1
|
Zhang Z, Nakamura S, Yamasaki A, Uehara M, Takemura S, Tsuchida K, Kamiya T, Shigenobu S, Yamaguchi K, Fujiwara T, Ishiguro S, Takano J. Arabidopsis KNS3 and its two homologs mediate endoplasmic reticulum-to-plasma membrane traffic of boric acid channels. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7046-7065. [PMID: 39474885 PMCID: PMC11629988 DOI: 10.1093/jxb/erae380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/10/2024] [Indexed: 12/11/2024]
Abstract
Membrane proteins targeted to the plasma membrane are first transported from the endoplasmic reticulum (ER) to the Golgi apparatus. This study explored the mechanisms controlling plasma membrane trafficking of the boric acid channel AtNIP5;1 from the ER. Imaging-based screening using transgenic Arabidopsis identified six mutants in which GFP-NIP5;1 was localized in the ER in addition to the plasma membrane. Genetic mapping and whole-genome resequencing identified the responsible gene in four among the six mutants as KAONASHI3 (KNS3)/SPOTTY1/IMPERFECTIVE EXINE FORMATION. Among the plasma membrane-localized proteins tested, NIP5;1 and its homolog NIP6;1 were retained in the ER of the kns3 mutants. Our genetic analysis further discovered that two homologs of KNS3, KNSTH1 and KNSTH2, were also involved in the ER exit of NIP5;1. In Arabidopsis protoplasts and tobacco leaves, mCherry-fused KNS3 localized to the ER and Golgi, whereas KNSTH2 localized to the ER. The cytosolic C-terminal tail of KNS3 contains amino acids important for Golgi-to-ER trafficking. Furthermore, the ER-to-Golgi trafficking of KNS3 depended on KNSTH1 and KNSTH2, and the accumulation of these three proteins in Arabidopsis roots depended on each other. We propose that KNS3, KNSTH1, and KNSTH2 function as a cargo-receptor complex mediating the ER exit of NIP5;1.
Collapse
Affiliation(s)
- Zhe Zhang
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Shunsuke Nakamura
- Graduate School of Agriculture, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-0808, Japan
| | - Arisa Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Masataka Uehara
- Graduate School of Agriculture, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-0808, Japan
| | - Shunsuke Takemura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Kohei Tsuchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shuji Shigenobu
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, 444-8585, Japan
| | - Katsushi Yamaguchi
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, 444-8585, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Sumie Ishiguro
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Junpei Takano
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
2
|
Wang Y, Ren Y, Teng X, Wang F, Chen Y, Duan E, Wang X, Pan T, Zhang B, Wan G, Zhang Y, Zhang P, Sun X, Yang W, Zhu Y, Chen Y, Zhao W, Han X, Lei C, Zhu S, Liu S, Wang Y, Wan J. Functional diversification of Sec13 isoforms for storage protein trafficking in rice endosperm cells. PLANT PHYSIOLOGY 2024; 196:2405-2421. [PMID: 39351808 DOI: 10.1093/plphys/kiae513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/30/2024] [Indexed: 12/14/2024]
Abstract
Coat protein complex II (COPII) vesicles play crucial roles in mediating the endoplasmic reticulum (ER) exit of newly synthesized proteins to the Golgi in eukaryotic cells. However, the molecular functions of COPII components and their functional diversifications in plant seeds remain obscure. Here, we showed that the rice (Oryza sativa) glutelin precursor accumulation12 (gpa12) mutant is defective in storage protein export from the ER, resulting in the formation of aggregated protein bodies. Map-based cloning revealed that GPA12 encodes a COPII outer layer protein, Sec13a, that mainly localizes to endoplasmic reticulum exit sites (ERES) and partially localizes to the Golgi. Biochemical experiments verified that Sec13a physically interacts with Sec31 and Sec16, and mutation in Sec13 compromises its interaction with Sec31 and Sec16, thereby affecting the membrane association of the inner complex components Sar1b and Sec23c. Apart from Sec13a, the rice genome encodes 2 other Sec13 isoforms, Sec13b and Sec13c. Notably, we observed an abnormal accumulation of globular ER structures in the sec13bc double mutant but not in the single mutants, suggesting a functional redundancy of Sec13b and Sec13c in modulating ER morphology. Taken together, our results substantiated that Sec13a plays an important role in regulating storage protein export from the ER, while Sec13b and Sec13c are required for maintaining ER morphology in rice endosperm cells. Our findings provide insights into the functional diversification of COPII components in plants.
Collapse
Affiliation(s)
- Yongfei Wang
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuan Teng
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanyu Chen
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Erchao Duan
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tian Pan
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Binglei Zhang
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gexing Wan
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Zhang
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengcheng Zhang
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiejun Sun
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenkun Yang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Chen
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjie Zhao
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohang Han
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shijia Liu
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Wang
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Wan
- Stake Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Jiangsu Nanjing Rice Germplasm Resources National Field Observation and Research Station, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Yin GM, Dun SS, Li E, Ge FR, Fang YR, Wang DD, Lu D, Wang NN, Zhang Y, Li S. Arabidopsis COP1 suppresses root hair development by targeting type I ACS proteins for ubiquitination and degradation. Dev Cell 2024; 59:2962-2973.e7. [PMID: 39053470 DOI: 10.1016/j.devcel.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Root hairs (RHs) are an innovation of vascular plants whose development is coordinated by endogenous and environmental cues, such as ethylene and light conditions. However, the potential crosstalk between ethylene and light conditions in RH development is unclear. We report that Arabidopsis constitutive photomorphogenic 1 (COP1) integrates ethylene and light signaling to mediate RH development. Darkness suppresses RH development largely through COP1. COP1 inhibits both cell fate determination of trichoblast and tip growth of RHs based on pharmacological, genetic, and physiological analyses. Indeed, COP1 interacts with and catalyzes the ubiquitination of ACS2 and ACS6. COP1- or darkness-promoted proteasome-dependent degradation of ACS2/6 leads to a low ethylene level in underground tissues. The negative role of COP1 in RH development by downregulating ethylene signaling may be coordinated with the positive role of COP1 in hypocotyl elongation by upregulating ethylene signaling, providing an evolutionary advantage for seedling fitness.
