1
|
Liu X, Wang P, Wang S, Liao W, Ouyang M, Lin S, Lin R, Sarris PF, Michalopoulou V, Feng X, Zhang Z, Xu Z, Chen G, Zhu B. The circular RNA circANK suppresses rice resistance to bacterial blight by inhibiting microRNA398b-mediated defense. THE PLANT CELL 2025; 37:koaf082. [PMID: 40261967 PMCID: PMC12013817 DOI: 10.1093/plcell/koaf082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/09/2025] [Indexed: 04/11/2025]
Abstract
Circular RNAs (circRNAs) are prevalent in eukaryotic cells and have been linked to disease progressions. Their unique circular structure and stability make them potential biomarkers and therapeutic targets. Compared with animal models, plant circRNA research is still in its infancy. The lack of effective tools to specifically knock down circRNAs without affecting host gene expression has slowed the progress of plant circRNA research. Here, we have developed a CRISPR-Cas13d tool that can specifically knock down circRNAs in plant systems, successfully achieving the targeted knockdown of circRNAs in rice (Oryza sativa). We further focused on Os-circANK (a circRNA derived from Ankyrin repeat-containing protein), a circRNA differentially expressed in rice upon pathogen infection. Physiological and biochemical experiments revealed that Os-circANK functions as a sponge for miR398b, suppressing the cleavage of Cu/Zn-superoxidase dismutase (CSD)1/CSD2/copper chaperone for superoxide dismutase/superoxidase dismutaseX through competing endogenous RNA, leading to reduced reactive oxygen species levels following Xanthomonas oryzae pv. oryzae (Xoo) infection and a negative regulation of rice resistance to bacterial blight. Our findings indicate Os-circANK inhibits rice resistance to bacterial blight via the microRNA398b(miR398b)/CSD/SOD pathway.
Collapse
Affiliation(s)
- Xiaohui Liu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peihong Wang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sai Wang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weixue Liao
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyan Ouyang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sisi Lin
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rongpeng Lin
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | - Xurui Feng
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zinan Zhang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengyin Xu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gongyou Chen
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Tang X, Feng X, Xu Y, Yang B, Wang Y, Zhou Y, Wang Q, Mao Y, Xie W, Liu T, Tang Q, Liu Y, Wang Y, Xu J, Lu Y. CircZmMED16 delays plant flowering by negatively regulating starch content through its binding to ZmAPS1. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1142-1161. [PMID: 39835885 DOI: 10.1111/jipb.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025]
Abstract
Circular RNAs (circRNAs), a type of head-to-tail closed RNA molecules, have been implicated in various aspects of plant development and stress responses through transcriptome sequencing; however, the precise functional roles of circRNAs in plants remain poorly understood. In this study, we identified a highly expressed circular RNA, circZmMED16, derived from exon 8 of the mediator complex subunit 16 (ZmMED16) across different maize (Zea mays L.) inbred lines using circRNA-seq analysis. This circRNA is predominantly expressed in maize tassels and functions in the cytoplasm. Overexpression of circZmMED16 resulted in increased expression of ZmMED16/AtMED16 and delayed flowering in both maize and Arabidopsis thaliana, compared with that in wild-type plants. In contrast, overexpression of the parent gene ZmMED16 did not alter the flowering time of transgenic plants in Arabidopsis, suggesting that circZmMED16 plays a specific role in regulating flowering, distinct from that of linear ZmMED16. To further understand the mechanisms underlying the regulation of flowering time by circZmMED16, we performed RNA pull-down, dual-luciferase, RNA interference (RNAi), and ribonuclease protection assays (RPA). These results indicate that circZmMED16 interacts with small subunit 1 of ADP-glucose pyrophosphorylase (APS1) mRNA in both maize and Arabidopsis. The knockdown of circZmMED16 increased the expression of ZmAPS1, whereas the overexpression of circZmMED16 led to the downregulation of ZmAPS1 RNA and protein. By affecting ZmAPS1 expression, circZmMED16 reduced ADP-glucose pyrophosphorylase (AGPase) activity and led to delayed flowering. These results revealed a novel regulatory mechanism for circRNAs in flowering time and shed light on their functional and regulatory roles in plants.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 610000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 610000, China
| | - Xiaoju Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 610000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 610000, China
| | - Yang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 610000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 610000, China
| | - Bo Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 610000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 610000, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 610000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 610000, China
| | - Yang Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 610000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 610000, China
| | - Qi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 610000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 610000, China
| | - Yan Mao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 610000, China
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, 610000, China
| | - Wubing Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 610000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 610000, China
| | - Tianhong Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 610000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 610000, China
| | - Qi Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 610000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 610000, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 610000, China
| | - Yao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 610000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 610000, China
| | - Jie Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 610000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 610000, China
| | - Yanli Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 610000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 610000, China
| |
Collapse
|
3
|
Pan X, Xu S, Cao G, Chen S, Zhang T, Yang BB, Zhou G, Yang X. A novel peptide encoded by a rice circular RNA confers broad-spectrum disease resistance in rice plants. THE NEW PHYTOLOGIST 2025; 246:689-701. [PMID: 40007179 DOI: 10.1111/nph.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Circular RNAs (circRNAs) are a significant class of endogenous RNAs that exert crucial biological functions in human and animal systems, but little is currently understood regarding their roles in plants. Here, we identified a circRNA originating from the back-splicing of exon 4 and exon 5 of a rice gene, OsWRKY9, and named it circ-WRKY9. It is upregulated in rice stripe mosaic virus (RSMV)-infected rice plants. Notably, circ-WRKY9 contains two open reading frames with an internal ribosome entry site. We found that circ-WRKY9 encoded a peptide of 88 amino acids (aa) and named it WRKY9-88aa. Overexpression of WRKY9-88aa suppresses RSMV infection in rice plants, with increased reactive oxygen species production. Furthermore, WRKY9-88aa enhances resistance to blast disease and bacterial leaf blight, suggesting its potential to provide broad-spectrum disease resistance. Our findings provide the first evidence of a peptide encoded by a circRNA in planta and highlight its potential application to control a wide spectrum of plant diseases.
Collapse
Affiliation(s)
- Xin Pan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sipei Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Gehui Cao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Siping Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, M4Y 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
4
|
Chen J, Liu M, Zhong Y. circGDSL-induced OPR3 expression regulates jasmonate signaling and copper tolerance in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109697. [PMID: 40024147 DOI: 10.1016/j.plaphy.2025.109697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
This study investigates the regulatory function of circular RNA (circRNA) as a competing endogenous RNA (ceRNA) in rice (Oryza sativa L.) under toxic levels of copper (Cu) stress. Physiological parameters and differences in Cu accumulation were analyzed through a hydroponic experiment. RNA sequencing (RNA-seq) identified 1051 circRNAs, of which 26 were differentially expressed (FDR <0.05, |log2FC| > 1) under Cu stress. A Cu-responsive ceRNA network mediated by circRNAs was constructed, comprising 16 circRNAs, 34 miRNAs, and 126 mRNAs. Topological analysis identified the circGDSL/miR1850.1/OPR3 triplet as a key regulatory hub, which was experimentally validated by RT-qPCR. Overexpression of circGDSL conferred significant resistance to Cu stress, characterized by enhanced antioxidant enzyme activity, reduced reactive oxygen species (ROS) levels, and alleviated Cu-induced growth suppression. Functional studies indicated that circGDSL upregulates the expression of the key jasmonic acid (JA) synthesis gene OPR3 by sponging miR1850.1, thereby activating the JA signaling pathway. The increased endogenous JA concentration represses the expression of genes (IRT1, Nramp5, and HMA2) that promote Cu uptake and translocation, resulting in decreased Cu concentration in rice. Conversely, overexpression of miR1850.1 reduces endogenous JA concentration and increases sensitivity to Cu, a phenotype that can be rescued by exogenous methyl jasmonate (MeJA). In conclusion, we identified a Cu-responsive circRNA in rice and confirmed its role in activating JA synthesis pathway as miRNA sponge, thereby enhancing rice tolerance to Cu stress.
Collapse
Affiliation(s)
- Jiajia Chen
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215011, China.
| | - Mengwei Liu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuqing Zhong
- Environmental Monitoring Station of Suzhou City, Suzhou, 215013, China
| |
Collapse
|
5
|
Jiang B, Li Y, Shi J, Chalasa DD, Zhang L, Wu S, Xu T. Identification and Network Construction of mRNAs, miRNAs, lncRNAs, and circRNAs in Sweetpotato ( Ipomoea batatas L.) Adventitious Roots Under Salt Stress via Whole-Transcriptome RNA Sequencing. Int J Mol Sci 2025; 26:1660. [PMID: 40004124 PMCID: PMC11854956 DOI: 10.3390/ijms26041660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Sweetpotato is the seventh largest crop worldwide, and soil salinization is a major environmental stress limiting its yield. Recent studies have shown that noncoding RNAs (ncRNAs) play important regulatory roles in plant responses to abiotic stress. However, ncRNAs in sweetpotato remain largely unexplored. This study analyzed the characteristics of salt-responsive ncRNAs in sweetpotato adventitious roots under salt stress via whole-transcriptome RNA sequencing. The results revealed that 3175 messenger RNAs (mRNAs), 458 microRNAs (miRNAs), 544 long-chain ncRNAs (lncRNAs), and 23 circular RNAs (circRNAs) were differentially expressed. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that most differentially expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs) were enriched primarily in phenylpropanoid biosynthesis, starch and sucrose metabolism, the Mitogen-Activated Protein Kinase (MAPK) signaling pathway, plant hormone signal transduction, the mRNA surveillance pathway, and ATP-binding cassette (ABC) transporters. Gene Ontology (GO) enrichment analysis revealed that the majority of DEmRNAs, their target DEmiRNAs, and differentially expressed lncRNAs (DElncRNAs) were associated with the cell wall, oxidation-reduction, the plasma membrane, protein phosphorylation, metabolic processes, transcription factor activity, and the regulation of transcription. Additionally, based on the competitive endogenous RNA (ceRNA) hypothesis, we predicted interactions among different RNAs and constructed a salt-responsive ceRNA network comprising 22 DEmiRNAs, 42 DEmRNAs, 27 DElncRNAs, and 10 differentially expressed circRNAs (DEcircRNAs). Some miRNAs, such as miR408, miR169, miR160, miR5139, miR5368, and miR6179, were central to the network, suggesting their crucial roles in the sweetpotato salt response. Our findings provide a foundation for further research into the potential functions of ncRNAs and offer new targets for salt stress resistance improvement through the manipulation of ncRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoyuan Wu
- Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Tao Xu
- Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
6
|
Gao Z, Su Y, Wang Y, Li Y, Wu Y, Sun X, Yao Y, Ma C, Li J, Du Y. The antisense CircRNA VvcircABH controls salt tolerance and the brassinosteroid signaling response by suppressing cognate mRNA splicing in grape. THE NEW PHYTOLOGIST 2025; 245:1563-1576. [PMID: 39627650 DOI: 10.1111/nph.20306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/12/2024] [Indexed: 01/24/2025]
Abstract
Soil salinization is a major factor limiting the sustainable development of the grape industry. Circular RNAs (circRNAs) are more stable than linear mRNAs and are involved in stress responses. However, the biological functions and molecular mechanisms underlying antisense circRNAs in plants remain unclear. We identified the antisense circRNA VvcircABH through high-throughput sequencing. Using genetic transformation methods and molecular biological techniques, we analyzed the effects of VvcircABH on the response to salt stress and the mechanisms underlying its effects. VvcircABH was located in the nucleus and upregulated by salt stress, while the expression level of its cognate gene VvABH (alpha/beta-hydrolase) was downregulated. VvcircABH overexpression or VvABH silencing greatly enhanced grape salt tolerance. VvcircABH could bind to the overlapping region and inhibits VvABH pre-mRNA splicing, thereby decreasing the expression level of VvABH. Additionally, VvcircABH repressed the additive effect of VvABH on the interaction between VvBRI1 (brassinosteroid-insensitive 1) and VvBKI1 (BRI1 kinase inhibitor 1), thus influencing the plant's response to BR, which plays important roles in plant salt tolerance. We conclude that VvcircABH and VvABH play distinct roles in the salt tolerance and brassinosteroid signaling response, and VvcircABH could govern the expression of VvABH by inhibiting its splicing.
