1
|
Guo W, Zeng M, Zhu S, Li S, Qian Y, Wu H. Phycocyanin Ameliorates Mouse Colitis via Phycocyanobilin-Dependent Antioxidant and Anti-Inflammatory Protection of Intestinal Epithelial Barrier. Food Funct 2022; 13:3294-3307. [DOI: 10.1039/d1fo02970c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phycocyanin is a typical microalgal active compound with antioxidant and anti-inflammatory efficacy, and the pigment moiety phycocyanobilin has been recently proposed as its active structural component. Here, to explore the...
Collapse
|
2
|
Sato N, Furuta T, Takeda T, Miyabe Y, Ura K, Takagi Y, Yasui H, Kumagai Y, Kishimura H. Antioxidant activity of proteins extracted from red alga dulse harvested in Japan. J Food Biochem 2018; 43:e12709. [PMID: 31353655 DOI: 10.1111/jfbc.12709] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/21/2018] [Accepted: 10/07/2018] [Indexed: 12/29/2022]
Abstract
In this study, we investigated antioxidant activity of proteins from the red alga dulse (Palmaria sp.) harvested in Hokkaido, Japan. The dulse proteins that contain phycoerythrin (PE) as the main component showed a high radical scavenging activity. To clarify the key constituent of antioxidant activity in dulse proteins, we prepared recombinant dulse PE β-subunit (rPEβ) (apoprotein) and chromophores from the dulse proteins. As a result, the rPEβ showed lower radical scavenging activity than that of dulse proteins. On the other hand, the dulse chromophores composed mainly of phycoerythrobilin (PEB) indicated extremely higher radical scavenging activity (90.4% ± 0.1%) than that of dulse proteins (17.9% ± 0.1%) on ABTS assay. In addition, on cell viability assay using human neuroblastoma SH-SY5Y cells, the dulse chromophores showed extracellular and intracellular cytoprotective effects against H2 O2 -induced cell damage. From these data, we concluded that the dulse proteins have antioxidant ability and the activity principally derives from the chromophores. PRACTICAL APPLICATION: Dulse is an abundant and underused resource, which contains a lot of proteins, especially phycoerythrin. We here demonstrated that the practically prepared dulse proteins possessed antioxidant activity and clarified that chromophores from the dulse proteins were the key components. Therefore, the dulse proteins have a potential for functional material.
Collapse
Affiliation(s)
- Naoto Sato
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Tomoe Furuta
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Tomoyuki Takeda
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yoshikatsu Miyabe
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Kazuhiro Ura
- Laboratory of Aquaculture Biology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yasuaki Takagi
- Laboratory of Aquaculture Biology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Hajime Yasui
- Laboratory of Humans and the Ocean, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuya Kumagai
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
3
|
Ledermann B, Schwan M, Sommerkamp JA, Hofmann E, Béjà O, Frankenberg-Dinkel N. Evolution and molecular mechanism of four-electron reducing ferredoxin-dependent bilin reductases from oceanic phages. FEBS J 2017; 285:339-356. [PMID: 29156487 DOI: 10.1111/febs.14341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 01/17/2023]
Abstract
Ferredoxin-dependent bilin reductases (FDBRs) are a class of enzymes reducing the heme metabolite biliverdin IXα (BV) to form open-chain tetrapyrroles used for light-perception and light-harvesting in photosynthetic organisms. Thus far, seven FDBR families have been identified, each catalysing a distinct reaction and either transferring two or four electrons from ferredoxin onto the substrate. The newest addition to the family is PcyX, originally identified from metagenomics data derived from phage. Phylogenetically, PcyA is the closest relative catalysing the reduction of BV to phycocyanobilin. PcyX, however, converts the same substrate to phycoerythrobilin, resembling the reaction catalysed by cyanophage PebS. Within this study, we aimed at understanding the evolution of catalytic activities within FDBRs using PcyX as an example. Additional members of the PcyX clade and a remote member of the PcyA family were investigated to gain insights into catalysis. Biochemical data in combination with the PcyX crystal structure revealed that a conserved aspartate-histidine pair is critical for activity. Interestingly, the same residues are part of a catalytic Asp-His-Glu triad in PcyA, including an additional Glu. While this Glu residue is replaced by Asp in PcyX, it is not involved in catalysis. Substitution back to a Glu failed to convert PcyX to a PcyA. Therefore, the change in regiospecificity is not only caused by individual catalytic amino acid residues. Rather the combination of the architecture of the active site with the positioning of the substrate triggers specific proton transfer yielding the individual phycobilin products. ENZYMES Suggested EC number for PcyX: 1.3.7.6 DATABASES: The PcyX X-ray structure was deposited in the PDB with the accession code 5OWG.
