1
|
Yu TY, Wang P, Lv Y, Wang B, Zhao MR, Dong XW. Auxin Orchestrates Germ Cell Specification in Arabidopsis. Int J Mol Sci 2025; 26:3257. [PMID: 40244090 PMCID: PMC11989617 DOI: 10.3390/ijms26073257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
The initiation and specification of germline cells are crucial for plant reproduction and the continuity of species. In Arabidopsis thaliana, auxin plays a vital role in guiding the transition of somatic cells into germline fate, orchestrating the specification of both male archesporial cells and female megaspore mother cells. This process is regulated through interaction with the transcription factor Sporocyteless/Nozzle, which forms a feedback mechanism that modulates germ cell specialization. Auxin biosynthesis, polar transport, and signal transduction pathways collectively ensure the accurate determination of germ cell fate. Furthermore, the coordination of auxin signaling with epigenetic regulation and miRNA-mediated control fine-tunes the differentiation between germline and somatic cells. This review discusses the mechanisms underlying auxin-guided germ cell specification. It proposes future research directions, including studies on PIN-FORMED-mediated polar transport, the role of the YUCCA family in auxin biosynthesis, and the involvement of the Transport Inhibitors Response 1/Auxn Signaling F-Box-Auxin Response Factor (TIR1/AFB-ARF) signaling pathway in germ cell fate determination. These insights will enhance our understanding of plant reproductive biology and provide new strategies for crop breeding.
Collapse
Affiliation(s)
- Tian-Ying Yu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | | | | | | | | | - Xin-Wei Dong
- College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
2
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
3
|
Zaragoza JZ, Klap K, Heidstra R, Zhou W, Scheres B. The dual role of the RETINOBLASTOMA-RELATED protein in the DNA damage response is coordinated by the interaction with LXCXE-containing proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1194-1206. [PMID: 38321589 DOI: 10.1111/tpj.16665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Living organisms possess mechanisms to safeguard genome integrity. To avoid spreading mutations, DNA lesions are detected and cell division is temporarily arrested to allow repair mechanisms. Afterward, cells either resume division or respond to unsuccessful repair by undergoing programmed cell death (PCD). How the success rate of DNA repair connects to later cell fate decisions remains incompletely known, particularly in plants. The Arabidopsis thaliana RETINOBLASTOMA-RELATED1 (RBR) protein and its partner E2FA, play both structural and transcriptional functions in the DNA damage response (DDR). Here we provide evidence that distinct RBR protein interactions with LXCXE motif-containing proteins guide these processes. Using the N849F substitution in the RBR B-pocket domain, which specifically disrupts binding to the LXCXE motif, we show that these interactions are dispensable in unchallenging conditions. However, N849F substitution abolishes RBR nuclear foci and promotes PCD and growth arrest upon genotoxic stress. NAC044, which promotes growth arrest and PCD, accumulates after the initial recruitment of RBR to foci and can bind non-focalized RBR through the LXCXE motif in a phosphorylation-independent manner, allowing interaction at different cell cycle phases. Disrupting NAC044-RBR interaction impairs PCD, but their genetic interaction points to opposite independent roles in the regulation of PCD. The LXCXE-binding dependency of the roles of RBR in the DDR suggests a coordinating mechanism to translate DNA repair success to cell survival. We propose that RBR and NAC044 act in two distinct DDR pathways, but interact to integrate input from both DDR pathways to decide upon an irreversible cell fate decision.
Collapse
Affiliation(s)
- Jorge Zamora Zaragoza
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Department of Biotechnology, Rijk Zwaan Breeding B.V., Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands
| | - Katinka Klap
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Wenkun Zhou
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ben Scheres
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Department of Biotechnology, Rijk Zwaan Breeding B.V., Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands
| |
Collapse
|
4
|
Herbst J, Li QQ, De Veylder L. Mechanistic insights into DNA damage recognition and checkpoint control in plants. NATURE PLANTS 2024; 10:539-550. [PMID: 38503962 DOI: 10.1038/s41477-024-01652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
The plant DNA damage response (DDR) pathway safeguards genomic integrity by rapid recognition and repair of DNA lesions that, if unrepaired, may cause genome instability. Most frequently, DNA repair goes hand in hand with a transient cell cycle arrest, which allows cells to repair the DNA lesions before engaging in a mitotic event, but consequently also affects plant growth and yield. Through the identification of DDR proteins and cell cycle regulators that react to DNA double-strand breaks or replication defects, it has become clear that these proteins and regulators form highly interconnected networks. These networks operate at both the transcriptional and post-transcriptional levels and include liquid-liquid phase separation and epigenetic mechanisms. Strikingly, whereas the upstream DDR sensors and signalling components are well conserved across eukaryotes, some of the more downstream effectors are diverged in plants, probably to suit unique lifestyle features. Additionally, DDR components display functional diversity across ancient plant species, dicots and monocots. The observed resistance of DDR mutants towards aluminium toxicity, phosphate limitation and seed ageing indicates that gaining knowledge about the plant DDR may offer solutions to combat the effects of climate change and the associated risk for food security.