Collapse
Affiliation(s)
- Zhen Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yifan Su
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yaru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yeqi Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yue Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xinru Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yuxin Yao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yuanpeng Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
7
|
Božić M, Ignjatović Micić D, Anđelković V, Delić N, Nikolić A. Maize transcriptome profiling reveals low temperatures affect photosynthesis during the emergence stage. FRONTIERS IN PLANT SCIENCE 2025; 16:1527447. [PMID: 39935955 PMCID: PMC11810925 DOI: 10.3389/fpls.2025.1527447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025]
Abstract
Introduction Earlier sowing is a promising strategy of ensuring sufficiently high maize yields in the face of negative environmental factors caused by climate change. However, it leads to the low temperature exposure of maize plants during emergence, warranting a better understanding of their response and acclimation to suboptimal temperatures. Materials and Methods To achieve this goal, whole transcriptome sequencing was performed on two maize inbred lines - tolerant/susceptible to low temperatures, at the 5-day-old seedling stage. Sampling was performed after 6h and 24h of treatment (10/8°C). The data was filtered, mapped, and the identified mRNAs, lncRNAs, and circRNAs were quantified. Expression patterns of the RNAs, as well as the interactions between them, were analyzed to reveal the ones important for low-temperature response. Results and Discussion Genes involved in different steps of photosynthesis were downregulated in both genotypes: psa, psb, lhc, and cab genes important for photosystem I and II functioning, as well as rca, prk, rbcx1 genes necessary for the Calvin cycle. The difference in low-temperature tolerance between genotypes appeared to arise from their ability to mitigate damage caused by photoinhibition: ctpa2, grx, elip, UF3GT genes showed higher expression in the tolerant genotype. Certain identified lncRNAs also targeted these genes, creating an interaction network induced by the treatment (XLOC_016169-rca; XLOC_002167-XLOC_006091-elip2). These findings shed light on the potential mechanisms of low-temperature acclimation during emergence and lay the groundwork for subsequent analyses across diverse maize genotypes and developmental stages. As such, it offers valuable guidance for future research directions in the molecular breeding of low-temperature tolerant maize.
Collapse
Affiliation(s)
- Manja Božić
- Laboratory for Molecular Genetics and Physiology, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Dragana Ignjatović Micić
- Laboratory for Molecular Genetics and Physiology, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Violeta Anđelković
- Gene Bank, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Nenad Delić
- Maize Breeding Group, Breeding Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Ana Nikolić
- Laboratory for Molecular Genetics and Physiology, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| |
Collapse
|
8
|
Wang X, Li L, Fan R, Yan Y, Zhou R. Genome‑wide identification of circular RNAs and MAPKs reveals the regulatory networks in response to green peach aphid infestation in peach (Prunus persica). Gene 2025; 933:148994. [PMID: 39395730 DOI: 10.1016/j.gene.2024.148994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The green peach aphid (GPA), Myzus persicae (Sulzer), is a serious agricultural pest with a worldwide distribution and a vector of over 100 plant viruses. Various pathways, such as the mitogen-activated protein kinase (MAPK) cascades, play pivotal roles in signaling plant defense against pest attack, and circular RNAs (circRNAs) regulate the expression of mRNAs in response to pest attack. However, the mechanism underlying peach (Prunus persica) response to GPA attack remains unclear. The present study initially identified and characterized 316 circRNAs and 18 PpMAPKs from healthy and GPA-infested peach leaves by whole-transcriptome sequencing and predicted the differentially expressed circRNAs (DECs) after GPA infestation. PCR and Sanger sequencing confirmed the presence of six DECs in peach samples. Besides, RNA sequencing analysis detected 13 DECs, including 5 upregulated and 8 downregulated ones, in peach in response to the GPA attack. Gene ontology (GO) enrichment analysis indicated that specific DECs play crucial roles in the MAPK signaling pathway, and qRT-PCR revealed that GPA infestation altered the expression patterns of PpMAPKs. Finally, five circRNAs, three microRNA (miRNAs), and two MAPK target genes were identified to interact as a network and perform critical roles in modulating the MAPK pathway in the peach during GPA infestation.
Collapse
Affiliation(s)
- Xianyou Wang
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China.
| | - Li Li
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Rongyao Fan
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Yujun Yan
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Ruijin Zhou
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| |
Collapse
|
9
|
He S, Bing J, Zhong Y, Zheng X, Zhou Z, Wang Y, Hu J, Sun X. PlantCircRNA: a comprehensive database for plant circular RNAs. Nucleic Acids Res 2025; 53:D1595-D1605. [PMID: 39189447 PMCID: PMC11701686 DOI: 10.1093/nar/gkae709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Circular RNAs (circRNAs) represent recently discovered novel regulatory non-coding RNAs. While they are present in many eukaryotes, there has been limited research on plant circRNAs. We developed PlantCircRNA (https://plant.deepbiology.cn/PlantCircRNA/) to fill this gap. The two most important features of PlantCircRNA are (i) it incorporates circRNAs from 94 plant species based on 39 245 RNA-sequencing samples and (ii) it imports the original AtCircDB and CropCircDB databases. We manually curated all circRNAs from published articles, and imported them into the database. Furthermore, we added detailed information of tissue as well as abiotic stresses to the database. To help users understand these circRNAs, the database includes a detection score to measure their consistency and a naming system following the guidelines recently proposed for eukaryotes. Finally, we developed a comprehensive platform for users to visualize, analyze, and download data regarding specific circRNAs. This resource will serve as a home for plant circRNAs and provide the community with unprecedented insights into these mysterious molecule.
Collapse
Affiliation(s)
- Shutian He
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jianhao Bing
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yang Zhong
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiaoyang Zheng
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Ziyu Zhou
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yifei Wang
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jiming Hu
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiaoyong Sun
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
10
|
Lezzhov AA, Atabekova AK, Chergintsev DA, Lazareva EA, Solovyev AG, Morozov SY. Viroids and Retrozymes: Plant Circular RNAs Capable of Autonomous Replication. PLANTS (BASEL, SWITZERLAND) 2024; 14:61. [PMID: 39795321 PMCID: PMC11722881 DOI: 10.3390/plants14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes. Based on a number of common features, viroids and retrozymes are considered to be evolutionarily related. Here, we provide an overview of the biogenesis mechanisms and regulatory functions of non-replicating circRNAs produced by back-splicing and further discuss in detail the currently available data on viroids and retrozymes, focusing on their structural features, replication mechanisms, interaction with cellular components, and transport in plants. In addition, biotechnological approaches involving replication-capable plant circRNAs are discussed, as well as their potential applications in research and agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.A.L.); (A.K.A.); (D.A.C.); (E.A.L.); (A.G.S.)
| |
Collapse
|
11
|
Pradhan UK, Behera P, Das R, Naha S, Gupta A, Parsad R, Pradhan SK, Meher PK. AScirRNA: A novel computational approach to discover abiotic stress-responsive circular RNAs in plant genome. Comput Biol Chem 2024; 113:108205. [PMID: 39265460 DOI: 10.1016/j.compbiolchem.2024.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/12/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
In the realm of plant biology, understanding the intricate regulatory mechanisms governing stress responses stands as a pivotal pursuit. Circular RNAs (circRNAs), emerging as critical players in gene regulation, have garnered attention in recent days for their potential roles in abiotic stress adaptation. A comprehensive grasp of circRNAs' functions in stress response offers avenues for breeders to manipulating plants to develop abiotic stress resistant crop cultivars to thrive in challenging climates. This study pioneers a machine learning-based model for predicting abiotic stress-responsive circRNAs. The K-tuple nucleotide composition (KNC) and Pseudo KNC (PKNC) features were utilized to numerically represent circRNAs. Three different feature selection strategies were employed to select relevant and non-redundant features. Eight shallow and four deep learning algorithms were evaluated to build the final predictive model. Following five-fold cross-validation process, XGBoost learning algorithm demonstrated superior performance with LightGBM-chosen 260 KNC features (Accuracy: 74.55 %, auROC: 81.23 %, auPRC: 76.52 %) and 160 PKNC features (Accuracy: 74.32 %, auROC: 81.04 %, auPRC: 76.43 %), over other combinations of learning algorithms and feature selection techniques. Further, the robustness of the developed models were evaluated using an independent test dataset, where the overall accuracy, auROC and auPRC were found to be 73.13 %, 72.34 % and 72.68 % for KNC feature set and 73.52 %, 79.53 % and 73.09 % for PKNC feature set, respectively. This computational approach was also integrated into an online prediction tool, AScirRNA (https://iasri-sg.icar.gov.in/ascirna/) for easy prediction by the users. Both the proposed model and the developed tool are poised to augment ongoing efforts in identifying stress-responsive circRNAs in plants.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Prasanjit Behera
- Department of Bioinformatics, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha 751003, India.
| | - Ritwika Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Rajender Parsad
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha 751003, India.
