1
|
Kuznecova J, Šulčius S, Vogts A, Voss M, Jürgens K, Šimoliūnas E. Nitrogen Flow in Diazotrophic Cyanobacterium Aphanizomenon flos-aquae Is Altered by Cyanophage Infection. Front Microbiol 2020; 11:2010. [PMID: 32973727 PMCID: PMC7466765 DOI: 10.3389/fmicb.2020.02010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/29/2020] [Indexed: 12/03/2022] Open
Abstract
Viruses can significantly influence cyanobacteria population dynamics and activity, and through this the biogeochemical cycling of major nutrients. However, surprisingly little attention has been given to understand how viral infections alter the ability of diazotrophic cyanobacteria for atmospheric nitrogen fixation and its release to the environment. This study addressed the importance of cyanophages for net 15N2 assimilation rate, expression of nitrogenase reductase gene (nifH) and changes in nitrogen enrichment (15N/14N) in the diazotrophic cyanobacterium Aphanizomenon flos-aquae during infection by the cyanophage vB_AphaS-CL131. We found that while the growth of A. flos-aquae was inhibited by cyanophage addition (decreased from 0.02 h–1 to 0.002 h–1), there were no significant differences in nitrogen fixation rates (control: 22.7 × 10–7 nmol N heterocyte–1; infected: 23.9 × 10–7 nmol N heterocyte–1) and nifH expression level (control: 0.6–1.6 transcripts heterocyte–1; infected: 0.7–1.1 transcripts heterocyte–1) between the infected and control A. flos-aquae cultures. This implies that cyanophage genome replication and progeny production within the vegetative cells does not interfere with the N2 fixation reactions in the heterocytes of these cyanobacteria. However, higher 15N enrichment at the poles of heterocytes of the infected A. flos-aquae, revealed by NanoSIMS analysis indicates the accumulation of fixed nitrogen in response to cyanophage addition. This suggests reduced nitrogen transport to vegetative cells and the alterations in the flow of fixed nitrogen within the filaments. In addition, we found that cyanophage lysis resulted in a substantial release of ammonium into culture medium. Cyanophage infection seems to substantially redirect N flow from cyanobacterial biomass to the production of N storage compounds and N release.
Collapse
Affiliation(s)
- Jolita Kuznecova
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Angela Vogts
- Section Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Maren Voss
- Section Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Klaus Jürgens
- Section Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Chia MA, Jankowiak JG, Kramer BJ, Goleski JA, Huang IS, Zimba PV, do Carmo Bittencourt-Oliveira M, Gobler CJ. Succession and toxicity of Microcystis and Anabaena (Dolichospermum) blooms are controlled by nutrient-dependent allelopathic interactions. HARMFUL ALGAE 2018; 74:67-77. [PMID: 29724344 DOI: 10.1016/j.hal.2018.03.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/03/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
Microcystis and Anabaena (Dolichospermum) are among the most toxic cyanobacterial genera and often succeed each other during harmful algal blooms. The role allelopathy plays in the succession of these genera is not fully understood. The allelopathic interactions of six strains of Microcystis and Anabaena under different nutrient conditions in co-culture and in culture-filtrate experiments were investigated. Microcystis strains significantly reduced the growth of Anabaena strains in mixed cultures with direct cell-to-cell contact and high nutrient levels. Cell-free filtrate from Microcystis cultures proved equally potent in suppressing the growth of nutrient replete Anabaena cultures while also significantly reducing anatoxin-a production. Allelopathic interactions between Microcystis and Anabaena were, however, partly dependent on ambient nutrient levels. Anabaena dominated under low N conditions and Microcystis dominated under nutrient replete and low P during which allelochemicals caused the complete suppression of nitrogen fixation by Anabaena and stimulated glutathione S-transferase activity. The microcystin content of Microcystis was lowered with decreasing N and the presence of Anabaena decreased it further under low P and high nutrient conditions. Collectively, these results indicate that strong allelopathic interactions between Microcystis and Anabaena are closely intertwined with the availability of nutrients and that allelopathy may contribute to the succession, nitrogen availability, and toxicity of cyanobacterial blooms.