Collapse
Affiliation(s)
- Gui-Min Yin
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shan-Shan Dun
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - En Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Fu-Rong Ge
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yi-Ru Fang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan-Dan Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Dongping Lu
- Center for Agricultural Resources Research Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Ning Ning Wang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
4
|
Hao GJ, Ying J, Li LS, Yu F, Dun SS, Su LY, Zhao XY, Li S, Zhang Y. Two functionally interchangeable Vps9 isoforms mediate pollen tube penetration of style. THE NEW PHYTOLOGIST 2024; 244:840-854. [PMID: 39262026 DOI: 10.1111/nph.20088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Style penetration by pollen tubes is essential for reproductive success, a process requiring canonical Rab5s in Arabidopsis. However, functional loss of Arabidopsis Vps9a, the gene encoding for guanine nucleotide exchange factor (GEF) of Rab5s, did not affect male transmission, implying the presence of a compensation program or redundancy. By combining genetic, cytological, and molecular approaches, we report that Arabidopsis Vps9b is a pollen-preferential gene, redundantly mediating pollen tube penetration of style with Vps9a. Vps9b is functionally interchangeable with Vps9a, whose functional distinction results from distinct expression profiles. Functional loss of Vps9a and Vps9b results in the mis-targeting of Rab5-dependent tonoplast proteins, defective vacuolar biogenesis, disturbed distribution of post-Golgi vesicles, increased cellular turgor, cytosolic acidification, and disrupted organization of actin microfilaments (MF) in pollen tubes, which collectively lead to the failure of pollen tubes to grow through style.
Collapse
Affiliation(s)
- Guang-Jiu Hao
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| | - Jun Ying
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lu-Shen Li
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| | - Fei Yu
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shan-Shan Dun
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Le-Yan Su
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin-Ying Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| |
Collapse
|
5
|
Chung KP, Frieboese D, Waltz F, Engel BD, Bock R. Identification and characterization of the COPII vesicle-forming GTPase Sar1 in Chlamydomonas. PLANT DIRECT 2024; 8:e614. [PMID: 38887666 PMCID: PMC11180857 DOI: 10.1002/pld3.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Eukaryotic cells are highly compartmentalized, requiring elaborate transport mechanisms to facilitate the movement of proteins between membrane-bound compartments. Most proteins synthesized in the endoplasmic reticulum (ER) are transported to the Golgi apparatus through COPII-mediated vesicular trafficking. Sar1, a small GTPase that facilitates the formation of COPII vesicles, plays a critical role in the early steps of this protein secretory pathway. Sar1 was characterized in yeast, animals and plants, but no Sar1 homolog has been identified and functionally analyzed in algae. Here we identified a putative Sar1 homolog (CrSar1) in the model green alga Chlamydomonas reinhardtii through amino acid sequence similarity. We employed site-directed mutagenesis to generate a dominant-negative mutant of CrSar1 (CrSar1DN). Using protein secretion assays, we demonstrate the inhibitory effect of CrSar1DN on protein secretion. However, different from previously studied organisms, ectopic expression of CrSar1DN did not result in collapse of the ER-Golgi interface in Chlamydomonas. Nonetheless, our data suggest a largely conserved role of CrSar1 in the ER-to-Golgi protein secretory pathway in green algae.
Collapse
Affiliation(s)
- Kin Pan Chung
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdamGermany
| | - Daniel Frieboese
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdamGermany
| | | | | | - Ralph Bock
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdamGermany
| |
Collapse
|
6
|
Liang X, Zhu SH, Feng QN, Li S, Zhang Y. Arabidopsis Sar1b is critical for pollen tube growth. PLANT MOLECULAR BIOLOGY 2024; 114:64. [PMID: 38809410 DOI: 10.1007/s11103-024-01466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
Pollen tube growth is an essential step leading to reproductive success in flowering plants, in which vesicular trafficking plays a key role. Vesicular trafficking from endoplasmic reticulum to the Golgi apparatus is mediated by the coat protein complex II (COPII). A key component of COPII is small GTPase Sar1. Five Sar1 isoforms are encoded in the Arabidopsis genome and they show distinct while redundant roles in various cellular and developmental processes, especially in reproduction. Arabidopsis Sar1b is essential for sporophytic control of pollen development while Sar1b and Sar1c are critical for gametophytic control of pollen development. Because functional loss of Sar1b and Sar1c resulted in pollen abortion, whether they influence pollen tube growth was unclear. Here we demonstrate that Sar1b mediates pollen tube growth, in addition to its role in pollen development. Although functional loss of Sar1b does not affect pollen germination, it causes a significant reduction in male transmission and of pollen tube penetration of style. We further show that membrane dynamics at the apex of pollen tubes are compromised by Sar1b loss-of-function. Results presented provide further support of functional complexity of the Sar1 isoforms.
