. The transgenic rice lines expressing AtSOAR1 exhibited increased ABA sensitivity in ABA-induced inhibition of seedling growth, and showed altered transcription and splicing of numerous genes associated with salt stress, which may explain salt tolerance of the transgenic plants. Further, we overexpressed the homologous gene of SOAR1 in rice, OsSOAR1, and showed that transgenic plants overexpressing OsSOAR1 enhanced salt tolerance at seedling growth stage. Five salt- and other abiotic stress-induced SOAR1-like PPRs were also identified. These data showed that the SOAR1-like PPR proteins are positively involved in plant response to salt stress and may be used for crop improvement in rice under salinity conditions through transgenic manipulation.
Collapse
Affiliation(s)
- Kai Lu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Cheng Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Ju Guan
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Wen-Hua Liang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Tao Chen
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Qing-Yong Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Zhen Zhu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Shu Yao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Lei He
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Xiao-Dong Wei
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Ling Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Li-Hui Zhou
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Chun-Fang Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Cai-Lin Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Ya-Dong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China.
| |
Collapse
|
24
|
Liebers M, Cozzi C, Uecker F, Chambon L, Blanvillain R, Pfannschmidt T. Biogenic signals from plastids and their role in chloroplast development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7105-7125. [PMID: 36002302 DOI: 10.1093/jxb/erac344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant seeds do not contain differentiated chloroplasts. Upon germination, the seedlings thus need to gain photoautotrophy before storage energies are depleted. This requires the coordinated expression of photosynthesis genes encoded in nuclear and plastid genomes. Chloroplast biogenesis needs to be additionally coordinated with the light regulation network that controls seedling development. This coordination is achieved by nucleus to plastid signals called anterograde and plastid to nucleus signals termed retrograde. Retrograde signals sent from plastids during initial chloroplast biogenesis are also called biogenic signals. They have been recognized as highly important for proper chloroplast biogenesis and for seedling development. The molecular nature, transport, targets, and signalling function of biogenic signals are, however, under debate. Several studies disproved the involvement of a number of key components that were at the base of initial models of retrograde signalling. New models now propose major roles for a functional feedback between plastid and cytosolic protein homeostasis in signalling plastid dysfunction as well as the action of dually localized nucleo-plastidic proteins that coordinate chloroplast biogenesis with light-dependent control of seedling development. This review provides a survey of the developments in this research field, summarizes the unsolved questions, highlights several recent advances, and discusses potential new working modes.
Collapse
Affiliation(s)
- Monique Liebers
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Carolina Cozzi
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Finia Uecker
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Louise Chambon
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Thomas Pfannschmidt
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
25
|
Honkanen S, Small I. The GENOMES UNCOUPLED1 protein has an ancient, highly conserved role but not in retrograde signalling. THE NEW PHYTOLOGIST 2022; 236:99-113. [PMID: 35708656 PMCID: PMC9545484 DOI: 10.1111/nph.18318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/07/2022] [Indexed: 06/01/2023]
Abstract
The pentatricopeptide repeat protein GENOMES UNCOUPLED1 (GUN1) is required for chloroplast-to-nucleus signalling when plastid translation becomes inhibited during chloroplast development in Arabidopsis thaliana, but its exact molecular function remains unknown. We analysed GUN1 sequences in land plants and streptophyte algae. We tested functional conservation by complementation of the Arabidopsis gun1 mutant with GUN1 genes from the streptophyte alga Coleochate orbicularis or the liverwort Marchantia polymorpha. We also analysed the transcriptomes of M. polymorpha gun1 knockout mutant lines during chloroplast development. GUN1 evolved within the streptophyte algal ancestors of land plants and is highly conserved among land plants but missing from the Rafflesiaceae that lack chloroplast genomes. GUN1 genes from C. orbicularis and M. polymorpha suppress the cold-sensitive phenotype of the Arabidopsis gun1 mutant and restore typical retrograde responses to treatments with inhibitors of plastid translation, even though M. polymorpha responds very differently to such treatments. Our findings suggest that GUN1 is an ancient protein that evolved within the streptophyte algal ancestors of land plants before the first plants colonized land more than 470 million years ago. Its primary role is likely to be in chloroplast gene expression and its role in chloroplast retrograde signalling probably evolved more recently.
Collapse
Affiliation(s)
- Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesThe University of Western AustraliaCrawleyWA6009Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesThe University of Western AustraliaCrawleyWA6009Australia
| |
Collapse
|
26
|
Andrade-Marcial M, Pacheco-Arjona R, Góngora-Castillo E, De-la-Peña C. Chloroplastic pentatricopeptide repeat proteins (PPR) in albino plantlets of Agave angustifolia Haw. reveal unexpected behavior. BMC PLANT BIOLOGY 2022; 22:352. [PMID: 35850575 PMCID: PMC9295523 DOI: 10.1186/s12870-022-03742-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pentatricopeptide repeat (PPR) proteins play an essential role in the post-transcriptional regulation of genes in plastid genomes. Although important advances have been made in understanding the functions of these genes, there is little information available on chloroplastic PPR genes in non-model plants and less in plants without chloroplasts. In the present study, a comprehensive and multifactorial bioinformatic strategy was applied to search for putative PPR genes in the foliar and meristematic tissues of green and albino plantlets of the non-model plant Agave angustifolia Haw. RESULTS A total of 1581 PPR transcripts were identified, of which 282 were chloroplastic. Leaf tissue in the albino plantlets showed the highest levels of expression of chloroplastic PPRs. The search for hypothetical targets of 12 PPR sequences in the chloroplast genes of A. angustifolia revealed their action on transcripts related to ribosomes and translation, photosystems, ATP synthase, plastid-encoded RNA polymerase and RuBisCO. CONCLUSIONS Our results suggest that the expression of PPR genes depends on the state of cell differentiation and plastid development. In the case of the albino leaf tissue, which lacks functional chloroplasts, it is possible that anterograde and retrograde signaling networks are severely compromised, leading to a compensatory anterograde response characterized by an increase in the expression of PPR genes.