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| |
Collapse
|
12
|
Zhang L, Teng Y, Song Y, Li J, Zhang Z, Xu Y, Fan D, Wang L, Ren Y, He J, Song S, Xi X, Liu H, Ma C. Assessment of heat tolerance and identification of miRNAs during high-temperature response in grapevine. FRONTIERS IN PLANT SCIENCE 2024; 15:1484892. [PMID: 39502927 PMCID: PMC11534869 DOI: 10.3389/fpls.2024.1484892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
With global warming, heat stress has been recognized as a significant factor limiting grapevine development and fruit quality. MicroRNAs (miRNAs) are a class of small non-coding RNAs known to play crucial regulatory roles in stress resistance. Hence, there is an immediate requirement to cultivate and identify grapevine varieties that are resistant to heat and explore miRNA-mediated heat stress defense mechanisms. In this study, we assessed the thermal resistance of 38 grape germplasm resources and identified a series of miRNAs involved in heat stress resistance. The CK (25°C) and HS (45°C) groups of "Shenyue" cuttings of grapes were used as experimental materials for next-generation sequencing and construct libraries of small RNAs. A total of 177 known and 20 novel miRNAs were detected in the libraries. Differential expression analysis identified 65 differentially expressed miRNAs (DEMs) using the DE-Seq procedure. Furthermore, RT-qPCR validation confirmed complementary expression profiles of eight DEMs and their target genes between the HS and CK groups. Heterologous transformation further identified the function of Vvi-miR3633a downregulated under heat stress in Arabidopsis. In the heterologous expression lines, the survival rate was reduced by high temperature treatment indicating the ability of Vvi-miR3633a to regulate heat resistance. Assessing the heat resistance of grape species and the expression patterns of miRNA in response to high temperatures may reveal the molecular processes of heat resistance regulation mediated by miRNA in grapes under heat stress.
Collapse
Affiliation(s)
- Lipeng Zhang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
| | - Yuanxu Teng
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
| | - Yue Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Junpeng Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dongying Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lujia Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Ren
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Juan He
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiren Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojun Xi
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huaifeng Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
| | - Chao Ma
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Li Y, Xia W, Li Y, Li X. Expression and drought functional analysis of one circRNA PecircCDPK from moso bamboo ( Phyllostachys edulis). PeerJ 2024; 12:e18024. [PMID: 39364360 PMCID: PMC11448651 DOI: 10.7717/peerj.18024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/09/2024] [Indexed: 10/05/2024] Open
Abstract
Drought stress can affect the growth of bamboo. Circle RNAs (CircRNAs) have been found to play a role in drought stress in plants, but their function in moso bamboo is not well understood. In previous studies, we observed that under drought stress, the expression of some circRNAs were altered and predicted to be involved in calcium-dependent protein kinase phosphorylation, as indicated by KEGG enrichment analysis. In this study, we cloned a circRNA called PecircCDPK in moso bamboo that is responsive to drought stress. To further investigate its function, we constructed an overexpression vector using flanking intron sequences supplemented by reverse complementary sequences. When this vector was transferred to Arabidopsis plants, we observed that the roots of the transgenic lines were more developed, the water loss rate decreased, the stomata became smaller, and the activity of antioxidant enzymes increased under drought stress. These findings suggest that overexpression of PecircCDPK can enhance the drought resistance of Arabidopsis thaliana, providing valuable insights for the breeding of moso bamboo with improved resistance to drought.
Collapse
Affiliation(s)
- Yiqian Li
- International Center for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, China
| | - Wen Xia
- International Center for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, China
| | - Ying Li
- International Center for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, China
| | - Xueping Li
- International Center for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, China
| |
Collapse
|
14
|
Zhang D, Ma Y, Naz M, Ahmed N, Zhang L, Zhou JJ, Yang D, Chen Z. Advances in CircRNAs in the Past Decade: Review of CircRNAs Biogenesis, Regulatory Mechanisms, and Functions in Plants. Genes (Basel) 2024; 15:958. [PMID: 39062737 PMCID: PMC11276256 DOI: 10.3390/genes15070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA with multiple biological functions. Whole circRNA genomes in plants have been identified, and circRNAs have been demonstrated to be widely present and highly expressed in various plant tissues and organs. CircRNAs are highly stable and conserved in plants, and exhibit tissue specificity and developmental stage specificity. CircRNAs often interact with other biomolecules, such as miRNAs and proteins, thereby regulating gene expression, interfering with gene function, and affecting plant growth and development or response to environmental stress. CircRNAs are less studied in plants than in animals, and their regulatory mechanisms of biogenesis and molecular functions are not fully understood. A variety of circRNAs in plants are involved in regulating growth and development and responding to environmental stress. This review focuses on the biogenesis and regulatory mechanisms of circRNAs, as well as their biological functions during growth, development, and stress responses in plants, including a discussion of plant circRNA research prospects. Understanding the generation and regulatory mechanisms of circRNAs is a challenging but important topic in the field of circRNAs in plants, as it can provide insights into plant life activities and their response mechanisms to biotic or abiotic stresses as well as new strategies for plant molecular breeding and pest control.
Collapse
Affiliation(s)
- Dongqin Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Yue Ma
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Misbah Naz
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Nazeer Ahmed
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Libo Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Jing-Jiang Zhou
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ding Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (D.Z.); (M.N.); (N.A.); (L.Z.); (J.-J.Z.); (D.Y.)
| |
Collapse
|
15
|
Guo Y, Wang T, Lu X, Li W, Lv X, Peng Q, Zhang J, Gao J, Hu M. Comparative genome-wide analysis of circular RNAs in Brassica napus L.: target-site versus non-target-site resistance to herbicide stress. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:176. [PMID: 38969812 DOI: 10.1007/s00122-024-04678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/15/2024] [Indexed: 07/07/2024]
Abstract
Circular RNAs (circRNAs), a class of non-coding RNA molecules, are recognized for their unique functions; however, their responses to herbicide stress in Brassica napus remain unclear. In this study, the role of circRNAs in response to herbicide treatment was investigated in two rapeseed cultivars: MH33, which confers non-target-site resistance (NTSR), and EM28, which exhibits target-site resistance (TSR). The genome-wide circRNA profiles of herbicide-stressed and non-stressed seedlings were analyzed. The findings indicate that NTSR seedlings exhibited a greater abundance of circRNAs, shorter lengths of circRNAs and their parent genes, and more diverse functions of parent genes compared with TSR seedlings. Compared to normal-growth plants, the herbicide-stressed group exhibited similar trends in the number of circRNAs, functions of parent genes, and differentially expressed circRNAs as observed in NTSR seedlings. In addition, a greater number of circRNAs that function as competing microRNA (miRNA) sponges were identified in the herbicide stress and NTSR groups compared to the normal-growth and TSR groups, respectively. The differentially expressed circRNAs were validated by qPCR. The differntially expressed circRNA-miRNA networks were predicted, and the mRNAs targeted by these miRNAs were annotated. Our results suggest that circRNAs play a crucial role in responding to herbicide stress, exhibiting distinct responses between NTSR and TSR in rapeseed. These findings offer valuable insights into the mechanisms underlying herbicide resistance in rapeseed.
Collapse
Affiliation(s)
- Yue Guo
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ting Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xinyu Lu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weilong Li
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xinlei Lv
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qi Peng
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiefu Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianqin Gao
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maolong Hu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
16
|
Li S, Wang J, Ren G. CircRNA: An emerging star in plant research: A review. Int J Biol Macromol 2024; 272:132800. [PMID: 38825271 DOI: 10.1016/j.ijbiomac.2024.132800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
CircRNAs are a class of covalently closed non-coding RNA formed by linking the 5' terminus and the 3' terminus after reverse splicing. CircRNAs are widely found in eukaryotes, and they are highly conserved, with spatio-temporal expression specificity and stability. CircRNAs can act as miRNA sponges to regulate the expression of downstream target genes, regulating the transcription of parental genes and some can even be translated into peptides or proteins. Research on circRNAs in plants is still in its infancy compared to that in animals. With the deepening of research, the results of a variety of plant circRNAs suggest that they play an important role in growth and development, and tolerance towards abiotic stresses such as salt, drought, low temperature, high temperature and other adverse environments. In this review paper, we elaborated the molecular characteristics, mechanism of action, function and bioinformatics databases of plant circRNAs, combined with the progress of circRNA research in animals, discussed the potential mechanism of action of plant circRNAs, and proposed the unsolved problems and prospects for future application of plant circRNAs.
Collapse
Affiliation(s)
- Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guocheng Ren
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Dongying Institute, Shandong Normal University, Dongying 257000, China.
| |
Collapse
|
17
|
Yin Z, Zhao Q, Lv X, Zhang X, Wu Y. Circular RNA ath-circ032768, a competing endogenous RNA, response the drought stress by targeting miR472-RPS5 module. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:544-559. [PMID: 38588338 DOI: 10.1111/plb.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
CircRNAs (circular RNAs) reduce the abundance of miRNAs through ceRNA (competing endogenous RNA), to regulate many physiological processes and stress responses in plants. However, the role of circRNA in drought stress is poorly understood. Through ring identification and sequencing verification of ath-circ032768, bioinformatics analysis predicted the interaction of ath-circ032768-miR472-RPS5, and further obtained transgenic plants overexpressing ath-circ032768 and silencing STTM-miR472. The change in drought stress was analysed using biochemical and molecular biological methods. Sequencing and biological analysis confirmed that ath-circ032768, miR472 and RPS5 were responsive to drought stress, and changes in gene expression were consistent with the prediction of ceRNA. The silencing vectors ath-circ032768 and STTM-miR472 were constructed using molecular biology techniques, and stable transgenic plants with drought tolerance obtained. Further physiological and biochemical studies showed that ath-circ032768 could bind to miR472, and that miR472 could bind to the RPS5 gene, resulting in decreased expression of RPS5. Hence, ath-circ032768 can competitively inhibit degradation of RPS5 by miR472 through ceRNA. This process is accompanied by increased expression of DREB2A, RD29A and RD29B genes. Through the ath-circ032768-miR472-RPS5 pathway, the RPS5 stress resistance protein interacts with DREB2A protein to enhance expression of downstream drought resistance genes, RD29A and RD29B, and participate in the regulation mechanism of plant drought resistance, thereby improving drought tolerance of plants.
Collapse
Affiliation(s)
- Z Yin
- College of Life Sciences, Northwest A&F University, Yangling, Shaan Xi, China
| | - Q Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaan Xi, China
| | - X Lv
- College of Life Sciences, Northwest A&F University, Yangling, Shaan Xi, China
| | - X Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaan Xi, China
| | - Y Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaan Xi, China
| |
Collapse
|
18
|
Budnick A, Franklin MJ, Utley D, Edwards B, Charles M, Hornstein ED, Sederoff H. Long- and short-read sequencing methods discover distinct circular RNA pools in Lotus japonicus. THE PLANT GENOME 2024; 17:e20429. [PMID: 38243772 DOI: 10.1002/tpg2.20429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNAs, generated through a back-splicing process that links a downstream 5' site to an upstream 3' end. The only distinction in the sequence between circRNA and their linear cognate RNA is the back splice junction. Their low abundance and sequence similarity with their linear origin RNA have made the discovery and identification of circRNA challenging. We have identified almost 6000 novel circRNAs from Lotus japonicus leaf tissue using different enrichment, amplification, and sequencing methods as well as alternative bioinformatics pipelines. The different methodologies identified different pools of circRNA with little overlap. We validated circRNA identified by the different methods using reverse transcription polymerase chain reaction and characterized sequence variations using nanopore sequencing. We compared validated circRNA identified in L. japonicus to other plant species and showed conservation of high-confidence circRNA-expressing genes. This is the first identification of L. japonicus circRNA and provides a resource for further characterization of their function in gene regulation. CircRNAs identified in this study originated from genes involved in all biological functions of eukaryotic cells. The comparison of methodologies and technologies to sequence, identify, analyze, and validate circRNA from plant tissues will enable further research to characterize the function and biogenesis of circRNA in L. japonicus.