Collapse
Affiliation(s)
- Mathias A Chia
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Postal code: 13418-900, Piracicaba, SP, Brazil; School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States
| | - Jennifer G Jankowiak
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States
| | - Benjamin J Kramer
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States
| | - Jennifer A Goleski
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States
| | - I-Shuo Huang
- Center for Coastal Studies (CCS), Texas A&M University, Corpus Christi, TX 78412 United States
| | - Paul V Zimba
- Center for Coastal Studies (CCS), Texas A&M University, Corpus Christi, TX 78412 United States
| | - Maria do Carmo Bittencourt-Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Postal code: 13418-900, Piracicaba, SP, Brazil
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States.
| |
Collapse
|
3
|
Hellweger FL, Fredrick ND, McCarthy MJ, Gardner WS, Wilhelm SW, Paerl HW. Dynamic, mechanistic, molecular-level modelling of cyanobacteria:Anabaenaand nitrogen interaction. Environ Microbiol 2016; 18:2721-31. [DOI: 10.1111/1462-2920.13299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/12/2016] [Accepted: 03/12/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Ferdi L. Hellweger
- Department of Civil and Environmental Engineering; Northeastern University; Boston MA USA
| | - Neil D. Fredrick
- Department of Civil and Environmental Engineering; Northeastern University; Boston MA USA
| | - Mark J. McCarthy
- Marine Science Institute, The University of Texas at Austin; Port Aransas TX USA
- Department of Earth and Environmental Sciences; Wright State University; Dayton OH USA
| | - Wayne S. Gardner
- Marine Science Institute, The University of Texas at Austin; Port Aransas TX USA
| | - Steven W. Wilhelm
- Department of Microbiology; University of Tennessee; Knoxville TN USA
| | - Hans W. Paerl
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill; Morehead City NC USA
| |
Collapse
|
4
|
Raven JA. Protein turnover and plant RNA and phosphorus requirements in relation to nitrogen fixation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 188-189:25-35. [PMID: 22525241 DOI: 10.1016/j.plantsci.2012.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 01/25/2012] [Accepted: 02/19/2012] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is the proximate (immediate) limiting element for primary productivity in some habitats, and is generally the ultimate limiting element for primary productivity. Although RNA can account for over half of the non-storage P in photosynthetic organisms, some primary producers have more ribosomes than the minimum needed for the observed rate of net protein synthesis; some of this RNA may be needed for protein turnover. Two cases of protein turnover which can occur at a much faster rate than the bulk protein turnover are those of photodamaged photosystem II and O(2)-damaged nitrogenase. While RNA involved in photosystem II repair accounts for less than 1% of the non-storage P in photosynthetic organisms, a maximum, of 12% of non-storage P could occur in RNA associated with replacement of damaged nitrogenase and/or O(2) damage avoidance mechanism in diazotrophic (N(2) fixing) organisms. There is a general trend in published data towards lower P use efficiency (g dry matter gain per day per mol P in the organism) for photosynthetic diazotrophic organisms growing under P limitation with N(2) as their nitrogen source, rather than with NH(4)(+), urea or NO(3)(-). Additional work is needed to examine the generality of a statistically verified decrease in P use efficiency for diazotrophic growth relative to growth on other nitrogen sources and, if this is confirmed, further investigation of the mechanism is needed. The outcome of such work would be important for relating the global distribution of diazotrophy to P availability. There are no known P acquisition mechanisms specific to diazotrophs. Phosphorus (P) is the proximate (immediate) limiting element for primary productivity in some habitats, and is generally the ultimate limiting element for primary productivity. Although RNA can account for over half of the non-storage P in photosynthetic organisms, some primary producers have more ribosomes than the minimum needed for the observed rate of net protein synthesis; some of this RNA may be needed for protein turnover. Two cases of protein turnover which can occur at a much faster rate than the bulk protein turnover are those of photodamaged photosystem II and O(2)-damaged nitrogenase. While RNA involved in photosystem II repair accounts for less than 1% of the non-storage P in photosynthetic organisms, a maximum, of 12% of non-storage P could occur in RNA associated with replacement of damaged nitrogenase and/or O(2) damage avoidance mechanism in diazotrophic (N(2) fixing) organisms. There is a general trend in published data towards lower P use efficiency (g dry matter gain per day per mol P in the organism) for photosynthetic diazotrophic organisms growing under P limitation with N(2) as their nitrogen source, rather than with NH(4)(+), urea or NO(3)(-). Additional work is needed to examine the generality of a statistically verified decrease in P use efficiency for diazotrophic growth relative to growth on other nitrogen sources and, if this is confirmed, further investigation of the mechanism is needed. The outcome of such work would be important for relating the global distribution of diazotrophy to P availability. There are no known P acquisition mechanisms specific to diazotrophs.