Collapse
Affiliation(s)
- M Andrade-Marcial
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - R Pacheco-Arjona
- Facultad de Medicina Veterinaria y Zootecnia, Consejo Nacional de Ciencia y Tecnología- Universidad Autónoma de Yucatán, Mérida, Mexico
| | - E Góngora-Castillo
- Consejo Nacional de Ciencia y Tecnología-Unidad De Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - C De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
27
|
Fortunato S, Lasorella C, Tadini L, Jeran N, Vita F, Pesaresi P, de Pinto MC. GUN1 involvement in the redox changes occurring during biogenic retrograde signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111265. [PMID: 35643615 DOI: 10.1016/j.plantsci.2022.111265] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast biogenesis requires a tight communication between nucleus and plastids. By retrograde signals, plastids transmit information about their functional and developmental state to adjust nuclear gene expression, accordingly. GENOMES UNCOUPLED 1 (GUN1), a chloroplast-localized protein integrating several developmental and stress-related signals, is one of the main players of retrograde signaling. Here, we focused on the interplay between GUN1 and redox regulation during biogenic retrograde signaling, by investigating redox parameters in Arabidopsis wild type and gun1 seedlings. Our data highlight that during biogenic retrograde signaling superoxide anion (O2-) and hydrogen peroxide (H2O2) play a different role in response to GUN1. Under physiological conditions, even in the absence of a visible phenotype, gun1 mutants show low activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX), with an increase in O2- accumulation and lipid peroxidation, suggesting that GUN1 indirectly protects chloroplasts from oxidative damage. In wild type seedlings, perturbation of chloroplast development with lincomycin causes H2O2 accumulation, in parallel with the decrease of ROS-removal metabolites and enzymes. These redox changes do not take place in gun1 mutants which, in contrast, enhance SOD, APX and catalase activities. Our results indicate that in response to lincomycin, GUN1 is necessary for the H2O2-dependent oxidation of cellular environment, which might contribute to the redox-dependent plastid-to nucleus communication.
Collapse
Affiliation(s)
- Stefania Fortunato
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, Bari 70125, Italy
| | - Cecilia Lasorella
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, Bari 70125, Italy
| | - Luca Tadini
- Department of Biosciences, University of Milano, Milano 20133, Italy
| | - Nicolaj Jeran
- Department of Biosciences, University of Milano, Milano 20133, Italy
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, Bari 70125, Italy
| | - Paolo Pesaresi
- Department of Biosciences, University of Milano, Milano 20133, Italy
| | | |
Collapse
|
28
|
Hernández‐Verdeja T, Vuorijoki L, Jin X, Vergara A, Dubreuil C, Strand Å. GENOMES UNCOUPLED1 plays a key role during the de-etiolation process in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:188-203. [PMID: 35322876 PMCID: PMC9324965 DOI: 10.1111/nph.18115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 05/25/2023]
Abstract
One of the most dramatic challenges in the life of a plant occurs when the seedling emerges from the soil and exposure to light triggers expression of genes required for establishment of photosynthesis. This process needs to be tightly regulated, as premature accumulation of light-harvesting proteins and photoreactive Chl precursors causes oxidative damage when the seedling is first exposed to light. Photosynthesis genes are encoded by both nuclear and plastid genomes, and to establish the required level of control, plastid-to-nucleus (retrograde) signalling is necessary to ensure correct gene expression. We herein show that a negative GENOMES UNCOUPLED1 (GUN1)-mediated retrograde signal restricts chloroplast development in darkness and during early light response by regulating the transcription of several critical transcription factors linked to light response, photomorphogenesis, and chloroplast development, and consequently their downstream target genes in Arabidopsis. Thus, the plastids play an essential role during skotomorphogenesis and the early light response, and GUN1 acts as a safeguard during the critical step of seedling emergence from darkness.
Collapse
Affiliation(s)
- Tamara Hernández‐Verdeja
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
- Present address:
Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| | - Linda Vuorijoki
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Xu Jin
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Alexander Vergara
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Carole Dubreuil
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Åsa Strand
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| |
Collapse
|
29
|
A proteostasis network safeguards the chloroplast proteome. Essays Biochem 2022; 66:219-228. [PMID: 35670042 PMCID: PMC9400067 DOI: 10.1042/ebc20210058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Several protein homeostasis (proteostasis) pathways safeguard the integrity of thousands of proteins that localize in plant chloroplasts, the indispensable organelles that perform photosynthesis, produce metabolites, and sense environmental stimuli. In this review, we discuss the latest efforts directed to define the molecular process by which proteins are imported and sorted into the chloroplast. Moreover, we describe the recently elucidated protein folding and degradation pathways that modulate the levels and activities of chloroplast proteins. We also discuss the links between the accumulation of misfolded proteins and the activation of signalling pathways that cope with folding stress within the organelle. Finally, we propose new research directions that would help to elucidate novel molecular mechanisms to maintain chloroplast proteostasis.
Collapse
|
30
|
Veciana N, Martín G, Leivar P, Monte E. BBX16 mediates the repression of seedling photomorphogenesis downstream of the GUN1/GLK1 module during retrograde signalling. THE NEW PHYTOLOGIST 2022; 234:93-106. [PMID: 35043407 PMCID: PMC9305768 DOI: 10.1111/nph.17975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Plastid-to-nucleus retrograde signalling (RS) initiated by dysfunctional chloroplasts impact photomorphogenic development. We have previously shown that the transcription factor GLK1 acts downstream of the RS regulator GUN1 in photodamaging conditions to regulate not only the well established expression of photosynthesis-associated nuclear genes (PhANGs) but also to regulate seedling morphogenesis. Specifically, the GUN1/GLK1 module inhibits the light-induced phytochrome-interacting factor (PIF)-repressed transcriptional network to suppress cotyledon development when chloroplast integrity is compromised, modulating the area exposed to potentially damaging high light. However, how the GUN1/GLK1 module inhibits photomorphogenesis upon chloroplast damage remained undefined. Here, we report the identification of BBX16 as a novel direct target of GLK1. BBX16 is induced and promotes photomorphogenesis in moderate light and is repressed via GUN1/GLK1 after chloroplast damage. Additionally, we showed that BBX16 represents a regulatory branching point downstream of GUN1/GLK1 in the regulation of PhANG expression and seedling development upon RS activation. The gun1 phenotype in lincomycin and the gun1-like phenotype of GLK1OX are markedly suppressed in gun1bbx16 and GLK1OXbbx16. This study identified BBX16 as the first member of the BBX family involved in RS, and defines a molecular bifurcation mechanism operated by GLK1/BBX16 to optimise seedling de-etiolation, and to ensure photoprotection in unfavourable light conditions.