Collapse
Affiliation(s)
- Xin Liang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shi-Hao Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Yang Y, Tian H, Xu C, Li H, Li Y, Zhang H, Zhang B, Yuan W. Arabidopsis SEC13B Interacts with Suppressor of Frigida 4 to Repress Flowering. Int J Mol Sci 2023; 24:17248. [PMID: 38139079 PMCID: PMC10744139 DOI: 10.3390/ijms242417248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
SECRETORY13 (SEC13) is an essential member of the coat protein complex II (COPII), which was reported to mediate vesicular-specific transport from the endoplasmic reticulum (ER) to the Golgi apparatus and plays a crucial role in early secretory pathways. In Arabidopsis, there are two homologous proteins of SEC13: SEC13A and SEC13B. SUPPRESSOR OF FRIGIDA 4 (SUF4) encodes a C2H2-type zinc finger protein that inhibits flowering by transcriptionally activating the FLOWERING LOCUS C (FLC) through the FRIGIDA (FRI) pathway in Arabidopsis. However, it remains unclear whether SEC13 proteins are involved in Arabidopsis flowering. In this study, we first identified that the sec13b mutant exhibited early flowering under both long-day and short-day conditions. Quantitative real-time PCR (qRT-PCR) analysis showed that both SEC13A and SEC13B were expressed in all the checked tissues, and transient expression assays indicated that SEC13A and SEC13B were localized not only in the ER but also in the nucleus. Then, we identified that SEC13A and SEC13B could interact with SUF4 in vitro and in vivo. Interestingly, both sec13b and suf4 single mutants flowered earlier than the wild type (Col-0), whereas the sec13b suf4 double mutant flowered even earlier than all the others. In addition, the expression of flowering inhibitor FLC was down-regulated, and the expressions of flowering activator FLOWERING LOCUS T (FT), CONSTANS (CO), and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) were up-regulated in sec13b, suf4, and sec13b suf4 mutants, compared with Col-0. Taken together, our results indicated that SEC13B interacted with SUF4, and they may co-regulate the same genes in flowering-regulation pathways. These results also suggested that the COPII component could function in flowering in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Biaoming Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.Y.); (H.T.); (C.X.); (H.L.); (Y.L.); (H.Z.)
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.Y.); (H.T.); (C.X.); (H.L.); (Y.L.); (H.Z.)
| |
Collapse
|
8
|
Liang X, Li SW, Wang JL, Zhao HM, Li S, Zhang Y. Arabidopsis Sar1 isoforms play redundant roles in female gametophytic development. PLANT REPRODUCTION 2023; 36:349-354. [PMID: 37535249 DOI: 10.1007/s00497-023-00475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023]
Abstract
KEY MESSAGE Functional loss of Arabidopsis Sar1b with that of either Sar1a or Sar1c inhibits mitosis of functional megaspores, leading to defective embryo sac formation and reduced fertility. Vesicular trafficking among diverse endomembrane compartments is critical for eukaryotic cells. Anterograde trafficking from endoplasmic reticulum (ER) to the Golgi apparatus is mediated by coat protein complex II (COPII) vesicles. Among five cytosolic components of COPII, secretion-associated Ras-related GTPase 1 (Sar1) mediates the assembly and disassembly of the COPII coat. Five genes in Arabidopsis encode Sar1 isoforms, whose different cargo specificities and redundancy were both reported. We show here that Arabidopsis Sar1a, Sar1b, and Sar1c mediate the development of female gametophytes (FGs), in which Sar1b plays a major role, whereas Sar1a and Sar1c play a minor role. We determined that female transmission of sar1a;sar1b or sar1c;sar1b was significantly reduced due to defective mitosis of functional megaspores. Half of ovules in sar1a;sar1b/+ or sar1c;sar1b/+ plants failed to attract pollen tubes, leading to fertilization failure. The homozygous sar1a;sar1b or sar1c;sar1b double mutant was obtained by introducing either UBQ10:GFP-Sar1b or UBQ10:GFP-Sar1c, supporting their redundant function in FG development.
Collapse
Affiliation(s)
- Xin Liang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shan-Wei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Jin-Li Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hui-Min Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
9
|
Zhou C, Lin Q, Ren Y, Lan J, Miao R, Feng M, Wang X, Liu X, Zhang S, Pan T, Wang J, Luo S, Qian J, Luo W, Mou C, Nguyen T, Cheng Z, Zhang X, Lei C, Zhu S, Guo X, Wang J, Zhao Z, Liu S, Jiang L, Wan J. A CYP78As-small grain4-coat protein complex Ⅱ pathway promotes grain size in rice. THE PLANT CELL 2023; 35:4325-4346. [PMID: 37738653 PMCID: PMC10689148 DOI: 10.1093/plcell/koad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/11/2023] [Accepted: 08/11/2023] [Indexed: 09/24/2023]
Abstract
CYP78A, a cytochrome P450 subfamily that includes rice (Oryza sativa L.) BIG GRAIN2 (BG2, CYP78A13) and Arabidopsis thaliana KLUH (KLU, CYP78A5), generate an unknown mobile growth signal (referred to as a CYP78A-derived signal) that increases grain (seed) size. However, the mechanism by which the CYP78A pathway increases grain size remains elusive. Here, we characterized a rice small grain mutant, small grain4 (smg4), with smaller grains than its wild type due to restricted cell expansion and cell proliferation in spikelet hulls. SMG4 encodes a multidrug and toxic compound extrusion (MATE) transporter. Loss of function of SMG4 causes smaller grains while overexpressing SMG4 results in larger grains. SMG4 is mainly localized to endoplasmic reticulum (ER) exit sites (ERESs) and partially localized to the ER and Golgi. Biochemically, SMG4 interacts with coat protein complex Ⅱ (COPⅡ) components (Sar1, Sec23, and Sec24) and CYP78As (BG2, GRAIN LENGTH 3.2 [GL3.2], and BG2-LIKE 1 [BG2L1]). Genetically, SMG4 acts, at least in part, in a common pathway with Sar1 and CYP78As to regulate grain size. In summary, our findings reveal a CYP78As-SMG4-COPⅡ regulatory pathway for grain size in rice, thus providing new insights into the molecular and genetic regulatory mechanism of grain size.