Collapse
Affiliation(s)
- Benjamin Ledermann
- Department of Biology, Microbiology, Technical University Kaiserslautern, Germany
| | - Meike Schwan
- Department of Biology, Microbiology, Technical University Kaiserslautern, Germany
| | - Johannes A Sommerkamp
- Protein Crystallography, Faculty for Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty for Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Oded Béjà
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
4
|
Roda-Serrat MC, Christensen KV, El-Houri RB, Fretté X, Christensen LP. Fast cleavage of phycocyanobilin from phycocyanin for use in food colouring. Food Chem 2017; 240:655-661. [PMID: 28946325 DOI: 10.1016/j.foodchem.2017.07.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/01/2017] [Accepted: 07/27/2017] [Indexed: 11/27/2022]
Abstract
Phycocyanins from cyanobacteria are possible sources for new natural blue colourants. Their chromophore, phycocyanobilin (PCB), was cleaved from the apoprotein by solvolysis in alcohols and alcoholic aqueous solutions. In all cases two PCB isomers were obtained, while different solvent adducts were formed upon the use of different reagents. The reaction is believed to take place via two competing pathways, a concerted E2 elimination and a SN2 nucleophilic substitution. Three cleavage methods were compared in terms of yield and purity: conventional reflux, sealed vessel heated in an oil bath, and microwave assisted reaction. The sealed vessel method is a new approach for fast cleavage of PCB from phycocyanin and gave at 120°C the same yield within 30min compared to 16h by the conventional reflux method (P<0.05). In addition the sealed vessel method resulted in improved purity compared to the other methods. Microwave irradiation increased product degradation.
Collapse
Affiliation(s)
- Maria Cinta Roda-Serrat
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Knud Villy Christensen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Rime Bahij El-Houri
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Xavier Fretté
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Lars Porskjær Christensen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
5
|
Ledermann B, Aras M, Frankenberg-Dinkel N. Biosynthesis of Cyanobacterial Light-Harvesting Pigments and Their Assembly into Phycobiliproteins. MODERN TOPICS IN THE PHOTOTROPHIC PROKARYOTES 2017:305-340. [DOI: 10.1007/978-3-319-51365-2_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Yu P, Wu Y, Wang G, Jia T, Zhang Y. Purification and bioactivities of phycocyanin. Crit Rev Food Sci Nutr 2016; 57:3840-3849. [PMID: 27171656 DOI: 10.1080/10408398.2016.1167668] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P.R. China
| | - Yunting Wu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P.R. China
| | - Guangwei Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P.R. China
| | - Tianmei Jia
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P.R. China
| | - Yishu Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
7
|
Abstract
PEB (phycoerythrobilin) is a pink-coloured open-chain tetrapyrrole molecule found in the cyanobacterial light-harvesting phycobilisome. Within the phycobilisome, PEB is covalently bound via thioether bonds to conserved cysteine residues of the phycobiliprotein subunits. In cyanobacteria, biosynthesis of PEB proceeds via two subsequent two-electron reductions catalysed by the FDBRs (ferredoxin-dependent bilin reductases) PebA and PebB starting from the open-chain tetrapyrrole biliverdin IXα. A new member of the FDBR family has been identified in the genome of a marine cyanophage. In contrast with the cyanobacterial enzymes, PebS (PEB synthase) from cyanophages combines both two-electron reductions for PEB synthesis. In the present study we show that PebS acts via a substrate radical mechanism and that two conserved aspartate residues at position 105 and 206 are critical for stereospecific substrate protonation and conversion. On the basis of the crystal structures of both PebS mutants and presented biochemical and biophysical data, a mechanism for biliverdin IXα conversion to PEB is postulated and discussed with respect to other FDBR family members.