Collapse
Affiliation(s)
- Asa Budnick
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Megan J Franklin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Delecia Utley
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Brianne Edwards
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Melodi Charles
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Eli D Hornstein
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
19
|
Li B, Feng C, Zhang W, Sun S, Yue D, Zhang X, Yang X. Comprehensive non-coding RNA analysis reveals specific lncRNA/circRNA-miRNA-mRNA regulatory networks in the cotton response to drought stress. Int J Biol Macromol 2023; 253:126558. [PMID: 37659489 DOI: 10.1016/j.ijbiomac.2023.126558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/29/2023] [Accepted: 08/20/2023] [Indexed: 09/04/2023]
Abstract
Root and leaf are essential organs of plants in sensing and responding to drought stress. However, comparative knowledge of non-coding RNAs (ncRNAs) of root and leaf tissues in the regulation of drought response in cotton is limited. Here, we used deep sequencing data of leaf and root tissues of drought-resistant and drought-sensitive cotton varieties for identifying miRNAs, lncRNAs and circRNAs. A total of 1531 differentially expressed (DE) ncRNAs was identified, including 77 DE miRNAs, 1393 DE lncRNAs and 61 DE circRNAs. The tissue-specific and variety-specific competing endogenous RNA (ceRNA) networks of DE lncRNA-miRNA-mRNA response to drought were constructed. Furthermore, the novel drought-responsive lncRNA 1 (DRL1), specifically and differentially expressed in root, was verified to positively affect phenotypes of cotton seedlings under drought stress, competitively binding to miR477b with GhNAC1 and GhSCL3. In addition, we also constructed another ceRNA network consisting of 18 DE circRNAs, 26 DE miRNAs and 368 DE mRNAs. Fourteen circRNA were characterized, and a novel molecular regulatory system of circ125- miR7484b/miR7450b was proposed under drought stress. Our findings revealed the specificity of ncRNA expression in tissue- and variety-specific patterns involved in the response to drought stress, and uncovered novel regulatory pathways and potentially effective molecules in genetic improvement for crop drought resistance.
Collapse
Affiliation(s)
- Baoqi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Cheng Feng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Wenhao Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Simin Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
20
|
Liu Y, Zhu QF, Li WY, Chen P, Xue J, Yu Y, Feng YZ. The Pivotal Role of Noncoding RNAs in Flowering Time Regulation. Genes (Basel) 2023; 14:2114. [PMID: 38136936 PMCID: PMC10742506 DOI: 10.3390/genes14122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Noncoding RNAs constitute a substantial portion of the transcriptome and play pivotal roles in plant growth and development. Among these processes, flowering stands out as a crucial trait, ensuring reproductive success and seed set, and is meticulously controlled by genetic and environmental factors. With remarkable advancements in the identification and characterization of noncoding RNAs in plants, it has become evident that noncoding RNAs are intricately linked to the regulation of flowering time. In this article, we present an overview of the classification of plant noncoding RNAs and delve into their functions in the regulation of flowering time. Furthermore, we review their molecular mechanisms and their involvement in flowering pathways. Our comprehensive review enhances the understanding of how noncoding RNAs contribute to the regulation of flowering time and sheds light on their potential implications in crop breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (Q.-F.Z.); (W.-Y.L.); (P.C.); (J.X.)
| | - Yan-Zhao Feng
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (Q.-F.Z.); (W.-Y.L.); (P.C.); (J.X.)
| |
Collapse
|
21
|
Larran AS, Pajoro A, Qüesta JI. Is winter coming? Impact of the changing climate on plant responses to cold temperature. PLANT, CELL & ENVIRONMENT 2023; 46:3175-3193. [PMID: 37438895 DOI: 10.1111/pce.14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Climate change is causing alterations in annual temperature regimes worldwide. Important aspects of this include the reduction of winter chilling temperatures as well as the occurrence of unpredicted frosts, both significantly affecting plant growth and yields. Recent studies advanced the knowledge of the mechanisms underlying cold responses and tolerance in the model plant Arabidopsis thaliana. However, how these cold-responsive pathways will readjust to ongoing seasonal temperature variation caused by global warming remains an open question. In this review, we highlight the plant developmental programmes that depend on cold temperature. We focus on the molecular mechanisms that plants have evolved to adjust their development and stress responses upon exposure to cold. Covering both genetic and epigenetic aspects, we present the latest insights into how alternative splicing, noncoding RNAs and the formation of biomolecular condensates play key roles in the regulation of cold responses. We conclude by commenting on attractive targets to accelerate the breeding of increased cold tolerance, bringing up biotechnological tools that might assist in overcoming current limitations. Our aim is to guide the reflection on the current agricultural challenges imposed by a changing climate and to provide useful information for improving plant resilience to unpredictable cold regimes.
Collapse
Affiliation(s)
- Alvaro Santiago Larran
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| | - Alice Pajoro
- National Research Council, Institute of Molecular Biology and Pathology, Rome, Italy
| | - Julia I Qüesta
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| |
Collapse
|
22
|
Gao Z, Sun B, Fan Z, Su Y, Zheng C, Chen W, Yao Y, Ma C, Du Y. Vv-circSIZ1 mediated by pre-mRNA processing machinery contributes to salt tolerance. THE NEW PHYTOLOGIST 2023; 240:644-662. [PMID: 37530126 DOI: 10.1111/nph.19181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
CircRNAs exist widely in plants, but the regulatory mechanisms for the biogenesis and function of plant circRNAs remain largely unknown. Using extensive mutagenesis of expression plasmids and genetic transformation methods, we analyzed the biogenesis and anti-salt functions of a new grape circRNA Vv-circSIZ1. We identified Vv-circSIZ1 that is mainly expressed in the cytoplasm of xylem. CircSIZ1 is species-specific, and genomic circSIZ1-forming region of seven tested species could be backspliced in Nicotiana benthamiana, but not in Arabidopsis. The retention length of Vv-circSIZ1 flanking introns was significantly positively correlated with its generation efficiency. The precise splicing of Vv-circSIZ1 does not depend on its mature exon sequence or internal intron sequences, but on the AG/GT splicing signal sites and branch site of the flanking introns. The spliceosome activity was inversely proportional to the expression level of Vv-circSIZ1. Furthermore, RNA-binding proteins can regulate the expression of Vv-circSIZ1. The overexpression of Vv-circSIZ1 improved salt tolerance of grape and N. benthamiana. Additionally, Vv-circSIZ1 could relieve the repressive effect of VvmiR3631 on its target VvVHAc1. Vv-circSIZ1 also promoted transcription of its parental gene. Overall, these results broaden our understanding of circRNAs in plants.
Collapse
Affiliation(s)
- Zhen Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Baozhen Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zongbao Fan
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yifan Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Weiping Chen
- Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, 750002, China
| | - Yuxin Yao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanpeng Du
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
23
|
Fan L, Ren J, Wang Y, Chen Y, Chen Y, Chen L, Lin Q, Liao M, Ding C, Xiang B, Ren T. Circular RNAs are associated with the resistance to Newcastle disease virus infection in duck cells. Front Vet Sci 2023; 10:1181916. [PMID: 37841466 PMCID: PMC10570413 DOI: 10.3389/fvets.2023.1181916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Newcastle disease virus (NDV) is prevalent worldwide with an extensive host range. Among birds infected with velogenic NDV strains, chickens experience high pathogenicity and mortality, whereas ducks mostly experience mild symptoms or are asymptomatic. Ducks have a unique, innate immune system hypothesized to induce antiviral responses. Circular RNAs (circRNAs) are among the most abundant and conserved eukaryotic transcripts. These participate in innate immunity and host antiviral response progression. Methods In this study, circRNA expression profile differences post-NDV infection in duck embryo fibroblast (DEF) cells were analyzed using circRNA transcriptome sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to reveal significant enrichment of differentially expressed (DE) circRNAs. The circRNA-miRNA-mRNA interaction networks were used to predict the related functions of circRNAs. Moreover, circ-FBXW7 was selected to determine its effect on NDV infection in DEFs. Results NDV infection altered circRNA expression profiles in DEF cells, and 57 significantly differentially expressed circRNAs were identified post-NDV infection. DEF responded to NDV by forming circRNAs to regulate apoptosis-, cell growth-, and protein degradation-related pathways via GO and KEGG enrichment analyses. circRNA-miRNA-mRNA interaction networks demonstrated that DEF cells combat NDV infection by regulating cellular pathways or apoptosis through circRNA-targeted mRNAs and miRNAs. circ-FBXW7 overexpression and knockdown inhibited and promoted viral replication, respectively. DEF cells mainly regulated cell cycle alterations or altered cellular sensing to combat NDV infection. Conclusion These results demonstrate that DEF cells exert antiviral responses by forming circRNAs, providing novel insights into waterfowl antiviral responses.
Collapse
Affiliation(s)
- Lei Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinlian Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yinchu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yiyi Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yichun Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
24
|
Zhang X, Du M, Yang Z, Wang Z, Lim KJ. Biogenesis, Mode of Action and the Interactions of Plant Non-Coding RNAs. Int J Mol Sci 2023; 24:10664. [PMID: 37445841 DOI: 10.3390/ijms241310664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The central dogma of genetics, which outlines the flow of genetic information from DNA to RNA to protein, has long been the guiding principle in molecular biology. In fact, more than three-quarters of the RNAs produced by transcription of the plant genome are not translated into proteins, and these RNAs directly serve as non-coding RNAs in the regulation of plant life activities at the molecular level. The breakthroughs in high-throughput transcriptome sequencing technology and the establishment and improvement of non-coding RNA experiments have now led to the discovery and confirmation of the biogenesis, mechanisms, and synergistic effects of non-coding RNAs. These non-coding RNAs are now predicted to play important roles in the regulation of gene expression and responses to stress and evolution. In this review, we focus on the synthesis, and mechanisms of non-coding RNAs, and we discuss their impact on gene regulation in plants.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Mingjun Du
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
25
|
Ren Y, Li J, Liu J, Zhang Z, Song Y, Fan D, Liu M, Zhang L, Xu Y, Guo D, He J, Song S, Gao Z, Ma C. Functional Differences of Grapevine Circular RNA Vv-circPTCD1 in Arabidopsis and Grapevine Callus under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2332. [PMID: 37375960 DOI: 10.3390/plants12122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Circular RNAs (circRNAs) serve as covalently closed single-stranded RNAs and have been proposed to influence plant development and stress resistance. Grapevine is one of the most economically valuable fruit crops cultivated worldwide and is threatened by various abiotic stresses. Herein, we reported that a circRNA (Vv-circPTCD1) processed from the second exon of the pentatricopeptide repeat family gene PTCD1 was preferentially expressed in leaves and responded to salt and drought but not heat stress in grapevine. Additionally, the second exon sequence of PTCD1 was highly conserved, but the biogenesis of Vv-circPTCD1 is species-dependent in plants. It was further found that the overexpressed Vv-circPTCD1 can slightly decrease the abundance of the cognate host gene, and the neighboring genes are barely affected in the grapevine callus. Furthermore, we also successfully overexpressed the Vv-circPTCD1 and found that the Vv-circPTCD1 deteriorated the growth during heat, salt, and drought stresses in Arabidopsis. However, the biological effects on grapevine callus were not always consistent with those of Arabidopsis. Interestingly, we found that the transgenic plants of linear counterpart sequence also conferred the same phenotypes as those of circRNA during the three stress conditions, no matter what species it is. Those results imply that although the sequences are conserved, the biogenesis and functions of Vv-circPTCD1 are species-dependent. Our results indicate that the plant circRNA function investigation should be conducted in homologous species, which supports a valuable reference for further plant circRNA studies.
