1
|
Bùi TX, Shekhar V, Marc-Martin S, Bellande K, Vermeer JEM. A tightly regulated auxin signaling landscape is required for spatial accommodation of lateral roots in Arabidopsis. PHYSIOLOGIA PLANTARUM 2025; 177:e70184. [PMID: 40133999 DOI: 10.1111/ppl.70184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
In Arabidopsis thaliana, lateral root (LR) development requires spatial accommodation responses in overlying endodermal cells. This includes loss of cell volume whilst maintaining membrane integrity to allow the expansion of the underlying LR primordia (LRPs). These accommodation responses are regulated by auxin-mediated signaling, specifically through Aux/IAA proteins, involving IAA3/SHY2. Plants that express a stabilized version of SHY2 (shy2-2) in differentiated endodermal cells, CASP1pro::shy2-2 plants, fail to make LRs. Exogenous treatment with 1-naphthaleneacetic acid (NAA) was reported to partially restore LR formation in this spatial accommodation mutant. Using treatments with auxins having different transport properties, such as NAA, indole-3-acetic acid (IAA), and 2,4-dichlorophenoxyacetic acid (2,4-D), we assessed the ability of each auxin to rescue LR formation in CASP1pro::shy2-2 roots. This revealed that IAA is the most effective in partially restoring LR development, NAA is effective in inducing LRPs but cannot maintain their canonical phenotype, whereas 2,4-D induces non-controlled cell divisions. In addition, we show that in CASP1pro::shy2-2 roots, AUX1 appears to be repressed in the zone where oscillation of the auxin response has been described. Our study advances the understanding of auxin-regulated spatial accommodation mechanisms during LRP formation and highlights the complex interplay of auxin transport and signaling in bypassing the endodermal constraints.
Collapse
Affiliation(s)
- Thái X Bùi
- Laboratory of Cell and Molecular Biology (LBMC), Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Vinay Shekhar
- Laboratory of Cell and Molecular Biology (LBMC), Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sophie Marc-Martin
- Laboratory of Cell and Molecular Biology (LBMC), Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Kevin Bellande
- Laboratory of Cell and Molecular Biology (LBMC), Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- IPSiM, University of Montpellier, Montpellier, France
| | - Joop E M Vermeer
- Laboratory of Cell and Molecular Biology (LBMC), Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
2
|
Shirazi Z, Rostami M, Ghorbani A, Hiram Guzzi P. Bioinformatics deciphers the thebaine biosynthesis pathway in opium poppy: Hub genes, network analysis, and miRNA regulation. J Genet Eng Biotechnol 2024; 22:100422. [PMID: 39674640 PMCID: PMC11387676 DOI: 10.1016/j.jgeb.2024.100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 12/16/2024]
Abstract
Thebaine, a vital precursor in the codeine and morphine pathway, shows promise in addiction treatment. We conducted a comprehensive study on the thebaine biosynthesis pathway in opium poppy, utilizing bioinformatics tools. The dataset comprising the thirteen genes associated with the thebaine biosynthesis pathway was compiled from an extensive review of published literature and validated using the NCBI BLAST tool. Utilizing STRING and Cytoscape, we analyzed gene interactions and visualized the molecular interaction network, respectively. To identify hub proteins, CytoHubba was administered. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) at STRING were used for the enrichment analysis of the hub genes. CytoCluster was used to analyze the network in clusters. Promoter regions of hub genes and potential miRNAs were explored using MEME and the psRNATarget database. Hub genes crucial to thebaine biosynthesis were identified, contributing to essential cellular functions like growth, development, stress response, and signal transduction. Metabolic processes emerged as pivotal for thebaine production, indicating a broader role for the thebaine pathway gene network beyond primary metabolite production. Cell component subnetwork genes demonstrated associations with anatomical units, indicating involvement in plant defense responses. Dominant molecular functions drove plant defense responses. KEGG pathway analysis highlighted the significance of metabolic pathways and biosynthesis of secondary metabolites. Cluster analysis emphasized the relevance of the biosynthesis of amino acids, confirming the link between primary and secondary metabolites. Promoter analysis suggested the potential involvement of signal transduction in thebaine production. Hub genes were targeted by 40 miRNAs, suggesting potential novel biomarkers or target genes within the thebaine biosynthesis pathway. Based on the role of miRNAs identified in connection with the hub genes of the thebaine production process, the secondary metabolite pathway of thebaine appears to be associated with several key plant pathways, e.g. growth, development and stress response. However, these findings, based on bioinformatics analysis, warrant further experimental validation and promise to advance our understanding of the biosynthesis of thebaine and its interactions with other genes and metabolic pathways that influence the production of metabolites.
Collapse
Affiliation(s)
- Zahra Shirazi
- Biotechnology Research Department, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), National Botanical Garden, Tehran Karaj Freeway, P.O. Box 13185-116, Tehran, Iran
| | - Mahsa Rostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
3
|
Li X, Weng Y, Chen Y, Liu K, Liu Y, Zhang K, Shi L, He S, Liu Z. CaARP1/CaSGT1 Module Regulates Vegetative Growth and Defense Response of Pepper Plants against Phytophthora capsici. PLANTS (BASEL, SWITZERLAND) 2024; 13:2849. [PMID: 39458796 PMCID: PMC11511434 DOI: 10.3390/plants13202849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Pepper (Capsicum annuum L.) suffers severe quality and yield loss from oomycete diseases caused by Phytophthora capsici. CaSGT1 was previously determined to positively regulate the immune response of pepper plants against P. capsici, but by which mechanism remains elusive. In the present study, the potential interacting proteins of CaSGT1 were isolated from pepper using a yeast two-hybrid system, among which CaARP1 was determined to interact with CaSGT1 via bimolecular fluorescence complementation (BiFC) and microscale thermophoresis (MST) assays. CaARP1 belongs to the auxin-repressed protein family, which is well-known to function in modulating plant growth. The transcriptional and protein levels of CaARP1 were both significantly induced by infection with P. capsici. Silencing of CaARP1 promotes the vegetative growth of pepper plants and attenuates its disease resistance to P. capsici, as well as compromising the hypersensitive response-like cell death in pepper leaves induced by PcINF1, a well-characterized typical PAMP from P. capsici. Chitin-induced transient expression of CaARP1 in pepper leaves enhanced its disease resistance to P. capsici, which is amplified by CaSGT1 co-expression as a positive regulator. Taken together, our result revealed that CaARP1 plays a dual role in the pepper, negatively regulating the vegetative growth and positively regulating plant immunity against P. capsici in a manner associated with CaSGT1.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yahong Weng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yufeng Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaisheng Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanyan Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China
| | - Kan Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanping Shi
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuilin He
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqin Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
de Roij M, Borst JW, Weijers D. Protein degradation in auxin response. THE PLANT CELL 2024; 36:3025-3035. [PMID: 38652687 PMCID: PMC11371164 DOI: 10.1093/plcell/koae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 04/25/2024]
Abstract
The signaling molecule auxin sits at the nexus of plant biology where it coordinates essentially all growth and developmental processes. Auxin molecules are transported throughout plant tissues and are capable of evoking highly specific physiological responses by inducing various molecular pathways. In many of these pathways, proteolysis plays a crucial role for correct physiological responses. This review provides a chronology of the discovery and characterization of the auxin receptor, which is a fascinating example of separate research trajectories ultimately converging on the discovery of a core auxin signaling hub that relies on degradation of a family of transcriptional inhibitor proteins-the Aux/IAAs. Beyond describing the "classical" proteolysis-driven auxin response system, we explore more recent examples of the interconnection of proteolytic systems, which target a range of other auxin signaling proteins, and auxin response. By highlighting these emerging concepts, we provide potential future directions to further investigate the role of protein degradation within the framework of auxin response.