Collapse
Affiliation(s)
- Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Lan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Miao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Feng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengzhong Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiachang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinsheng Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenfan Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Thanhliem Nguyen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
10
|
Zheng L, Zhou P, Pan Y, Li B, Shen R, Lan P. Proteomic profile of the germinating seeds reveals enhanced seedling growth in Arabidopsis rpp1a mutant. PLANT MOLECULAR BIOLOGY 2023; 113:105-120. [PMID: 37804450 DOI: 10.1007/s11103-023-01378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Ribosomal phosphoprotein P1 (RPP1) is an integral component of the P-protein stalk in the 60S subunit of eukaryotic ribosomes and is required for the efficient elongation of translation. Previously, Arabidopsis RPP1A was revealed to be involved in the regulation of seed size and seed storage protein accumulation. In this work, the seedling growth analysis shows that the knockout mutation of Arabidopsis RPP1A significantly promoted seedling growth, particularly in the shoots. The label-free quantitative proteomic analysis demonstrated that a total of 593 proteins were differentially accumulated between the germinating seeds of the wild-type Col-0 and rpp1a mutant. And these proteins were significantly enriched in the intracellular transport, nitrogen compound transport, protein transport, and organophosphate metabolic process. The abundance of proteins involved in the RNA and protein processing processes, including ncRNA processing and protein folding, were significantly increased in the rpp1a mutant. Mutation in RPP1A highlighted the effects on the ribosome, energy metabolism, and nitrogen metabolism. The abundance of enzymes involved in glycolysis and pyruvate mechanism was decreased in the germinating seeds of the rpp1a mutant. Whereas the processes of amino acid biosynthesis, protein processing in endoplasmic reticulum, and biosynthesis of cofactors were enhanced in the germinating seeds of the rpp1a mutant. Taken together, the lack of RPP1A triggered changes in other ribosomal proteins, and the higher amino acid contents in the seedlings of the rpp1a mutant probably contributed to enhanced biosynthesis, processing, and transport of proteins, resulting in accelerated growth. Our results show the novel role of a P-protein and shed new light on the regulatory mechanism of seedling growth.
Collapse
Affiliation(s)
- Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peijun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilin Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingjuan Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Elander PH, Holla S, Sabljić I, Gutierrez-Beltran E, Willems P, Bozhkov PV, Minina EA. Interactome of Arabidopsis ATG5 Suggests Functions beyond Autophagy. Int J Mol Sci 2023; 24:12300. [PMID: 37569688 PMCID: PMC10418956 DOI: 10.3390/ijms241512300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Autophagy is a catabolic pathway capable of degrading cellular components ranging from individual molecules to organelles. Autophagy helps cells cope with stress by removing superfluous or hazardous material. In a previous work, we demonstrated that transcriptional upregulation of two autophagy-related genes, ATG5 and ATG7, in Arabidopsis thaliana positively affected agronomically important traits: biomass, seed yield, tolerance to pathogens and oxidative stress. Although the occurrence of these traits correlated with enhanced autophagic activity, it is possible that autophagy-independent roles of ATG5 and ATG7 also contributed to the phenotypes. In this study, we employed affinity purification and LC-MS/MS to identify the interactome of wild-type ATG5 and its autophagy-inactive substitution mutant, ATG5K128R Here we present the first interactome of plant ATG5, encompassing not only known autophagy regulators but also stress-response factors, components of the ubiquitin-proteasome system, proteins involved in endomembrane trafficking, and potential partners of the nuclear fraction of ATG5. Furthermore, we discovered post-translational modifications, such as phosphorylation and acetylation present on ATG5 complex components that are likely to play regulatory functions. These results strongly indicate that plant ATG5 complex proteins have roles beyond autophagy itself, opening avenues for further investigations on the complex roles of autophagy in plant growth and stress responses.
