1
|
Fan BL, Chen LH, Chen LL, Guo H. Integrative Multi-Omics Approaches for Identifying and Characterizing Biological Elements in Crop Traits: Current Progress and Future Prospects. Int J Mol Sci 2025; 26:1466. [PMID: 40003933 PMCID: PMC11855028 DOI: 10.3390/ijms26041466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The advancement of multi-omics tools has revolutionized the study of complex biological systems, providing comprehensive insights into the molecular mechanisms underlying critical traits across various organisms. By integrating data from genomics, transcriptomics, metabolomics, and other omics platforms, researchers can systematically identify and characterize biological elements that contribute to phenotypic traits. This review delves into recent progress in applying multi-omics approaches to elucidate the genetic, epigenetic, and metabolic networks associated with key traits in plants. We emphasize the potential of these integrative strategies to enhance crop improvement, optimize agricultural practices, and promote sustainable environmental management. Furthermore, we explore future prospects in the field, underscoring the importance of cutting-edge technological advancements and the need for interdisciplinary collaboration to address ongoing challenges. By bridging various omics platforms, this review aims to provide a holistic framework for advancing research in plant biology and agriculture.
Collapse
Affiliation(s)
| | | | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.-L.F.); (L.-H.C.)
| | - Hao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (B.-L.F.); (L.-H.C.)
| |
Collapse
|
2
|
Xu Q, Zhang X, Zhao R, Li S, Liesche J. UBIQUITIN-CONJUGATING ENZYME34 mediates pyrophosphatase AVP1 turnover and regulates abiotic stress responses in Arabidopsis. PLANT PHYSIOLOGY 2025; 197:kiaf015. [PMID: 39797907 PMCID: PMC11809586 DOI: 10.1093/plphys/kiaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025]
Abstract
Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton-pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana). Through in vitro and in vivo assays, we established that UBC34 interacts with and ubiquitylates AVP1. Mutant lines in which UBC34 was downregulated showed higher tolerance to salt and low inorganic phosphate (Pi) stresses, while we observed the opposite for plants overexpressing UBC34. Our results showed that UBC34 co-localizes with AVP1, and AVP1 activity is enhanced in the plasma membrane fractions of ubc34 mutants, indicating that UBC34 mediates the turnover of plasma membrane-localized AVP1. We also observed that UBC34 affects the apoplastic pH but not the vacuolar pH of root cells. Based on our results, we propose a mechanistic model in which UBC34 mediates AVP1 turnover at the plasma membrane of root epidermal cells. Downregulation of UBC34 under salt and phosphate starvation conditions enhances AVP1 activity, leading to a higher proton gradient available for sodium sequestration and phosphate uptake.
Collapse
Affiliation(s)
- Qiyu Xu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- Shandong Energy Institute, 266101 Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101 Qingdao, China
| | - Xingjian Zhang
- Institute of Biology, University of Graz, 8020 Graz, Austria
| | - Ruifeng Zhao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- Shandong Energy Institute, 266101 Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101 Qingdao, China
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- Shandong Energy Institute, 266101 Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101 Qingdao, China
| | | |
Collapse
|
3
|
Wanner J, Kuhn Cuellar L, Rausch L, W. Berendzen K, Wanke F, Gabernet G, Harter K, Nahnsen S. Nf-Root: A Best-Practice Pipeline for Deep-Learning-Based Analysis of Apoplastic pH in Microscopy Images of Developmental Zones in Plant Root Tissue. QUANTITATIVE PLANT BIOLOGY 2024; 5:e12. [PMID: 39777028 PMCID: PMC11706687 DOI: 10.1017/qpb.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 01/11/2025]
Abstract
Hormonal mechanisms associated with cell elongation play a vital role in the development and growth of plants. Here, we report Nextflow-root (nf-root), a novel best-practice pipeline for deep-learning-based analysis of fluorescence microscopy images of plant root tissue from A. thaliana. This bioinformatics pipeline performs automatic identification of developmental zones in root tissue images. This also includes apoplastic pH measurements, which is useful for modeling hormone signaling and cell physiological responses. We show that this nf-core standard-based pipeline successfully automates tissue zone segmentation and is both high-throughput and highly reproducible. In short, a deep-learning module deploys deterministically trained convolutional neural network models and augments the segmentation predictions with measures of prediction uncertainty and model interpretability, while aiming to facilitate result interpretation and verification by experienced plant biologists. We observed a high statistical similarity between the manually generated results and the output of the nf-root.
Collapse
Affiliation(s)
- Julian Wanner
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
- Hasso Plattner Institute, University of Potsdam, Germany
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Luis Kuhn Cuellar
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Luiselotte Rausch
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Kenneth W. Berendzen
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Friederike Wanke
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Gisela Gabernet
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Koh E, Sunil RS, Lam HYI, Mutwil M. Confronting the data deluge: How artificial intelligence can be used in the study of plant stress. Comput Struct Biotechnol J 2024; 23:3454-3466. [PMID: 39415960 PMCID: PMC11480249 DOI: 10.1016/j.csbj.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The advent of the genomics era enabled the generation of high-throughput data and computational methods that serve as powerful hypothesis-generating tools to understand the genomic and gene functional basis of plant stress resilience. The proliferation of experimental and analytical methods used in biology has resulted in a situation where plentiful data exists, but the volume and heterogeneity of this data has made analysis a significant challenge. Current advanced deep-learning models have displayed an unprecedented level of comprehension and problem-solving ability, and have been used to predict gene structure, function and expression based on DNA or protein sequence, and prominently also their use in high-throughput phenomics in agriculture. However, the application of deep-learning models to understand gene regulatory and signalling behaviour is still in its infancy. We discuss in this review the availability of data resources and bioinformatic tools, and several applications of these advanced ML/AI models in the context of plant stress response, and demonstrate the use of a publicly available LLM (ChatGPT) to derive a knowledge graph of various experimental and computational methods used in the study of plant stress. We hope this will stimulate further interest in collaboration between computer scientists, computational biologists and plant scientists to distil the deluge of genomic, transcriptomic, proteomic, metabolomic and phenomic data into meaningful knowledge that can be used for the benefit of humanity.