Collapse
Affiliation(s)
- Martijn de Roij
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| |
Collapse
|
5
|
Zhang D, Yang X, Wen Z, Li Z, Zhang X, Zhong C, She J, Zhang Q, Zhang H, Li W, Zhao X, Xu M, Su Z, Li D, Dinesh-Kumar SP, Zhang Y. Proxitome profiling reveals a conserved SGT1-NSL1 signaling module that activates NLR-mediated immunity. MOLECULAR PLANT 2024; 17:1369-1391. [PMID: 39066482 DOI: 10.1016/j.molp.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Suppressor of G2 allele of skp1 (SGT1) is a highly conserved eukaryotic protein that plays a vital role in growth, development, and immunity in both animals and plants. Although some SGT1 interactors have been identified, the molecular regulatory network of SGT1 remains unclear. SGT1 serves as a co-chaperone to stabilize protein complexes such as the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors, thereby positively regulating plant immunity. SGT1 has also been found to be associated with the SKP1-Cullin-F-box (SCF) E3 ubiquitin ligase complex. However, whether SGT1 targets immune repressors to coordinate plant immune activation remains elusive. In this study, we constructed a toolbox for TurboID- and split-TurboID-based proximity labeling (PL) assays in Nicotiana benthamiana and used the PL toolbox to explore the SGT1 interactome during pre- and post-immune activation. The comprehensive SGT1 interactome network we identified highlights a dynamic shift from proteins associated with plant development to those linked with plant immune responses. We found that SGT1 interacts with Necrotic Spotted Lesion 1 (NSL1), which negatively regulates salicylic acid-mediated defense by interfering with the nucleocytoplasmic trafficking of non-expressor of pathogenesis-related genes 1 (NPR1) during N NLR-mediated response to tobacco mosaic virus. SGT1 promotes the SCF-dependent degradation of NSL1 to facilitate immune activation, while salicylate-induced protein kinase-mediated phosphorylation of SGT1 further potentiates this process. Besides N NLR, NSL1 also functions in several other NLR-mediated immunity. Collectively, our study unveils the regulatory landscape of SGT1 and reveals a novel SGT1-NSL1 signaling module that orchestrates plant innate immunity.
Collapse
Affiliation(s)
- Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xinxin Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiajie She
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianshen Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - He Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Chen Y, Orlov YL, Chen M. Deciphering the Molecular Mechanism of the Intermediate Secondary Growth and Internode Elongation of the Castor Bean ( Ricinus communis L.) by the Combined Analysis of the Transcriptome and Metabolome. Int J Mol Sci 2024; 25:1053. [PMID: 38256130 PMCID: PMC10816189 DOI: 10.3390/ijms25021053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The length of internodes plays a crucial role in determining the height of the castor plant (Ricinus communis L.). However, the specific mechanisms underlying internode elongation, particularly in the main stem of the castor plant, remain uncertain. To further investigate this, we conducted a study focusing on the internode tissue of the dwarf castor variety 071113, comparing it with the control high-stalk Zhuansihao. Our study included a cytological observation, physiological measurement, transcriptome sequencing, and metabolic determination. Our integrated findings reveal that the dwarf variety 071113 undergoes an earlier lignification development in the main stem and has a more active lignin synthesis pathway during internode intermediate development. In addition, the dwarf variety exhibited lower levels of the plant hormone indole-3-acetic acid (IAA), which had an impact on the development process. Furthermore, we identified specific enzymes and regulators that were enriched in the pathways of the cell cycle, auxin signal transduction, and secondary cell wall synthesis. Using these findings, we developed a model that explained the intermediate secondary growth observed in castor internode elongation and enhanced our comprehension of the dwarfing mechanism of the 071113 variety. This research provides a theoretical groundwork for the future breeding of dwarf castor varieties.
Collapse
Affiliation(s)
- Yujie Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yuriy L. Orlov
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
7
|
Mikołajczak K, Kuczyńska A, Krajewski P, Kempa M, Witaszak N. Global Proteome Profiling Revealed the Adaptive Reprogramming of Barley Flag Leaf to Drought and Elevated Temperature. Cells 2023; 12:1685. [PMID: 37443719 PMCID: PMC10340373 DOI: 10.3390/cells12131685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Plants, as sessile organisms, have developed sophisticated mechanisms to survive in changing environments. Recent advances in omics approaches have facilitated the exploration of plant genomes; however, the molecular mechanisms underlying the responses of barley and other cereals to multiple abiotic stresses remain largely unclear. Exposure to stress stimuli affects many proteins with regulatory and protective functions. In the present study, we employed liquid chromatography coupled with high-resolution mass spectrometry to identify stress-responsive proteins on the genome-wide scale of barley flag leaves exposed to drought, heat, or both. Profound alterations in the proteome of genotypes with different flag leaf sizes were found. The role of stress-inducible proteins was discussed and candidates underlying the universal stress response were proposed, including dehydrins. Moreover, the putative functions of several unknown proteins that can mediate responses to stress stimuli were explored using Pfam annotation, including calmodulin-like proteins. Finally, the confrontation of protein and mRNA abundances was performed. A correlation network between transcripts and proteins performance revealed several components of the stress-adaptive pathways in barley flag leaf. Taking the findings together, promising candidates for improving the tolerance of barley and other cereals to multivariate stresses were uncovered. The presented proteomic landscape and its relationship to transcriptomic remodeling provide novel insights for understanding the molecular responses of plants to environmental cues.
Collapse
Affiliation(s)
- Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (A.K.); (P.K.); (M.K.); (N.W.)
| | | | | | | | | |
Collapse
|
8
|
Zhang C, Yang Y, Yu Z, Wang J, Huang R, Zhan Q, Li S, Lai J, Zhang S, Yang C. SUMO E3 ligase AtMMS21-dependent SUMOylation of AUXIN/INDOLE-3-ACETIC ACID 17 regulates auxin signaling. PLANT PHYSIOLOGY 2023; 191:1871-1883. [PMID: 36464768 PMCID: PMC10022608 DOI: 10.1093/plphys/kiac553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/20/2022] [Accepted: 12/02/2022] [Indexed: 05/06/2023]
Abstract
Changes in plant auxin levels can be perceived and converted into cellular responses by auxin signal transduction. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are auxin transcriptional inhibitors that play important roles in regulating auxin signal transduction. The stability of Aux/IAA proteins is important for transcription initiation and downstream auxin-related gene expression. Here, we report that the Aux/IAA protein IAA17 interacts with the small ubiquitin-related modifier (SUMO) E3 ligase METHYL METHANESULFONATE-SENSITIVE 21 (AtMMS21) in Arabidopsis (Arabidopsis thaliana). AtMMS21 regulated the SUMOylation of IAA17 at the K41 site. Notably, root length was suppressed in plants overexpressing IAA17, whereas the roots of K41-mutated IAA17 transgenic plants were not significantly different from wild-type roots. Biochemical data indicated that K41-mutated IAA17 or IAA17 in the AtMMS21 knockout mutant was more likely to be degraded compared with nonmutated IAA17 in wild-type plants. In conclusion, our data revealed a role for SUMOylation in the maintenance of IAA17 protein stability, which contributes to improving our understanding of the mechanisms of auxin signaling.
Collapse
Affiliation(s)
- Cheng Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Yi Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Zhibo Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Ruihua Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Qiuna Zhan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Shangze Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Shengchun Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
9
|
Hu S, Yu K, Yan J, Shan X, Xie D. Jasmonate perception: Ligand-receptor interaction, regulation, and evolution. MOLECULAR PLANT 2023; 16:23-42. [PMID: 36056561 DOI: 10.1016/j.molp.2022.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Phytohormones integrate external environmental and developmental signals with internal cellular responses for plant survival and multiplication in changing surroundings. Jasmonate (JA), which might originate from prokaryotes and benefit plant terrestrial adaptation, is a vital phytohormone that regulates diverse developmental processes and defense responses against various environmental stresses. In this review, we first provide an overview of ligand-receptor binding techniques used for the characterization of phytohormone-receptor interactions, then introduce the identification of the receptor COI1 and active JA molecules, and finally summarize recent advances on the regulation of JA perception and its evolution.
Collapse
Affiliation(s)
- Shuai Hu
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaiming Yu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528200, China.
| | - Xiaoyi Shan
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Du W, Lu Y, Li Q, Luo S, Shen S, Li N, Chen X. TIR1/AFB proteins: Active players in abiotic and biotic stress signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:1083409. [PMID: 36523629 PMCID: PMC9745157 DOI: 10.3389/fpls.2022.1083409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The TIR1/AFB family of proteins is a group of functionally diverse auxin receptors that are only found in plants. TIR1/AFB family members are characterized by a conserved N-terminal F-box domain followed by 18 leucine-rich repeats. In the past few decades, extensive research has been conducted on the role of these proteins in regulating plant development, metabolism, and responses to abiotic and biotic stress. In this review, we focus on TIR1/AFB proteins that play crucial roles in plant responses to diverse abiotic and biotic stress. We highlight studies that have shed light on the mechanisms by which TIR1/AFB proteins are regulated at the transcriptional and post-transcriptional as well as the downstream in abiotic or biotic stress pathways regulated by the TIR1/AFB family.