Collapse
Affiliation(s)
- John A Raven
- School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
5
|
Collier JL, Lovindeer R, Xi Y, Radway JC, Armstrong RA. DIFFERENCES IN GROWTH AND PHYSIOLOGY OF MARINE SYNECHOCOCCUS (CYANOBACTERIA) ON NITRATE VERSUS AMMONIUM ARE NOT DETERMINED SOLELY BY NITROGEN SOURCE REDOX STATE(1). JOURNAL OF PHYCOLOGY 2012; 48:106-116. [PMID: 27009655 DOI: 10.1111/j.1529-8817.2011.01100.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The preference of phytoplankton for ammonium over nitrate has traditionally been explained by the greater metabolic cost of reducing oxidized forms of nitrogen. This "metabolic cost hypothesis" implies that there should be a growth disadvantage on nitrate compared to ammonium or other forms of reduced nitrogen such as urea, especially when light limits growth, but in a variety of phytoplankton taxa, this predicted difference has not been observed. Our experiments with three strains of marine Synechococcus (WH7803, WH7805, and WH8112) did not reveal consistently faster growth (cell division) on ammonium or urea as compared to nitrate. Urease and glutamine synthetase (GS) activities varied with nitrogen source in a manner consistent with regulation by cellular nitrogen status via NtcA (rather than by external availability of nitrogen) in all three strains and indicated that each strain experienced some degree of nitrogen insufficiency during growth on nitrate. At light intensities that strongly limited growth, the composition (carbon, nitrogen, and pigment quotas) of WH7805 cells using nitrate was indistinguishable from that of cells using ammonium, but at saturating light intensities, cellular carbon, nitrogen, and pigment quotas were significantly lower in cells using nitrate than ammonium. These and similar results from other phytoplankton taxa suggest that a limitation in some step of nitrate uptake or assimilation, rather than the extra cost of reducing nitrate per se, may be the cause of differences in growth and physiology between cells using nitrate and ammonium.