Collapse
Affiliation(s)
- Eugene Koh
- School of Biological Scie nces, Nanyang Technological University, Singapore, Singapore
| | - Rohan Shawn Sunil
- School of Biological Scie nces, Nanyang Technological University, Singapore, Singapore
| | - Hilbert Yuen In Lam
- School of Biological Scie nces, Nanyang Technological University, Singapore, Singapore
| | - Marek Mutwil
- School of Biological Scie nces, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
Hastwell AH, Chu X, Liu Y, Ferguson BJ. The parallel narrative of RGF/GLV/CLEL peptide signalling. TRENDS IN PLANT SCIENCE 2024; 29:1342-1355. [PMID: 39322488 DOI: 10.1016/j.tplants.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/27/2024]
Abstract
Plant peptide families share distinct characteristics, and many members are in homologous signalling pathways controlling development and responses to external signals. The root meristem growth factor (RGF) peptides/GOLVEN (GLV)/CLAVATA3-ESR-related like (CLEL) are a family of short signalling peptides that are derived from a precursor protein and undergo post-translational modifications. Their role in root meristem development is well established and recent efforts have identified subtilase processing pathways and several downstream signalling components. This discovery has enabled the convergence of previously distinct pathways and enhanced our understanding of plant developmental processes. Here, we review the structure-function relationship of RGF peptides, the post-translational modification pathways, and the downstream signalling mechanisms and highlight components of these pathways that are known in non-RGF-mediated pathways.
Collapse
Affiliation(s)
- April H Hastwell
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Xitong Chu
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhan Liu
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Brett J Ferguson
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
6
|
Han S, Xu Q, Du Y, Tang C, Cui H, Xia X, Zheng R, Sun Y, Shang H. Single-cell spatial transcriptomics in cardiovascular development, disease, and medicine. Genes Dis 2024; 11:101163. [PMID: 39224111 PMCID: PMC11367031 DOI: 10.1016/j.gendis.2023.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) impose a significant burden worldwide. Despite the elucidation of the etiology and underlying molecular mechanisms of CVDs by numerous studies and recent discovery of effective drugs, their morbidity, disability, and mortality are still high. Therefore, precise risk stratification and effective targeted therapies for CVDs are warranted. Recent improvements in single-cell RNA sequencing and spatial transcriptomics have improved our understanding of the mechanisms and cells involved in cardiovascular phylogeny and CVDs. Single-cell RNA sequencing can facilitate the study of the human heart at remarkably high resolution and cellular and molecular heterogeneity. However, this technique does not provide spatial information, which is essential for understanding homeostasis and disease. Spatial transcriptomics can elucidate intracellular interactions, transcription factor distribution, cell spatial localization, and molecular profiles of mRNA and identify cell populations causing the disease and their underlying mechanisms, including cell crosstalk. Herein, we introduce the main methods of RNA-seq and spatial transcriptomics analysis and highlight the latest advances in cardiovascular research. We conclude that single-cell RNA sequencing interprets disease progression in multiple dimensions, levels, perspectives, and dynamics by combining spatial and temporal characterization of the clinical phenome with multidisciplinary techniques such as spatial transcriptomics. This aligns with the dynamic evolution of CVDs (e.g., "angina-myocardial infarction-heart failure" in coronary artery disease). The study of pathways for disease onset and mechanisms (e.g., age, sex, comorbidities) in different patient subgroups should improve disease diagnosis and risk stratification. This can facilitate precise individualized treatment of CVDs.
Collapse
Affiliation(s)
- Songjie Han
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qianqian Xu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yawen Du
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chuwei Tang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Herong Cui
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaofeng Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
7
|
Denyer T, Wu PJ, Colt K, Abramson BW, Pang Z, Solansky P, Mamerto A, Nobori T, Ecker JR, Lam E, Michael TP, Timmermans MCP. Streamlined spatial and environmental expression signatures characterize the minimalist duckweed Wolffia australiana. Genome Res 2024; 34:1106-1120. [PMID: 38951025 PMCID: PMC11368201 DOI: 10.1101/gr.279091.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Single-cell genomics permits a new resolution in the examination of molecular and cellular dynamics, allowing global, parallel assessments of cell types and cellular behaviors through development and in response to environmental circumstances, such as interaction with water and the light-dark cycle of the Earth. Here, we leverage the smallest, and possibly most structurally reduced, plant, the semiaquatic Wolffia australiana, to understand dynamics of cell expression in these contexts at the whole-plant level. We examined single-cell-resolution RNA-sequencing data and found Wolffia cells divide into four principal clusters representing the above- and below-water-situated parenchyma and epidermis. Although these tissues share transcriptomic similarity with model plants, they display distinct adaptations that Wolffia has made for the aquatic environment. Within this broad classification, discrete subspecializations are evident, with select cells showing unique transcriptomic signatures associated with developmental maturation and specialized physiologies. Assessing this simplified biological system temporally at two key time-of-day (TOD) transitions, we identify additional TOD-responsive genes previously overlooked in whole-plant transcriptomic approaches and demonstrate that the core circadian clock machinery and its downstream responses can vary in cell-specific manners, even in this simplified system. Distinctions between cell types and their responses to submergence and/or TOD are driven by expression changes of unexpectedly few genes, characterizing Wolffia as a highly streamlined organism with the majority of genes dedicated to fundamental cellular processes. Wolffia provides a unique opportunity to apply reductionist biology to elucidate signaling functions at the organismal level, for which this work provides a powerful resource.