Collapse
Affiliation(s)
- Nil Veciana
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Guiomar Martín
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Pablo Leivar
- Laboratory of BiochemistryInstitut Químic de SarriàUniversitat Ramon Llull08017BarcelonaSpain
| | - Elena Monte
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
- Consejo Superior de Investigaciones Científicas (CSIC)08028BarcelonaSpain
| |
Collapse
|
31
|
Abdel-Ghany SE, LaManna LM, Harroun HT, Maliga P, Sloan DB. Rapid sequence evolution is associated with genetic incompatibilities in the plastid Clp complex. PLANT MOLECULAR BIOLOGY 2022; 108:277-287. [PMID: 35039977 DOI: 10.1007/s11103-022-01241-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE Replacing the native clpP1 gene in the Nicotiana plastid genome with homologs from different donor species showed that the extent of genetic incompatibilities depended on the rate of sequence evolution. The plastid caseinolytic protease (Clp) complex plays essential roles in maintaining protein homeostasis and comprises both plastid-encoded and nuclear-encoded subunits. Despite the Clp complex being retained across green plants with highly conserved protein sequences in most species, examples of extremely accelerated amino acid substitution rates have been identified in numerous angiosperms. The causes of these accelerations have been the subject of extensive speculation but still remain unclear. To distinguish among prevailing hypotheses and begin to understand the functional consequences of rapid sequence divergence in Clp subunits, we used plastome transformation to replace the native clpP1 gene in tobacco (Nicotiana tabacum) with counterparts from another angiosperm genus (Silene) that exhibits a wide range in rates of Clp protein sequence evolution. We found that antibiotic-mediated selection could drive a transgenic clpP1 replacement from a slowly evolving donor species (S. latifolia) to homoplasmy but that clpP1 copies from Silene species with accelerated evolutionary rates remained heteroplasmic, meaning that they could not functionally replace the essential tobacco clpP1 gene. These results suggest that observed cases of rapid Clp sequence evolution are a source of epistatic incompatibilities that must be ameliorated by coevolutionary responses between plastid and nuclear subunits.
Collapse
Affiliation(s)
- Salah E Abdel-Ghany
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Lisa M LaManna
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Haleakala T Harroun
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
32
|
Screening and Identification of Candidate GUN1-Interacting Proteins in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms222111364. [PMID: 34768794 PMCID: PMC8583188 DOI: 10.3390/ijms222111364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Chloroplasts are semi-autonomous organelles governed by the precise coordination between the genomes of their own and the nucleus for functioning correctly in response to developmental and environmental cues. Under stressed conditions, various plastid-to-nucleus retrograde signals are generated to regulate the expression of a large number of nuclear genes for acclimation. Among these retrograde signaling pathways, the chloroplast protein GENOMES UNCOUPLED 1 (GUN1) is the first component identified. However, in addition to integrating aberrant physiological signals when chloroplasts are challenged by stresses such as photooxidative damage or the inhibition of plastid gene expression, GUN1 was also found to regulate other developmental processes such as flowering. Several partner proteins have been found to interact with GUN1 and facilitate its different regulatory functions. In this study, we report 15 possible interacting proteins identified through yeast two-hybrid (Y2H) screening, among which 11 showed positive interactions by pair-wise Y2H assay. Through the bimolecular fluorescence complementation assay in Arabidopsis protoplasts, two candidate proteins with chloroplast localization, DJC31 and HCF145, were confirmed to interact with GUN1 in planta. Genes for these GUN1-interacting proteins showed different fluctuations in the WT and gun1 mutant under norflurazon and lincomycin treatments. Our results provide novel clues for a better understanding of molecular mechanisms underlying GUN1-mediated regulations.
Collapse
|
33
|
Li X, Sun M, Liu S, Teng Q, Li S, Jiang Y. Functions of PPR Proteins in Plant Growth and Development. Int J Mol Sci 2021; 22:11274. [PMID: 34681932 PMCID: PMC8537650 DOI: 10.3390/ijms222011274] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 01/04/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins form a large protein family in land plants, with hundreds of different members in angiosperms. In the last decade, a number of studies have shown that PPR proteins are sequence-specific RNA-binding proteins involved in multiple aspects of plant organellar RNA processing, and perform numerous functions in plants throughout their life cycle. Recently, computational and structural studies have provided new insights into the working mechanisms of PPR proteins in RNA recognition and cytidine deamination. In this review, we summarized the research progress on the functions of PPR proteins in plant growth and development, with a particular focus on their effects on cytoplasmic male sterility, stress responses, and seed development. We also documented the molecular mechanisms of PPR proteins in mediating RNA processing in plant mitochondria and chloroplasts.