Collapse
Affiliation(s)
- Pernilla H. Elander
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 750-07 Uppsala, Sweden; (P.H.E.); (S.H.); (I.S.); (P.V.B.)
| | - Sanjana Holla
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 750-07 Uppsala, Sweden; (P.H.E.); (S.H.); (I.S.); (P.V.B.)
| | - Igor Sabljić
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 750-07 Uppsala, Sweden; (P.H.E.); (S.H.); (I.S.); (P.V.B.)
| | - Emilio Gutierrez-Beltran
- Instituto de Bioquımica Vegetal y Fotosıntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Cientıficas, 41092 Sevilla, Spain;
- Departamento de Bioquimica Vegetal y Biologia Molecular, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Peter V. Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 750-07 Uppsala, Sweden; (P.H.E.); (S.H.); (I.S.); (P.V.B.)
| | - Elena A. Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 750-07 Uppsala, Sweden; (P.H.E.); (S.H.); (I.S.); (P.V.B.)
| |
Collapse
|
12
|
Comprehensive Insight into Tapetum-Mediated Pollen Development in Arabidopsis thaliana. Cells 2023; 12:cells12020247. [PMID: 36672181 PMCID: PMC9857336 DOI: 10.3390/cells12020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
In flowering plants, pollen development is a key process that is essential for sexual reproduction and seed set. Molecular and genetic studies indicate that pollen development is coordinatedly regulated by both gametophytic and sporophytic factors. Tapetum, the somatic cell layer adjacent to the developing male meiocytes, plays an essential role during pollen development. In the early anther development stage, the tapetal cells secrete nutrients, proteins, lipids, and enzymes for microsporocytes and microspore development, while initiating programmed cell death to provide critical materials for pollen wall formation in the late stage. Therefore, disrupting tapetum specification, development, or function usually leads to serious defects in pollen development. In this review, we aim to summarize the current understanding of tapetum-mediated pollen development and illuminate the underlying molecular mechanism in Arabidopsis thaliana.
Collapse
|
13
|
Pechar GS, Donaire L, Gosalvez B, García‐Almodovar C, Sánchez‐Pina MA, Truniger V, Aranda MA. Editing melon eIF4E associates with virus resistance and male sterility. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2006-2022. [PMID: 35778883 PMCID: PMC9491454 DOI: 10.1111/pbi.13885] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 05/20/2023]
Abstract
The cap-binding protein eIF4E, through its interaction with eIF4G, constitutes the core of the eIF4F complex, which plays a key role in the circularization of mRNAs and their subsequent cap-dependent translation. In addition to its fundamental role in mRNA translation initiation, other functions have been described or suggested for eIF4E, including acting as a proviral factor and participating in sexual development. We used CRISPR/Cas9 genome editing to generate melon eif4e knockout mutant lines. Editing worked efficiently in melon, as we obtained transformed plants with a single-nucleotide deletion in homozygosis in the first eIF4E exon already in a T0 generation. Edited and non-transgenic plants of a segregating F2 generation were inoculated with Moroccan watermelon mosaic virus (MWMV); homozygous mutant plants showed virus resistance, while heterozygous and non-mutant plants were infected, in agreement with our previous results with plants silenced in eIF4E. Interestingly, all homozygous edited plants of the T0 and F2 generations showed a male sterility phenotype, while crossing with wild-type plants restored fertility, displaying a perfect correlation between the segregation of the male sterility phenotype and the segregation of the eif4e mutation. Morphological comparative analysis of melon male flowers along consecutive developmental stages showed postmeiotic abnormal development for both microsporocytes and tapetum, with clear differences in the timing of tapetum degradation in the mutant versus wild-type. An RNA-Seq analysis identified critical genes in pollen development that were down-regulated in flowers of eif4e/eif4e plants, and suggested that eIF4E-specific mRNA translation initiation is a limiting factor for male gametes formation in melon.
Collapse
Affiliation(s)
- Giuliano S. Pechar
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICMurciaSpain
| | - Livia Donaire
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICMurciaSpain
| | - Blanca Gosalvez
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICMurciaSpain
| | - Carlos García‐Almodovar
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICMurciaSpain
| | - María Amelia Sánchez‐Pina
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICMurciaSpain
| | - Verónica Truniger
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICMurciaSpain
| | - Miguel A. Aranda
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICMurciaSpain
| |
Collapse
|
14
|
Liu C, Li Z, Tian D, Xu M, Pan J, Wu H, Wang C, Otegui MS. AP1/2β-mediated exocytosis of tapetum-specific transporters is required for pollen development in Arabidopsis thaliana. THE PLANT CELL 2022; 34:3961-3982. [PMID: 35766888 PMCID: PMC9516047 DOI: 10.1093/plcell/koac192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
AP-1 and AP-2 adaptor protein (AP) complexes mediate clathrin-dependent trafficking at the trans-Golgi network (TGN) and the plasma membrane, respectively. Whereas AP-1 is required for trafficking to plasma membrane and vacuoles, AP-2 mediates endocytosis. These AP complexes consist of four subunits (adaptins): two large subunits (β1 and γ for AP-1 and β2 and α for AP-2), a medium subunit μ, and a small subunit σ. In general, adaptins are unique to each AP complex, with the exception of β subunits that are shared by AP-1 and AP-2 in some invertebrates. Here, we show that the two putative Arabidopsis thaliana AP1/2β adaptins co-assemble with both AP-1 and AP-2 subunits and regulate exocytosis and endocytosis in root cells, consistent with their dual localization at the TGN and plasma membrane. Deletion of both β adaptins is lethal in plants. We identified a critical role of β adaptins in pollen wall formation and reproduction, involving the regulation of membrane trafficking in the tapetum and pollen germination. In tapetal cells, β adaptins localize almost exclusively to the TGN and mediate exocytosis of the plasma membrane transporters such as ATP-binding cassette (ABC)G9 and ABCG16. This study highlights the essential role of AP1/2β adaptins in plants and their specialized roles in specific cell types.