Collapse
Affiliation(s)
- Josephine Herbst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Qian-Qian Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.
- Center for Plant Systems Biology, VIB, Gent, Belgium.
| |
Collapse
|
5
|
Pan T, Gao S, Cui X, Wang L, Yan S. APC/CCDC20 targets SCFFBL17 to activate replication stress responses in Arabidopsis. THE PLANT CELL 2023; 35:910-923. [PMID: 36503931 PMCID: PMC9940874 DOI: 10.1093/plcell/koac360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
DNA replication stress threatens genome stability and affects plant growth and development. How plants resolve replication stress is poorly understood. The protein kinase WEE1-mediated cell cycle arrest is required for replication stress responses. The E3 ubiquitin ligases anaphase-promoting complex/cyclosome (APC/C) and Skp1/Cullin 1/F-box (SCF) are essential regulators of the cell cycle. Here, we show that APC/CCDC20 mediates the degradation of SCFFBL17 during replication stress responses in Arabidopsis thaliana. Biochemically, WEE1 interacts with and phosphorylates the APC/C co-activator APC10, which enhances the interaction between F-BOX-LIKE17 (FBL17) and CELL DIVISION CYCLE 20 (CDC20), an activator of APC/C. Both APC10 and CDC20 are required for the polyubiquitination and degradation of FBL17. Genetically, silencing CDC20 or APC10 confers plant hypersensitivity to replication stress, which is suppressed by loss of FBL17. Collectively, our study suggests that WEE1 activates APC/C to inhibit FBL17, providing insight into replication stress responses in plants.
Collapse
Affiliation(s)
- Ting Pan
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Shan Gao
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Xiaoyu Cui
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lili Wang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Shunping Yan
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
6
|
León-Ruiz JA, Cruz Ramírez A. Predicted landscape of RETINOBLASTOMA-RELATED LxCxE-mediated interactions across the Chloroplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1507-1524. [PMID: 36305297 DOI: 10.1111/tpj.16012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 05/16/2023]
Abstract
The colonization of land by a single streptophyte algae lineage some 450 million years ago has been linked to multiple key innovations such as three-dimensional growth, alternation of generations, the presence of stomata, as well as innovations inherent to the birth of major plant lineages, such as the origins of vascular tissues, roots, seeds and flowers. Multicellularity, which evolved multiple times in the Chloroplastida coupled with precise spatiotemporal control of proliferation and differentiation were instrumental for the evolution of these traits. RETINOBLASTOMA-RELATED (RBR), the plant homolog of the metazoan Retinoblastoma protein (pRB), is a highly conserved and multifunctional core cell cycle regulator that has been implicated in the evolution of multicellularity in the green lineage as well as in plant multicellularity-related processes such as proliferation, differentiation, stem cell regulation and asymmetric cell division. RBR fulfills these roles through context-specific protein-protein interactions with proteins containing the Leu-x-Cys-x-Glu (LxCxE) short-linear motif (SLiM); however, how RBR-LxCxE interactions have changed throughout major innovations in the Viridiplantae kingdom is a question that remains unexplored. Here, we employ an in silico evo-devo approach to predict and analyze potential RBR-LxCxE interactions in different representative species of key Chloroplastida lineages, providing a valuable resource for deciphering RBR-LxCxE multiple functions. Furthermore, our analyses suggest that RBR-LxCxE interactions are an important component of RBR functions and that interactions with chromatin modifiers/remodelers, DNA replication and repair machinery are highly conserved throughout the Viridiplantae, while LxCxE interactions with transcriptional regulators likely diversified throughout the water-to-land transition.