Collapse
Affiliation(s)
- Xiulan Li
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (M.S.); (S.L.); (Q.T.); (S.L.)
| | | | | | | | | | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (M.S.); (S.L.); (Q.T.); (S.L.)
| |
Collapse
|
34
|
Wu GZ, Bock R. GUN control in retrograde signaling: How GENOMES UNCOUPLED proteins adjust nuclear gene expression to plastid biogenesis. THE PLANT CELL 2021; 33:457-474. [PMID: 33955483 PMCID: PMC8136882 DOI: 10.1093/plcell/koaa048] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
Communication between cellular compartments is vital for development and environmental adaptation. Signals emanating from organelles, so-called retrograde signals, coordinate nuclear gene expression with the developmental stage and/or the functional status of the organelle. Plastids (best known in their green photosynthesizing differentiated form, the chloroplasts) are the primary energy-producing compartment of plant cells, and the site for the biosynthesis of many metabolites, including fatty acids, amino acids, nucleotides, isoprenoids, tetrapyrroles, vitamins, and phytohormone precursors. Signals derived from plastids regulate the accumulation of a large set of nucleus-encoded proteins, many of which localize to plastids. A set of mutants defective in retrograde signaling (genomes uncoupled, or gun) was isolated over 25 years ago. While most GUN genes act in tetrapyrrole biosynthesis, resolving the molecular function of GUN1, the proposed integrator of multiple retrograde signals, has turned out to be particularly challenging. Based on its amino acid sequence, GUN1 was initially predicted to be a plastid-localized nucleic acid-binding protein. Only recently, mechanistic information on the function of GUN1 has been obtained, pointing to a role in plastid protein homeostasis. This review article summarizes our current understanding of GUN-related retrograde signaling and provides a critical appraisal of the various proposed roles for GUNs and their respective pathways.
Collapse
Affiliation(s)
- Guo-Zhang Wu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
35
|
Jiang J, Dehesh K. Plastidial retrograde modulation of light and hormonal signaling: an odyssey. THE NEW PHYTOLOGIST 2021; 230:931-937. [PMID: 33452833 DOI: 10.1111/nph.17192] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The transition from an engulfed autonomous unicellular photosynthetic bacterium to a semiautonomous endosymbiont plastid was accompanied by the transfer of genetic material from the endosymbiont to the nuclear genome of the host, followed by the establishment of plastid-to-nucleus (retrograde) signaling. The retrograde coordinated activities of the two subcellular genomes ensure chloroplast biogenesis and function as the photosynthetic hub and sensing and signaling center that tailors growth-regulating and adaptive processes. This review specifically focuses on the current knowledge of selected stress-induced retrograde signals, genomes uncoupled 1 (GUN1), methylerythritol cyclodiphosphate (MEcPP), apocarotenoid and β-cyclocitral, and 3'-phosphoadenosine 5'-phosphate (PAP), which evolved to establish the photoautotrophic lifestyle and are instrumental in the integration of light and hormonal signaling networks to ultimately fashion adaptive responses in an ever-changing environment.
Collapse
Affiliation(s)
- Jishan Jiang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
36
|
Li P, Ma J, Sun X, Zhao C, Ma C, Wang X. RAB GTPASE HOMOLOG 8D is required for the maintenance of both the root stem cell niche and the meristem. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1225-1239. [PMID: 33258210 DOI: 10.1111/tpj.15106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Previous studies have suggested that the plastid translation elongation factor, elongation factor thermo unstable (EF-Tu), encoded by RAB GTPASE HOMOLOG 8D (RAB8D) is essential for plant growth. Here, through analyzing the root phenotypes of two knock-down alleles of RAB8D (rab8d-1 and rab8d-2), we further revealed a vital role for RAB8D in primary root development through the maintenance of both the stem cell niche (SCN) and the meristem. Our results showed that RAB8D deficiency affects the root auxin response and SCN maintenance signaling. RAB8D interacts with GENOMES UNCOUPLED 1 (GUN1) in vivo. Further analysis revealed that GUN1 is over-accumulated and is required for both stem cell death and maintenance of root architecture in rab8d Arabidopsis mutants. The ATAXIA-TELANGIECTASIA-MUTATED (ATM)-SUPPRESSOR OF GAMMA RESPONSE 1 pathway is involved in the regulation of root meristem size through upregulating SIAMESE-RELATED 5 expression in the rab8d-2 allele. Moreover, ETHYLENE RESPONSE FACTOR 115 is highly expressed in rab8d-2, which plays a role in further quiescent center division. Our observations not only characterized the role of RAB8D in root development, but also uncovered functions of GUN1 and ATM in response to plastid EF-Tu deficiency.
Collapse
Affiliation(s)
- Pengcheng Li
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Junjie Ma
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xueping Sun
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Chuanzhi Zhao
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xingjun Wang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| |
Collapse
|
37
|
Huang XQ, Wang LJ, Kong MJ, Huang N, Liu XY, Liang HY, Zhang JX, Lu S. At3g53630 encodes a GUN1-interacting protein under norflurazon treatment. PROTOPLASMA 2021; 258:371-378. [PMID: 33108535 DOI: 10.1007/s00709-020-01578-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Chloroplasts are semi-autonomous organelles, with more than 95% of their proteins encoded by the nuclear genome. The chloroplast-to-nucleus retrograde signals are critical for the nucleus to coordinate its gene expression for optimizing or repairing chloroplast functions in response to changing environments. In chloroplasts, the pentatricopeptide-repeat protein GENOMES UNCOUPLED 1 (GUN1) is a master switch that senses aberrant physiological states, such as the photooxidative stress induced by norflurazon (NF) treatment, and represses the expression of photosynthesis-associated nuclear genes (PhANGs). However, it is largely unknown how the retrograde signal is transmitted beyond GUN1. In this study, a protein GUN1-INTERACTING PROTEIN 1 (GIP1), encoded by At3g53630, was identified to interact with GUN1 by different approaches. We demonstrated that GIP1 has both cytosol and chloroplast localizations, and its abundance in chloroplasts is enhanced by NF treatment with the presence of GUN1. Our results suggest that GIP1 and GUN1 may function antagonistically in the retrograde signaling pathway.