Collapse
Affiliation(s)
- Tom Denyer
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Pin-Jou Wu
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Kelly Colt
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Bradley W Abramson
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Applied Sciences and Life Sciences Laboratory, Noblis, Reston, Virginia 20191, USA
| | - Zhili Pang
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Pavel Solansky
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Allen Mamerto
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Tatsuya Nobori
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Joseph R Ecker
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA;
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| | - Marja C P Timmermans
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany;
| |
Collapse
|
8
|
Shanks CM, Rothkegel K, Brooks MD, Cheng CY, Alvarez JM, Ruffel S, Krouk G, Gutiérrez RA, Coruzzi GM. Nitrogen sensing and regulatory networks: it's about time and space. THE PLANT CELL 2024; 36:1482-1503. [PMID: 38366121 PMCID: PMC11062454 DOI: 10.1093/plcell/koae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
A plant's response to external and internal nitrogen signals/status relies on sensing and signaling mechanisms that operate across spatial and temporal dimensions. From a comprehensive systems biology perspective, this involves integrating nitrogen responses in different cell types and over long distances to ensure organ coordination in real time and yield practical applications. In this prospective review, we focus on novel aspects of nitrogen (N) sensing/signaling uncovered using temporal and spatial systems biology approaches, largely in the model Arabidopsis. The temporal aspects span: transcriptional responses to N-dose mediated by Michaelis-Menten kinetics, the role of the master NLP7 transcription factor as a nitrate sensor, its nitrate-dependent TF nuclear retention, its "hit-and-run" mode of target gene regulation, and temporal transcriptional cascade identified by "network walking." Spatial aspects of N-sensing/signaling have been uncovered in cell type-specific studies in roots and in root-to-shoot communication. We explore new approaches using single-cell sequencing data, trajectory inference, and pseudotime analysis as well as machine learning and artificial intelligence approaches. Finally, unveiling the mechanisms underlying the spatial dynamics of nitrogen sensing/signaling networks across species from model to crop could pave the way for translational studies to improve nitrogen-use efficiency in crops. Such outcomes could potentially reduce the detrimental effects of excessive fertilizer usage on groundwater pollution and greenhouse gas emissions.
Collapse
Affiliation(s)
- Carly M Shanks
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Karin Rothkegel
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile
- Center for Genome Regulation (CRG), Institute of Ecology and Biodiversity (IEB), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Matthew D Brooks
- Global Change and Photosynthesis Research Unit, USDA-ARS, Urbana, IL 61801, USA
| | - Chia-Yi Cheng
- Department of Life Science, National Taiwan University, Taipei 10663, Taiwan
| | - José M Alvarez
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias, Universidad Andrés Bello, 8370035 Santiago, Chile
| | - Sandrine Ruffel
- Institute for Plant Sciences of Montpellier (IPSiM), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’Agriculture, l’Alimentation, et l'Environnement (INRAE), Université de Montpellier, Montpellier 34090, France
| | - Gabriel Krouk
- Institute for Plant Sciences of Montpellier (IPSiM), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’Agriculture, l’Alimentation, et l'Environnement (INRAE), Université de Montpellier, Montpellier 34090, France
| | - Rodrigo A Gutiérrez
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile
- Center for Genome Regulation (CRG), Institute of Ecology and Biodiversity (IEB), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile
| | - Gloria M Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
9
|
Bernal-Gallardo JJ, de Folter S. Plant genome information facilitates plant functional genomics. PLANTA 2024; 259:117. [PMID: 38592421 PMCID: PMC11004055 DOI: 10.1007/s00425-024-04397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
MAIN CONCLUSION In this review, we give an overview of plant sequencing efforts and how this impacts plant functional genomics research. Plant genome sequence information greatly facilitates the studies of plant biology, functional genomics, evolution of genomes and genes, domestication processes, phylogenetic relationships, among many others. More than two decades of sequencing efforts have boosted the number of available sequenced plant genomes. The first plant genome, of Arabidopsis, was published in the year 2000 and currently, 4604 plant genomes from 1482 plant species have been published. Various large sequence initiatives are running, which are planning to produce tens of thousands of sequenced plant genomes in the near future. In this review, we give an overview on the status of sequenced plant genomes and on the use of genome information in different research areas.
Collapse
Affiliation(s)
- Judith Jazmin Bernal-Gallardo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico.
| |
Collapse
|
10
|
Islam MT, Liu Y, Hassan MM, Abraham PE, Merlet J, Townsend A, Jacobson D, Buell CR, Tuskan GA, Yang X. Advances in the Application of Single-Cell Transcriptomics in Plant Systems and Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0029. [PMID: 38435807 PMCID: PMC10905259 DOI: 10.34133/bdr.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/28/2024] [Indexed: 03/05/2024] Open
Abstract
Plants are complex systems hierarchically organized and composed of various cell types. To understand the molecular underpinnings of complex plant systems, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for revealing high resolution of gene expression patterns at the cellular level and investigating the cell-type heterogeneity. Furthermore, scRNA-seq analysis of plant biosystems has great potential for generating new knowledge to inform plant biosystems design and synthetic biology, which aims to modify plants genetically/epigenetically through genome editing, engineering, or re-writing based on rational design for increasing crop yield and quality, promoting the bioeconomy and enhancing environmental sustainability. In particular, data from scRNA-seq studies can be utilized to facilitate the development of high-precision Build-Design-Test-Learn capabilities for maximizing the targeted performance of engineered plant biosystems while minimizing unintended side effects. To date, scRNA-seq has been demonstrated in a limited number of plant species, including model plants (e.g., Arabidopsis thaliana), agricultural crops (e.g., Oryza sativa), and bioenergy crops (e.g., Populus spp.). It is expected that future technical advancements will reduce the cost of scRNA-seq and consequently accelerate the application of this emerging technology in plants. In this review, we summarize current technical advancements in plant scRNA-seq, including sample preparation, sequencing, and data analysis, to provide guidance on how to choose the appropriate scRNA-seq methods for different types of plant samples. We then highlight various applications of scRNA-seq in both plant systems biology and plant synthetic biology research. Finally, we discuss the challenges and opportunities for the application of scRNA-seq in plants.