Collapse
Affiliation(s)
- Wenchao Du
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yang Lu
- Hebei University Characteristic sericulture Application Technology Research and Development Center, Institute of Sericulture, Chengde Medical University, Chengde, China
| | - Qiang Li
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuangxia Luo
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxing Shen
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Na Li
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
11
|
PIF7 is a master regulator of thermomorphogenesis in shade. Nat Commun 2022; 13:4942. [PMID: 36038577 PMCID: PMC9424238 DOI: 10.1038/s41467-022-32585-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/06/2022] [Indexed: 11/26/2022] Open
Abstract
The size of plant organs is highly responsive to environmental conditions. The plant’s embryonic stem, or hypocotyl, displays phenotypic plasticity, in response to light and temperature. The hypocotyl of shade avoiding species elongates to outcompete neighboring plants and secure access to sunlight. Similar elongation occurs in high temperature. However, it is poorly understood how environmental light and temperature cues interact to effect plant growth. We found that shade combined with warm temperature produces a synergistic hypocotyl growth response that dependent on PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) and auxin. This unique but agriculturally relevant scenario was almost totally independent on PIF4 activity. We show that warm temperature is sufficient to promote PIF7 DNA binding but not transcriptional activation and we demonstrate that additional, unknown factor/s must be working downstream of the phyB-PIF-auxin module. Our findings will improve the predictions of how plants will respond to increased ambient temperatures when grown at high density. Plant hypocotyl elongation response to light and temperature. Here the authors show that shade combined with warm temperature synergistically enhances the hypocotyl growth response via the PIF7 transcription factor, auxin, and as yet unknown factor.
Collapse
|
12
|
Muñoz A, Mangano S, Toribio R, Fernández‐Calvino L, del Pozo JC, Castellano MM. The co-chaperone HOP participates in TIR1 stabilisation and in auxin response in plants. PLANT, CELL & ENVIRONMENT 2022; 45:2508-2519. [PMID: 35610185 PMCID: PMC9541403 DOI: 10.1111/pce.14366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/13/2022] [Accepted: 05/15/2022] [Indexed: 05/25/2023]
Abstract
HOP (HSP70-HSP90 organising protein) is a conserved family of co-chaperones well known in mammals for its role in the folding of signalling proteins associated with development. In plants, HOP proteins have been involved in the response to multiple stresses, but their role in plant development remains elusive. Herein, we describe that the members of the HOP family participate in different aspects of plant development as well as in the response to warm temperatures through the regulation of auxin signalling. Arabidopsis hop1 hop2 hop3 triple mutant shows different auxin-related phenotypes and a reduced auxin sensitivity. HOP interacts with TIR1 auxin coreceptor in vivo. Furthermore, TIR1 accumulation and auxin transcriptional response are reduced in the hop1 hop2 hop3 triple mutant, suggesting that HOP's function in auxin signalling is related, at least, to TIR1 interaction and stabilisation. Interestingly, HOP proteins form part of the same complexes as SGT1b (a different HSP90 co-chaperone) and these co-chaperones synergistically cooperate in auxin signalling. This study provides relevant data about the role of HOP in auxin regulation in plants and uncovers that both co-chaperones, SGT1b and HOP, cooperate in the stabilisation of common targets involved in plant development.
Collapse
Affiliation(s)
- Alfonso Muñoz
- Centro de Biotecnología y Genómica de Plantas. Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria‐CSIC (INIA/CSIC)Campus de Montegancedo UPMPozuelo de AlarcónMadridSpain
- Departamento de Botánica, Ecología y Fisiología VegetalUniversidad de Córdoba, Campus de RabanalesCórdobaSpain
| | - Silvina Mangano
- Centro de Biotecnología y Genómica de Plantas. Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria‐CSIC (INIA/CSIC)Campus de Montegancedo UPMPozuelo de AlarcónMadridSpain
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBA, CONICET)Buenos AiresArgentina
| | - René Toribio
- Centro de Biotecnología y Genómica de Plantas. Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria‐CSIC (INIA/CSIC)Campus de Montegancedo UPMPozuelo de AlarcónMadridSpain
| | - Lourdes Fernández‐Calvino
- Centro de Biotecnología y Genómica de Plantas. Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria‐CSIC (INIA/CSIC)Campus de Montegancedo UPMPozuelo de AlarcónMadridSpain
| | - Juan C. del Pozo
- Centro de Biotecnología y Genómica de Plantas. Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria‐CSIC (INIA/CSIC)Campus de Montegancedo UPMPozuelo de AlarcónMadridSpain
| | - M. Mar Castellano
- Centro de Biotecnología y Genómica de Plantas. Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria‐CSIC (INIA/CSIC)Campus de Montegancedo UPMPozuelo de AlarcónMadridSpain
| |
Collapse
|
13
|
Mino M, Tezuka T, Shomura S. The hybrid lethality of interspecific F 1 hybrids of Nicotiana: a clue to understanding hybrid inviability-a major obstacle to wide hybridization and introgression breeding of plants. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:10. [PMID: 37309322 PMCID: PMC10248639 DOI: 10.1007/s11032-022-01279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Reproductive isolation poses a major obstacle to wide hybridization and introgression breeding of plants. Hybrid inviability in the postzygotic isolation barrier inevitably reduces hybrid fitness, consequently causing hindrances in the establishment of novel genotypes from the hybrids among genetically divergent parents. The idea that the plant immune system is involved in the hybrid problem is applicable to the intra- and/or interspecific hybrids of many different taxa. The lethality characteristics and expression profile of genes associated with the hypersensitive response of the hybrids, along with the suppression of causative genes, support the deleterious epistatic interaction of parental NB-LRR protein genes, resulting in aberrant hyper-immunity reactions in the hybrid. Moreover, the cellular, physiological, and biochemical reactions observed in hybrid cells also corroborate this hypothesis. However, the difference in genetic backgrounds of the respective hybrids may contribute to variations in lethality phenotypes among the parental species combinations. The mixed state in parental components of the chaperone complex (HSP90-SGT1-RAR1) in the hybrid may also affect the hybrid inviability. This review article discusses the facts and hypothesis regarding hybrid inviability, alongside the findings of studies on the hybrid lethality of interspecific hybrids of the genus Nicotiana. A possible solution for averting the hybrid problem has also been scrutinized with the aim of improving the wide hybridization and introgression breeding program in plants.
Collapse
Affiliation(s)
- Masanobu Mino
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
- Present Address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku Sakai, Osaka, 599-8531 Japan
| | - Takahiro Tezuka
- Present Address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku Sakai, Osaka, 599-8531 Japan
| | - Sachiko Shomura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| |
Collapse
|
14
|
Muñoz A, Santamaria ME, Fernández-Bautista N, Mangano S, Toribio R, Martínez M, Berrocal-Lobo M, Diaz I, Castellano MM. The co-chaperone HOP3 participates in jasmonic acid signaling by regulating CORONATINE-INSENSITIVE 1 activity. PLANT PHYSIOLOGY 2021; 187:1679-1689. [PMID: 34618051 PMCID: PMC8566277 DOI: 10.1093/plphys/kiab334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/21/2021] [Indexed: 05/25/2023]
Abstract
HOPs (HSP70-HSP90 organizing proteins) are a highly conserved family of HSP70 and HSP90 co-chaperones whose role in assisting the folding of various hormonal receptors has been extensively studied in mammals. In plants, HOPs are mainly associated with stress response, but their potential involvement in hormonal networks remains completely unexplored. In this article we describe that a member of the HOP family, HOP3, is involved in the jasmonic acid (JA) pathway and is linked to plant defense responses not only to pathogens, but also to a generalist herbivore. The JA pathway regulates responses to Botrytis cinerea infection and to Tetranychus urticae feeding; our data demonstrate that the Arabidopsis (Arabidopsis thaliana) hop3-1 mutant shows an increased susceptibility to both. The hop3-1 mutant exhibits reduced sensitivity to JA derivatives in root growth assays and downregulation of different JA-responsive genes in response to methyl jasmonate, further revealing the relevance of HOP3 in the JA pathway. Interestingly, yeast two-hybrid assays and in planta co-immunoprecipitation assays found that HOP3 interacts with COI1, suggesting that COI1 is a target of HOP3. Consistent with this observation, COI1 activity is reduced in the hop3-1 mutant. All these data strongly suggest that, specifically among HOPs, HOP3 plays a relevant role in the JA pathway by regulating COI1 activity in response to JA and, consequently, participating in defense signaling to biotic stresses.