Collapse
Affiliation(s)
- Xing-Qi Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lin-Juan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Meng-Juan Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Na Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xin-Ya Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Han-Yu Liang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jia-Xin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
38
|
Gommers CMM, Ruiz-Sola MÁ, Ayats A, Pereira L, Pujol M, Monte E. GENOMES UNCOUPLED1-independent retrograde signaling targets the ethylene pathway to repress photomorphogenesis. PLANT PHYSIOLOGY 2021; 185:67-76. [PMID: 33631804 PMCID: PMC8133597 DOI: 10.1093/plphys/kiaa015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 05/03/2023]
Abstract
When germinating in the light, Arabidopsis (Arabidopsis thaliana) seedlings undergo photomorphogenic development, characterized by short hypocotyls, greening, and expanded cotyledons. Stressed chloroplasts emit retrograde signals to the nucleus that induce developmental responses and repress photomorphogenesis. The nuclear targets of these retrograde signals are not yet fully known. Here, we show that lincomycin-treated seedlings (which lack developed chloroplasts) show strong phenotypic similarities to seedlings treated with ethylene (ET) precursor 1-aminocyclopropane-1-carboxylic acid, as both signals inhibit cotyledon separation in the light. We show that the lincomycin-induced phenotype partly requires a functioning ET signaling pathway, but could not detect increased ET emissions in response to the lincomycin treatment. The two treatments show overlap in upregulated gene transcripts, downstream of transcription factors ETHYLENE INSENSITIVE3 and EIN3-LIKE1. The induction of the ET signaling pathway is triggered by an unknown retrograde signal acting independently of GENOMES UNCOUPLED1. Our data show how two apparently different stress responses converge to optimize photomorphogenesis.
Collapse
Affiliation(s)
- Charlotte M M Gommers
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics (CSIC- IRTA-UAB-UB), Barcelona, Spain
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - María Águila Ruiz-Sola
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics (CSIC- IRTA-UAB-UB), Barcelona, Spain
| | - Alba Ayats
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics (CSIC- IRTA-UAB-UB), Barcelona, Spain
| | - Lara Pereira
- Plant and Animal Genomics Program, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
- Present address: Center for Applied Genetic Technologies, University of Georgia, Athens, USA
| | - Marta Pujol
- Plant and Animal Genomics Program, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Elena Monte
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics (CSIC- IRTA-UAB-UB), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Author for communication: (E.M.)
| |
Collapse
|
39
|
Gawroński P, Burdiak P, Scharff LB, Mielecki J, Górecka M, Zaborowska M, Leister D, Waszczak C, Karpiński S. CIA2 and CIA2-LIKE are required for optimal photosynthesis and stress responses in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:619-638. [PMID: 33119927 DOI: 10.1111/tpj.15058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 05/22/2023]
Abstract
Chloroplast-to-nucleus retrograde signaling is essential for cell function, acclimation to fluctuating environmental conditions, plant growth and development. The vast majority of chloroplast proteins are nuclear-encoded, and must be imported into the organelle after synthesis in the cytoplasm. This import is essential for the development of fully functional chloroplasts. On the other hand, functional chloroplasts act as sensors of environmental changes and can trigger acclimatory responses that influence nuclear gene expression. Signaling via mobile transcription factors (TFs) has been recently recognized as a way of communication between organelles and the nucleus. In this study, we performed a targeted reverse genetic screen to identify dual-localized TFs involved in chloroplast retrograde signaling during stress responses. We found that CHLOROPLAST IMPORT APPARATUS 2 (CIA2) has a functional plastid transit peptide, and can be located both in chloroplasts and the nucleus. Further, we found that CIA2, along with its homolog CIA2-like (CIL) are involved in the regulation of Arabidopsis responses to UV-AB, high light and heat shock. Finally, our results suggest that both CIA2 and CIL are crucial for chloroplast translation. Our results contribute to a deeper understanding of signaling events in the chloroplast-nucleus cross-talk.
Collapse
Affiliation(s)
- Piotr Gawroński
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences, Warsaw, 02-776, Poland
| | - Paweł Burdiak
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences, Warsaw, 02-776, Poland
| | - Lars B Scharff
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Jakub Mielecki
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences, Warsaw, 02-776, Poland
| | - Magdalena Górecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Magdalena Zaborowska
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences, Warsaw, 02-776, Poland
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, Planegg-Martinsried, 82152, Germany
| | - Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences, Warsaw, 02-776, Poland
| |
Collapse
|
40
|
Bouchnak I, van Wijk KJ. Structure, function, and substrates of Clp AAA+ protease systems in cyanobacteria, plastids, and apicoplasts: A comparative analysis. J Biol Chem 2021; 296:100338. [PMID: 33497624 PMCID: PMC7966870 DOI: 10.1016/j.jbc.2021.100338] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
ATPases Associated with diverse cellular Activities (AAA+) are a superfamily of proteins that typically assemble into hexameric rings. These proteins contain AAA+ domains with two canonical motifs (Walker A and B) that bind and hydrolyze ATP, allowing them to perform a wide variety of different functions. For example, AAA+ proteins play a prominent role in cellular proteostasis by controlling biogenesis, folding, trafficking, and degradation of proteins present within the cell. Several central proteolytic systems (e.g., Clp, Deg, FtsH, Lon, 26S proteasome) use AAA+ domains or AAA+ proteins to unfold protein substrates (using energy from ATP hydrolysis) to make them accessible for degradation. This allows AAA+ protease systems to degrade aggregates and large proteins, as well as smaller proteins, and feed them as linearized molecules into a protease chamber. This review provides an up-to-date and a comparative overview of the essential Clp AAA+ protease systems in Cyanobacteria (e.g., Synechocystis spp), plastids of photosynthetic eukaryotes (e.g., Arabidopsis, Chlamydomonas), and apicoplasts in the nonphotosynthetic apicomplexan pathogen Plasmodium falciparum. Recent progress and breakthroughs in identifying Clp protease structures, substrates, substrate adaptors (e.g., NblA/B, ClpS, ClpF), and degrons are highlighted. We comment on the physiological importance of Clp activity, including plastid biogenesis, proteostasis, the chloroplast Protein Unfolding Response, and metabolism, across these diverse lineages. Outstanding questions as well as research opportunities and priorities to better understand the essential role of Clp systems in cellular proteostasis are discussed.