Collapse
Affiliation(s)
- Jesús A León-Ruiz
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| | - Alfredo Cruz Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| |
Collapse
|
7
|
Varshney V, Majee M. Emerging roles of the ubiquitin-proteasome pathway in enhancing crop yield by optimizing seed agronomic traits. PLANT CELL REPORTS 2022; 41:1805-1826. [PMID: 35678849 DOI: 10.1007/s00299-022-02884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitin-proteasome pathway has the potential to modulate crop productivity by influencing agronomic traits. Being sessile, the plant often uses the ubiquitin-proteasome pathway to maintain the stability of different regulatory proteins to survive in an ever-changing environment. The ubiquitin system influences plant reproduction, growth, development, responses to the environment, and processes that control critical agronomic traits. E3 ligases are the major players in this pathway, and they are responsible for recognizing and tagging the targets/substrates. Plants have a variety of E3 ubiquitin ligases, whose functions have been studied extensively, ranging from plant growth to defense strategies. Here we summarize three agronomic traits influenced by ubiquitination: seed size and weight, seed germination, and accessory plant agronomic traits particularly panicle architecture, tillering in rice, and tassels branch number in maize. This review article highlights some recent progress on how the ubiquitin system influences the stability/modification of proteins that determine seed agronomic properties like size, weight, germination and filling, and ultimately agricultural productivity and quality. Further research into the molecular basis of the aforementioned processes might lead to the identification of genes that could be modified or selected for crop development. Likewise, we also propose advances and future perspectives in this regard.
Collapse
Affiliation(s)
- Vishal Varshney
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
8
|
Sezen UU, Worthy SJ, Umaña MN, Davies SJ, McMahon SM, Swenson NG. Comparative transcriptomics of tropical woody plants supports fast and furious strategy along the leaf economics spectrum in lianas. Biol Open 2022; 11:276072. [PMID: 35876379 PMCID: PMC9346291 DOI: 10.1242/bio.059184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
Lianas, climbing woody plants, influence the structure and function of tropical forests. Climbing traits have evolved multiple times, including ancestral groups such as gymnosperms and pteridophytes, but the genetic basis of the liana strategy is largely unknown. Here, we use a comparative transcriptomic approach for 47 tropical plant species, including ten lianas of diverse taxonomic origins, to identify genes that are consistently expressed or downregulated only in lianas. Our comparative analysis of full-length transcripts enabled the identification of a core interactomic network common to lianas. Sets of transcripts identified from our analysis reveal features related to functional traits pertinent to leaf economics spectrum in lianas, include upregulation of genes controlling epidermal cuticular properties, cell wall remodeling, carbon concentrating mechanism, cell cycle progression, DNA repair and a large suit of downregulated transcription factors and enzymes involved in ABA-mediated stress response as well as lignin and suberin synthesis. All together, these genes are known to be significant in shaping plant morphologies through responses such as gravitropism, phyllotaxy and shade avoidance. Summary: The full-length fraction of liana transcriptomes mapped on a protein–protein interactome revealed the nature of their convergence through distinct sets of expressed and downregulated genes not observed in free-standing plants.
Collapse
Affiliation(s)
- U Uzay Sezen
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, 21037, USA
| | - Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, CA, 95616USA
| | - Maria N Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stuart J Davies
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Gamboa, Panama.,Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington DC, 20560, USA
| | - Sean M McMahon
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, 21037, USA
| | - Nathan G Swenson
- Department of Evolution and Ecology, University of California, Davis, CA, 95616USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
9
|
Lv Q, Han S, Wang L, Xia J, Li P, Hu R, Wang J, Gao L, Chen Y, Wang Y, Du J, Bao F, Hu Y, Xu X, Xiao W, He Y. TEB/POLQ plays dual roles in protecting Arabidopsis from NO-induced DNA damage. Nucleic Acids Res 2022; 50:6820-6836. [PMID: 35736216 PMCID: PMC9262624 DOI: 10.1093/nar/gkac469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/07/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
Nitric oxide (NO) is a key player in numerous physiological processes. Excessive NO induces DNA damage, but how plants respond to this damage remains unclear. We screened and identified an Arabidopsis NO hypersensitive mutant and found it to be allelic to TEBICHI/POLQ, encoding DNA polymerase θ. The teb mutant plants were preferentially sensitive to NO- and its derivative peroxynitrite-induced DNA damage and subsequent double-strand breaks (DSBs). Inactivation of TEB caused the accumulation of spontaneous DSBs largely attributed to endogenous NO and was synergistic to DSB repair pathway mutations with respect to growth. These effects were manifested in the presence of NO-inducing agents and relieved by NO scavengers. NO induced G2/M cell cycle arrest in the teb mutant, indicative of stalled replication forks. Genetic analyses indicate that Polθ is required for translesion DNA synthesis across NO-induced lesions, but not oxidation-induced lesions. Whole-genome sequencing revealed that Polθ bypasses NO-induced base adducts in an error-free manner and generates mutations characteristic of Polθ-mediated end joining. Our experimental data collectively suggests that Polθ plays dual roles in protecting plants from NO-induced DNA damage. Since Polθ is conserved in higher eukaryotes, mammalian Polθ may also be required for balancing NO physiological signaling and genotoxicity.