Collapse
Affiliation(s)
- Yi Ren
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junpeng Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjing Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongying Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minying Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lipeng Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yuanyuan Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dinghan Guo
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan He
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiren Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Chao Ma
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Zhao Y, Liu G, Yang F, Liang Y, Gao Q, Xiang C, Li X, Yang R, Zhang G, Jiang H, Yu L, Yang S. Multilayered regulation of secondary metabolism in medicinal plants. MOLECULAR HORTICULTURE 2023; 3:11. [PMID: 37789448 PMCID: PMC10514987 DOI: 10.1186/s43897-023-00059-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/27/2023] [Indexed: 10/05/2023]
Abstract
Medicinal plants represent a huge reservoir of secondary metabolites (SMs), substances with significant pharmaceutical and industrial potential. However, obtaining secondary metabolites remains a challenge due to their low-yield accumulation in medicinal plants; moreover, these secondary metabolites are produced through tightly coordinated pathways involving many spatiotemporally and environmentally regulated steps. The first regulatory layer involves a complex network of transcription factors; a second, more recently discovered layer of complexity in the regulation of SMs is epigenetic modification, such as DNA methylation, histone modification and small RNA-based mechanisms, which can jointly or separately influence secondary metabolites by regulating gene expression. Here, we summarize the findings in the fields of genetic and epigenetic regulation with a special emphasis on SMs in medicinal plants, providing a new perspective on the multiple layers of regulation of gene expression.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guanze Liu
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
| | - Feng Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Liang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qingqing Gao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunfan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xia Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Run Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guanghui Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Lei Yu
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China.
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China.
| |
Collapse
|
27
|
Zhang L, Fan D, Li H, Chen Q, Zhang Z, Liu M, Liu J, Song Y, He J, Xu W, Song S, Liu H, Ren Y, Ma C. Characterization and identification of grapevine heat stress-responsive microRNAs revealed the positive regulated function of vvi-miR167 in thermostability. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111623. [PMID: 36750140 DOI: 10.1016/j.plantsci.2023.111623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
High temperature stress is one of the primary abiotic stresses that restrict fruit tree production. Grapevine (Vitis vinifera) with high economic value throughout the world is a cultivated fruit crop, and its growth and development is often influenced by high temperature stress. Studying the heat stress-response mechanism of grapevine has great significance for understanding the acclimation to heat stress. In this study, we identified a series of heat stress responsive miRNAs and analyzed their function during the heat tolerance response. CK (control group, 25 °C) and heat treatment stress (TS, 45 °C) small RNA (sRNA) libraries were constructed and sequenced by high-throughput sequencing in 'Thompson seedless' grapevine. 873 known-miRNAs and 86 novel-miRNAs were identified, of which 88 known and three novel miRNAs were expressed differentially under heat stress. 322 genes were predicted to be targeted by the miRNAs. Eight selected miRNAs and its targets were confirmed by real time quantitative PCR (RT - qPCR), indicating that these "miRNA - target" were responsive to heat stress. In addition, most of the predicted target genes were negatively regulated by corresponding miRNAs. Gene function and pathway analyses indicated that these genes probably play crucial roles in heat stress tolerance. Vvi-miR167b transiently overexpression in grapevine leaves decreased target gene vvARF6, vvARF6-like and vvARF8 expression. The function of vvi-miR167 was verified by ectopic transformation in Arabidopsis thaliana, and the heat tolerance in transgenic lines was enhanced significantly, suggesting that the vvi-miR167 plays a positive regulatory role in grape thermostability. Comparison of miRNA expression patterns between heat treatment stress and CK can help elucidate the heat stress response and resistance mechanisms in grapes. In conclusion, these results gave us useful information to better understand the heat stress-response during domestication as well as for breeding new cultivars with heat stress resistance in fruit trees.
Collapse
Affiliation(s)
- Lipeng Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Dongying Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Li
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuju Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minying Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjing Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yue Song
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan He
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenping Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiren Song
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huaifeng Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yi Ren
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chao Ma
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
28
|
Liu J, Zhang C, Jiang M, Ni Y, Xu Y, Wu W, Huang L, Newmaster SG, Kole C, Wu B, Liu C. Identification of circular RNAs of Cannabis sativa L. potentially involved in the biosynthesis of cannabinoids. PLANTA 2023; 257:72. [PMID: 36862222 DOI: 10.1007/s00425-023-04104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
We identified circRNAs in the Cannabis sativa L. genome and examined their association with 28 cannabinoids in three tissues of C. sativa. Nine circRNAs are potentially involved in the biosynthesis of six cannabinoids. Cannabis sativa L. has been widely used in the production of medicine, textiles, and food for over 2500 years. The main bioactive compounds in C. sativa are cannabinoids, which have multiple important pharmacological actions. Circular RNAs (circRNAs) play essential roles in growth and development, stress resistance, and the biosynthesis of secondary metabolites. However, the circRNAs in C. sativa remain unknown. In this study, to explore the role of circRNAs in cannabinoid biosynthesis, we performed RNA-Seq and metabolomics analysis on the leaves, roots, and stems of C. sativa. We identified 741 overlapping circRNAs by three tools, of which 717, 16, and 8 circRNAs were derived from exonic, intronic, and intergenic, respectively. Functional enrichment analysis indicated that the parental genes (PGs) of circRNAs were enriched in many processes related to biological stress responses. We found that most of the circRNAs showed tissue-specific expression and 65 circRNAs were significantly correlated with their PGs (P < 0.05, |r|≥ 0.5). We also determined 28 cannabinoids by High-performance liquid chromatography-ESI-triple quadrupole-linear ion trap mass spectrometry. Ten circRNAs, including ciR0159, ciR0212, ciR0153, ciR0149, ciR0016, ciR0044, ciR0022, ciR0381, ciR0006, and ciR0025 were found to be associated with six cannabinoids by weighted gene co-expression network analysis. Twenty-nine of 53 candidate circRNAs, including 9 cannabinoids related were validated successfully using PCR amplification and Sanger sequencing. Taken together, all these results would help to enhance our acknowledge of the regulation of circRNAs, and lay the foundation for breeding new C. sativa cultivars with high cannabinoids through manipulating circRNAs.
Collapse
Affiliation(s)
- Jingting Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Chang Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Mei Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Yicen Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Wuwei Wu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, People's Republic of China
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Steven G Newmaster
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Chittaranjan Kole
- International Climate Resilient Crop Genomics Consortium and International Phytomedomics and Nutriomics Consortium, Kolkata, 700094, India
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| |
Collapse
|
29
|
Ren C, Fan P, Li S, Liang Z. Advances in understanding cold tolerance in grapevine. PLANT PHYSIOLOGY 2023:kiad092. [PMID: 36789447 DOI: 10.1093/plphys/kiad092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Grapevine (Vitis ssp.) is a deciduous perennial fruit crop, and the canes and buds of grapevine should withstand low temperatures annually during winter. However, the widely cultivated Vitis vinifera is cold-sensitive and cannot survive the severe winter in regions with extremely low temperatures, such as viticulture regions in northern China. By contrast, a few wild Vitis species like V. amurensis and V. riparia exhibit excellent freezing tolerance. However, the mechanisms underlying grapevine cold tolerance remain largely unknown. In recent years, much progress has been made in elucidating the mechanisms, owing to the advances in sequencing and molecular biotechnology. Assembly of grapevine genomes together with resequencing and transcriptome data enable researchers to conduct genomic and transcriptomic analyses in various grapevine genotypes and populations to explore genetic variations involved in cold tolerance. In addition, a number of pivotal genes have been identified and functionally characterized. In this review, we summarize recent major advances in physiological and molecular analyses of cold tolerance in grapevine and put forward questions in this field. We also discuss the strategies for improving the tolerance of grapevine to cold stress. Understanding grapevine cold tolerance will facilitate the development of grapevines for adaption to global climate change.
Collapse
Affiliation(s)
- Chong Ren
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| |
Collapse
|
30
|
Evolutionary Landscape of Tea Circular RNAs and Its Contribution to Chilling Tolerance of Tea Plant. Int J Mol Sci 2023; 24:ijms24021478. [PMID: 36674993 PMCID: PMC9861842 DOI: 10.3390/ijms24021478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Chilling stress threatens the yield and distribution pattern of global crops, including the tea plant (Camellia sinensis), one of the most important cash crops around the world. Circular RNA (circRNA) plays roles in regulating plant growth and biotic/abiotic stress responses. Understanding the evolutionary characteristics of circRNA and its feedbacks to chilling stress in the tea plant will help to elucidate the vital roles of circRNAs. In the current report, we systematically identified 2702 high-confidence circRNAs under chilling stress in the tea plant, and interestingly found that the generation of tea plant circRNAs was associated with the length of their flanking introns. Repetitive sequences annotation and DNA methylation analysis revealed that the longer flanking introns of circRNAs present more repetitive sequences and higher methylation levels, which suggested that repeat-elements-mediated DNA methylation might promote the circRNAs biogenesis in the tea plant. We further detected 250 differentially expressed circRNAs under chilling stress, which were functionally enriched in GO terms related to cold/stress responses. Constructing a circRNA-miRNA-mRNA interaction network discovered 139 differentially expressed circRNAs harboring potential miRNA binding sites, which further identified 14 circRNAs that might contribute to tea plant chilling responses. We further characterized a key circRNA, CSS-circFAB1, which was significantly induced under chilling stress. FISH and silencing experiments revealed that CSS-circFAB1 was potentially involved in chilling tolerance of the tea plant. Our study emphasizes the importance of circRNA and its preliminary role against low-temperature stress, providing new insights for tea plant cold tolerance breeding.