Collapse
|
8
|
Suresh M, Mishra SK, Mishra S, Das A. The detection of Hg2+ by cyanobacteria in aqueous media. Chem Commun (Camb) 2009:2496-8. [DOI: 10.1039/b821687h] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Beale SI. Biosynthesis of open-chain tetrapyrroles in plants, algae, and cyanobacteria. CIBA FOUNDATION SYMPOSIUM 2007; 180:156-68; discussion 168-71. [PMID: 7842851 DOI: 10.1002/9780470514535.ch9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phycobilins are open-chain tetrapyrroles of plants and algae which act as the chromophores of phycobiliproteins where they function as light energy-harvesting pigments. Phytochromobilin, another open-chain tetrapyrrole, is the chromophore of phytochrome, which functions as a light-sensing pigment in plant development. These open-chain tetrapyrroles are biosynthetically derived from protohaem. Enzyme reactions that convert protohaem to biliverdin IX alpha, and biliverdin IX alpha to phycocyanobilin, have been detected and characterized in extracts of the unicellular rhodophyte Cyanidium caldarium. Algal haem oxygenase and algal biliverdin-IX alpha reductase are both soluble enzymes that use electrons derived from reduced ferredoxin. Biochemical intermediates in the conversion of biliverdin IX alpha to (3E)-phycocyanobilin were identified as 15, 16-dihydrobiliverdin IX alpha, (3Z)-phycoerythrobilin and (3Z)-phycocyanobilin. Separate enzymes catalyse the two two-electron reduction steps in the conversion of biliverdin IX alpha to (3Z)-phycoerythrobilin. Z-to-E isomerization of the phycobilin ethylidine group is catalysed by an enzyme that requires glutathione for activity. Protein-bound phycoerythrobilin can be chemically converted to phytochromobilin which can then be released from the protein by methanolysis. This procedure was used to produce phytochromobilin in quantities sufficient to allow its chemical characterization and use in phytochrome reconstitution experiments. The results indicate that (2R,3E)-phytochromobilin spontaneously condenses with recombinant oat apophytochrome to form photoreversible holoprotein that is spectrally identical to native phytochrome.
Collapse
Affiliation(s)
- S I Beale
- Division of Biology and Medicine, Brown University, Providence, RI 02912
| |
Collapse
|
10
|
Dammeyer T, Frankenberg-Dinkel N. Insights into Phycoerythrobilin Biosynthesis Point toward Metabolic Channeling. J Biol Chem 2006; 281:27081-9. [PMID: 16857683 DOI: 10.1074/jbc.m605154200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phycoerythrobilin is a linear tetrapyrrole molecule found in cyanobacteria, red algae, and cryptomonads. Together with other bilins such as phycocyanobilin it serves as a light-harvesting pigment in the photosynthetic light-harvesting structures of cyanobacteria called phycobilisomes. The biosynthesis of both pigments starts with the cleavage of heme by heme oxygenases to yield biliverdin IXalpha, which is further reduced at specific positions by ferredoxin-dependent bilin reductases (FDBRs), a new family of radical enzymes. The biosynthesis of phycoerythrobilin requires two subsequent two-electron reductions, each step being catalyzed by one FDBR. This is in contrast to the biosynthesis of phycocyanobilin, where the FDBR phycocyanobilin: ferredoxin oxidoreductase (PcyA) catalyzes a four-electron reduction. The first reaction in phycoerythrobilin biosynthesis is the reduction of the 15,16-double bond of biliverdin IXalpha by 15,16-dihydrobiliverdin:ferredoxin oxidoreductase (PebA). This reaction reduces the conjugated pi -electron system thereby blue-shifting the absorbance properties of the linear tetrapyrrole. The second FDBR, phycoerythrobilin:ferredoxin oxidoreductase (PebB), then reduces the A-ring 2,3,3(1),3(2)-diene structure of 15,16-dihydrobiliverdin to yield phycoerythrobilin. Both FDBRs from the limnic filamentous cyanobacterium Fremyella diplosiphon and the marine cyanobacterium Synechococcus sp. WH8020 were recombinantly produced in Escherichia coli and purified, and their enzymatic activities were determined. By using various natural bilins, the substrate specificity of each FDBR was established, revealing conformational preconditions for their unique specificity. Preparation of the semi-reduced intermediate, 15,16-dihydrobiliverdin, enabled us to perform steady state binding experiments indicating distinct spectroscopic and fluorescent properties of enzyme.bilin complexes. A combination of substrate/product binding analyses and gel permeation chromatography revealed evidence for metabolic channeling.