Collapse
Affiliation(s)
- Jackie L Collier
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USABiology Department, Rensselaer Polytechnic Institute, Troy, New York 12180, USASchool of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USA
| | - Raisha Lovindeer
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USABiology Department, Rensselaer Polytechnic Institute, Troy, New York 12180, USASchool of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USA
| | - Yue Xi
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USABiology Department, Rensselaer Polytechnic Institute, Troy, New York 12180, USASchool of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USA
| | - JoAnn C Radway
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USABiology Department, Rensselaer Polytechnic Institute, Troy, New York 12180, USASchool of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USA
| | - Robert A Armstrong
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USABiology Department, Rensselaer Polytechnic Institute, Troy, New York 12180, USASchool of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USA
| |
Collapse
|
6
|
Mohlin M, Wulff A. Interaction effects of ambient UV radiation and nutrient limitation on the toxic cyanobacterium Nodularia spumigena. MICROBIAL ECOLOGY 2009; 57:675-86. [PMID: 18709402 DOI: 10.1007/s00248-008-9427-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 06/18/2008] [Accepted: 07/09/2008] [Indexed: 05/16/2023]
Abstract
Nodularia spumigena is one of the dominating species during the extensive cyanobacterial blooms in the Baltic Sea. The blooms coincide with strong light, stable stratification, low ratios of dissolved inorganic nitrogen, and dissolved inorganic phosphorus. The ability of nitrogen fixation, a high tolerance to phosphorus starvation, and different photo-protective strategies (production of mycosporine-like amino acids, MAAs) may give N. spumigena a competitive advantage over other phytoplankton during the blooms. To elucidate the interactive effects of ambient UV radiation and nutrient limitation on the performance of N. spumigena, an outdoor experiment was designed. Two radiation treatments photosynthetic active radiation (PAR) and PAR +UV-A + UV-B (PAB) and three nutrient treatments were established: nutrient replete (NP), nitrogen limited (-N), and phosphorus limited (-P). Variables measured were specific growth rate, heterocyst frequency, cell volume, cell concentrations of MAAs, photosynthetic pigments, particulate carbon (POC), particulate nitrogen (PON), and particulate phosphorus (POP). Ratios of particulate organic matter were calculated: POC/PON, POC/POP, and PON/POP. There was no interactive effect between radiation and nutrient limitation on the specific growth rate of N. spumigena, but there was an overall effect of phosphorus limitation on the variables measured. Interaction effects were observed for some variables; cell size (larger cells in -P PAB compared to other treatments) and the carotenoid canthaxanthin (highest concentration in -N PAR). In addition, significantly less POC and PON (mol cell(-1)) were found in -P PAR compared to -P PAB, and the opposite radiation effect was observed in -N. Our study shows that despite interactive effects on some of the variables studied, N. spumigena tolerate high ambient UVR also under nutrient limiting conditions and maintain positive growth rate even under severe phosphorus limitation.
Collapse
Affiliation(s)
- Malin Mohlin
- Department of Marine Ecology, Marine Botany, University of Gothenburg, P.O. Box 461, SE 405 30, Göteborg, Sweden.
| | | |
Collapse
|
7
|
Degerholm J, Gundersen K, Bergman B, Söderbäck E. Phosphorus-limited growth dynamics in two Baltic Sea cyanobacteria, Nodularia sp. and Aphanizomenon sp. FEMS Microbiol Ecol 2006; 58:323-32. [PMID: 17117977 DOI: 10.1111/j.1574-6941.2006.00180.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Rates of carbon (C) specific growth and nitrogen (N2) fixation were monitored in cultures of Baltic Sea Nodularia and Aphanizomenon exposed to gradual limitation by inorganic phosphorus (P). Both cyanobacteria responded by decreased cellular P content followed by lowered rates of growth and N2 fixation. C-specific growth and cellular N content changed faster in Aphanizomenon both when inorganic P was lowered as well as during reintroduction of P. Aphanizomenon also showed a more rapid increase in N-specific N2 fixation associated with increased C-specific growth. When ambient concentrations of inorganic P declined, both cyanobacteria displayed higher rates of alkaline phosphatase (APase) activity. Lower substrate half-saturation constants (KM) and higher Vmax : KM ratio of the APase enzyme associated with Nodularia suggest a higher affinity for dissolved organic P (DOP) substrate than Aphanizomenon. Aphanizomenon, which appears more sensitive to changes in ambient dissolved inorganic P, may be adapted to environments with elevated concentrations of P or repeated intrusions of nutrient-rich water. Nodularia on the other hand, with its higher tolerance to increased P starvation may have an ecological advantage in stratified surface waters of the Baltic Sea during periods of low P availability.