Collapse
Affiliation(s)
- Md Torikul Islam
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md Mahmudul Hassan
- Department of Genetics and Plant Breeding,
Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jean Merlet
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education,
University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Alice Townsend
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education,
University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - C. Robin Buell
- Center for Applied Genetic Technologies,
University of Georgia, Athens, GA 30602, USA
- Department of Crop and Soil Sciences,
University of Georgia, Athens, GA 30602, USA
- Institute of Plant Breeding, Genetics, and Genomics,
University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
11
|
Kenesi E, Kolbert Z, Kaszler N, Klement É, Ménesi D, Molnár Á, Valkai I, Feigl G, Rigó G, Cséplő Á, Lindermayr C, Fehér A. The ROP2 GTPase Participates in Nitric Oxide (NO)-Induced Root Shortening in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:750. [PMID: 36840099 PMCID: PMC9964108 DOI: 10.3390/plants12040750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Nitric oxide (NO) is a versatile signal molecule that mediates environmental and hormonal signals orchestrating plant development. NO may act via reversible S-nitrosation of proteins during which an NO moiety is added to a cysteine thiol to form an S-nitrosothiol. In plants, several proteins implicated in hormonal signaling have been reported to undergo S-nitrosation. Here, we report that the Arabidopsis ROP2 GTPase is a further potential target of NO-mediated regulation. The ROP2 GTPase was found to be required for the root shortening effect of NO. NO inhibits primary root growth by altering the abundance and distribution of the PIN1 auxin efflux carrier protein and lowering the accumulation of auxin in the root meristem. In rop2-1 insertion mutants, however, wild-type-like root size of the NO-treated roots were maintained in agreement with wild-type-like PIN1 abundance in the meristem. The ROP2 GTPase was shown to be S-nitrosated in vitro, suggesting that NO might directly regulate the GTPase. The potential mechanisms of NO-mediated ROP2 GTPase regulation and ROP2-mediated NO signaling in the primary root meristem are discussed.
Collapse
Affiliation(s)
- Erzsébet Kenesi
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Nikolett Kaszler
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Éva Klement
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Single Cell Omics ACF, H-6728 Szeged, Hungary
| | - Dalma Ménesi
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Ildikó Valkai
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Gábor Rigó
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
| | - Ágnes Cséplő
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München—German Research Center for Environmental Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, Temesvári Krt. 62, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
12
|
Fahlgren N, Kapoor M, Yordanova G, Papatheodorou I, Waese J, Cole B, Harrison P, Ware D, Tickle T, Paten B, Burdett T, Elsik CG, Tuggle CK, Provart NJ. Toward a data infrastructure for the Plant Cell Atlas. PLANT PHYSIOLOGY 2023; 191:35-46. [PMID: 36200899 PMCID: PMC9806565 DOI: 10.1093/plphys/kiac468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
We review how a data infrastructure for the Plant Cell Atlas might be built using existing infrastructure and platforms. The Human Cell Atlas has developed an extensive infrastructure for human and mouse single cell data, while the European Bioinformatics Institute has developed a Single Cell Expression Atlas, that currently houses several plant data sets. We discuss issues related to appropriate ontologies for describing a plant single cell experiment. We imagine how such an infrastructure will enable biologists and data scientists to glean new insights into plant biology in the coming decades, as long as such data are made accessible to the community in an open manner.
Collapse
Affiliation(s)
- Noah Fahlgren
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132, USA
| | - Muskan Kapoor
- Bioinformatics and Computational Biology Program, Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | | | | | - Jamie Waese
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Benjamin Cole
- DOE-Joint Genome Institute, Lawrence Berkeley National Laboratory, 1, Cyclotron Road, Berkeley, California 94720, USA
| | - Peter Harrison
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Doreen Ware
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
- USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Timothy Tickle
- Data Sciences Platform, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, Baskin School of Engineering, 1156 High Street, Santa Cruz, California 95064, USA
| | - Tony Burdett
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Christine G Elsik
- Division of Animal Sciences/Division of Plant Science & Technology/Institute for Data Science & Informatics, University of Missouri, Columbia, Missouri 65211, USA
| | - Christopher K Tuggle
- Bioinformatics and Computational Biology Program, Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
13
|
Cervantes-Pérez SA, Thibivillliers S, Tennant S, Libault M. Review: Challenges and perspectives in applying single nuclei RNA-seq technology in plant biology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111486. [PMID: 36202294 DOI: 10.1016/j.plantsci.2022.111486] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/12/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Plant single-cell RNA-seq technology quantifies the abundance of plant transcripts at a single-cell resolution. Deciphering the transcriptomes of each plant cell, their regulation during plant cell development, and their response to environmental stresses will support the functional study of genes, the establishment of precise transcriptional programs, the prediction of more accurate gene regulatory networks, and, in the long term, the design of de novo gene pathways to enhance selected crop traits. In this review, we will discuss the opportunities, challenges, and problems, and share tentative solutions associated with the generation and analysis of plant single-cell transcriptomes. We will discuss the benefit and limitations of using plant protoplasts vs. nuclei to conduct single-cell RNA-seq experiments on various plant species and organs, the functional annotation of plant cell types based on their transcriptomic profile, the characterization of the dynamic regulation of the plant genes during cell development or in response to environmental stress, the need to characterize and integrate additional layers of -omics datasets to capture new molecular modalities at the single-cell level and reveal their causalities, the deposition and access to single-cell datasets, and the accessibility of this technology to plant scientists.