Collapse
Affiliation(s)
- Thorben Dammeyer
- Institute for Microbiology, Technical University Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | | |
Collapse
|
11
|
Gossauer A, Nydegger F, Benedikt E, Köst HP. Syntheses of Bile Pigments. Part 16. Synthesis of a vinyl-substituted 2,3-Dihydrobilinedione: Possible role of this new class of bile pigments in phycobilin biosynthesis. Helv Chim Acta 2004. [DOI: 10.1002/hlca.19890720315] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
|
13
|
Storf M, Parbel A, Meyer M, Strohmann B, Scheer H, Deng MG, Zheng M, Zhou M, Zhao KH. Chromophore attachment to biliproteins: specificity of PecE/PecF, a lyase-isomerase for the photoactive 3(1)-cys-alpha 84-phycoviolobilin chromophore of phycoerythrocyanin. Biochemistry 2001; 40:12444-56. [PMID: 11591166 DOI: 10.1021/bi010776s] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PecE and PecF, the products of two phycoerythrocyanin lyase genes (pecE and pecF) of Mastigocladus laminosus (Fischerella), catalyze two reactions: (1) the regiospecific addition of phycocyanobilin (PCB) to Cys-alpha 84 of the phycoerythrocyanin alpha-subunit (PecA), and (2) the Delta 4-->Delta 2 isomerization of the PCB to the phycoviolobilin (PVB)-chromophore [Zhao et al. (2000) FEBS Lett. 469, 9-13]. The alpha-apoprotein (PecA) as well PecE and PecF were overexpressed from two strains of M. laminosus, with and without His-tags. The products of the spontaneous addition of PCB to PecA, and that of the reaction catalyzed by PecE/F, were characterized by their photochemistry and by absorption, fluorescence, circular dichroism of the four states obtained by irradiation with light (15-Z/E isomers of the chromophore) and/or modification of Cys-alpha 98/99 with thiol-directed reagents. The spontaneous addition leads to a 3(1)-Cys-PCB adduct, which is characteristic of allophycocyanins and phycocyanins, while the addition catalyzed by PecE and PecF leads to a 3(1)-Cys-PVB adduct which after purification was identical to alpha-PEC. The specificity and kinetics of the chromophore additions were investigated with respect to the structure of the bilin substrate: The 3-ethylidene-bilins, viz., PCB, its 18-vinyl analogue phytochromobilin, phycoerythrobilin and its dimethylester, react spontaneously to yield the conventional addition products (3-H, 3(1)-Cys), while the 3-vinyl-substituted bilins, viz., bilirubin and biliverdin, were inactive. Only phycocyanobilin and phytochromobilin are substrates to the addition-isomerization reaction catalyzed by PecE/F. The slow spontaneous addition of phycoerythrobilin is not influenced, and there is in particular no catalyzed isomerization to urobilin.
Collapse
Affiliation(s)
- M Storf
- Botanisches Institut, Universität München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
McDowell MT, Lagarias JC. Purification and biochemical properties of phytochromobilin synthase from etiolated oat seedlings. PLANT PHYSIOLOGY 2001; 126:1546-1554. [PMID: 11500553 PMCID: PMC117154 DOI: 10.1104/pp.126.4.1546] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2000] [Revised: 03/08/2001] [Accepted: 04/25/2001] [Indexed: 05/23/2023]
Abstract
Plant phytochromes are dependent on the covalent attachment of the linear tetrapyrrole chromophore phytochromobilin (P Phi B) for photoactivity. In planta, biliverdin IX alpha (BV) is reduced by the plastid-localized, ferredoxin (Fd)-dependent enzyme P Phi B synthase to yield 3Z-P Phi B. Here, we describe the >50,000-fold purification of P Phi B synthase from etioplasts from dark-grown oat (Avena sativa L. cv Garry) seedlings using traditional column chromatography and preparative electrophoresis. Thus, P Phi B synthase is a very low abundance enzyme with a robust turnover rate. We estimate the turnover rate to be >100 s(-1), which is similar to that of mammalian NAD(P)H-dependent BV reductase. Oat P Phi B synthase is a monomer with a subunit mass of 29 kD. However, two distinct charged forms of the enzymes were identified by native isoelectric focusing. The ability of P Phi B synthase to reduce BV is dependent on reduced 2Fe-2S Fds. A K(m) for spinach (Spinacea oleracea) Fd was determined to be 3 to 4 microM. P Phi B synthase has a high affinity for its bilin substrate, with a sub-micromolar K(m) for BV.