Collapse
Affiliation(s)
- Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shuang Han
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lei Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jinchan Xia
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Peng Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruoyang Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jinzheng Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lei Gao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuli Chen
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jing Du
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fang Bao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yong Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
10
|
Škiljaica A, Jagić M, Vuk T, Leljak Levanić D, Bauer N, Markulin L. Evaluation of reference genes for RT-qPCR gene expression analysis in Arabidopsis thaliana exposed to elevated temperatures. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:367-379. [PMID: 34990067 DOI: 10.1111/plb.13382] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Increases in environmental temperature are directly linked to the issue of climate change and are known to significantly disrupt plant growth and development. Studies of gene expression in plants commonly include RT-qPCR but the reliability of the method depends on the use of suitable reference genes for data normalization. Despite this, no reference genes have been validated specifically for experiments in Arabidopsis thaliana employing treatments with elevated temperature. Here, ten genes were selected for expression stability analysis based on the screening of available literature and microarray data from temperature-treated A. thaliana. Expression levels of candidate reference genes were measured in 12-day-old seedlings, rosette leaves and flower buds of 5-week-old A. thaliana plants exposed to five different temperatures (22°C, 27°C, 32°C, 37°C and 42°C) and their expression stabilities were assessed using four statistical algorithms (BestKeeper, geNorm, NormFinder and comparative ΔCq method). This study provides reliable reference genes for use in A. thaliana RT-qPCR expression analyses employing elevated temperature treatments, namely OGIO and PUX7 in seedlings, UBC21 and PUX7 in leaves, TIP41 and UBC21 in buds, and TIP41 and UBC21 in all three tissues combined. Orthologues of these genes can be of potential use in less studied plants, especially agricultural species heavily affected by climate change.
Collapse
Affiliation(s)
- A Škiljaica
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - M Jagić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - T Vuk
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - D Leljak Levanić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - N Bauer
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - L Markulin
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
11
|
Pedroza-Garcia JA, Xiang Y, De Veylder L. Cell cycle checkpoint control in response to DNA damage by environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:490-507. [PMID: 34741364 DOI: 10.1111/tpj.15567] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Being sessile organisms, plants are ubiquitously exposed to stresses that can affect the DNA replication process or cause DNA damage. To cope with these problems, plants utilize DNA damage response (DDR) pathways, consisting of both highly conserved and plant-specific elements. As a part of this DDR, cell cycle checkpoint control mechanisms either pause the cell cycle, to allow DNA repair, or lead cells into differentiation or programmed cell death, to prevent the transmission of DNA errors in the organism through mitosis or to its offspring via meiosis. The two major DDR cell cycle checkpoints control either the replication process or the G2/M transition. The latter is largely overseen by the plant-specific SOG1 transcription factor, which drives the activity of cyclin-dependent kinase inhibitors and MYB3R proteins, which are rate limiting for the G2/M transition. By contrast, the replication checkpoint is controlled by different players, including the conserved kinase WEE1 and likely the transcriptional repressor RBR1. These checkpoint mechanisms are called upon during developmental processes, in retrograde signaling pathways, and in response to biotic and abiotic stresses, including metal toxicity, cold, salinity, and phosphate deficiency. Additionally, the recent expansion of research from Arabidopsis to other model plants has revealed species-specific aspects of the DDR. Overall, it is becoming evidently clear that the DNA damage checkpoint mechanisms represent an important aspect of the adaptation of plants to a changing environment, hence gaining more knowledge about this topic might be helpful to increase the resilience of plants to climate change.