Collapse
Affiliation(s)
- Sergio Alan Cervantes-Pérez
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA
| | - Sandra Thibivillliers
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA; Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA; Single Cell Genomics Core Facility, University of Nebraska-Lincoln, NE 68588, USA
| | - Sutton Tennant
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA; Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA; Single Cell Genomics Core Facility, University of Nebraska-Lincoln, NE 68588, USA.
| |
Collapse
|
14
|
Billakurthi K, Schulze S, Schulz ELM, Sage TL, Schreier TB, Hibberd JM, Ludwig M, Westhoff P. Shedding light on AT1G29480 of Arabidopsis thaliana-An enigmatic locus restricted to Brassicacean genomes. PLANT DIRECT 2022; 6:e455. [PMID: 36263108 PMCID: PMC9576117 DOI: 10.1002/pld3.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
A key feature of C4 Kranz anatomy is the presence of an enlarged, photosynthetically highly active bundle sheath whose cells contain large numbers of chloroplasts. With the aim to identify novel candidate regulators of C4 bundle sheath development, we performed an activation tagging screen with Arabidopsis thaliana. The reporter gene used encoded a chloroplast-targeted GFP protein preferentially expressed in the bundle sheath, and the promoter of the C4 phosphoenolpyruvate carboxylase gene from Flaveria trinervia served as activation tag because of its activity in all chlorenchymatous tissues of A. thaliana. Primary mutants were selected based on their GFP signal intensity, and one stable mutant named kb-1 with a significant increase in GFP fluorescence intensity was obtained. Despite the increased GFP signal, kb-1 showed no alterations to bundle sheath anatomy. The causal locus, AT1G29480, is specific to the Brassicaceae with its second exon being conserved. Overexpression and reconstitution studies confirmed that AT1G29480, and specifically its second exon, were sufficient for the enhanced GFP phenotype, which was not dependent on translation of the locus or its parts into protein. We conclude, therefore, that the AT1G29480 locus enhances the GFP reporter gene activity via an RNA-based mechanism.
Collapse
Affiliation(s)
- Kumari Billakurthi
- Institute of Plant Molecular and Developmental BiologyUniversitätsstrasse 1, Heinrich‐Heine‐UniversityDuesseldorfGermany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits Towards Synthetic Modules’Düsseldorf‐CologneGermany
- Department of Plant Sciences, Downing StreetUniversity of CambridgeCambridgeUK
| | - Stefanie Schulze
- Institute of Plant Molecular and Developmental BiologyUniversitätsstrasse 1, Heinrich‐Heine‐UniversityDuesseldorfGermany
| | - Eva Lena Marie Schulz
- Institute of Plant Molecular and Developmental BiologyUniversitätsstrasse 1, Heinrich‐Heine‐UniversityDuesseldorfGermany
| | - Tammy L. Sage
- Department of Ecology and Evolutionary BiologyThe University of TorontoTorontoOntarioCanada
| | - Tina B. Schreier
- Department of Plant Sciences, Downing StreetUniversity of CambridgeCambridgeUK
| | - Julian M. Hibberd
- Department of Plant Sciences, Downing StreetUniversity of CambridgeCambridgeUK
| | - Martha Ludwig
- School of Molecular SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental BiologyUniversitätsstrasse 1, Heinrich‐Heine‐UniversityDuesseldorfGermany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits Towards Synthetic Modules’Düsseldorf‐CologneGermany
| |
Collapse
|
15
|
Großeholz R, Wanke F, Rohr L, Glöckner N, Rausch L, Scholl S, Scacchi E, Spazierer AJ, Shabala L, Shabala S, Schumacher K, Kummer U, Harter K. Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root. eLife 2022; 11:e73031. [PMID: 36069528 PMCID: PMC9525061 DOI: 10.7554/elife.73031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/03/2022] [Indexed: 11/13/2022] Open
Abstract
Brassinosteroids (BR) are key hormonal regulators of plant development. However, whereas the individual components of BR perception and signaling are well characterized experimentally, the question of how they can act and whether they are sufficient to carry out the critical function of cellular elongation remains open. Here, we combined computational modeling with quantitative cell physiology to understand the dynamics of the plasma membrane (PM)-localized BR response pathway during the initiation of cellular responses in the epidermis of the Arabidopsis root tip that are be linked to cell elongation. The model, consisting of ordinary differential equations, comprises the BR-induced hyperpolarization of the PM, the acidification of the apoplast and subsequent cell wall swelling. We demonstrate that the competence of the root epidermal cells for the BR response predominantly depends on the amount and activity of H+-ATPases in the PM. The model further predicts that an influx of cations is required to compensate for the shift of positive charges caused by the apoplastic acidification. A potassium channel was subsequently identified and experimentally characterized, fulfilling this function. Thus, we established the landscape of components and parameters for physiological processes potentially linked to cell elongation, a central process in plant development.