Collapse
Affiliation(s)
- M T McDowell
- Section of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, California 95616, USA
| | | |
Collapse
|
15
|
Zhao KH, Deng MG, Zheng M, Zhou M, Parbel A, Storf M, Meyer M, Strohmann B, Scheer H. Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon. FEBS Lett 2000; 469:9-13. [PMID: 10708746 DOI: 10.1016/s0014-5793(00)01245-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of phycoviolobilin, the photoactive chromophore of alpha-phycoerythrocyanin, is incompatible with a chromophore ligation to the apoprotein via SH-addition (cysteine) to a Delta3, 3(1)-double bond of the phycobilin. The two putative phycoerythrocyanin lyase genes of Mastigocladus laminosus, pecE and pecF, were overexpressed in Escherichia coli. Their action has been studied on the addition reaction of phycocyanobilin to apo-alpha-phycoerythrocyanin (PecA). In the absence of the components of alpha-PEC-phycoviolobilin lyase PecE and PecF, or in the presence of only one of them, phycocyanobilin binds covalently to PecA forming a fluorescent chromoprotein with a red-shifted absorption (lambda(max)=641 nm) and low photoactivity (<10%). In the presence of both PecE and PecF, a chromoprotein forms which by its absorption (lambda(max)=565 nm) and high photoreversible photochromism (100% type I) has been identified as integral alpha-phycoerythrocyanin. We conclude that PecE and PecF jointly catalyze not only the addition of phycocyanobilin to PecA, but also its isomerization to the native phycoviolobilin chromophore.
Collapse
Affiliation(s)
- K H Zhao
- College of Life Sciences, Wuhan University, Wuhan, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cornejo J, Willows RD, Beale SI. Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from Synechocystis sp. PCC 6803. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:99-107. [PMID: 9744099 DOI: 10.1046/j.1365-313x.1998.00186.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The phytobilin chromophores of phycobiliproteins and phytochromes are biosynthesized from heme in a pathway that begins with the opening of the tetrapyrrole macrocycle of protoheme to form biliverdin IX alpha, in a reaction catalyzed by heme oxygenase. A gene containing an open reading frame with a predicted polypeptide that has a sequence similar to that of a conserved region of animal microsomal heme oxygenases was identified in the published genomic sequence of Synechocystis sp. PCC 6803. This gene, named ho1, was cloned and expressed in Escherichia coli under the control of the lacZ promoter. Cells expressing the gene became green colored due to the accumulation of biliverdin IX alpha. The size of the expressed protein was equal to the predicted size of the Synechocystis gene product, named HO1. Heme oxygenase activity was assayed in incubations containing extract of transformed E. coli cells. Incubations containing extract of induced cells, but not those containing extract of uninduced cells, had ferredoxin-dependent heme oxygenase activity. With mesoheme as the substrate, the reaction product was identified as mesobiliverdin IX alpha by spectrophotometry and reverse-phase HPLC. Heme oxygenase activity was not sedimented by centrifugation at 100, 000 g. Expression of HO1 increased several-fold during incubation of the cells for 72 h in iron-deficient medium.
Collapse
Affiliation(s)
- J Cornejo
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
17
|
Schluchter WM, Glazer AN. Characterization of cyanobacterial biliverdin reductase. Conversion of biliverdin to bilirubin is important for normal phycobiliprotein biosynthesis. J Biol Chem 1997; 272:13562-9. [PMID: 9153203 DOI: 10.1074/jbc.272.21.13562] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Synechocystis sp. PCC 6803 gene (bvdR) encoding biliverdin reductase was amplified by the polymerase chain reaction, cloned, and overexpressed in Escherichia coli as the native form and as a 6-histidine-tagged amino-terminal fusion. The latter form of the enzyme was purified by affinity chromatography and shown to have the appropriate molecular weight by electrospray mass spectrometry. Both forms of the enzyme reduced biliverdin IXalpha using NADPH or NADH, with NADPH as the preferred reductant. The His-tagged enzyme has a Km for biliverdin of 1.3 microM. The pH optimum for the NADPH-dependent activity is 5.8, whereas that for rat biliverdin reductase is at pH 8.7. Absorbance spectra and high performance liquid chromatography retention times of the reaction product reaction match those of authentic bilirubin, the product of the reduction of biliverdin by the mammalian enzymes. These results provide the first evidence for the formation of bilirubin in bacteria. Fully segregated Synechocystis sp. PCC 6803 bvdR interposon mutants produce approximately 85% of the normal amount of phycobilisome cores containing allophycocyanin and other phycocyanobilin-bearing core polypeptides, but no detectable phycocyanin. Thus, surprisingly, the blockage of the conversion of biliverdin to bilirubin interferes with normal phycobiliprotein biosynthesis in cyanobacteria. Possible interpretations of this finding are presented.