Collapse
Affiliation(s)
- Jenny Degerholm
- Department of Botany, Stockholm University, Stockholm, Sweden.
| | | | | | | |
Collapse
|
8
|
Shafik HM. Morphological characteristics of Cylindrospermopsis raciborskii (Wołoszyńska) Seenayya et Subba Raju in laboratory cultures. ACTA BIOLOGICA HUNGARICA 2003; 54:121-36. [PMID: 12705328 DOI: 10.1556/abiol.54.2003.1.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The freshwater cyanoprokaryote Cylindrospermopsis raciborskii has become increasingly prevalent in tropical and temperate water bodies worldwide. The morphological characteristics of this species were investigated under different growth rates in continuous cultures (at steady state) and in batch (phosphorus starved) cultures with different mineral nitrogen forms. The species displays an enormous morphological variability under controlled condition. The occurrence of extreme long twisted filaments was found near the maximum growth rate and under high ammonium concentration. Rarely the heterocytes of Cylindrospermopsis raciborskii arise intercalarly between two neighbouring cells(i.e. intercalary heterocytes were found). The morphological features are highly effected by environmental conditions and nutrient availability. Under P-starvation extreme morphology appeared. The specifications of C. africana and C. cuspis overlap with that of C. raciborskii accordingly this is not clear characteristic feature to distinguish species. A pure culture of a pro- or eukaryote alga growing in continuous cultures is a good method for giving a suitable overview on all morphological possibilities of a tested organism.
Collapse
Affiliation(s)
- H M Shafik
- Balaton Limnological Research Institute of the Hungarian Academy of Sciences, Tihany, Hungary.
| |
Collapse
|
9
|
Sarma TA, Khattar JIS. Phosphorus deficiency, nitrogen assimilation and akinete differentiation in the cyanobacteriumAnabaena torulosa. Folia Microbiol (Praha) 1992. [DOI: 10.1007/bf02933152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Turpin DH, Layzell DB, Elrifi IR. Modeling the C Economy of Anabaena flos-aquae: Estimates of Establishment, Maintenance, and Active Costs Associated with Growth on NH(3), NO(3), and N(2). PLANT PHYSIOLOGY 1985; 78:746-52. [PMID: 16664318 PMCID: PMC1064815 DOI: 10.1104/pp.78.4.746] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Steady state cultures of Anabaena flos-aquae were established over a wide range of phosphate-limited growth rates while N was supplied as either NH(3), NO(3) (-), or N(2) gas. At growth rates greater than 0.03 per hour, rates of gross and net carbon fixation were similar on all N sources. However, at lower growth rates (<0.03 per hour) in the NO(3) (-) and N(2) cultures, gross photosynthesis greatly exceeded net photosynthesis. The increase in photosynthetic O(2) evolution with growth rate was greatest when N requirements were met by NO(3) (-) and least when met by NH(3). These results were combined with previously reported measurements of cellular chemical composition, N assimilation, and acetylene reduction (Layzell, Turpin, Elrifi 1985 Plant Physiol 78: 739-745) to construct empirical models of carbon and energy flow for cultures grown at 30, 60, and 100% of their maximal growth rate on all N sources. The models suggested that over this growth range, 89 to 100% of photodriven electrons were allocated to biomass production in the NH(3) cells, whereas only 49 to 74% and 54 to 90% were partitioned to biomass in the NO(3) (-)-and N(2)-grown cells, respectively. The models were used to estimate the relative contribution of active, maintenance, and establishment costs associated with NO(3) (-) and N(2) assimilation over the entire range of growth rates. The models showed that the relative contribution of the component costs of N assimilation were growth rate dependent. At higher growth rates, the major costs for NO(3) (-) assimilation were the active costs, while in N(2)-fixing cultures the major energetic requirements were those associated with heterocyst establishment and maintenance. It was concluded that compared with NO(3) (-) assimilation, N(2) fixation was energetically unfavorable due to the costs of heterocyst establishment and maintenance, rather than the active costs of N(2) assimilation.
Collapse
Affiliation(s)
- D H Turpin
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|