Collapse
Affiliation(s)
- Ruth Großeholz
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- BioQuant, Heidelberg UniversityHeidelbergGermany
| | - Friederike Wanke
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Leander Rohr
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Nina Glöckner
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Luiselotte Rausch
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| | - Stefan Scholl
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Emanuele Scacchi
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
- Department of Ecological and biological Science, Tuscia UniversityViterboItaly
| | | | - Lana Shabala
- Tasmanian Institute for Agriculture, University of TasmaniaHobartAustralia
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, University of TasmaniaHobartAustralia
- International Research Centre for Environmental Membrane Biology, Foshan UniversityFoshanChina
| | - Karin Schumacher
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Ursula Kummer
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- BioQuant, Heidelberg UniversityHeidelbergGermany
| | - Klaus Harter
- Center for Molecular Biology of Plants, University of TubingenTübingenGermany
| |
Collapse
|
16
|
Lim PK, Zheng X, Goh JC, Mutwil M. Exploiting plant transcriptomic databases: Resources, tools, and approaches. PLANT COMMUNICATIONS 2022; 3:100323. [PMID: 35605200 PMCID: PMC9284291 DOI: 10.1016/j.xplc.2022.100323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 04/06/2022] [Indexed: 05/11/2023]
Abstract
There are now more than 300 000 RNA sequencing samples available, stemming from thousands of experiments capturing gene expression in organs, tissues, developmental stages, and experimental treatments for hundreds of plant species. The expression data have great value, as they can be re-analyzed by others to ask and answer questions that go beyond the aims of the study that generated the data. Because gene expression provides essential clues to where and when a gene is active, the data provide powerful tools for predicting gene function, and comparative analyses allow us to study plant evolution from a new perspective. This review describes how we can gain new knowledge from gene expression profiles, expression specificities, co-expression networks, differential gene expression, and experiment correlation. We also introduce and demonstrate databases that provide user-friendly access to these tools.
Collapse
Affiliation(s)
- Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xinghai Zheng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jong Ching Goh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
17
|
Zong J, Wang L, Zhu L, Bian L, Zhang B, Chen X, Huang G, Zhang X, Fan J, Cao L, Coupland G, Liang W, Zhang D, Yuan Z. A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems. THE NEW PHYTOLOGIST 2022; 234:494-512. [PMID: 35118670 DOI: 10.1111/nph.18008] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Rice inflorescence development determines yield and relies on the activity of axillary meristems (AMs); however, high-resolution analysis of its early development is lacking. Here, we have used high-throughput single-cell RNA sequencing to profile 37 571 rice inflorescence cells and constructed a genome-scale gene expression resource covering the inflorescence-to-floret transition during early reproductive development. The differentiation trajectories of florets and AMs were reconstructed, and discrete cell types and groups of regulators in the highly heterogeneous young inflorescence were identified and then validated by in situ hybridization and with fluorescent marker lines. Our data demonstrate that a WOX transcription factor, DWARF TILLER1, regulates flower meristem activity, and provide evidence for the role of auxin in rice inflorescence branching by exploring the expression and biological role of the auxin importer OsAUX1. Our comprehensive transcriptomic atlas of early rice inflorescence development, supported by genetic evidence, provides single-cell-level insights into AM differentiation and floret development.
Collapse
Affiliation(s)
- Jie Zong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Zhu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lianle Bian
- NovelBio Bio-Pharm Technology Co. Ltd, Shanghai, 201114, China
| | - Bo Zhang
- NovelBio Bio-Pharm Technology Co. Ltd, Shanghai, 201114, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuelian Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junyi Fan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liming Cao
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, 201403, China
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, D50829, Germany
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
18
|
Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med 2022; 12:e694. [PMID: 35352511 PMCID: PMC8964935 DOI: 10.1002/ctm2.694] [Citation(s) in RCA: 510] [Impact Index Per Article: 170.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technology has become the state-of-the-art approach for unravelling the heterogeneity and complexity of RNA transcripts within individual cells, as well as revealing the composition of different cell types and functions within highly organized tissues/organs/organisms. Since its first discovery in 2009, studies based on scRNA-seq provide massive information across different fields making exciting new discoveries in better understanding the composition and interaction of cells within humans, model animals and plants. In this review, we provide a concise overview about the scRNA-seq technology, experimental and computational procedures for transforming the biological and molecular processes into computational and statistical data. We also provide an explanation of the key technological steps in implementing the technology. We highlight a few examples on how scRNA-seq can provide unique information for better understanding health and diseases. One important application of the scRNA-seq technology is to build a better and high-resolution catalogue of cells in all living organism, commonly known as atlas, which is key resource to better understand and provide a solution in treating diseases. While great promises have been demonstrated with the technology in all areas, we further highlight a few remaining challenges to be overcome and its great potentials in transforming current protocols in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Dragomirka Jovic
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesQingdaoChina
- BGI‐ShenzhenShenzhenChina
| | - Xue Liang
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesQingdaoChina
- BGI‐ShenzhenShenzhenChina
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Hua Zeng
- Nanjing University of Chinese MedicineNanjingChina
| | - Lin Lin
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| | - Fengping Xu
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesQingdaoChina
- BGI‐ShenzhenShenzhenChina
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesQingdaoChina
- BGI‐ShenzhenShenzhenChina
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| |
Collapse
|
19
|
Swift J, Greenham K, Ecker JR, Coruzzi GM, McClung CR. The biology of time: dynamic responses of cell types to developmental, circadian and environmental cues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:764-778. [PMID: 34797944 PMCID: PMC9215356 DOI: 10.1111/tpj.15589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 05/26/2023]
Abstract
As sessile organisms, plants are finely tuned to respond dynamically to developmental, circadian and environmental cues. Genome-wide studies investigating these types of cues have uncovered the intrinsically different ways they can impact gene expression over time. Recent advances in single-cell sequencing and time-based bioinformatic algorithms are now beginning to reveal the dynamics of these time-based responses within individual cells and plant tissues. Here, we review what these techniques have revealed about the spatiotemporal nature of gene regulation, paying particular attention to the three distinct ways in which plant tissues are time sensitive. (i) First, we discuss how studying plant cell identity can reveal developmental trajectories hidden in pseudotime. (ii) Next, we present evidence that indicates that plant cell types keep their own local time through tissue-specific regulation of the circadian clock. (iii) Finally, we review what determines the speed of environmental signaling responses, and how they can be contingent on developmental and circadian time. By these means, this review sheds light on how these different scales of time-based responses can act with tissue and cell-type specificity to elicit changes in whole plant systems.