Collapse
Affiliation(s)
- W M Schluchter
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3206, USA
| | | |
Collapse
|
18
|
Grossman AR, Schaefer MR, Chiang GG, Collier JL. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 1993; 57:725-49. [PMID: 8246846 PMCID: PMC372933 DOI: 10.1128/mr.57.3.725-749.1993] [Citation(s) in RCA: 254] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Photosynthetic organisms can acclimate to their environment by changing many cellular processes, including the biosynthesis of the photosynthetic apparatus. In this article we discuss the phycobilisome, the light-harvesting apparatus of cyanobacteria and red algae. Unlike most light-harvesting antenna complexes, the phycobilisome is not an integral membrane complex but is attached to the surface of the photosynthetic membranes. It is composed of both the pigmented phycobiliproteins and the nonpigmented linker polypeptides; the former are important for absorbing light energy, while the latter are important for stability and assembly of the complex. The composition of the phycobilisome is very sensitive to a number of different environmental factors. Some of the filamentous cyanobacteria can alter the composition of the phycobilisome in response to the prevalent wavelengths of light in the environment. This process, called complementary chromatic adaptation, allows these organisms to efficiently utilize available light energy to drive photosynthetic electron transport and CO2 fixation. Under conditions of macronutrient limitation, many cyanobacteria degrade their phycobilisomes in a rapid and orderly fashion. Since the phycobilisome is an abundant component of the cell, its degradation may provide a substantial amount of nitrogen to nitrogen-limited cells. Furthermore, degradation of the phycobilisome during nutrient-limited growth may prevent photodamage that would occur if the cells were to absorb light under conditions of metabolic arrest. The interplay of various environmental parameters in determining the number of phycobilisomes and their structural characteristics and the ways in which these parameters control phycobilisome biosynthesis are fertile areas for investigation.
Collapse
Affiliation(s)
- A R Grossman
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305
| | | | | | | |
Collapse
|
19
|
Stumpe H, Müller N, Grubmayr K. The addition of methyl-2-mercaptoacetate to phycocyanobilin dimethyl ester: A model reaction for biliprotein biosynthesis? Tetrahedron Lett 1993. [DOI: 10.1016/s0040-4039(00)60518-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Swanson R, Zhou J, Leary J, Williams T, de Lorimier R, Bryant D, Glazer A. Characterization of phycocyanin produced by cpcE and cpcF mutants and identification of an intergenic suppressor of the defect in bilin attachment. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41979-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Biosynthesis of phycobilins. Ferredoxin-supported nadph-independent heme oxygenase and phycobilin-forming activities from Cyanidium caldarium. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41970-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA, Glazer AN. Phycocyanin alpha-subunit phycocyanobilin lyase. Proc Natl Acad Sci U S A 1992; 89:7017-21. [PMID: 1495995 PMCID: PMC49636 DOI: 10.1073/pnas.89.15.7017] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Phycobiliproteins, unlike other light-harvesting proteins involved in photosynthesis, bear covalently attached chromophores. The bilin chromophores are attached through thioether bonds to cysteine residues. The cyanobacterium Synechococcus sp. PCC 7002 has eight distinct bilin attachment sites on seven polypeptides, all of which carry the same chromophore, phycocyanobilin. When two genes in the phycocyanin operon of this organism, cpcE and cpcF, are inactivated by insertion, together or separately, the surprising result is elimination of correct bilin attachment at only one site, that on the alpha subunit of phycocyanin. We have overproduced CpcE and CpcF in Escherichia coli. In vitro, these proteins catalyze the attachment of phycocyanobilin to the alpha subunit of apophycocyanin at the appropriate site, alpha-Cys-84, to form the correct adduct. CpcE and CpcF also efficiently catalyze the reverse reaction, in which the bilin from holo-alpha subunit is transferred either to the apo-alpha subunit of the same C-phycocyanin or to the apo-alpha subunit of a heterologous C-phycocyanin. The forward and reverse reactions each require both CpcE and CpcF and are specific for the alpha-Cys-84 position. Phycocyanobilin is the immediate precursor of the protein-bound bilin.