Collapse
Affiliation(s)
- Chan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhimin Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dan Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mei Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haijun Wu
- Authors for correspondence: (M.S.O.); (C.W.); (H.W.)
| | - Chao Wang
- Authors for correspondence: (M.S.O.); (C.W.); (H.W.)
| | | |
Collapse
|
15
|
Li B, Zeng Y, Jiang L. COPII vesicles in plant autophagy and endomembrane trafficking. FEBS Lett 2022; 596:2314-2323. [PMID: 35486434 DOI: 10.1002/1873-3468.14362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Abstract
In eukaryotes, the endomembrane system allows for spatiotemporal compartmentation of complicated cellular processes. The plant endomembrane system consists of the endoplasmic reticulum (ER), the Golgi apparatus (GA), the trans-Golgi network (TGN), the multivesicular body (MVB), and the vacuole. Anterograde traffic from the ER to GA is mediated by coat protein complex II (COPII) vesicles. Autophagy, an evolutionarily conserved catabolic process that turns over cellular materials upon nutrient deprivation or in adverse environments, exploits double-membrane autophagosomes to recycle unwanted constituents in the lysosome/vacuole. Accumulating evidence reveals novel functions of plant COPII vesicles in autophagy and their regulation by abiotic stresses. Here, we summarize current knowledge about plant COPII vesicles in the endomembrane trafficking and then highlight recent findings showing their distinct roles in modulating the autophagic flux and stress responses.
Collapse
Affiliation(s)
- Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China.,CUHK Shenzhen Research Institute, Shenzhen, China.,Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
16
|
Hao G, Zhao X, Zhang M, Ying J, Yu F, Li S, Zhang Y. Vesicle trafficking in
Arabidopsis
pollen tubes. FEBS Lett 2022; 596:2231-2242. [DOI: 10.1002/1873-3468.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Guang‐Jiu Hao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Xin‐Ying Zhao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | | | - Jun Ying
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Fei Yu
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Sha Li
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Yan Zhang
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
- College of Life Sciences Nankai University China
- Frontiers Science Center for Cell Responses Nankai University China
| |
Collapse
|
17
|
Zhang N, Zabotina OA. Critical Determinants in ER-Golgi Trafficking of Enzymes Involved in Glycosylation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030428. [PMID: 35161411 PMCID: PMC8840164 DOI: 10.3390/plants11030428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 05/03/2023]
Abstract
All living cells generate structurally complex and compositionally diverse spectra of glycans and glycoconjugates, critical for organismal evolution, development, functioning, defense, and survival. Glycosyltransferases (GTs) catalyze the glycosylation reaction between activated sugar and acceptor substrate to synthesize a wide variety of glycans. GTs are distributed among more than 130 gene families and are involved in metabolic processes, signal pathways, cell wall polysaccharide biosynthesis, cell development, and growth. Glycosylation mainly takes place in the endoplasmic reticulum (ER) and Golgi, where GTs and glycosidases involved in this process are distributed to different locations of these compartments and sequentially add or cleave various sugars to synthesize the final products of glycosylation. Therefore, delivery of these enzymes to the proper locations, the glycosylation sites, in the cell is essential and involves numerous secretory pathway components. This review presents the current state of knowledge about the mechanisms of protein trafficking between ER and Golgi. It describes what is known about the primary components of protein sorting machinery and trafficking, which are recognition sites on the proteins that are important for their interaction with the critical components of this machinery.
Collapse
|
18
|
Kim JH, Lee HN, Huang X, Jung H, Otegui MS, Li F, Chung T. FYVE2, a phosphatidylinositol 3-phosphate effector, interacts with the COPII machinery to control autophagosome formation in Arabidopsis. THE PLANT CELL 2022; 34:351-373. [PMID: 34718777 PMCID: PMC8846182 DOI: 10.1093/plcell/koab263] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is an intracellular trafficking mechanism by which cytosolic macromolecules and organelles are sequestered into autophagosomes for degradation inside the vacuole. In various eukaryotes including yeast, metazoans, and plants, the precursor of the autophagosome, termed the phagophore, nucleates in the vicinity of the endoplasmic reticulum (ER) with the participation of phosphatidylinositol 3-phosphate (PI3P) and the coat protein complex II (COPII). Here we show that Arabidopsis thaliana FYVE2, a plant-specific PI3P-binding protein, provides a functional link between the COPII machinery and autophagy. FYVE2 interacts with the small GTPase Secretion-associated Ras-related GTPase 1 (SAR1), which is essential for the budding of COPII vesicles. FYVE2 also interacts with ATG18A, another PI3P effector on the phagophore membrane. Fluorescently tagged FYVE2 localized to autophagic membranes near the ER and was delivered to vacuoles. SAR1 fusion proteins were also targeted to the vacuole via FYVE2-dependent autophagy. Either mutations in FYVE2 or the expression of dominant-negative mutant SAR1B proteins resulted in reduced autophagic flux and the accumulation of autophagic organelles. We propose that FYVE2 regulates autophagosome biogenesis through its interaction with ATG18A and the COPII machinery, acting downstream of ATG2.