Collapse
Affiliation(s)
- Joseph Swift
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kathleen Greenham
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Joseph R. Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Gloria M. Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, NY, USA
| | | |
Collapse
|
20
|
Cantó-Pastor A, Mason GA, Brady SM, Provart NJ. Arabidopsis bioinformatics: tools and strategies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1585-1596. [PMID: 34695270 DOI: 10.1111/tpj.15547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The sequencing of the Arabidopsis thaliana genome 21 years ago ushered in the genomics era for plant research. Since then, an incredible variety of bioinformatic tools permit easy access to large repositories of genomic, transcriptomic, proteomic, epigenomic and other '-omic' data. In this review, we cover some more recent tools (and highlight the 'classics') for exploring such data in order to help formulate quality, testable hypotheses, often without having to generate new experimental data. We cover tools for examining gene expression and co-expression patterns, undertaking promoter analyses and gene set enrichment analyses, and exploring protein-protein and protein-DNA interactions. We will touch on tools that integrate different data sets at the end of the article.
Collapse
Affiliation(s)
- Alex Cantó-Pastor
- Department of Plant Biology and Genome Center, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - G Alex Mason
- Department of Plant Biology and Genome Center, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
21
|
Jin J, Lu P, Xu Y, Tao J, Li Z, Wang S, Yu S, Wang C, Xie X, Gao J, Chen Q, Wang L, Pu W, Cao P. PCMDB: a curated and comprehensive resource of plant cell markers. Nucleic Acids Res 2021; 50:D1448-D1455. [PMID: 34718712 PMCID: PMC8728192 DOI: 10.1093/nar/gkab949] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/12/2022] Open
Abstract
The advent of single-cell sequencing opened a new era in transcriptomic and genomic research. To understand cell composition using single-cell studies, a variety of cell markers have been widely used to label individual cell types. However, the specific database of cell markers for use by the plant research community remains very limited. To overcome this problem, we developed the Plant Cell Marker DataBase (PCMDB, http://www.tobaccodb.org/pcmdb/), which is based on a uniform annotation pipeline. By manually curating over 130 000 research publications, we collected a total of 81 117 cell marker genes of 263 cell types in 22 tissues across six plant species. Tissue- and cell-specific expression patterns can be visualized using multiple tools: eFP Browser, Bar, and UMAP/TSNE graph. The PCMDB also supports several analysis tools, including SCSA and SingleR, which allows for user annotation of cell types. To provide information about plant species currently unsupported in PCMDB, potential marker genes for other plant species can be searched based on homology with the supported species. PCMDB is a user-friendly hierarchical platform that contains five built-in search engines. We believe PCMDB will constitute a useful resource for researchers working on cell type annotation and the prediction of the biological function of individual cells.
Collapse
Affiliation(s)
- Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Jiemeng Tao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Shuaibin Wang
- China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Shizhou Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Junping Gao
- China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Lin Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Wenxuan Pu
- China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| |
Collapse
|
22
|
Arribas-Hernández L, Rennie S, Schon M, Porcelli C, Enugutti B, Andersson R, Nodine MD, Brodersen P. The YTHDF proteins ECT2 and ECT3 bind largely overlapping target sets and influence target mRNA abundance, not alternative polyadenylation. eLife 2021; 10:72377. [PMID: 34591013 PMCID: PMC8789314 DOI: 10.7554/elife.72377] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/25/2021] [Indexed: 11/18/2022] Open
Abstract
Gene regulation via N6-methyladenosine (m6A) in mRNA involves RNA-binding proteins that recognize m6A via a YT521-B homology (YTH) domain. The plant YTH domain proteins ECT2 and ECT3 act genetically redundantly in stimulating cell proliferation during organogenesis, but several fundamental questions regarding their mode of action remain unclear. Here, we use HyperTRIBE (targets of RNA-binding proteins identified by editing) to show that most ECT2 and ECT3 targets overlap, with only a few examples of preferential targeting by either of the two proteins. HyperTRIBE in different mutant backgrounds also provides direct views of redundant, ectopic, and specific target interactions of the two proteins. We also show that contrary to conclusions of previous reports, ECT2 does not accumulate in the nucleus. Accordingly, inactivation of ECT2, ECT3, and their surrogate ECT4 does not change patterns of polyadenylation site choice in ECT2/3 target mRNAs, but does lead to lower steady-state accumulation of target mRNAs. In addition, mRNA and microRNA expression profiles show indications of stress response activation in ect2/ect3/ect4 mutants, likely via indirect effects. Thus, previous suggestions of control of alternative polyadenylation by ECT2 are not supported by evidence, and ECT2 and ECT3 act largely redundantly to regulate target mRNA, including its abundance, in the cytoplasm.
Collapse
|
23
|
Gogolev YV, Ahmar S, Akpinar BA, Budak H, Kiryushkin AS, Gorshkov VY, Hensel G, Demchenko KN, Kovalchuk I, Mora-Poblete F, Muslu T, Tsers ID, Yadav NS, Korzun V. OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. PLANTS (BASEL, SWITZERLAND) 2021; 10:1423. [PMID: 34371624 PMCID: PMC8309286 DOI: 10.3390/plants10071423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022]
Abstract
The incredible success of crop breeding and agricultural innovation in the last century greatly contributed to the Green Revolution, which significantly increased yields and ensures food security, despite the population explosion. However, new challenges such as rapid climate change, deteriorating soil, and the accumulation of pollutants require much faster responses and more effective solutions that cannot be achieved through traditional breeding. Further prospects for increasing the efficiency of agriculture are undoubtedly associated with the inclusion in the breeding strategy of new knowledge obtained using high-throughput technologies and new tools in the future to ensure the design of new plant genomes and predict the desired phenotype. This article provides an overview of the current state of research in these areas, as well as the study of soil and plant microbiomes, and the prospective use of their potential in a new field of microbiome engineering. In terms of genomic and phenomic predictions, we also propose an integrated approach that combines high-density genotyping and high-throughput phenotyping techniques, which can improve the prediction accuracy of quantitative traits in crop species.