Collapse
Affiliation(s)
- C D Fairchild
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | | | | | |
Collapse
|
23
|
Beale S, Cornejo J. Biosynthesis of phycobilins. 15,16-Dihydrobiliverdin IX alpha is a partially reduced intermediate in the formation of phycobilins from biliverdin IX alpha. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54577-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Terry M, Lagarias J. Holophytochrome assembly. Coupled assay for phytochromobilin synthase in organello. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54556-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Beale S, Cornejo J. Biosynthesis of phycobilins. Ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54575-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Beale S, Cornejo J. Biosynthesis of phycobilins. 3(Z)-phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IX alpha. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54576-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Wedemayer GJ, Wemmer DE, Glazer AN. Phycobilins of cryptophycean algae. Structures of novel bilins with acryloyl substituents from phycoerythrin 566. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67710-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Beale SI, Weinstein JD. Chapter 5 Biochemistry and regulation of photosynthetic pigment formation in plants and algae. BIOSYNTHESIS OF TETRAPYRROLES 1991. [DOI: 10.1016/s0167-7306(08)60112-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Brown SB, Houghton JD, Vernon DI. Biosynthesis of phycobilins. Formation of the chromophore of phytochrome, phycocyanin and phycoerythrin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1990; 5:3-23. [PMID: 2111391 DOI: 10.1016/1011-1344(90)85002-e] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Phycobiliproteins play important roles in photomorphogenesis and photosynthesis. The light-absorbing chromophores of the phycobiliproteins are linear tetrapyrroles (bilins) very similar in structure to the mammalian bile pigments. 5-Aminolaevulinate (5-ALA) is the first committed intermediate in phycobilin synthesis. The biosynthesis of 5-ALA, destined for phycobilins, occurs via the five-carbon pathway, now well established for tetrapyrrole synthesis in plants and distinct from the mammalian pathway. The phycobilins are formed by reduction of biliverdin which results from the synthesis and degradation of haem. This haem is an essential intermediate in the biosynthesis of phycobilins. Phycocyanobilin, the blue-green pigment found in certain algae and cyanobacteria, is formed from biliverdin via phytochromobilin, the chromophore of phytochrome. This leads to the likelihood that phytochromobilin is formed as an end product, or intermediate, in the synthesis of all phycobilins.
Collapse
Affiliation(s)
- S B Brown
- Department of Biochemistry, University of Leeds, U.K
| | | | | |
Collapse
|
30
|
|
31
|
Arciero DM, Bryant DA, Glazer AN. In vitro attachment of bilins to apophycocyanin. I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81365-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Algal heme oxygenase from Cyanidium caldarium. Partial purification and fractionation into three required protein components. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37873-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
33
|
|
34
|
Weinstein JD, Branchaud R, Beale SI, Bement WJ, Sinclair PR. Biosynthesis of the farnesyl moiety of heme a from exogenous mevalonic acid by cultured chick liver cells. Arch Biochem Biophys 1986; 245:44-50. [PMID: 3947101 DOI: 10.1016/0003-9861(86)90188-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chick embryo liver cells, when cultured for 41 h in the presence of [2-14C]mevalonic acid, took up label and incorporated radioactivity into heme a, but not into protoheme. Incubation of cells with delta-[4-14C]aminolevulinic acid (ALA) resulted in uptake of label and incorporation of radioactivity into both protoheme and heme a. These results show that both protoheme and heme a are synthesized during the incubation period, and that mevalonic acid is a specific precursor of the farnesyl moiety of heme a. Incubation of cells with [1,2-14C]acetate plus N-methyl mesoporphyrin IX, an inhibitor of heme synthesis, resulted in negligible incorporation of label into protoheme and heme a, although cellular lipids were highly labeled. This result indicates that the heme purification methods employed were capable of separating hemes from lipids, and that the measured incorporation of label into hemes from [14C]mevalonic acid and [14C]ALA was not due to lipid contamination.