Collapse
Affiliation(s)
- Jeong Hun Kim
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Han Nim Lee
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xiao Huang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Hyera Jung
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, P. R. China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
19
|
Zhu RM, Li M, Li SW, Liang X, Li S, Zhang Y. Arabidopsis ADP-RIBOSYLATION FACTOR-A1s mediate tapetum-controlled pollen development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:268-280. [PMID: 34309928 DOI: 10.1111/tpj.15440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Propagation of angiosperms mostly relies on sexual reproduction, in which gametophytic development is a pre-requisite. Male gametophytic development requires both gametophytic and sporophytic factors, most importantly early secretion and late programmed cell death of the tapetum. In addition to transcriptional factors, proteins at endomembrane compartments, such as receptor-like kinases and vacuolar proteases, control tapetal function. The cellular machinery that regulates their distribution is beginning to be revealed. We report here that ADP-RIBOSYLATION FACTOR-A1s (ArfA1s) are critical for tapetum-controlled pollen development. All six ArfA1s in the Arabidopsis genome are expressed during anther development, among which ArfA1b is specific to the tapetum and developing microspores. Although the ArfA1b loss-of-function mutant showed no pollen defects, probably due to redundancy, interference with ArfA1s by a dominant negative approach in the tapetum resulted in tapetal dysfunction and pollen abortion. We further showed that all six ArfA1s are associated with the Golgi and the trans-Golgi network/early endosome, suggesting that they have roles in regulating post-Golgi trafficking to the plasma membrane or to vacuoles. Indeed, we demonstrated that the expression of ArfA1bDN interfered with the targeting of proteins critical for tapetal development. The results presented here demonstrate a key role of ArfA1s in tapetum-controlled pollen development by mediating protein targeting through post-Golgi trafficking routes.
Collapse
Affiliation(s)
- Rui-Min Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Min Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Shan-Wei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xin Liang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
20
|
Zhang W, Qiu Y, Zhou L, Yin J, Wang L, Zhi H, Xu K. Development of a Viral RdRp-Assisted Gene Silencing System and Its Application in the Identification of Host Factors of Plant (+)RNA Virus. Front Microbiol 2021; 12:682921. [PMID: 34394029 PMCID: PMC8358433 DOI: 10.3389/fmicb.2021.682921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Gene silencing induced by hairpin RNA or virus infection expression is one of the major tools in genetics studies in plants. However, when dealing with essential genes, virus-induced gene silencing (VIGS) and transgenic expression of hairpin RNA could lead to plant death, while transient expression of hairpin RNA in leaves is often less competent in downregulating target gene mRNA levels. Here, we developed a transient double-stranded RNA (dsRNA) expression system assisted by a modified viral RNA-dependent RNA polymerase (RdRp) in plant leaves. We show that this system is more effective in inducing gene silencing than the intron-spliced hairpin RNA expression. Furthermore, by using this system, we tested the role of the early secretory pathway during infection of Soybean mosaic potyvirus (SMV). We found that key components of the coat protein complex II vesicles are required for the multiplication of SMV. Overall, this dsRNA-based gene silencing system is effective in downregulating plant gene expression and can be used to identify host genes involved in plant-virus interactions.
Collapse
Affiliation(s)
- Wang Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yanglin Qiu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingyun Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jinlong Yin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Liqun Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Haijian Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
21
|
Liu F, Li JP, Li LS, Liu Q, Li SW, Song ML, Li S, Zhang Y. The canonical α-SNAP is essential for gametophytic development in Arabidopsis. PLoS Genet 2021; 17:e1009505. [PMID: 33886546 PMCID: PMC8096068 DOI: 10.1371/journal.pgen.1009505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/04/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022] Open
Abstract
The development of male and female gametophytes is a pre-requisite for successful reproduction of angiosperms. Factors mediating vesicular trafficking are among the key regulators controlling gametophytic development. Fusion between vesicles and target membranes requires the assembly of a fusogenic soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) complex, whose disassembly in turn ensures the recycle of individual SNARE components. The disassembly of post-fusion SNARE complexes is controlled by the AAA+ ATPase N-ethylmaleimide-sensitive factor (Sec18/NSF) and soluble NSF attachment protein (Sec17/α-SNAP) in yeast and metazoans. Although non-canonical α-SNAPs have been functionally characterized in soybeans, the biological function of canonical α-SNAPs has yet to be demonstrated in plants. We report here that the canonical α-SNAP in Arabidopsis is essential for male and female gametophytic development. Functional loss of the canonical α-SNAP in Arabidopsis results in gametophytic lethality by arresting the first mitosis during gametogenesis. We further show that Arabidopsis α-SNAP encodes two isoforms due to alternative splicing. Both isoforms interact with the Arabidopsis homolog of NSF whereas have distinct subcellular localizations. The presence of similar alternative splicing of human α-SNAP indicates that functional distinction of two α-SNAP isoforms is evolutionarily conserved.