Collapse
|
31
|
Liu R, Ma Y, Guo T, Li G. Identification, biogenesis, function, and mechanism of action of circular RNAs in plants. PLANT COMMUNICATIONS 2023; 4:100430. [PMID: 36081344 PMCID: PMC9860190 DOI: 10.1016/j.xplc.2022.100430] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Circular RNAs (circRNAs) are a class of single-stranded, closed RNA molecules with unique functions that are ubiquitously expressed in all eukaryotes. The biogenesis of circRNAs is regulated by specific cis-acting elements and trans-acting factors in humans and animals. circRNAs mainly exert their biological functions by acting as microRNA sponges, forming R-loops, interacting with RNA-binding proteins, or being translated into polypeptides or proteins in human and animal cells. Genome-wide identification of circRNAs has been performed in multiple plant species, and the results suggest that circRNAs are abundant and ubiquitously expressed in plants. There is emerging compelling evidence to suggest that circRNAs play essential roles during plant growth and development as well as in the responses to biotic and abiotic stress. However, compared with recent advances in human and animal systems, the roles of most circRNAs in plants are unclear at present. Here we review the identification, biogenesis, function, and mechanism of action of plant circRNAs, which will provide a fundamental understanding of the characteristics and complexity of circRNAs in plants.
Collapse
Affiliation(s)
- Ruiqi Liu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yu Ma
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Tao Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
32
|
Zhang P, Dai M. CircRNA: a rising star in plant biology. J Genet Genomics 2022; 49:1081-1092. [PMID: 35644325 DOI: 10.1016/j.jgg.2022.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/14/2023]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNA molecules, which are widespread in eukaryotic cells. As regulatory molecules, circRNAs have various functions, such as regulating gene expression, binding miRNAs or proteins, and being translated into proteins, which are important for cell proliferation and cell differentiation, individual growth and development, as well as many other biological processes. However, compared with that in animal models, studies of circRNAs in plants lags behind and, particularly, the regulatory mechanisms of biogenesis and molecular functions of plant circRNAs remain elusive. Recent studies have shown that circRNAs are wide spread in plants with tissue- or development-specific expression patterns and are responsive to a variety of environmental stresses. In this review, we summarize these advances, focusing on the regulatory mechanisms of biogenesis, molecular and biological functions of circRNAs, and the methods for investigating circRNAs. We also discuss the challenges and the prospects of plant circRNA studies.
Collapse
Affiliation(s)
- Pei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
33
|
In-Plant Persistence and Systemic Transport of Nicotiana benthamiana Retrozyme RNA. Int J Mol Sci 2022; 23:ijms232213890. [PMID: 36430367 PMCID: PMC9695139 DOI: 10.3390/ijms232213890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Retrozymes are nonautonomous retrotransposons with hammerhead ribozymes in their long terminal repeats (LTRs). Retrozyme transcripts can be self-cleaved by the LTR ribozyme, circularized, and can undergo RNA-to-RNA replication. Here, we demonstrate that the Nicotiana benthamiana genome contains hundreds of retrozyme loci, of which nine represent full-length retrozymes. The LTR contains a promoter directing retrozyme transcription. Although retrozyme RNA is easily detected in plants, the LTR region is heavily methylated, pointing to its transcriptional silencing, which can be mediated by 24 nucleotide-long retrozyme-specific RNAs identified in N. benthamiana. A transcriptome analysis revealed that half of the retrozyme-specific RNAs in plant leaves have no exact matches to genomic retrozyme loci, containing up to 13% mismatches with the closest genomic sequences, and could arise as a result of many rounds of RNA-to-RNA replication leading to error accumulation. Using a cloned retrozyme copy, we show that retrozyme RNA is capable of replication and systemic transport in plants. The presented data suggest that retrozyme loci in the N. benthamiana genome are transcriptionally inactive, and that circular retrozyme RNA can persist in cells due to its RNA-to-RNA replication and be transported systemically, emphasizing functional and, possibly, evolutionary links of retrozymes to viroids-noncoding circular RNAs that infect plants.
Collapse
|
34
|
Chen X, Xu X, Zhang S, Munir N, Zhu C, Zhang Z, Chen Y, Xuhan X, Lin Y, Lai Z. Genome-wide circular RNA profiling and competing endogenous RNA regulatory network analysis provide new insights into the molecular mechanisms underlying early somatic embryogenesis in Dimocarpus longan Lour. TREE PHYSIOLOGY 2022; 42:1876-1898. [PMID: 35313353 DOI: 10.1093/treephys/tpac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Circular RNAs (circRNAs) are widely involved in plant growth and development. However, the function of circRNAs in plant somatic embryogenesis (SE) remains elusive. Here, by using high-throughput sequencing, a total of 5029 circRNAs were identified in the three stages of longan (Dimocarpus longan Lour.) early SE. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that differentially expressed (DE) circRNA host genes were enriched in the 'non-homologous end-joining' (NHEJ) and 'butanoate metabolism' pathways. In addition, the reactive oxygen species (ROS) content during longan early SE was determined. The results indicated that ROS-induced DNA double-strand breaks may not depend on the NHEJ repair pathway. Correlation analyses of the levels of related metabolites (glutamate, γ-aminobutyrate and pyruvate) and the expression levels of circRNAs and their host genes involved in butanoate metabolism were performed. The results suggested that circRNAs may act as regulators of the expression of cognate mRNAs, thereby affecting the accumulation of related compounds. A competing endogenous RNA (ceRNA) network of DE circRNAs, DE mRNAs, DE long noncoding RNAs (lncRNAs) and DE microRNAs (miRNAs) was constructed. The results showed that the putative targets of the noncoding RNA (ncRNAs) were significantly enriched in the KEGG pathways 'mitogen-activated protein kinase signaling' and 'nitrogen metabolism'. Furthermore, the expression patterns of the candidate circRNAs, lncRNAs, miRNAs and mRNAs confirmed the negative correlation between miRNAs and ceRNAs. In addition, two circRNA overexpression vectors were constructed to further verify the ceRNA network correlations in longan early SE. Our study revealed the potential role of circRNAs in longan early SE, providing new insights into the intricate regulatory mechanism underlying plant SE.
Collapse
Affiliation(s)
- Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Nigarish Munir
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Chen Zhu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Xu Xuhan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300 Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian 350002, China
| |
Collapse
|
35
|
Wang L, Li H, Li J, Li G, Zahid MS, Li D, Ma C, Xu W, Song S, Li X, Wang S. Transcriptome analysis revealed the expression levels of genes related to abscisic acid and auxin biosynthesis in grapevine ( Vitis vinifera L.) under root restriction. FRONTIERS IN PLANT SCIENCE 2022; 13:959693. [PMID: 36092429 PMCID: PMC9449541 DOI: 10.3389/fpls.2022.959693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The root system is essential for the stable growth of plants. Roots help anchor plants in the soil and play a crucial role in water uptake, mineral nutrient absorption and endogenous phytohormone formation. Root-restriction (RR) cultivation, a powerful technique, confines plant roots to a specific soil space. In the present study, roots of one-year-old "Muscat Hamburg" grapevine under RR and control (nR) treatments harvested at 70 and 125 days after planting were used for transcriptome sequencing, and in total, 2031 (nR7 vs. nR12), 1445 (RR7 vs. RR12), 1532 (nR7 vs. RR7), and 2799 (nR12 vs. RR12) differentially expressed genes (DEGs) were identified. Gene Ontology (GO) enrichment analysis demonstrated that there were several genes involved in the response to different phytohormones, including abscisic acid (ABA), auxin (IAA), ethylene (ETH), gibberellins (GAs), and cytokinins (CTKs). Among them, multiple genes, such as PIN2 and ERF113, are involved in regulating vital plant movements by various phytohormone pathways. Moreover, following RR cultivation, DEGs were enriched in the biological processes of plant-type secondary cell wall biosynthesis, the defense response, programmed cell death involved in cell development, and the oxalate metabolic process. Furthermore, through a combined analysis of the transcriptome and previously published microRNA (miRNA) sequencing results, we found that multiple differentially expressed miRNAs (DEMs) and DEG combinations in different comparison groups exhibited opposite trends, indicating that the expression levels of miRNAs and their target genes were negatively correlated. Furthermore, RR treatment indeed significantly increased the ABA content at 125 days after planting and significantly decreased the IAA content at 70 days after planting. Under RR cultivation, most ABA biosynthesis-related genes were upregulated, while most IAA biosynthesis-related genes were downregulated. These findings lay a solid foundation for further establishing the network through which miRNAs regulate grapevine root development through target genes and for further exploring the molecular mechanism through which endogenous ABA and IAA regulate root architecture development in grapevine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Cao Z, Li G. MStoCIRC: A powerful tool for downstream analysis of MS/MS data to predict translatable circRNAs. Front Mol Biosci 2022; 9:791797. [PMID: 36072432 PMCID: PMC9441560 DOI: 10.3389/fmolb.2022.791797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
CircRNAs are formed by a non-canonical splicing method and appear circular in nature. CircRNAs are widely distributed in organisms and have the features of time- and tissue-specific expressions. CircRNAs have attracted increasing interest from scientists because of their non-negligible effects on the growth and development of organisms. The translation capability of circRNAs is a novel and valuable direction in the functional research of circRNAs. To explore the translation potential of circRNAs, some progress has been made in both experimental identification and computational prediction. For computational prediction, both CircCode and CircPro are ribosome profiling-based software applications for predicting translatable circRNAs, and the online databases riboCIRC and TransCirc analyze as many pieces of evidence as possible and list the predicted translatable circRNAs of high confidence. Simultaneously, mass spectrometry in proteomics is often recognized as an efficient method to support the identification of protein and peptide sequences from diverse complex templates. However, few applications fully utilize mass spectrometry to predict translatable circRNAs. Therefore, this research aims to build up a scientific analysis pipeline with two salient features: 1) it starts with the data analysis of raw tandem mass spectrometry data; and 2) it also incorporates other translation evidence such as IRES. The pipeline has been packaged into an analysis tool called mass spectrometry to translatable circRNAs (MStoCIRC). MStoCIRC is mainly implemented by Python3 language programming and could be downloaded from GitHub (https://github.com/QUMU00/mstocirc-master). The tool contains a main program and several small, independent function modules, making it more multifunctional. MStoCIRC can process data efficiently and has obtained hundreds of translatable circRNAs in humans and Arabidopsis thaliana.
Collapse
|
37
|
Ma X, Zhao F, Su K, Lin H, Guo Y. Discovery of cold-resistance genes in Vitis amurensis using bud-based quantitative trait locus mapping and RNA-seq. BMC Genomics 2022; 23:551. [PMID: 35918639 PMCID: PMC9347155 DOI: 10.1186/s12864-022-08788-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background In cold regions, low temperature is the main limiting factor affecting grape production. As an important breeding resource, V. amurensis Rupr. has played a crucial role in the discovery of genes which confer cold resistance in grapes. Thus far, many cold-resistance genes have been reported based on the study of V. amurensis. In order to identify more candidate genes related to cold resistance in V. amurensis, QTL mapping and RNA-seq was conducted based on the hybrid population and different cold-resistance cultivars in this study. Results In this study, highly cold-resistant grape cultivar ‘Shuangyou’ (SY) which belongs to V. amurensis, and cold-sensitive cultivar ‘Red Globe’ (RG) which belongs to Vitis vinifera L. were used to identify cold resistance genes. Cold-resistance quantitative trait locus (QTL) mapping was performed based on genetic population construction through interspecific crossing of ‘Shuangyou’ and ‘Red Globe’. Additionally, transcriptome analysis was conducted for the dormant buds of these two cultivars at different periods. Based on transcriptome analysis and QTL mapping, many new structural genes and transcription factors which relate to V. amurensis cold resistance were discovered, including CORs (VaCOR413IM), GSTs (VaGST-APIC, VaGST-PARB, VaGSTF9 and VaGSTF13), ARFs (VaIAA27 and VaSAUR71), ERFs (VaAIL1), MYBs (VaMYBR2, VaMYBLL and VaMYB3R-1) and bHLHs (VaICE1 and VabHLH30). Conclusions This discovery of candidate cold-resistance genes will provide an important theoretical reference for grape cold-resistance mechanisms, research, and cold-resistant grape cultivar breeding in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08788-y.