Collapse
Affiliation(s)
- Imen Bouchnak
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA.
| |
Collapse
|
41
|
Shimizu T, Masuda T. The Role of Tetrapyrrole- and GUN1-Dependent Signaling on Chloroplast Biogenesis. PLANTS 2021; 10:plants10020196. [PMID: 33494334 PMCID: PMC7911674 DOI: 10.3390/plants10020196] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Chloroplast biogenesis requires the coordinated expression of the chloroplast and nuclear genomes, which is achieved by communication between the developing chloroplasts and the nucleus. Signals emitted from the plastids, so-called retrograde signals, control nuclear gene expression depending on plastid development and functionality. Genetic analysis of this pathway identified a set of mutants defective in retrograde signaling and designated genomes uncoupled (gun) mutants. Subsequent research has pointed to a significant role of tetrapyrrole biosynthesis in retrograde signaling. Meanwhile, the molecular functions of GUN1, the proposed integrator of multiple retrograde signals, have not been identified yet. However, based on the interactions of GUN1, some working hypotheses have been proposed. Interestingly, GUN1 contributes to important biological processes, including plastid protein homeostasis, through transcription, translation, and protein import. Furthermore, the interactions of GUN1 with tetrapyrroles and their biosynthetic enzymes have been revealed. This review focuses on our current understanding of the function of tetrapyrrole retrograde signaling on chloroplast biogenesis.
Collapse
|
42
|
Martínez Núñez M, Ruíz Rivas M, Gregorio Jorge J, Hernández PFV, Luna Suárez S, de Folter S, Chávez Montes RA, Rosas Cárdenas FDF. Identification of genuine and novel miRNAs in Amaranthus hypochondriacus from high-throughput sequencing data. Genomics 2020; 113:88-103. [PMID: 33271330 DOI: 10.1016/j.ygeno.2020.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
Amaranth has been proposed as an exceptional alternative for food security and climate change mitigation. Information about the distribution, abundance, or specificity of miRNAs in amaranth species is scare. Here, small RNAs from seedlings under control, drought, heat, and cold stress conditions of the Amaranthus hypocondriacus variety "Gabriela" were sequenced and miRNA loci identified in the amaranth genome using the ShortStack software. Fifty-three genuine miRNA clustersthirty-nine belonging to conserved families, and fourteen novel, were identified. Identification of their target genes suggests that conserved amaranth miRNAs are involved in growth and developmental processes, as well as stress responses. MiR0005, an amaranth-specific miRNA, exhibited an unusual high level of expression, akin to that of conserved miRNAs. Overall, our results broaden our knowledge regarding the distribution, abundance and expression of miRNAs in amaranth, providing the basis for future research on miRNAs and their functions in this important species.
Collapse
Affiliation(s)
- Marcelino Martínez Núñez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, C.P. 90700 Tlaxcala, México
| | - Magali Ruíz Rivas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, C.P. 90700 Tlaxcala, México
| | - Josefat Gregorio Jorge
- Consejo Nacional de Ciencia y Tecnología, Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional (CIBA-IPN), Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México, México
| | - Pedro Fernando Vera Hernández
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, C.P. 90700 Tlaxcala, México
| | - Silvia Luna Suárez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, C.P. 90700 Tlaxcala, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36824 Irapuato, Guanajuato, México
| | - Ricardo A Chávez Montes
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36824 Irapuato, Guanajuato, México; Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Flor de Fátima Rosas Cárdenas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, C.P. 90700 Tlaxcala, México.
| |
Collapse
|
43
|
Huang W, Zhang Y, Shen L, Fang Q, Liu Q, Gong C, Zhang C, Zhou Y, Mao C, Zhu Y, Zhang J, Chen H, Zhang Y, Lin Y, Bock R, Zhou F. Accumulation of the RNA polymerase subunit RpoB depends on RNA editing by OsPPR16 and affects chloroplast development during early leaf development in rice. THE NEW PHYTOLOGIST 2020; 228:1401-1416. [PMID: 32583432 PMCID: PMC7689822 DOI: 10.1111/nph.16769] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/11/2020] [Indexed: 05/02/2023]
Abstract
Plastid-encoded genes are coordinately transcribed by the nucleus-encoded RNA polymerase (NEP) and the plastid-encoded RNA polymerase (PEP). Resulting primary transcripts are frequently subject to RNA editing by cytidine-to-uridine conversions at specific sites. The physiological role of many editing events is largely unknown. Here, we have used the CRISPR/Cas9 technique in rice to knock out a member of the PLS-DYW subfamily of pentatricopeptide repeat (PPR) proteins. We found that OsPPR16 is responsible for a single editing event at position 545 in the chloroplast rpoB messenger RNA (mRNA), resulting in an amino acid change from serine to leucine in the β-subunit of the PEP. In striking contrast to loss-of-function mutations of the putative orthologue in Arabidopsis, which were reported to have no visible phenotype, knockout of OsPPR16 leads to impaired accumulation of RpoB, reduced expression of PEP-dependent genes, and a pale phenotype during early plant development. Thus, by editing the rpoB mRNA, OsPPR16 is required for faithful plastid transcription, which in turn is required for Chl synthesis and efficient chloroplast development. Our results provide new insights into the interconnection of the finely tuned regulatory mechanisms that operate at the transcriptional and post-transcriptional levels of plastid gene expression.
Collapse
Affiliation(s)
- Weifeng Huang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yang Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Liqiang Shen
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qian Fang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Qun Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Chenbo Gong
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Chen Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yong Zhou
- College of Bioscience and BioengineeringJiangxi Agricultural UniversityNanchan330045China
| | - Cui Mao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yongli Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Jinghong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Hongping Chen
- Nanchang Subcenter of Rice National Engineering LaboratoryKey Laboratory of Rice Physiology and Genetics of Jiangxi ProvinceRice Research InstituteJiangxi Academy of Agricultural SciencesNanchang330200China
| | - Yu Zhang
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Ralph Bock
- Max‐Planck‐Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1Potsdam‐GolmD‐14476Germany
| | - Fei Zhou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
44
|
GUN1 and Plastid RNA Metabolism: Learning from Genetics. Cells 2020; 9:cells9102307. [PMID: 33081381 PMCID: PMC7602965 DOI: 10.3390/cells9102307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
GUN1 (genomes uncoupled 1), a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal small mutS-related (SMR) domain, plays a central role in the retrograde communication of chloroplasts with the nucleus. This flow of information is required for the coordinated expression of plastid and nuclear genes, and it is essential for the correct development and functioning of chloroplasts. Multiple genetic and biochemical findings indicate that GUN1 is important for protein homeostasis in the chloroplast; however, a clear and unified view of GUN1′s role in the chloroplast is still missing. Recently, GUN1 has been reported to modulate the activity of the nucleus-encoded plastid RNA polymerase (NEP) and modulate editing of plastid RNAs upon activation of retrograde communication, revealing a major role of GUN1 in plastid RNA metabolism. In this opinion article, we discuss the recently identified links between plastid RNA metabolism and retrograde signaling by providing a new and extended concept of GUN1 activity, which integrates the multitude of functional genetic interactions reported over the last decade with its primary role in plastid transcription and transcript editing.