Collapse
Affiliation(s)
- Alfonso Muñoz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Botánica, Ecología y Fisiología Vegetal, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, Córdoba 14071, Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Nuria Fernández-Bautista
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Silvina Mangano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBA, CONICET), Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - René Toribio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Manuel Martínez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM 28040, Madrid, Spain
| | - Marta Berrocal-Lobo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes, Forestal y del Medio Natural, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM 28040, Madrid, Spain
| | - M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
15
|
Chapman AVE, Hunt M, Surana P, Velásquez-Zapata V, Xu W, Fuerst G, Wise RP. Disruption of barley immunity to powdery mildew by an in-frame Lys-Leu deletion in the essential protein SGT1. Genetics 2021; 217:6043926. [PMID: 33724411 DOI: 10.1093/genetics/iyaa026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/04/2020] [Indexed: 01/22/2023] Open
Abstract
Barley (Hordeum vulgare L.) Mla (Mildew resistance locus a) and its nucleotide-binding, leucine-rich-repeat receptor (NLR) orthologs protect many cereal crops from diseases caused by fungal pathogens. However, large segments of the Mla pathway and its mechanisms remain unknown. To further characterize the molecular interactions required for NLR-based immunity, we used fast-neutron mutagenesis to screen for plants compromised in MLA-mediated response to the powdery mildew fungus, Blumeria graminis f. sp. hordei. One variant, m11526, contained a novel mutation, designated rar3 (required for Mla6 resistance3), that abolishes race-specific resistance conditioned by the Mla6, Mla7, and Mla12 alleles, but does not compromise immunity mediated by Mla1, Mla9, Mla10, and Mla13. This is analogous to, but unique from, the differential requirement of Mla alleles for the co-chaperone Rar1 (required for Mla12 resistance1). We used bulked-segregant-exome capture and fine mapping to delineate the causal mutation to an in-frame Lys-Leu deletion within the SGS domain of SGT1 (Suppressor of G-two allele of Skp1, Sgt1ΔKL308-309), the structural region that interacts with MLA proteins. In nature, mutations to Sgt1 usually cause lethal phenotypes, but here we pinpoint a unique modification that delineates its requirement for some disease resistances, while unaffecting others as well as normal cell processes. Moreover, the data indicate that the requirement of SGT1 for resistance signaling by NLRs can be delimited to single sites on the protein. Further study could distinguish the regions by which pathogen effectors and host proteins interact with SGT1, facilitating precise editing of effector incompatible variants.
Collapse
Affiliation(s)
- Antony V E Chapman
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA.,Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Matthew Hunt
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA.,Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Priyanka Surana
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA.,Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
| | - Valeria Velásquez-Zapata
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA.,Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
| | - Weihui Xu
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Greg Fuerst
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA.,Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, IA 50011, USA
| | - Roger P Wise
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA.,Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA.,Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA.,Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, IA 50011, USA
| |
Collapse
|
16
|
The Lotus japonicus AFB6 Gene Is Involved in the Auxin Dependent Root Developmental Program. Int J Mol Sci 2021; 22:ijms22168495. [PMID: 34445201 PMCID: PMC8395167 DOI: 10.3390/ijms22168495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Auxin is essential for root development, and its regulatory action is exerted at different steps from perception of the hormone up to transcriptional regulation of target genes. In legume plants there is an overlap between the developmental programs governing lateral root and N2-fixing nodule organogenesis, the latter induced as the result of the symbiotic interaction with rhizobia. Here we report the characterization of a member of the L. japonicus TIR1/AFB auxin receptor family, LjAFB6. A preferential expression of the LjAFB6 gene in the aerial portion of L. japonicus plants was observed. Significant regulation of the expression was not observed during the symbiotic interaction with Mesorhizobium loti and the nodule organogenesis process. In roots, the LjAFB6 expression was induced in response to nitrate supply and was mainly localized in the meristematic regions of both primary and lateral roots. The phenotypic analyses conducted on two independent null mutants indicated a specialized role in the control of primary and lateral root elongation processes in response to auxin, whereas no involvement in the nodulation process was found. We also report the involvement of LjAFB6 in the hypocotyl elongation process and in the control of the expression profile of an auxin-responsive gene.
Collapse
|
17
|
Wang Z, Yu A, Li F, Xu W, Han B, Cheng X, Liu A. Bulked segregant analysis reveals candidate genes responsible for dwarf formation in woody oilseed crop castor bean. Sci Rep 2021; 11:6277. [PMID: 33737619 PMCID: PMC7973431 DOI: 10.1038/s41598-021-85644-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/15/2021] [Indexed: 11/24/2022] Open
Abstract
Plant dwarfism is a desirable agronomic trait in non-timber trees, but little is known about the physiological and molecular mechanism underlying dwarfism in woody plants. Castor bean (Ricinus communis) is a typical woody oilseed crop. We performed cytological observations within xylem, phloem and cambia tissues, revealing that divergent cell growth in all tissues might play a role in the dwarf phenotype in cultivated castor bean. Based on bulked segregant analyses for a F2 population generated from the crossing of a tall and a dwarf accession, we identified two QTLs associated with plant height, covering 325 candidate genes. One of these, Rc5NG4-1 encoding a putative IAA transport protein localized in the tonoplast was functionally characterized. A non-synonymous SNP (altering the amino acid sequence from Y to C at position 218) differentiated the tall and dwarf plants and we confirmed, through heterologous yeast transformation, that the IAA uptake capacities of Rc5NG4-1Y and Rc5NG4-1C were significantly different. This study provides insights into the physiological and molecular mechanisms of dwarfing in woody non-timber economically important plants, with potential to aid in the genetic breeding of castor bean and other related crops.
Collapse
Affiliation(s)
- Zaiqing Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Anmin Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Fei Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Han
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomao Cheng
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
18
|
Zhou X, Zheng Y, Cai Z, Wang X, Liu Y, Yu A, Chen X, Liu J, Zhang Y, Wang A. Identification and Functional Analysis of Tomato TPR Gene Family. Int J Mol Sci 2021; 22:E758. [PMID: 33451131 PMCID: PMC7828616 DOI: 10.3390/ijms22020758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
Tomato (Solanum lycopersicum) as an important vegetable grown around the world is threatened by many diseases, which seriously affects its yield. Therefore, studying the interaction between tomato and pathogenic bacteria is biologically and economically important. The TPR (Tetratricopeptide repeat) gene family is a class of genes containing TPR conserved motifs, which are widely involved in cell cycle regulation, gene expression, protein degradation and other biological processes. The functions of TPR gene in Arabidopsis and wheat plants have been well studied, but the research on TPR genes in tomato is not well studied. In this study, 26 TPR gene families were identified using bioinformatics based on tomato genome data, and they were analyzed for subcellular localization, phylogenetic evolution, conserved motifs, tissue expression, and GO (Gene Ontology) analysis. The qRT-PCR was used to detect the expression levels of each member of the tomato TPR gene family (SlTPRs) under biological stress (Botrytis cinerea) and abiotic stress such as drought and abscisic acid (ABA). The results showed that members of the tomato TPR family responded to various abiotic stresses and Botrytis cinerea stress, and the SlTPR2 and SlTPR4 genes changed significantly under different stresses. Using VIGS (Virus-induced gene silencing) technology to silence these two genes, the silenced plants showed reduced disease resistance. It was also shown that TPR4 can interact with atpA which encodes a chloroplast ATP synthase CF1 α subunit. The above results provide a theoretical basis for further exploring the molecular mechanism of TPR-mediated resistance in disease defense, and also provide a foundation for tomato disease resistance breeding.
Collapse
Affiliation(s)
- Xi’nan Zhou
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (Z.C.); (X.W.); (A.Y.)
| | - Yangyang Zheng
- College of Plant Protection, China Agricultural University, Beijing 100000, China; (Y.Z.); (Y.L.)
| | - Zhibo Cai
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (Z.C.); (X.W.); (A.Y.)
| | - Xingyuan Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (Z.C.); (X.W.); (A.Y.)
| | - Yang Liu
- College of Plant Protection, China Agricultural University, Beijing 100000, China; (Y.Z.); (Y.L.)
| | - Anzhou Yu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (Z.C.); (X.W.); (A.Y.)