Collapse
|
35
|
Weinstein JD, Beale SI. RNA is required for enzymatic conversion of glutamate to delta-aminolevulinate by extracts of Chlorella vulgaris. Arch Biochem Biophys 1985; 239:87-93. [PMID: 4004265 DOI: 10.1016/0003-9861(85)90814-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Formation of delta-aminolevulinic acid (ALA) from glutamete catalyzed by a soluble extract from the unicellular green alga, Chlorella vulgaris, was abolished after incubation of the cell extract with bovine pancreatic ribonuclease A (RNase). Cell extract was prepared for the ALA formation assay by high-speed centrifugation and gel-filtration through Sephadex G-25 to remove insoluble and endogenous low-molecular-weight components. RNA hydrolysis products did not affect ALA formation, and RNase did not affect the ability of ATP and NADPH to serve as reaction substrates, indicating that the effect of RNase cannot be attributed to degradation of reaction substrates or transformation of a substrate or cofactor into an inhibitor. The effect of RNase was blocked by prior addition of placental RNase inhibitor (RNasin) to the cell extract, but RNasin did not reverse the effect of prior incubation of the cell extract with RNase, indicating that RNase does not act by degrading a component generated during the ALA-forming reaction, but instead degrades an essential component already present in active cell extract at the time the ALA-forming reaction is initiated. After inactivation of the cell extract by incubation with RNase, followed by administration of RNasin to block further RNase action, ALA-forming activity could be restored to a higher level than originally present by addition of a C. vulgaris tRNA-containing fraction isolated from an active ALA-forming preparation by phenol extraction and DEAE-cellulose chromatography. Baker's yeast tRNA, wheat germ tRNA, Escherichia coli tRNA, and E. coli tRNAglu type II were unable to reconstitute ALA-forming activity in RNase-treated cell extract, even though the cell extract was capable of catalyzing the charging of some of these RNAs with glutamate.
Collapse
|
36
|
Beale SI, Cornejo J. Enzymatic heme oxygenase activity in soluble extracts of the unicellular red alga, Cyanidium caldarium. Arch Biochem Biophys 1984; 235:371-84. [PMID: 6549121 DOI: 10.1016/0003-9861(84)90210-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracts of the phycocyanin-containing unicellular red alga, Cyanidium caldarium, catalyzed enzymatic cleavage of the heme macrocycle to form the linear tetrapyrrole bilin structure. This is the key first step in the branch of the tetrapyrrole biosynthetic pathway leading to phycobilin photosynthetic accessory pigments. A mixed-function oxidase mechanism, similar to the biliverdin-forming reaction catalyzed by animal cell-derived microsomal heme oxygenase, was indicated by requirements for O2 and a reduced pyridine nucleotide. To avoid enzymatic conversion of the bilin product to phycocyanobilins and subsequent degradation during incubation, mesoheme IX was substituted for the normal physiological substrate, protoheme IX. Mesobiliverdin IX alpha was identified as the primary incubation product by comparative reverse-phase high-pressure liquid chromatography and absorption spectrophotometry. The enzymatic nature of the reaction was indicated by the requirement for cell extract, absence of activity in boiled cell extract, high specificity for NADPH as cosubstrate, formation of the physiologically relevant IX alpha bilin isomer, and over 75% inhibition by 1 microM Sn-protoporphyrin, which has been reported to be a competitive inhibitor of animal microsomal heme oxygenase. On the other hand, coupled oxidation of mesoheme, catalyzed by ascorbate plus pyridine or myoglobin, yielded a mixture of ring-opening mesobiliverdin IX isomers, was not inhibited by Sn-protoporphyrin, and could not use NADPH as the reductant. Unlike the animal microsomal heme oxygenase, the algal reaction appeared to be catalyzed by a soluble enzyme that was not sedimentable by centrifugation for 1 h at 200,000g. Although NADPH was the preferred reductant, small amounts of activity were obtained with NADH or ascorbate. A portion of the activity was retained after gel filtration of the cell extract to remove low-molecular-weight components. Considerable stimulation of activity, particularly in preparations that had been subjected to gel filtration, was obtained by addition of ascorbate to the incubation mixture containing NADPH. The results indicate that C. caldarium possesses a true heme oxygenase system, with properties somewhat different from that catalyzing heme degradation in animals. Taken together with previous results indicating that biliverdin is a precursor to phycocyanobilin, the results suggest that algal heme oxygenase is a component of the phycobilin biosynthetic pathway.
Collapse
|