Collapse
|
45
|
Nanosecond pulsed electric fields modulate the expression of the astaxanthin biosynthesis genes psy, crtR-b and bkt 1 in Haematococcus pluvialis. Sci Rep 2020; 10:15508. [PMID: 32968095 PMCID: PMC7511312 DOI: 10.1038/s41598-020-72479-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Nanosecond pulsed electric fields (nsPEFs) have been extensively studied with respect to cellular responses. Whether nsPEFs can regulate gene expression and to modulate the synthesis of valuable compounds, has so far been only tested in the context of apoptosis in cancer cells. We used the unicellular algae Haematococcus pluvialis as system to test, whether nsPEFs could alter gene expression and to promote the biosynthesis of astaxanthin. We find that nsPEFs induce a mild, but significant increase of mortality up to about 20%, accompanied by a moderate increase of astaxanthin accumulation. Steady-state transcript levels of three key genes psy, crtR-b and bkt 1 were seen to increase with a maximum at 3 d after PEF treatment at 50 ns. Pulsing at 25 ns reduce the transcripts of psy, crtR-b from around day 2 after the pulse, while those of bkt 1 remain unchanged. By blocking the membrane-located NADPH oxidase RboH, diphenylene iodonium by itself increased both, the levels of astaxanthin and transcripts of all three biosynthetic genes, and this increase was added up to that produced by nsPEFs. Artificial calcium influx by an ionophore did not induce major changes in the accumulation of astaxanthin, nor in the transcript levels, but amplified the response of crtR-b to nsPEFs at 25 ns, while decreased in 50 ns treatment. When Ca2+ influx was inhibited by GdCl3, the transcript of psy and bkt 1 were decreased for both 25 ns and 50 ns treatments, while crtR-b exhibited an obvious increase for the 25 ns treatment. We interpret these data in a working model, where nsPEFs permeabilise plasma and chloroplast membrane depending on pulse duration leading to a differential release of plastid retrograde signaling to the nucleus.
Collapse
|
46
|
Mielecki J, Gawroński P, Karpiński S. Retrograde Signaling: Understanding the Communication between Organelles. Int J Mol Sci 2020; 21:E6173. [PMID: 32859110 PMCID: PMC7503960 DOI: 10.3390/ijms21176173] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding how cell organelles and compartments communicate with each other has always been an important field of knowledge widely explored by many researchers. However, despite years of investigations, one point-and perhaps the only point that many agree on-is that our knowledge about cellular-signaling pathways still requires expanding. Chloroplasts and mitochondria (because of their primary functions in energy conversion) are important cellular sensors of environmental fluctuations and feedback they provide back to the nucleus is important for acclimatory responses. Under stressful conditions, it is important to manage cellular resources more efficiently in order to maintain a proper balance between development, growth and stress responses. For example, it can be achieved through regulation of nuclear and organellar gene expression. If plants are unable to adapt to stressful conditions, they will be unable to efficiently produce energy for growth and development-and ultimately die. In this review, we show the importance of retrograde signaling in stress responses, including the induction of cell death and in organelle biogenesis. The complexity of these pathways demonstrates how challenging it is to expand the existing knowledge. However, understanding this sophisticated communication may be important to develop new strategies of how to improve adaptability of plants in rapidly changing environments.
Collapse
Affiliation(s)
| | | | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.M.); (P.G.)
| |
Collapse
|
47
|
de Vries J, de Vries S, Curtis BA, Zhou H, Penny S, Feussner K, Pinto DM, Steinert M, Cohen AM, von Schwartzenberg K, Archibald JM. Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1025-1048. [PMID: 32333477 DOI: 10.1111/tpj.14782] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/28/2020] [Accepted: 04/08/2020] [Indexed: 05/20/2023]
Abstract
All land plants (embryophytes) share a common ancestor that likely evolved from a filamentous freshwater alga. Elucidating the transition from algae to embryophytes - and the eventual conquering of Earth's surface - is one of the most fundamental questions in plant evolutionary biology. Here, we investigated one of the organismal properties that might have enabled this transition: resistance to drastic temperature shifts. We explored the effect of heat stress in Mougeotia and Spirogyra, two representatives of Zygnematophyceae - the closest known algal sister lineage to land plants. Heat stress induced pronounced phenotypic alterations in their plastids, and high-performance liquid chromatography-tandem mass spectroscopy-based profiling of 565 transitions for the analysis of main central metabolites revealed significant shifts in 43 compounds. We also analyzed the global differential gene expression responses triggered by heat, generating 92.8 Gbp of sequence data and assembling a combined set of 8905 well-expressed genes. Each organism had its own distinct gene expression profile; less than one-half of their shared genes showed concordant gene expression trends. We nevertheless detected common signature responses to heat such as elevated transcript levels for molecular chaperones, thylakoid components, and - corroborating our metabolomic data - amino acid metabolism. We also uncovered the heat-stress responsiveness of genes for phosphorelay-based signal transduction that links environmental cues, calcium signatures and plastid biology. Our data allow us to infer the molecular heat stress response that the earliest land plants might have used when facing the rapidly shifting temperature conditions of the terrestrial habitat.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, 37077, Goettingen, Germany
| | - Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitätsstr. 1, 40225, Duesseldorf, Germany
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
| | - Hong Zhou
- Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, Universität Hamburg, 22609, Hamburg, Germany
| | - Susanne Penny
- National Research Council, Human Health Therapeutics, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), 37077, Goettingen, Germany
| | - Devanand M Pinto
- National Research Council, Human Health Therapeutics, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd, Halifax, NS, B3H 4R2, Canada
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Alejandro M Cohen
- Biological Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Klaus von Schwartzenberg
- Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, Universität Hamburg, 22609, Hamburg, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