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| | - Jiayin Liu
- College of Sciences, Northeast Agricultural University, Harbin 150030, China;
| | - Yao Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (Z.C.); (X.W.); (A.Y.)
| | - Aoxue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (Z.C.); (X.W.); (A.Y.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| |
Collapse
|
19
|
Todd OE, Figueiredo MRA, Morran S, Soni N, Preston C, Kubeš MF, Napier R, Gaines TA. Synthetic auxin herbicides: finding the lock and key to weed resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110631. [PMID: 33180710 DOI: 10.1016/j.plantsci.2020.110631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Synthetic auxin herbicides are designed to mimic indole-3-acetic acid (IAA), an integral plant hormone affecting cell growth, development, and tropism. In this review, we explore target site genes in the auxin signaling pathway including SCFTIR1/AFB, Aux/IAA, and ARFs that are confirmed or proposed mechanisms for weed resistance to synthetic auxin herbicides. Resistance to auxin herbicides by metabolism, either by enhanced cytochrome P450 detoxification or by loss of pro-herbicide activation, is a major non-target-site resistance pathway. We speculate about potential fitness costs of resistance due to effects of resistance-conferring mutations, provide insight into the role of polyploidy in synthetic auxin resistance evolution, and address the genetic resources available for weeds. This knowledge will be the key to unlock the long-standing questions as to which components of the auxin signaling pathway are most likely to have a role in resistance evolution. We propose that an ambitious research effort into synthetic auxin herbicide/target site interactions is needed to 1) explain why some synthetic auxin chemical families have activity on certain dicot plant families but not others and 2) fully elucidate target-site cross-resistance patterns among synthetic auxin chemical families to guide best practices for resistance management.
Collapse
Affiliation(s)
- Olivia E Todd
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Marcelo R A Figueiredo
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Sarah Morran
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Neeta Soni
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Christopher Preston
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5005, Australia.
| | - Martin F Kubeš
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Richard Napier
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Todd A Gaines
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| |
Collapse
|
20
|
Tichá T, Samakovli D, Kuchařová A, Vavrdová T, Šamaj J. Multifaceted roles of HEAT SHOCK PROTEIN 90 molecular chaperones in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3966-3985. [PMID: 32293686 DOI: 10.1093/jxb/eraa177] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
HEAT SHOCK PROTEINS 90 (HSP90s) are molecular chaperones that mediate correct folding and stability of many client proteins. These chaperones act as master molecular hubs involved in multiple aspects of cellular and developmental signalling in diverse organisms. Moreover, environmental and genetic perturbations affect both HSP90s and their clients, leading to alterations of molecular networks determining respectively plant phenotypes and genotypes and contributing to a broad phenotypic plasticity. Although HSP90 interaction networks affecting the genetic basis of phenotypic variation and diversity have been thoroughly studied in animals, such studies are just starting to emerge in plants. Here, we summarize current knowledge and discuss HSP90 network functions in plant development and cellular homeostasis.
Collapse
Affiliation(s)
- Tereza Tichá
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Despina Samakovli
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Anna Kuchařová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tereza Vavrdová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
21
|
Zhang H, Li L, He Y, Qin Q, Chen C, Wei Z, Tan X, Xie K, Zhang R, Hong G, Li J, Li J, Yan C, Yan F, Li Y, Chen J, Sun Z. Distinct modes of manipulation of rice auxin response factor OsARF17 by different plant RNA viruses for infection. Proc Natl Acad Sci U S A 2020; 117:9112-9121. [PMID: 32253321 PMCID: PMC7183187 DOI: 10.1073/pnas.1918254117] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied roles of ARF transcription factors in plant growth and development, it is largely unknown whether, and how, ARF transcription factors may be involved in plant resistance to pathogens. We show here that two fijiviruses (double-stranded RNA viruses) utilize their proteins to disturb the dimerization of OsARF17 and repress its transcriptional activation ability, while a tenuivirus (negative-sense single-stranded RNA virus) directly interferes with the DNA binding activity of OsARF17. These interactions impair OsARF17-mediated antiviral defense. OsARF17 also confers resistance to a cytorhabdovirus and was directly targeted by one of the viral proteins. Thus, OsARF17 is the common target of several very different viruses. This suggests that OsARF17 plays a crucial role in plant defense against different types of plant viruses, and that these viruses use independently evolved viral proteins to target this key component of auxin signaling and facilitate infection.
Collapse
Affiliation(s)
- Hehong Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Lulu Li
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Yuqing He
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Qingqing Qin
- College of Life Sciences, Peking University, 100871 Beijing, China
| | - Changhai Chen
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Zhongyan Wei
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Xiaoxiang Tan
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Kaili Xie
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Ruifang Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Gaojie Hong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Jing Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Junmin Li
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Chengqi Yan
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Fei Yan
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Yi Li
- College of Life Sciences, Peking University, 100871 Beijing, China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China;
| | - Zongtao Sun
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China;
| |
Collapse
|
22
|
Zheng Z, Hey S, Jubery T, Liu H, Yang Y, Coffey L, Miao C, Sigmon B, Schnable JC, Hochholdinger F, Ganapathysubramanian B, Schnable PS. Shared Genetic Control of Root System Architecture between Zea mays and Sorghum bicolor. PLANT PHYSIOLOGY 2020; 182:977-991. [PMID: 31740504 PMCID: PMC6997706 DOI: 10.1104/pp.19.00752] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/03/2019] [Indexed: 05/08/2023]
Abstract
Determining the genetic control of root system architecture (RSA) in plants via large-scale genome-wide association study (GWAS) requires high-throughput pipelines for root phenotyping. We developed Core Root Excavation using Compressed-air (CREAMD), a high-throughput pipeline for the cleaning of field-grown roots, and Core Root Feature Extraction (COFE), a semiautomated pipeline for the extraction of RSA traits from images. CREAMD-COFE was applied to diversity panels of maize (Zea mays) and sorghum (Sorghum bicolor), which consisted of 369 and 294 genotypes, respectively. Six RSA-traits were extracted from images collected from >3,300 maize roots and >1,470 sorghum roots. Single nucleotide polymorphism (SNP)-based GWAS identified 87 TAS (trait-associated SNPs) in maize, representing 77 genes and 115 TAS in sorghum. An additional 62 RSA-associated maize genes were identified via expression read depth GWAS. Among the 139 maize RSA-associated genes (or their homologs), 22 (16%) are known to affect RSA in maize or other species. In addition, 26 RSA-associated genes are coregulated with genes previously shown to affect RSA and 51 (37% of RSA-associated genes) are themselves transe-quantitative trait locus for another RSA-associated gene. Finally, the finding that RSA-associated genes from maize and sorghum included seven pairs of syntenic genes demonstrates the conservation of regulation of morphology across taxa.
Collapse
Affiliation(s)
- Zihao Zheng
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, Iowa 50011
| | - Stefan Hey
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Talukder Jubery
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011
| | - Huyu Liu
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, Iowa 50011
- Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Yu Yang
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Lisa Coffey
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Chenyong Miao
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Brandi Sigmon
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | | | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, Iowa 50011
- Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
Williams C, Fernández-Calvo P, Colinas M, Pauwels L, Goossens A. Jasmonate and auxin perception: how plants keep F-boxes in check. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3401-3414. [PMID: 31173086 DOI: 10.1093/jxb/erz272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/29/2019] [Indexed: 05/24/2023]
Abstract
Phytohormones regulate the plasticity of plant growth and development, and responses to biotic and abiotic stresses. Many hormone signal transduction cascades involve ubiquitination and subsequent degradation of proteins by the 26S proteasome. The conjugation of ubiquitin to a substrate is facilitated by the E1 activating, E2 conjugating, and the substrate-specifying E3 ligating enzymes. The most prevalent type of E3 ligase in plants is the Cullin-RING ligase (CRL)-type, with F-box proteins (FBPs) as the substrate recognition component. The activity of these SKP-Cullin-F-box (SCF) complexes needs to be tightly regulated in time and place. Here, we review the regulation of SCF function in plants on multiple levels, with a focus on the auxin and jasmonate SCF-type receptor complexes. We discuss in particular the relevance of protein-protein interactions and post-translational modifications as mechanisms to keep SCF functioning under control. Additionally, we highlight the unique property of SCFTIR1/AFB and SCFCOI1 to recognize substrates by forming co-receptor complexes. Finally, we explore how engineered selective agonists can be used to study and uncouple the outcomes of the complex auxin and jasmonate signaling networks that are governed by these FBPs.