Collapse
Affiliation(s)
- José Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Yanli Xiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| |
Collapse
|
12
|
Singh G, Batzenschlager M, Tomkova D, Herzog E, Hoffmann E, Houlné G, Schmit AC, Berr A, Chabouté ME. GIP1 and GIP2 Contribute to the Maintenance of Genome Stability at the Nuclear Periphery. FRONTIERS IN PLANT SCIENCE 2022; 12:804928. [PMID: 35154196 PMCID: PMC8830487 DOI: 10.3389/fpls.2021.804928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 06/02/2023]
Abstract
The maintenance of genetic information is important in eukaryotes notably through mechanisms occurring at the nuclear periphery where inner nuclear membrane proteins and nuclear pore-associated components are key factors regulating the DNA damage response (DDR). However, this aspect of DDR regulation is still poorly documented in plants. We addressed here how genomic stability is impaired in the gamma-tubulin complex component 3-interacting protein (gip1gip2) double mutants showing defective nuclear shaping. Using neutral comet assays for DNA double-strand breaks (DSBs) detection, we showed that GIP1 and GIP2 act redundantly to maintain genome stability. At the cellular level, γ-H2AX foci in gip1gip2 were more abundant and heterogeneous in their size compared to wild-type (WT) in root meristematic nuclei, indicative of constitutive DNA damage. This was linked to a constitutive activation of the DDR in the gip1gip2 mutant, with more emphasis on the homologous recombination (HR) repair pathway. In addition, we noticed the presence of numerous RAD51 foci which did not colocalize with γ-H2AX foci. The expression of GIP1-GFP in the double mutant rescued the cellular response to DNA damage, leading to the systematic colocalization of RAD51 and γ-H2AX foci. Interestingly, a significant proportion of RAD51 foci colocalized with GIP1-GFP at the nuclear periphery. Altogether, our data suggest that GIPs may partly contribute to the spatio-temporal recruitment of RAD51 at the nuclear periphery.
Collapse
Affiliation(s)
- Gaurav Singh
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Denisa Tomkova
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Etienne Herzog
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Elise Hoffmann
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Guy Houlné
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Anne-Catherine Schmit
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Alexandre Berr
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
13
|
Zhao Y, Wang L, Sun X, Bao Y, Liu H, Zhao Y. Inhibition of ribosome biogenesis by actinomycin D affects Arabidopsis root development. Biochem Biophys Res Commun 2021; 588:61-67. [PMID: 34952471 DOI: 10.1016/j.bbrc.2021.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022]
Abstract
Actinomycin D has been reported to selectively inhibit rRNA synthesis and ribosome biogenesis, induce G2 checkpoint of cell cycle arrest in HeLa cells. In Arabidopsis, actinomycin D was also used as agent to preferentially inhibit the ribosome biosynthesis and ribosomal function. However, the function of actinomycin D on Arabidopsis root development remains to be elucidated. In this study, we exposed Arabidopsis seedlings to actinomycin D with the aim of evaluating the effects of ribosome biogenesis on root development. The results demonstrated that actinomycin D inhibited Arabidopsis root growth by reduced meristematic activity in a dose dependent manner. Exposure to actinomycin D decreased the expression of WOX5 and key stem cell niche-defining transcription factors SHR and PLT1, thus the loss function of QC identity and stem cell niche maintenance. In addition, dead cells were observed after actinomycin D treatment in root stele initials and DNA damage response was constitutively activated. Collectively, we propose that ribosome biogenesis plays key role in primary root growth through maintenance of root stem cell niche and DNA damage response in Arabidopsis.
Collapse
Affiliation(s)
- Yanxue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, People's Republic of China.
| | - Yanxue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, People's Republic of China.
| |
Collapse
|
14
|
Gentric N, Genschik P, Noir S. Connections between the Cell Cycle and the DNA Damage Response in Plants. Int J Mol Sci 2021; 22:ijms22179558. [PMID: 34502465 PMCID: PMC8431409 DOI: 10.3390/ijms22179558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Due to their sessile lifestyle, plants are especially exposed to various stresses, including genotoxic stress, which results in altered genome integrity. Upon the detection of DNA damage, distinct cellular responses lead to cell cycle arrest and the induction of DNA repair mechanisms. Interestingly, it has been shown that some cell cycle regulators are not only required for meristem activity and plant development but are also key to cope with the occurrence of DNA lesions. In this review, we first summarize some important regulatory steps of the plant cell cycle and present a brief overview of the DNA damage response (DDR) mechanisms. Then, the role played by some cell cycle regulators at the interface between the cell cycle and DNA damage responses is discussed more specifically.