- Canadian Institute for Advanced Research, 661 University Ave, Suite 505, Toronto, ON, M5G 1M1, Canada
| |
Collapse
|
48
|
Hernández-Verdeja T, Vuorijoki L, Strand Å. Emerging from the darkness: interplay between light and plastid signaling during chloroplast biogenesis. PHYSIOLOGIA PLANTARUM 2020; 169:397-406. [PMID: 32222991 DOI: 10.1111/ppl.13100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 05/17/2023]
Abstract
Chloroplast biogenesis is a highly complex process that requires carefully coordinated communication between the nucleus and the chloroplast to integrate light signaling and information about the state of the plastid through retrograde signals. Most studies on plastid development have been performed using dark-grown seedlings and have focused on the transition from etioplast to chloroplast in response to light. Some advances are now also being made to understand the transition directly from proplastids to chloroplasts as it occurs in the shoot apical meristems. Recent reports have highlighted the importance of repressive mechanisms to block premature chloroplast development in dark, both at the transcriptional and post-transcriptional level. A group of new proteins with dual plastid and nuclear localization were shown to take part in the light triggered degradation of PHYTOCHROME INTERACTING FACTORs (PIFs) in the nucleus and thereby release the suppression of the nuclear photosynthesis associated genes. These dually localized proteins are also required to activate transcription of photosynthesis genes in the plastid in response to light, emphasizing the close link between the nucleus and the plastids during early light response. Furthermore, development of a fully functional chloroplast requires a plastid signal but the nature of this signal(s) is still unknown. GENOMES UNCOUPLED1 (GUN1) is a plastid protein pivotal for retrograde signal(s) during early seedling development, and recent reports have revealed multiple interactors of GUN1 from different plastid processes. These new GUN1 interactors could reveal the true molecular function of the enigmatic character, GUN1, under naturally occurring adverse growth conditions.
Collapse
Affiliation(s)
- Tamara Hernández-Verdeja
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
| | - Linda Vuorijoki
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
| |
Collapse
|
49
|
Loudya N, Okunola T, He J, Jarvis P, López-Juez E. Retrograde signalling in a virescent mutant triggers an anterograde delay of chloroplast biogenesis that requires GUN1 and is essential for survival. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190400. [PMID: 32362263 PMCID: PMC7209947 DOI: 10.1098/rstb.2019.0400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Defects in chloroplast development are ‘retrograde-signalled’ to the nucleus, reducing synthesis of photosynthetic or related proteins. The Arabidopsiscue8 mutant manifests virescence, a slow-greening phenotype, and is defective at an early stage in plastid development. Greening cotyledons or early leaf cells of cue8 exhibit immature chloroplasts which fail to fill the available cellular space. Such chloroplasts show reduced expression of genes of photosynthetic function, dependent on the plastid-encoded polymerase (PEP), while the expression of genes of housekeeping function driven by the nucleus-encoded polymerase (NEP) is elevated, a phenotype shared with mutants in plastid genetic functions. We attribute this phenotype to reduced expression of specific PEP-controlling sigma factors, elevated expression of RPOT (NEP) genes and maintained replication of plastid genomes (resulting in densely coalesced nucleoids in the mutant), i.e. it is due to an anterograde nucleus-to-chloroplast correction, analogous to retention of a juvenile plastid state. Mutants in plastid protein import components, particularly those involved in housekeeping protein import, also show this ‘retro-anterograde’ correction. Loss of CUE8 also causes changes in mRNA editing. The overall response has strong fitness value: loss of GUN1, an integrator of retrograde signalling, abolishes elements of it (albeit not others, including editing changes), causing bleaching and eventual seedling lethality upon cue8 gun1. This highlights the adaptive significance of virescence and retrograde signalling. This article is part of the theme issue ‘Retrograde signalling from endosymbiotic organelles’.
Collapse
Affiliation(s)
- Naresh Loudya
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Tolulope Okunola
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Jia He
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Paul Jarvis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Enrique López-Juez
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
50
|
Tadini L, Jeran N, Peracchio C, Masiero S, Colombo M, Pesaresi P. The plastid transcription machinery and its coordination with the expression of nuclear genome: Plastid-Encoded Polymerase, Nuclear-Encoded Polymerase and the Genomes Uncoupled 1-mediated retrograde communication. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190399. [PMID: 32362266 DOI: 10.1098/rstb.2019.0399] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Plastid genes in higher plants are transcribed by at least two different RNA polymerases, the plastid-encoded RNA polymerase (PEP), a bacteria-like core enzyme whose subunits are encoded by plastid genes (rpoA, rpoB, rpoC1 and rpoC2), and the nuclear-encoded plastid RNA polymerase (NEP), a monomeric bacteriophage-type RNA polymerase. Both PEP and NEP enzymes are active in non-green plastids and in chloroplasts at all developmental stages. Their transcriptional activity is affected by endogenous and exogenous factors and requires a strict coordination within the plastid and with the nuclear gene expression machinery. This review focuses on the different molecular mechanisms underlying chloroplast transcription regulation and its coordination with the photosynthesis-associated nuclear genes (PhANGs) expression. Particular attention is given to the link between NEP and PEP activity and the GUN1- (Genomes Uncoupled 1) mediated chloroplast-to-nucleus retrograde communication with respect to the Δrpo adaptive response, i.e. the increased accumulation of NEP-dependent transcripts upon depletion of PEP activity, and the editing-level changes observed in NEP-dependent transcripts, including rpoB and rpoC1, in gun1 cotyledons after norflurazon or lincomycin treatment. The role of cytosolic preproteins and HSP90 chaperone as components of the GUN1-retrograde signalling pathway, when chloroplast biogenesis is inhibited in Arabidopsis cotyledons, is also discussed. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Luca Tadini
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Nicolaj Jeran
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Carlotta Peracchio
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| |
Collapse
|