Collapse
Affiliation(s)
- Clara Williams
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Centre for Plant Biotechnology and Genomics, Parque Cientifico y Tecnologico, UPM Campus de Montegancedo, Madrid, Spain
| | - Maite Colinas
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Laurens Pauwels
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
24
|
Donato M, Geisler M. HSP
90 and co‐chaperones: a multitaskers’ view on plant hormone biology. FEBS Lett 2019; 593:1415-1430. [DOI: 10.1002/1873-3468.13499] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Martin Donato
- Department of Biology University of Fribourg Switzerland
| | - Markus Geisler
- Department of Biology University of Fribourg Switzerland
| |
Collapse
|
25
|
Fernández-Bautista N, Fernández-Calvino L, Muñoz A, Toribio R, Mock HP, Castellano MM. HOP family plays a major role in long-term acquired thermotolerance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2018; 41:1852-1869. [PMID: 29740845 DOI: 10.1111/pce.13326] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
HSP70-HSP90 organizing protein (HOP) is a family of cytosolic cochaperones whose molecular role in thermotolerance is quite unknown in eukaryotes and unexplored in plants. In this article, we describe that the three members of the AtHOP family display a different induction pattern under heat, being HOP3 highly regulated during the challenge and the attenuation period. Despite HOP3 is the most heat-regulated member, the analysis of the hop1 hop2 hop3 triple mutant demonstrates that the three HOP proteins act redundantly to promote long-term acquired thermotolerance in Arabidopsis. HOPs interact strongly with HSP90 and part of the bulk of HOPs shuttles from the cytoplasm to the nuclei and to cytoplasmic foci during the challenge. RNAseq analyses demonstrate that, although the expression of the Hsf targets is not generally affected, the transcriptional response to heat is drastically altered during the acclimation period in the hop1 hop2 hop3 triple mutant. This mutant also displays an unusual high accumulation of insoluble and ubiquitinated proteins under heat, which highlights the additional role of HOP in protein quality control. These data reveal that HOP family is involved in different aspects of the response to heat, affecting the plant capacity to acclimate to high temperatures for long periods.
Collapse
Affiliation(s)
- Nuria Fernández-Bautista
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Lourdes Fernández-Calvino
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Alfonso Muñoz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - René Toribio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Hans P Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Gatersleben, Germany
| | - M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
26
|
Vishwakarma H, Junaid A, Manjhi J, Singh GP, Gaikwad K, Padaria JC. Heat stress transcripts, differential expression, and profiling of heat stress tolerant gene TaHsp90 in Indian wheat (Triticum aestivum L.) cv C306. PLoS One 2018; 13:e0198293. [PMID: 29939987 PMCID: PMC6016904 DOI: 10.1371/journal.pone.0198293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Abstract
To generate a genetic resource of heat stress responsive genes/ESTs, suppression subtractive hybridization (SSH) library was constructed in a heat and drought stress tolerant Indian bread wheat cultivar C306. Ninety three days old plants during grain filling stage were subjected to heat stress at an elevated temperature of 37°C and 42°C for different time intervals (30 min, 1h, 2h, 4h, and 6h). Two subtractive cDNA libraries were prepared with RNA isolated from leaf samples at 37°C and 42°C heat stress. The ESTs obtained were reconfirmed by reverse northern dot blot hybridization. A total of 175 contigs and 403 singlets were obtained from 1728 ESTs by gene ontology analysis. Differential expression under heat stress was validated for a few selected genes (10) by qRT-PCR. A transcript showing homology to Hsp90 was observed to be upregulated (7.6 fold) under heat stress in cv. C306. CDS of TaHsp90 (Accession no. MF383197) was isolated from cv. C306 and characterized. Heterologous expression of TaHsp90 was validated in E. coli BL21 and confirmed by protein gel blot and MALDI-TOF analysis. Computational based analysis was carried out to understand the molecular functioning of TaHsp90. The heat stress responsive SSH library developed led to identification of a number of heat responsive genes/ESTs, which can be utilized for unravelling the heat tolerance mechanism in wheat. Gene TaHsp90 isolated and characterized in the present study can be utilized for developing heat tolerant transgenic crops.
Collapse
Affiliation(s)
| | - Alim Junaid
- National Research Centre on Plant Biotechnology, Pusa campus, New Delhi, India
| | | | | | - Kishor Gaikwad
- National Research Centre on Plant Biotechnology, Pusa campus, New Delhi, India
| | | |
Collapse
|
27
|
Ichihashi Y, Kusano M, Kobayashi M, Suetsugu K, Yoshida S, Wakatake T, Kumaishi K, Shibata A, Saito K, Shirasu K. Transcriptomic and Metabolomic Reprogramming from Roots to Haustoria in the Parasitic Plant, Thesium chinense. PLANT & CELL PHYSIOLOGY 2018; 59:724-733. [PMID: 29281058 PMCID: PMC6018956 DOI: 10.1093/pcp/pcx200] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/07/2017] [Indexed: 05/22/2023]
Abstract
Most plants show remarkable developmental plasticity in the generation of diverse types of new organs upon external stimuli, allowing them to adapt to their environment. Haustorial formation in parasitic plants is an example of such developmental reprogramming, but its molecular mechanism is largely unknown. In this study, we performed field-omics using transcriptomics and metabolomics to profile the molecular switch occurring in haustorial formation of the root parasitic plant, Thesium chinense, collected from its natural habitat. RNA-sequencing with de novo assembly revealed that the transcripts of very long chain fatty acid (VLCFA) biosynthesis genes, auxin biosynthesis/signaling-related genes and lateral root developmental genes are highly abundant in the haustoria. Gene co-expression network analysis identified a network module linking VLCFAs and the auxin-responsive lateral root development pathway. GC-TOF-MS analysis consistently revealed a unique metabolome profile with many types of fatty acids in the T. chinense root system, including the accumulation of a 25-carbon long chain saturated fatty acid in the haustoria. Our field-omics data provide evidence supporting the hypothesis that the molecular developmental machinery used for lateral root formation in non-parasitic plants has been co-opted into the developmental reprogramming of haustorial formation in the linage of parasitic plants.
Collapse
Affiliation(s)
- Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- JST, PRESTO, Kawaguchi, Saitama, 332-0012 Japan
- Corresponding authors: Y. Ichihashi, E-mail, ; K. Shirasu, E-mail,
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Satoko Yoshida
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Takanori Wakatake
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Kie Kumaishi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Arisa Shibata
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675 Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033 Japan
- Corresponding authors: Y. Ichihashi, E-mail, ; K. Shirasu, E-mail,
| |
Collapse
|
28
|
Hammoudi V, Fokkens L, Beerens B, Vlachakis G, Chatterjee S, Arroyo-Mateos M, Wackers PFK, Jonker MJ, van den Burg HA. The Arabidopsis SUMO E3 ligase SIZ1 mediates the temperature dependent trade-off between plant immunity and growth. PLoS Genet 2018; 14:e1007157. [PMID: 29357355 PMCID: PMC5794169 DOI: 10.1371/journal.pgen.1007157] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 02/01/2018] [Accepted: 12/14/2017] [Indexed: 12/21/2022] Open
Abstract
Increased ambient temperature is inhibitory to plant immunity including auto-immunity. SNC1-dependent auto-immunity is, for example, fully suppressed at 28°C. We found that the Arabidopsis sumoylation mutant siz1 displays SNC1-dependent auto-immunity at 22°C but also at 28°C, which was EDS1 dependent at both temperatures. This siz1 auto-immune phenotype provided enhanced resistance to Pseudomonas at both temperatures. Moreover, the rosette size of siz1 recovered only weakly at 28°C, while this temperature fully rescues the growth defects of other SNC1-dependent auto-immune mutants. This thermo-insensitivity of siz1 correlated with a compromised thermosensory growth response, which was independent of the immune regulators PAD4 or SNC1. Our data reveal that this high temperature induced growth response strongly depends on COP1, while SIZ1 controls the amplitude of this growth response. This latter notion is supported by transcriptomics data, i.e. SIZ1 controls the amplitude and timing of high temperature transcriptional changes including a subset of the PIF4/BZR1 gene targets. Combined our data signify that SIZ1 suppresses an SNC1-dependent resistance response at both normal and high temperatures. At the same time, SIZ1 amplifies the dark and high temperature growth response, likely via COP1 and upstream of gene regulation by PIF4 and BRZ1.
Collapse
Affiliation(s)
- Valentin Hammoudi
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Like Fokkens
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Bas Beerens
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Georgios Vlachakis
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Paul F K Wackers
- RNA Biology and Applied Bioinformatics, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijs J Jonker
- RNA Biology and Applied Bioinformatics, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
29
|
Han S, Hwang I. Integration of multiple signaling pathways shapes the auxin response. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:189-200. [PMID: 28992118 DOI: 10.1093/jxb/erx232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phytohormone auxin is a pivotal signaling molecule that functions throughout the plant lifecycle. Proper regulation of the auxin response is critical for optimizing plant growth under ever-changing environmental conditions. Recent studies have demonstrated that the signaling components that modulate auxin sensitivity and responses are functionally and mechanically diverse. In addition to auxin itself, various environmental and hormonal signals are integrated to modulate the auxin response through directly controlling auxin signaling components. This review explores the non-canonical mechanisms that modulate auxin signaling components, including transcriptional, translational, and post-translational regulation. All of these contribute to the wide range in sensitivity and complexity in auxin responses to various signaling cues.