Collapse
|
15
|
Transcriptomic Analysis of Radish ( Raphanus sativus L.) Spontaneous Tumor. PLANTS 2021; 10:plants10050919. [PMID: 34063717 PMCID: PMC8147785 DOI: 10.3390/plants10050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022]
Abstract
Spontaneous tumors can develop in different organs of various plant species without any pathogen infection and, as a rule, appear in plants with a certain genotype: Mutants, interspecific hybrids, etc. In particular, among the inbred lines of radish (Raphanus sativus L.), lines that form spontaneous tumors on the taproot during the flowering period were obtained many years ago. In this work, we analyzed the differential gene expression in the spontaneous tumors of radish versus the lateral roots using the RNA-seq method. Data were obtained indicating the increased expression of genes associated with cell division and growth (especially genes that regulate G2-M transition and cytokinesis) in the spontaneous tumor. Among genes downregulated in the tumor tissue, genes participating in the response to stress and wounding, mainly involved in the biosynthesis of jasmonic acid and glucosinolates, were enriched. Our data will help elucidate the mechanisms of spontaneous tumor development in higher plants.
Collapse
|
16
|
Direct Regulation of DNA Repair by E2F and RB in Mammals and Plants: Core Function or Convergent Evolution? Cancers (Basel) 2021; 13:cancers13050934. [PMID: 33668093 PMCID: PMC7956360 DOI: 10.3390/cancers13050934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Retinoblastoma (RB) proteins and E2F transcription factors partner together to regulate the cell cycle in many eukaryotic organisms. In organisms that lack one or both of these proteins, other proteins have taken on the essential function of cell cycle regulation. RB and E2F also have important functions outside of the cell cycle, including DNA repair. This review summarizes the non-canonical functions of RB and E2F in maintaining genome integrity and raises the question of whether such functions have always been present or have evolved more recently. Abstract Members of the E2F transcription factor family regulate the expression of genes important for DNA replication and mitotic cell division in most eukaryotes. Homologs of the retinoblastoma (RB) tumor suppressor inhibit the activity of E2F factors, thus controlling cell cycle progression. Organisms such as budding and fission yeast have lost genes encoding E2F and RB, but have gained genes encoding other proteins that take on E2F and RB cell cycle-related functions. In addition to regulating cell proliferation, E2F and RB homologs have non-canonical functions outside the mitotic cell cycle in a variety of eukaryotes. For example, in both mammals and plants, E2F and RB homologs localize to DNA double-strand breaks (DSBs) and directly promote repair by homologous recombination (HR). Here, we discuss the parallels between mammalian E2F1 and RB and their Arabidopsis homologs, E2FA and RB-related (RBR), with respect to their recruitment to sites of DNA damage and how they help recruit repair factors important for DNA end resection. We also explore the question of whether this role in DNA repair is a conserved ancient function of the E2F and RB homologs in the last eukaryotic common ancestor or whether this function evolved independently in mammals and plants.
Collapse
|
17
|
Pan T, Qin Q, Nong C, Gao S, Wang L, Cai B, Zhang M, Wu C, Chen H, Li T, Xiong D, Li G, Wang S, Yan S. A novel WEE1 pathway for replication stress responses. NATURE PLANTS 2021; 7:209-218. [PMID: 33574575 DOI: 10.1038/s41477-021-00855-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
DNA replication stress poses a severe threat to genome stability and is a hallmark of cancer as well as a target for cancer therapy. It is well known that the evolutionarily conserved protein kinase WEE1 regulates replication stress responses by directly phosphorylating and inhibiting the major cell cycle driver CDKs in many organisms. Here, we report a novel WEE1 pathway. We found that Arabidopsis WEE1 directly interacts with and phosphorylates the E3 ubiquitin ligase FBL17 that promotes the degradation of CDK inhibitors. The phosphorylated FBL17 is further polyubiquitinated and degraded, thereby leading to the accumulation of CDK inhibitors and the inhibition of CDKs. In strong support for this model, either loss of function of FBL17 or overexpression of CDK inhibitors suppresses the hypersensitivity of the wee1 mutant to replication stress. Intriguingly, human WEE1 also phosphorylates and destabilizes the FBL17 equivalent protein SKP2, indicating that this is a conserved mechanism. This study reveals that the WEE1-FBL17/SKP2-CKIs-CDKs axis is a molecular framework for replication stress responses, which may have clinical implications because the WEE1 inhibitor AZD1775 is currently in phase II clinical trial as an anticancer drug.