Collapse
Affiliation(s)
- Fei Liu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ji-Peng Li
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lu-Shen Li
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Qi Liu
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Shan-Wei Li
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Ming-Lei Song
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Sha Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- * E-mail: (SL); (YZ)
| | - Yan Zhang
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- * E-mail: (SL); (YZ)
| |
Collapse
|
22
|
Singh MB, Lohani N, Bhalla PL. The Role of Endoplasmic Reticulum Stress Response in Pollen Development and Heat Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2021; 12:661062. [PMID: 33936150 PMCID: PMC8079734 DOI: 10.3389/fpls.2021.661062] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/15/2021] [Indexed: 05/15/2023]
Abstract
Endoplasmic reticulum (ER) stress is defined by a protracted disruption in protein folding and accumulation of unfolded or misfolded proteins in the ER. This accumulation of unfolded proteins can result from excessive demands on the protein folding machinery triggered by environmental and cellular stresses such as nutrient deficiencies, oxidative stress, pathogens, and heat. The cell responds to ER stress by activating a protective pathway termed unfolded protein response (UPR), which comprises cellular mechanisms targeted to maintain cellular homeostasis by increasing the ER's protein folding capacity. The UPR is especially significant for plants as being sessile requires them to adapt to multiple environmental stresses. While multiple stresses trigger the UPR at the vegetative stage, it appears to be active constitutively in the anthers of unstressed plants. Transcriptome analysis reveals significant upregulation of ER stress-related transcripts in diploid meiocytes and haploid microspores. Interestingly, several ER stress-related genes are specifically upregulated in the sperm cells. The analysis of gene knockout mutants in Arabidopsis has revealed that defects in ER stress response lead to the failure of normal pollen development and enhanced susceptibility of male gametophyte to heat stress conditions. In this mini-review, we provide an overview of the role of ER stress and UPR in pollen development and its protective roles in maintaining male fertility under heat stress conditions.
Collapse
Affiliation(s)
| | | | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
23
|
Zhang D, Zhang Z, Unver T, Zhang B. CRISPR/Cas: A powerful tool for gene function study and crop improvement. J Adv Res 2021; 29:207-221. [PMID: 33842017 PMCID: PMC8020163 DOI: 10.1016/j.jare.2020.10.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 12/26/2022] Open
Abstract
Background It is a long-standing goal of scientists and breeders to precisely control a gene for studying its function as well as improving crop yield, quality, and tolerance to various environmental stresses. The discovery and modification of CRISPR/Cas system, a nature-occurred gene editing tool, opens an era for studying gene function and precision crop breeding. Aim of Review In this review, we first introduce the brief history of CRISPR/Cas discovery followed the mechanism and application of CRISPR/Cas system on gene function study and crop improvement. Currently, CRISPR/Cas genome editing has been becoming a mature cutting-edge biotechnological tool for crop improvement that already used in many different traits in crops, including pathogen resistance, abiotic tolerance, plant development and morphology and even secondary metabolism and fiber development. Finally, we point out the major issues associating with CRISPR/Cas system and the future research directions.Key Scientific Concepts of Review: CRISPR/Cas9 system is a robust and powerful biotechnological tool for targeting an individual DNA and RNA sequence in the genome. It can be used to target a sequence for gene knockin, knockout and replacement as well as monitoring and regulating gene expression at the genome and epigenome levels by binding a specific sequence. Agrobacterium-mediated method is still the major and efficient method for delivering CRISPR/Cas regents into targeted plant cells. However, other delivery methods, such as virus-mediated method, have been developed and enhanced the application potentials of CRISPR/Cas9-based crop improvement. PAM requirement offers the CRISPR/Cas9-targted genetic loci and also limits the application of CRISPR/Cas9. Discovering new Cas proteins and modifying current Cas enzymes play an important role in CRISPR/Cas9-based genome editing. Developing a better CRISPR/Cas9 system, including the delivery system and the methods eliminating off-target effects, and finding key/master genes for controlling crop growth and development is two major directions for CRISPR/Cas9-based crop improvement.
Collapse
Affiliation(s)
- Dangquan Zhang
- Henan Province Engineering Research Center for Forest Biomass Value-Added Products, College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhiyong Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Turgay Unver
- Ficus Biotechnology, Ostim Teknopark, No: 1/1/76, 06378, Yenimahalle, Ankara, Turkey
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
24
|
Liu X, Tong M, Zhang A, Liu M, Zhao B, Liu Z, Li Z, Zhu X, Guo Y, Li R. COPII genes SEC31A/B are essential for gametogenesis and interchangeable in pollen development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1600-1614. [PMID: 33340171 DOI: 10.1111/tpj.15136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 05/04/2023]
Abstract
In eukaryotes, coat protein complex II (COPII) vesicles mediate anterograde traffic from the endoplasmic reticulum to the Golgi apparatus. Compared to yeasts, plants have multiple COPII coat proteins; however, the functional diversity among them is less well understood. SEC31A and SEC31B are outer coat proteins found in COPII vesicles in Arabidopsis. In this study, we explored the function of SEC31A and compared it with that of SEC31B from various perspectives. SEC31A was widely expressed, but at a significantly lower level than SEC31B. SEC31A-mCherry and SEC31B-GFP exhibited a high co-localization rate in pollen, but a lower rate in growing pollen tubes. The sec31a single mutant exhibited normal growth. SEC31A expression driven by the SEC31B promoter rescued the pollen abortion and infertility observed in sec31b. A sec31asec31b double mutant was unavailable due to lethality of the sec31asec31b gametophyte. Transmission electron microscopy revealed that one quarter of male gametogenesis was arrested at the uninuclear microspore stage, while confocal laser scanning microscopy showed that 1/4 female gametophyte development was suspended at the functional megaspore stage in sec31a-1/+sec31b-3/+ plants. Our study highlights the essential role of SEC31A/B in gametogenesis and their interchangeable functions in pollen development.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Mengjuan Tong
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Aiwei Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Mei Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Bingchun Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Zhaojiao Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Zhouyue Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Xu Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Yi Guo
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Rui Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei, 050024, P.R. China
| |
Collapse
|