Collapse
Affiliation(s)
- Soeun Han
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Republic of Korea
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Republic of Korea
| |
Collapse
|
30
|
Abstract
Auxin triggers diverse responses in plants, and this is reflected in quantitative and qualitative diversity in the auxin signaling machinery.
Collapse
Affiliation(s)
- Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| |
Collapse
|
31
|
Park SC, Cheong MS, Kim EJ, Kim JH, Chi YH, Jang MK. Antifungal Effect of Arabidopsis SGT1 Proteins via Mitochondrial Reactive Oxygen Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8340-8347. [PMID: 28871788 DOI: 10.1021/acs.jafc.7b02808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The highly conserved SGT1 (suppressor of the G2 alleles of skp1) proteins from Arabidopsis are known to contribute to plant resistance to pathogens. While SGT1 proteins respond to fungal pathogens, their antifungal activity is not reported and the mechanism for this inhibition is not well understood. Therefore, recombinant Arabidopsis SGT1 proteins were cloned, expressed, and purified to evaluate their antifungal activity, resulting in their potent inhibition of pathogen growth. Dye-labeled proteins are localized to the cytosol of Candida albicans cells without the disruption of the cell membrane. Moreover, we showed that entry of the proteins into C. albicans cells resulted in the accumulation of reactive oxygen species (ROS) and cell death via altered mitochondrial potential. Morphological changes of C. albicans cells in the presence of proteins were visualized by scanning electron microscopy. Our data suggest that AtSGT1 proteins play a critical role in plant resistance to pathogenic fungal infection and they can be classified to a new plant antifungal protein.
Collapse
Affiliation(s)
- Seong-Cheol Park
- Department of Polymer Science and Engineering, Sunchon National University , Suncheon, 57922, Korea
| | - Mi Sun Cheong
- Division of Applied Life Sciences (BK21+) and PMBBRC, Gyeongsang National University , Jinju 52828, Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University , Jinju 52828, Korea
| | - Eun-Ji Kim
- Department of Polymer Science and Engineering, Sunchon National University , Suncheon, 57922, Korea
| | - Jin Hyo Kim
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University , Jinju 52828, Korea
| | - Yong Hun Chi
- Division of Applied Life Sciences (BK21+) and PMBBRC, Gyeongsang National University , Jinju 52828, Korea
| | - Mi-Kyeong Jang
- Department of Polymer Science and Engineering, Sunchon National University , Suncheon, 57922, Korea
| |
Collapse
|
32
|
Takahashi M, Umetsu K, Oono Y, Higaki T, Blancaflor EB, Rahman A. Small acidic protein 1 and SCF TIR1 ubiquitin proteasome pathway act in concert to induce 2,4-dichlorophenoxyacetic acid-mediated alteration of actin in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:940-956. [PMID: 27885735 DOI: 10.1111/tpj.13433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D), a functional analogue of auxin, is used as an exogenous source of auxin as it evokes physiological responses like the endogenous auxin, indole-3-acetic acid (IAA). Previous molecular analyses of the auxin response pathway revealed that IAA and 2,4-D share a common mode of action to elicit downstream physiological responses. However, recent findings with 2,4-D-specific mutants suggested that 2,4-D and IAA might also use distinct pathways to modulate root growth in Arabidopsis. Using genetic and cellular approaches, we demonstrate that the distinct effects of 2,4-D and IAA on actin filament organization partly dictate the differential responses of roots to these two auxin analogues. 2,4-D but not IAA altered the actin structure in long-term and short-term assays. Analysis of the 2,4-D-specific mutant aar1-1 revealed that small acidic protein 1 (SMAP1) functions positively to facilitate the 2,4-D-induced depolymerization of actin. The ubiquitin proteasome mutants tir1-1 and axr1-12, which show enhanced resistance to 2,4-D compared with IAA for inhibition of root growth, were also found to have less disrupted actin filament networks after 2,4-D exposure. Consistently, a chemical inhibitor of the ubiquitin proteasome pathway mitigated the disrupting effects of 2,4-D on the organization of actin filaments. Roots of the double mutant aar1-1 tir1-1 also showed enhanced resistance to 2,4-D-induced inhibition of root growth and actin degradation compared with their respective parental lines. Collectively, these results suggest that the effects of 2,4-D on actin filament organization and root growth are mediated through synergistic interactions between SMAP1 and SCFTIR1 ubiquitin proteasome components.
Collapse
Affiliation(s)
- Maho Takahashi
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Kana Umetsu
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Yutaka Oono
- Department of Radiation-Applied Biology, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, 370-1292, Japan
| | - Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Elison B Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Abidur Rahman
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| |
Collapse
|
33
|
Zhang Y, Wang Y, Liu J, Ding Y, Wang S, Zhang X, Liu Y, Yang S. Temperature-dependent autoimmunity mediated by chs1 requires its neighboring TNL gene SOC3. THE NEW PHYTOLOGIST 2017; 213:1330-1345. [PMID: 27699788 DOI: 10.1111/nph.14216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/23/2016] [Indexed: 05/03/2023]
Abstract
Toll/interleukin receptor (TIR)-nucleotide binding site (NB)-type (TN) proteins are encoded by a family of 21 genes in the Arabidopsis genome. Previous studies have shown that a mutation in the TN gene CHS1 activates the activation of defense responses at low temperatures. However, the underlying molecular mechanism remains unknown. To genetically dissect chs1-mediated signaling, we isolated genetic suppressors of chs1-2 (soc). Several independent soc mutants carried mutations in the same TIR-NB-leucine-rich repeat (LRR) (TNL)-encoding gene SOC3, which is adjacent to CHS1 on chromosome 1. Expression of SOC3 was upregulated in the chs1-2 mutant. Mutations in six soc3 alleles and downregulation of SOC3 by an artificial microRNA construct fully rescued the chilling sensitivity and defense defects of chs1-2. Biochemical studies showed that CHS1 interacted with the NB and LRR domains of SOC3; however, mutated chs1 interacted with the TIR, NB and LRR domains of SOC3 in vitro and in vivo. This study reveals that the TN protein CHS1 interacts with the TNL protein SOC3 to modulate temperature-dependent autoimmunity.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuancong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jingyan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shanshan Wang
- Center for Plant Biology and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yule Liu
- Center for Plant Biology and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
34
|
Willhoft O, Kerr R, Patel D, Zhang W, Al-Jassar C, Daviter T, Millson SH, Thalassinos K, Vaughan CK. The crystal structure of the Sgt1-Skp1 complex: the link between Hsp90 and both SCF E3 ubiquitin ligases and kinetochores. Sci Rep 2017; 7:41626. [PMID: 28139700 PMCID: PMC5282575 DOI: 10.1038/srep41626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/21/2016] [Indexed: 12/05/2022] Open
Abstract
The essential cochaperone Sgt1 recruits Hsp90 chaperone activity to a range of cellular factors including SCF E3 ubiquitin ligases and the kinetochore in eukaryotes. In these pathways Sgt1 interacts with Skp1, a small protein that heterodimerizes with proteins containing the F-box motif. We have determined the crystal structure of the interacting domains of Saccharomyces cerevisiae Sgt1 and Skp1 at 2.8 Å resolution and validated the interface in the context of the full-length proteins in solution. The BTB/POZ domain of Skp1 associates with Sgt1 via the concave surface of its TPR domain using residues that are conserved in humans. Dimerization of yeast Sgt1 occurs via an insertion that is absent from monomeric human Sgt1. We identify point mutations that disrupt dimerization and Skp1 binding in vitro and find that the interaction with Skp1 is an essential function of Sgt1 in yeast. Our data provide a structural rationale for understanding the phenotypes of temperature-sensitive Sgt1 mutants and for linking Skp1-associated proteins to Hsp90-dependent pathways.
Collapse
Affiliation(s)
- Oliver Willhoft
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Richard Kerr
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Division of Biosciences, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Dipali Patel
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Wenjuan Zhang
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Caezar Al-Jassar
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Tina Daviter
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Stefan H Millson
- School of Life Sciences, Joseph Banks Laboratory, University of Lincoln, Lincoln, LN6 7TS, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Division of Biosciences, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Cara K Vaughan
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| |
Collapse
|
35
|
Watanabe E, Mano S, Nomoto M, Tada Y, Hara-Nishimura I, Nishimura M, Yamada K. HSP90 Stabilizes Auxin-Responsive Phenotypes by Masking a Mutation in the Auxin Receptor TIR1. PLANT & CELL PHYSIOLOGY 2016; 57:2245-2254. [PMID: 27816945 DOI: 10.1093/pcp/pcw170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/30/2016] [Indexed: 05/10/2023]
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that is required for the function of various substrate proteins, also known as client proteins. It is proposed that HSP90 buffers or hides phenotypic variations in animals and plants by masking mutations in some of its client proteins. However, none of the client proteins with cryptic mutations has been identified to date. Here, we identify the first client protein example by which HSP90 buffers a mutation: the auxin receptor transport inhibitor response 1 (TIR1). TIR1 interacts with HSP90 in the nucleus. An HSP90-specific inhibitor abolished the nuclear localization of TIR1 and the auxin-induced degradation of a TIR1-substrate, indicating that TIR1 is an HSP90 client protein. Plants with a null mutation in the TIR1 gene had a defect in auxin response, whereas plants with a point mutation in the TIR1 gene responded to auxin treatment in young seedlings, but a cryptic defect in its auxin response was exposed with HSP90 inhibitor treatment. These results demonstrate that HSP90 masks a point mutation in the auxin receptor TIR1 and thereby buffers auxin-responsive phenotypes.