Collapse
Affiliation(s)
- Ting Pan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qi Qin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chubing Nong
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shan Gao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lili Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bingcheng Cai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ming Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chong Wu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hanchen Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tong Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dan Xiong
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guoliang Li
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shui Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shunping Yan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Liang J, Zheng Y, Zeng W, Chen L, Yang S, Du P, Wang Y, Yu X, Zhang X. Comparison of proteomic profiles from the testicular tissue of males with impaired and normal spermatogenesis. Syst Biol Reprod Med 2020; 67:127-136. [PMID: 33375868 DOI: 10.1080/19396368.2020.1846822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study, we aimed to explore the potential differences in proteomic profiles from the testicular tissue of azoospermatic men with impaired spermatogenesis and normal spermatogenesis. Isobaric tags for relative and absolute quantitation (iTRAQ) labeled technology and LC-MS/MS technology were used to identify differentially expressed proteins. Potential functions of differentially expressed proteins were predicted using gene ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG). Immunohistochemistry (IHC) and western blot (WB) were used to verify the differentially expressed proteins. A protein-protein interaction (PPI) network was built to outline the regulatory network of differentially expressed proteins. A total of 3,945 proteins were identified in men with normal and impaired spermatogenesis. Of these, 116 proteins were differentially expressed in men with impaired spermatogenesis: 39 were upregulated and 77 were downregulated. Furthermore, we found that these differentially expressed proteins were mainly involved in the cellular component, which may be mainly associated with the spliceosome, ribosome, and thyroid hormone synthesis signaling pathways. The spliceosome- and ribosome-associated proteins YBX1, FBL, and HNRNPU were downregulated. And the proteomic profile of testicular tissue in men with impaired spermatogenesis is different from that of men with normal spermatogenesis. For this reason, differentially expressed proteins such as YBX1, FBL and HNRNPU might be involved in the pathology of spermatogenesis dysfunction.Abbreviations: iTRAQ: Isobaric tags for relative and absolute quantitation;GO: Gene ontology; KEGG: Kyoto encyclopedia of genes and genomes; IHC: Immunohistochemistry; WB: Western blot; PPI: Protein-protein interaction; ICSI: Intracytoplasmic sperm injection; BP: Biological process; CC: Cellular components; MF: Molecular function; snoRNA: Small nucleolar RNA; snRNA: Small nuclear RNA; LC-MS/MS: Liquid chromatography and MS/MS analysis; BSA: Bovine serum albumin; SD: Spermatogenic dysfunction; micro-TESE: Testicular microscopic sperm extraction.
Collapse
Affiliation(s)
- Jiaying Liang
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yichun Zheng
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Weihong Zeng
- Children Inherit Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Liuqing Chen
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shaofen Yang
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Peng Du
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yujiang Wang
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xingsu Yu
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiqian Zhang
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
19
|
Desvoyes B, Gutierrez C. Roles of plant retinoblastoma protein: cell cycle and beyond. EMBO J 2020; 39:e105802. [PMID: 32865261 PMCID: PMC7527812 DOI: 10.15252/embj.2020105802] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
The human retinoblastoma (RB1) protein is a tumor suppressor that negatively regulates cell cycle progression through its interaction with members of the E2F/DP family of transcription factors. However, RB-related (RBR) proteins are an early acquisition during eukaryote evolution present in plant lineages, including unicellular algae, ancient plants (ferns, lycophytes, liverworts, mosses), gymnosperms, and angiosperms. The main RBR protein domains and interactions with E2Fs are conserved in all eukaryotes and not only regulate the G1/S transition but also the G2/M transition, as part of DREAM complexes. RBR proteins are also important for asymmetric cell division, stem cell maintenance, and the DNA damage response (DDR). RBR proteins play crucial roles at every developmental phase transition, in association with chromatin factors, as well as during the reproductive phase during female and male gametes production and embryo development. Here, we review the processes where plant RBR proteins play a role and discuss possible avenues of research to obtain a full picture of the multifunctional roles of RBR for plant life.
Collapse
|