Collapse
Affiliation(s)
- Yuri V. Gogolev
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | | | - Hikmet Budak
- Montana BioAg Inc., Missoula, MT 59802, USA; (B.A.A.); (H.B.)
| | - Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Vladimir Y. Gorshkov
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, 40225 Dusseldorf, Germany;
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | - Tugdem Muslu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey;
| | - Ivan D. Tsers
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Viktor Korzun
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555 Einbeck, Germany
| |
Collapse
|
24
|
Chen H, Yin X, Guo L, Yao J, Ding Y, Xu X, Liu L, Zhu QH, Chu Q, Fan L. PlantscRNAdb: A database for plant single-cell RNA analysis. MOLECULAR PLANT 2021; 14:855-857. [PMID: 33962062 DOI: 10.1016/j.molp.2021.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/14/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Hongyu Chen
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Xinxin Yin
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Longbiao Guo
- State Key Lab for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Jie Yao
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Yiwen Ding
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Xiaoxu Xu
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Lu Liu
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Qinjie Chu
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China.
| | - Longjiang Fan
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Shandong (Linyi) Institute of Modern Agriculture of Zhejiang University, Fengyi Street, Linyi, Shandong Province, China.
| |
Collapse
|
25
|
Kim JY, Symeonidi E, Pang TY, Denyer T, Weidauer D, Bezrutczyk M, Miras M, Zöllner N, Hartwig T, Wudick MM, Lercher M, Chen LQ, Timmermans MCP, Frommer WB. Distinct identities of leaf phloem cells revealed by single cell transcriptomics. THE PLANT CELL 2021; 33:511-530. [PMID: 33955487 PMCID: PMC8136902 DOI: 10.1093/plcell/koaa060] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/18/2020] [Indexed: 05/20/2023]
Abstract
The leaf vasculature plays a key role in solute translocation. Veins consist of at least seven distinct cell types, with specific roles in transport, metabolism, and signaling. Little is known about leaf vascular cells, in particular the phloem parenchyma (PP). PP effluxes sucrose into the apoplasm as a basis for phloem loading, yet PP has been characterized only microscopically. Here, we enriched vascular cells from Arabidopsis leaves to generate a single-cell transcriptome atlas of leaf vasculature. We identified at least 19 cell clusters, encompassing epidermis, guard cells, hydathodes, mesophyll, and all vascular cell types, and used metabolic pathway analysis to define their roles. Clusters comprising PP cells were enriched for transporters, including SWEET11 and SWEET12 sucrose and UmamiT amino acid efflux carriers. We provide evidence that PP development occurs independently from ALTERED PHLOEM DEVELOPMENT, a transcription factor required for phloem differentiation. PP cells have a unique pattern of amino acid metabolism activity distinct from companion cells (CCs), explaining differential distribution/metabolism of amino acids in veins. The kinship relation of the vascular clusters is strikingly similar to the vein morphology, except for a clear separation of CC from the other vascular cells including PP. In summary, our single-cell RNA-sequencing analysis provides a wide range of information into the leaf vasculature and the role and relationship of the leaf cell types.
Collapse
Affiliation(s)
- Ji-Yun Kim
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Author for correspondence: (W.B.F.), (J.-Y.K.)
| | - Efthymia Symeonidi
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Tin Yau Pang
- Institute for Computer Science and Department of Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Tom Denyer
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Diana Weidauer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Margaret Bezrutczyk
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Manuel Miras
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Nora Zöllner
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Thomas Hartwig
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Michael M Wudick
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Martin Lercher
- Institute for Computer Science and Department of Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Li-Qing Chen
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Marja C P Timmermans
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Author for correspondence: (W.B.F.), (J.-Y.K.)
| |
Collapse
|
26
|
Xu X, Crow M, Rice BR, Li F, Harris B, Liu L, Demesa-Arevalo E, Lu Z, Wang L, Fox N, Wang X, Drenkow J, Luo A, Char SN, Yang B, Sylvester AW, Gingeras TR, Schmitz RJ, Ware D, Lipka AE, Gillis J, Jackson D. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev Cell 2021; 56:557-568.e6. [PMID: 33400914 DOI: 10.1016/j.devcel.2020.12.015] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/31/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022]
Abstract
Crop productivity depends on activity of meristems that produce optimized plant architectures, including that of the maize ear. A comprehensive understanding of development requires insight into the full diversity of cell types and developmental domains and the gene networks required to specify them. Until now, these were identified primarily by morphology and insights from classical genetics, which are limited by genetic redundancy and pleiotropy. Here, we investigated the transcriptional profiles of 12,525 single cells from developing maize ears. The resulting developmental atlas provides a single-cell RNA sequencing (scRNA-seq) map of an inflorescence. We validated our results by mRNA in situ hybridization and by fluorescence-activated cell sorting (FACS) RNA-seq, and we show how these data may facilitate genetic studies by predicting genetic redundancy, integrating transcriptional networks, and identifying candidate genes associated with crop yield traits.
Collapse
Affiliation(s)
- Xiaosa Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Megan Crow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brian R Rice
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Forrest Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Benjamin Harris
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Liya Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Nathan Fox
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiaofei Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jorg Drenkow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Anding Luo
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Si Nian Char
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Anne W Sylvester
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; USDA-ARS, Robert W. Holley Center, Ithaca, NY 14853, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|