Collapse
Affiliation(s)
- Xiaolele Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, 110866, People's Republic of China
| | - Fangyuan Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, 110866, People's Republic of China
| | - Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China. .,College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, People's Republic of China. .,Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, 066004, People's Republic of China.
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, 110866, People's Republic of China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China. .,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, 110866, People's Republic of China.
| |
Collapse
|
38
|
Liao X, Li XJ, Zheng GT, Chang FR, Fang L, Yu H, Huang J, Zhang YF. Mitochondrion-encoded circular RNAs are widespread and translatable in plants. PLANT PHYSIOLOGY 2022; 189:1482-1500. [PMID: 35325205 PMCID: PMC9237725 DOI: 10.1093/plphys/kiac143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 05/28/2023]
Abstract
Nucleus-encoded circular RNAs (ncircRNAs) have been widely detected in eukaryotes, and most circRNA identification algorithms are designed to identify them. However, using these algorithms, few mitochondrion-encoded circRNAs (mcircRNAs) have been identified in plants, and the role of plant mcircRNAs has not yet been addressed. Here, we developed a circRNA identification algorithm, mitochondrion-encoded circRNA identifier, based on common features of plant mitochondrial genomes. We identified 7,524, 9,819, 1,699, 1,821, 1,809, and 5,133 mcircRNAs in maize (Zea mays), Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), tomato (Solanum lycopersicum), cucumber (Cucumis sativus), and grape (Vitis vinifera), respectively. These mcircRNAs were experimentally validated. Plant mcircRNAs had distinct characteristics from ncircRNAs, and they were more likely to be derived from RNA degradation but not intron backsplicing. Alternative circularization was prevalent in plant mitochondria, and most parental genomic regions hosted multiple mcircRNA isoforms, which have homogenous 5' termini but heterogeneous 3' ends. By analysis of mitopolysome and mitoribosome profiling data, 1,463 mcircRNAs bound to ribosomes were detected in maize and Arabidopsis. Further analysis of mass spectrometry-based proteomics data identified 358 mcircRNA-derived polypeptides. Overall, we developed a computational pipeline that efficiently identifies plant mcircRNAs, and we demonstrated mcircRNAs are widespread and translated in plants.
Collapse
Affiliation(s)
| | | | | | - Feng-Rui Chang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lin Fang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hang Yu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | | |
Collapse
|
39
|
Liu H, Nwafor CC, Piao Y, Li X, Zhan Z, Piao Z. Identification and Characterization of Circular RNAs in Brassica rapa in Response to Plasmodiophora brassicae. Int J Mol Sci 2022; 23:5369. [PMID: 35628175 PMCID: PMC9141718 DOI: 10.3390/ijms23105369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Plasmodiophora brassicae is a soil-borne pathogen that attacks the roots of cruciferous plants and causes clubroot disease. CircRNAs are noncoding RNAs, widely existing in plant and animal species. Although knowledge of circRNAs has been updated continuously and rapidly, information about circRNAs in the regulation of clubroot disease resistance is extremely limited in Brassica rapa. Here, Chinese cabbage (BJN 222) containing clubroot resistance genes (CRa) against P. brassicae Pb4 was susceptible to PbE. To investigate the mechanism of cicRNAs responsible for clubroot disease resistance in B. rapa, circRNA-seq was performed with roots of 'BJN 222' at 0, 8, and 23 days post-inoculated (dpi) with Pb4 and PbE. A total of 231 differentially expressed circRNAs were identified between the groups. Based on the differentially expressed circRNAs, the circRNA-miRNA-mRNA network was constructed using the target genes directly or indirectly related to plant resistance. Upregulated novel_circ_000495 suppressed the expression of miR5656-y, leading to the upregulation of Bra026508, which might cause plant resistance. Our results provide new insights into clubroot resistance mechanisms and lay a foundation for further studies exploring complex gene regulation networks in B. rapa.
Collapse
Affiliation(s)
- Huishan Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (H.L.); (Y.P.); (X.L.)
| | - Chinedu Charles Nwafor
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Yinglan Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (H.L.); (Y.P.); (X.L.)
| | - Xiaonan Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (H.L.); (Y.P.); (X.L.)
| | - Zongxiang Zhan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (H.L.); (Y.P.); (X.L.)
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (H.L.); (Y.P.); (X.L.)
| |
Collapse
|
40
|
Xu D, Yuan W, Fan C, Liu B, Lu MZ, Zhang J. Opportunities and Challenges of Predictive Approaches for the Non-coding RNA in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:890663. [PMID: 35498708 PMCID: PMC9048598 DOI: 10.3389/fpls.2022.890663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 06/01/2023]
Affiliation(s)
- Dong Xu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenya Yuan
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Bobin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
41
|
Chao H, Hu Y, Zhao L, Xin S, Ni Q, Zhang P, Chen M. Biogenesis, Functions, Interactions, and Resources of Non-Coding RNAs in Plants. Int J Mol Sci 2022; 23:ijms23073695. [PMID: 35409060 PMCID: PMC8998614 DOI: 10.3390/ijms23073695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Plant transcriptomes encompass a large number of functional non-coding RNAs (ncRNAs), only some of which have protein-coding capacity. Since their initial discovery, ncRNAs have been classified into two broad categories based on their biogenesis and mechanisms of action, housekeeping ncRNAs and regulatory ncRNAs. With advances in RNA sequencing technology and computational methods, bioinformatics resources continue to emerge and update rapidly, including workflow for in silico ncRNA analysis, up-to-date platforms, databases, and tools dedicated to ncRNA identification and functional annotation. In this review, we aim to describe the biogenesis, biological functions, and interactions with DNA, RNA, protein, and microorganism of five major regulatory ncRNAs (miRNA, siRNA, tsRNA, circRNA, lncRNA) in plants. Then, we systematically summarize tools for analysis and prediction of plant ncRNAs, as well as databases. Furthermore, we discuss the silico analysis process of these ncRNAs and present a protocol for step-by-step computational analysis of ncRNAs. In general, this review will help researchers better understand the world of ncRNAs at multiple levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Peijing Zhang
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| | - Ming Chen
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| |
Collapse
|
42
|
Identification and Characterization of circRNAs under Drought Stress in Moso Bamboo (Phyllostachys edulis). FORESTS 2022. [DOI: 10.3390/f13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs formed by 3′-5′ ligation during splicing. They play an important role in the regulation of transcription and miRNA in eukaryotes. Drought is one of the detrimental abiotic stresses that limit plant growth and productivity. How circRNAs influence the response to drought stress in moso bamboo (Phyllostachys edulis) remains elusive. In this study, we investigate the expression pattern of circRNAs in moso bamboo at 6 h, 12 h, 24 h and 48 h after drought treatment by deep sequencing and bioinformatics analysis and identify 4931 circRNAs, 52 of which are differentially expressed (DEcircRNAs) in drought-treated and untreated moso bamboo. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the host genes that generate the DEcircRNAs indcate that these DEcircRNAs are predicted to be involved in biochemical processes in response to drought, such as ubiquitin-mediated proteolysis, calcium-dependent protein kinase phosphorylation, amino acid biosynthesis and plant hormone signal transduction including abscisic acid. In addition, some circRNAs are shown to act as sponges for 291 miRNAs. Taken together, our results characterize the transcriptome profiles of circRNAs in drought responses and provide new insights into resistance breeding of moso bamboo.
Collapse
|
43
|
Wang P, Wang S, Wu Y, Nie W, Yiming A, Huang J, Ahmad I, Zhu B, Chen G. Identification and Characterization of Rice Circular RNAs Responding to Xanthomonas oryzae pv. oryzae Invasion. PHYTOPATHOLOGY 2022; 112:492-500. [PMID: 34420356 DOI: 10.1094/phyto-06-21-0235-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Emerging roles of circular RNAs (circRNAs) in various biological processes have advanced our knowledge of transcriptional and posttranscriptional gene regulation. To date, no research has been conducted to explore their roles in the rice-Xanthomonas oryzae pv. oryzae interaction. Therefore, we identified 3,517 circRNAs from rice leaves infected with the highly virulent X. oryzae pv. oryzae strain PXO99A by using rRNA depleted RNA sequencing technique coupled with the CIRI2 and CIRCexplorer2 pipeline. Characterization analyses showed that these circRNAs were distributed across the whole genome of rice, and most circRNAs arose from exons (85.13%), ranged from 200 to 1,000 bp, and were with a noncanonical GT/AG (including CT/AC equivalent) splicing signal. Functional annotation and enrichment analysis of the host genes that produced the differentially expressed circRNAs (DEcircRNAs) suggested that these identified circRNAs might play an important role in reprogramming rice responses to PXO99A invasion, mainly by mediating photorespiration and chloroplast, peroxisome, and diterpenoid biosynthesis. Moreover, 31 DEcircRNAs were predicted to act as microRNA decoys in rice. The expression profile of four DEcircRNAs were validated by quantitative real-time PCR with divergent primers, and the back-splicing sites of seven DEcircRNAs were verified by PCR analysis and Sanger sequencing. Collectively, these results inferred a potential functional role of circRNAs in the regulation of rice immunity and provide novel clues about the molecular mechanisms of rice-PXO99A interaction.
Collapse
Affiliation(s)
- Peihong Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sai Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhan Nie
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ayizekeranmu Yiming
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Huang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Iftikhar Ahmad
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Bo Zhu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gongyou Chen
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
44
|
Zhang J, Hossain MT, Liu W, Peng Y, Pan Y, Wei Y. Evaluation of CircRNA Sequence Assembly Methods Using Long Reads. Front Genet 2022; 13:816825. [PMID: 35237301 PMCID: PMC8882733 DOI: 10.3389/fgene.2022.816825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
The functional study on circRNAs has been increasing in the past decade due to its important roles in micro RNA sponge, protein coding, the initiation, and progression of diseases. The study of circRNA functions depends on the full-length sequences of circRNA, and current sequence assembly methods based on short reads face challenges due to the existence of linear transcript. Long reads produced by long-read sequencing techniques such as Nanopore technology can cover full-length sequences of circRNA and therefore can be used to evaluate the correctness and completeness of circRNA full sequences assembled from short reads of the same sample. Using long reads of the same samples, one from human and the other from mouse, we have comprehensively evaluated the performance of several well-known circRNA sequence assembly algorithms based on short reads, including circseq_cup, CIRI_full, and CircAST. Based on the F1 score, the performance of CIRI-full was better in human datasets, whereas in mouse datasets CircAST was better. In general, each algorithm was developed to handle special situations or circumstances. Our results indicated that no single assembly algorithm generated better performance in all cases. Therefore, these assembly algorithms should be used together for reliable full-length circRNA sequence reconstruction. After analyzing the results, we have introduced a screening protocol that selects out exonic circRNAs with full-length sequences consisting of all exons between back splice sites as the final result. After screening, CIRI-full showed better performance for both human and mouse datasets. The average F1 score of CIRI-full over four circRNA identification algorithms increased from 0.4788 to 0.5069 in human datasets, and it increased from 0.2995 to 0.4223 in mouse datasets.
Collapse
Affiliation(s)
- Jingjing Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Md. Tofazzal Hossain
- University of Chinese Academy of Sciences, Beijing, China
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weiguo Liu
- School of Software, Shandong University, Jinan, China
| | - Yin Peng
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, China
- *Correspondence: Yin Peng, ; Yanjie Wei,
| | - Yi Pan
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanjie Wei
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Yin Peng, ; Yanjie Wei,
| |
Collapse
|
45
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
46
|
Gao Y, Cui Y, Zhao R, Chen X, Zhang J, Zhao J, Kong L. Cryo-Treatment Enhances the Embryogenicity of Mature Somatic Embryos via the lncRNA-miRNA-mRNA Network in White Spruce. Int J Mol Sci 2022; 23:ijms23031111. [PMID: 35163033 PMCID: PMC8834816 DOI: 10.3390/ijms23031111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
In conifers, somatic embryogenesis is uniquely initiated from immature embryos in a narrow time window, which is considerably hindered by the difficulty to induce embryogenic tissue (ET) from other tissues, including mature somatic embryos. In this study, the embryogenic ability of newly induced ET and DNA methylation levels was detected, and whole-transcriptome sequencing analyses were carried out. The results showed that ultra-low temperature treatment significantly enhanced ET induction from mature somatic embryos, with the induction rate from 0.4% to 15.5%, but the underlying mechanisms remain unclear. The newly induced ET showed higher capability in generating mature embryos than the original ET. DNA methylation levels fluctuated during the ET induction process. Here, WGCNA analysis revealed that OPT4, TIP1-1, Chi I, GASA5, GST, LAX3, WRKY7, MYBS3, LRR-RLK, PBL7, and WIN1 genes are involved in stress response and auxin signal transduction. Through co-expression analysis, lncRNAs MSTRG.505746.1, MSTRG.1070680.1, and MSTRG.33602.1 might bind to pre-novel_miR_339 to promote the expression of WRKY7 genes for stress response; LAX3 could be protected by lncRNAs MSTRG.1070680.1 and MSTRG.33602.1 via serving as sponges for novel_miR_495 to initiate auxin signal transduction; lncRNAs MSTRG.505746.1, MSTRG.1070680.1, and MSTRG.33602.1 might serve as sponges for novel_miR_527 to enhance the expression of Chi I for early somatic embryo development. This study provides new insight into the area of stress-enhanced early somatic embryogenesis in conifers, which is also attributable to practical applications.
Collapse
Affiliation(s)
- Ying Gao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Ying Cui
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Ruirui Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Xiaoyi Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Jinfeng Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Jian Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
- Correspondence: (J.Z.); (L.K.)
| | - Lisheng Kong
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
- Correspondence: (J.Z.); (L.K.)
| |
Collapse
|
47
|
Jiang M, Chen H, Du Q, Wang L, Liu X, Liu C. Genome-Wide Identification of Circular RNAs Potentially Involved in the Biosynthesis of Secondary Metabolites in Salvia miltiorrhiza. Front Genet 2021; 12:645115. [PMID: 34804110 PMCID: PMC8602197 DOI: 10.3389/fgene.2021.645115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) play various roles in cellular functions. However, no studies have been reported on the potential involvement of circRNAs in the biosynthesis of secondary metabolites in plants. Here, we performed a genome-wide discovery of circRNAs from root, stem and leaf samples of Salvia miltiorrhiza using RNA-Seq. We predicted a total of 2,476 circRNAs with at least two junction reads using circRNA_finder and CIRI, of which 2,096, 151 and 229 were exonic, intronic and intergenic circRNAs, respectively. Sequence similarity analysis showed that 294 out of 2,476 circRNAs were conserved amongst multiple plants. Of the 55 predicted circRNAs, 31 (56%) were validated successfully by PCR and Sanger sequencing using convergent and divergent primer pairs. Alternative circularisation analysis showed that most parental genes produced two circRNAs. Functional enrichment analyses of the parental genes showed that the primary metabolism pathways were significantly enriched, particularly the carbon metabolism. Differential expression analysis showed that the expression profiles of circRNAs were tissue-specific. Co-expression analysis showed 275 circRNAs, and their parental genes had significantly positive correlations. However, 14 had significantly negative correlations. Weighted gene co-expression network analysis showed that nine circRNAs were co-expressed with four modules of protein-coding genes. Next, we found 416 exonic circRNAs with miRNA-binding sites, suggesting possible interactions between circRNAs and miRNAs. Lastly, we found six validated circRNAs, namely, SMscf2473-46693-46978, SMscf3091-29256-29724, SMscf16-111773-112193, SMscf432-13232-13866, SMscf7007-10563-10888 and SMscf1730-1749-2013, which were originated from the genes involved in the biosynthesis of secondary metabolites. Their parental genes were acetyl-CoA C-acetyltransferase 1 (SmAACT1), 1-deoxy-d-xylulose-5-phosphate synthase 2 (SmDXS2), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 1 (SmHDR1), kaurene synthase-like 2 (SmKSL2), DWF4 and CYP88A3, respectively. In particular, the correlation coefficient of SMscf2473-46693-46978 and SmDXS2 gene was 0.86 (p = 0.003), indicating a potential interaction between this pair of circRNA and its parent gene. Our results provided the first comprehensive catalogue of circRNAs in S. miltiorrhiza and identified one circRNA that might play important roles in the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Mei Jiang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haimei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qing Du
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Key Laboratory of Plant Resources of Qinghai-Tibet Plateau in Chemical Research, College of Pharmacy, Qinghai Nationalities University, Xining, China
| | - Liqiang Wang
- College of Pharmacy, Heze University, Heze, China
| | - Xinyue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Javaran VJ, Moffett P, Lemoyne P, Xu D, Adkar-Purushothama CR, Fall ML. Grapevine Virology in the Third-Generation Sequencing Era: From Virus Detection to Viral Epitranscriptomics. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112355. [PMID: 34834718 PMCID: PMC8623739 DOI: 10.3390/plants10112355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 05/30/2023]
Abstract
Among all economically important plant species in the world, grapevine (Vitis vinifera L.) is the most cultivated fruit plant. It has a significant impact on the economies of many countries through wine and fresh and dried fruit production. In recent years, the grape and wine industry has been facing outbreaks of known and emerging viral diseases across the world. Although high-throughput sequencing (HTS) has been used extensively in grapevine virology, the application and potential of third-generation sequencing have not been explored in understanding grapevine viruses and their impact on the grapevine. Nanopore sequencing, a third-generation technology, can be used for the direct sequencing of both RNA and DNA with minimal infrastructure. Compared to other HTS methods, the MinION nanopore platform is faster and more cost-effective and allows for long-read sequencing. Due to the size of the MinION device, it can be easily carried for field viral disease surveillance. This review article discusses grapevine viruses, the principle of third-generation sequencing platforms, and the application of nanopore sequencing technology in grapevine virus detection, virus-plant interactions, as well as the characterization of viral RNA modifications.
Collapse
Affiliation(s)
- Vahid Jalali Javaran
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Peter Moffett
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Pierre Lemoyne
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
| | - Dong Xu
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
| | - Charith Raj Adkar-Purushothama
- Département de Biochimie, Faculté de Médecine des Sciences de la Santé, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada;
| | - Mamadou Lamine Fall
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
| |
Collapse
|
49
|
Babaei S, Singh MB, Bhalla PL. Circular RNAs Repertoire and Expression Profile during Brassica rapa Pollen Development. Int J Mol Sci 2021; 22:ijms221910297. [PMID: 34638635 PMCID: PMC8508787 DOI: 10.3390/ijms221910297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules generated by the back-splicing of exons from linear precursor mRNAs. Though various linear RNAs have been shown to play important regulatory roles in many biological and developmental processes, little is known about the role of their circular counterparts. In this study, we performed high-throughput RNA sequencing to delineate the expression profile and potential function of circRNAs during the five stages of pollen development in Brassica rapa. A total of 1180 circRNAs were detected in pollen development, of which 367 showed stage-specific expression patterns. Functional enrichment and metabolic pathway analysis showed that the parent genes of circRNAs were mainly involved in pollen-related molecular and biological processes such as mitotic and meiotic cell division, DNA processes, protein synthesis, protein modification, and polysaccharide biosynthesis. Moreover, by predicting the circRNA–miRNA network from our differentially expressed circRNAs, we found 88 circRNAs with potential miRNA binding sites, suggesting their role in post-transcriptional regulation of the genes. Finally, we confirmed the back-splicing sites of nine selected circRNAs using divergent primers and Sanger sequencing. Our study presents the systematic analysis of circular RNAs during pollen development and forms the basis of future studies for unlocking complex gene regulatory networks underpinning reproduction in flowering plants.
Collapse
|
50
|
Sharma AR, Bhattacharya M, Bhakta S, Saha A, Lee SS, Chakraborty C. Recent research progress on circular RNAs: Biogenesis, properties, functions, and therapeutic potential. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:355-371. [PMID: 34484862 PMCID: PMC8399087 DOI: 10.1016/j.omtn.2021.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs), an emerging family member of RNAs, have gained importance in research due to their new functional roles in cellular physiology and disease progression. circRNAs are usually available in a wide range of cells and have shown tissue-specific expression as well as developmental specific expression. circRNAs are characterized by structural stability, conservation, and high abundance in the cell. In this review, we discuss the different models of biogenesis. The properties of circRNAs such as localization, structure and conserved pattern, stability, and expression specificity are also been illustrated. Furthermore, we discuss the biological functions of circRNAs such as microRNA (miRNA) sponging, cell cycle regulation, cell-to-cell communication, transcription regulation, translational regulation, disease diagnosis, and therapeutic potential. Finally, we discuss the recent research progress and future perspective of circRNAs. This review provides an understanding of potential diagnostic markers and the therapeutic potential of circRNAs, which are emerging daily.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Swarnav Bhakta
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Jagannathpur, Kolkata, West Bengal 700126, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Jagannathpur, Kolkata, West Bengal 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Jagannathpur, Kolkata, West Bengal 700126, India
| |
Collapse
|