Collapse
Affiliation(s)
- Etsuko Watanabe
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
- Present address: Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, 020-8550 Japan
| | - Shoji Mano
- Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Okazaki, 444-8585 Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585 Japan
| | - Mika Nomoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 Japan
| | - Yasuomi Tada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 Japan
- Center for Gene Research, Nagoya University, Nagoya, 464-8602 Japan
| | - Ikuko Hara-Nishimura
- Department of Botany; Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
- Present address: Faculty of Science and Engineering, Konan University, Kobe, 658-0073 Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
| | - Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
- Department of Botany; Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| |
Collapse
|
36
|
Lee IH, Lee IC, Kim J, Kim JH, Chung EH, Kim HJ, Park SJ, Kim YM, Kang SK, Nam HG, Woo HR, Lim PO. NORE1/SAUL1 integrates temperature-dependent defense programs involving SGT1b and PAD4 pathways and leaf senescence in Arabidopsis. PHYSIOLOGIA PLANTARUM 2016; 158:180-99. [PMID: 26910207 DOI: 10.1111/ppl.12434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 05/06/2023]
Abstract
Leaf senescence is not only primarily governed by developmental age but also influenced by various internal and external factors. Although some genes that control leaf senescence have been identified, the detailed regulatory mechanisms underlying integration of diverse senescence-associated signals into the senescence programs remain to be elucidated. To dissect the regulatory pathways involved in leaf senescence, we isolated the not oresara1-1 (nore1-1) mutant showing accelerated leaf senescence phenotypes from an EMS-mutagenized Arabidopsis thaliana population. We found that altered transcriptional programs in defense response-related processes were associated with the accelerated leaf senescence phenotypes observed in nore1-1 through microarray analysis. The nore1-1 mutation activated defense program, leading to enhanced disease resistance. Intriguingly, high ambient temperature effectively suppresses the early senescence and death phenotypes of nore1-1. The gene responsible for the phenotypes of nore1-1 contains a missense mutation in SENESCENCE-ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1), which was reported as a negative regulator of premature senescence in the light intensity- and PHYTOALEXIN DEFICIENT 4 (PAD4)-dependent manner. Through extensive double mutant analyses, we recently identified suppressor of the G2 Allele of SKP1b (SGT1b), one of the positive regulators for disease resistance conferred by many resistance (R) proteins, as a downstream signaling component in NORE1-mediated senescence and cell death pathways. In conclusion, NORE1/SAUL1 is a key factor integrating signals from temperature-dependent defense programs and leaf senescence in Arabidopsis. These findings provide a new insight that plants might utilize defense response program in regulating leaf senescence process, possibly through recruiting the related genes during the evolution of the leaf senescence program.
Collapse
Affiliation(s)
- Il Hwan Lee
- Department of Life Sciences, POSTECH, Pohang, 37673, Republic of Korea
| | - In Chul Lee
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Eui-Hwan Chung
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Hyo Jung Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Su Jin Park
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Yong Min Kim
- Department of Bioscience, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sin Kyu Kang
- Department of Bioscience, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea.
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
| | - Pyung Ok Lim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
37
|
Abstract
As a prominent regulator of plant growth and development, the hormone auxin plays an essential role in controlling cell division and expansion. Auxin-responsive gene transcription is mediated through the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) pathway. Roles for TIR1/AFB pathway components in auxin response are understood best, but additional factors implicated in auxin responses require more study. The function of these factors, including S-Phase Kinase-Associated Protein 2A (SKP2A), SMALL AUXIN UP RNAs (SAURs), INDOLE 3-BUTYRIC ACID RESPONSE5 (IBR5), and AUXIN BINDING PROTEIN1 (ABP1), has remained largely obscure. Recent advances have begun to clarify roles for these factors in auxin response while also raising additional questions to be answered.
Collapse
Affiliation(s)
- Samantha K Powers
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130-4899, USA
| | - Lucia C Strader
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130-4899, USA
| |
Collapse
|
38
|
Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M. HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 2016; 7:10269. [PMID: 26728313 PMCID: PMC4728404 DOI: 10.1038/ncomms10269] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/23/2015] [Indexed: 01/24/2023] Open
Abstract
Recent studies have revealed that a mild increase in environmental temperature stimulates the growth of Arabidopsis seedlings by promoting biosynthesis of the plant hormone auxin. However, little is known about the role of other factors in this process. In this report, we show that increased temperature promotes rapid accumulation of the TIR1 auxin co-receptor, an effect that is dependent on the molecular chaperone HSP90. In addition, we show that HSP90 and the co-chaperone SGT1 each interact with TIR1, confirming that TIR1 is an HSP90 client. Inhibition of HSP90 activity results in degradation of TIR1 and interestingly, defects in a range of auxin-mediated growth processes at lower as well as higher temperatures. Our results indicate that HSP90 and SGT1 integrate temperature and auxin signalling in order to regulate plant growth in a changing environment. A moderate increase in temperature promotes hypocotyl elongation in Arabidopsis. Here, Wang et al. show that elevated temperature not only increases auxin biosynthesis but also acts via the co-chaperones HSP90 and SGT1 to stabilize the TIR1 auxin receptor.
Collapse
Affiliation(s)
- Renhou Wang
- Section of Cell and Developmental Biology, University of San Diego California, Howard Hughes Medical Institute, 9500 Gilman Dr, La Jolla, California 92093, USA
| | - Yi Zhang
- Section of Cell and Developmental Biology, University of San Diego California, Howard Hughes Medical Institute, 9500 Gilman Dr, La Jolla, California 92093, USA
| | - Martin Kieffer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Hong Yu
- Section of Cell and Developmental Biology, University of San Diego California, Howard Hughes Medical Institute, 9500 Gilman Dr, La Jolla, California 92093, USA
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Estelle
- Section of Cell and Developmental Biology, University of San Diego California, Howard Hughes Medical Institute, 9500 Gilman Dr, La Jolla, California 92093, USA
| |
Collapse
|
39
|
Rodriguez-Salus M, Bektas Y, Schroeder M, Knoth C, Vu T, Roberts P, Kaloshian I, Eulgem T. The Synthetic Elicitor 2-(5-Bromo-2-Hydroxy-Phenyl)-Thiazolidine-4-Carboxylic Acid Links Plant Immunity to Hormesis. PLANT PHYSIOLOGY 2016; 170:444-58. [PMID: 26530314 PMCID: PMC4704575 DOI: 10.1104/pp.15.01058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/28/2015] [Indexed: 05/03/2023]
Abstract
Synthetic elicitors are drug-like compounds that induce plant immune responses but are structurally distinct from natural defense elicitors. Using high-throughput screening, we previously identified 114 synthetic elicitors that activate the expression of a pathogen-responsive reporter gene in Arabidopsis (Arabidopsis thaliana). Here, we report on the characterization of one of these compounds, 2-(5-bromo-2-hydroxy-phenyl)-thiazolidine-4-carboxylic acid (BHTC). BHTC induces disease resistance of plants against bacterial, oomycete, and fungal pathogens and has a unique mode of action and structure. Surprisingly, we found that low doses of BHTC enhanced root growth in Arabidopsis, while high doses of this compound inhibited root growth, besides inducing defense. These effects are reminiscent of the hormetic response, which is characterized by low-dose stimulatory effects of a wide range of agents that are toxic or inhibitory at higher doses. Like its effects on defense, BHTC-induced hormesis in Arabidopsis roots is partially dependent on the WRKY70 transcription factor. Interestingly, BHTC-induced root hormesis is also affected in the auxin-response mutants axr1-3 and slr-1. By messenger RNA sequencing, we uncovered a dramatic difference between transcriptional profiles triggered by low and high doses of BHTC. Only high levels of BHTC induce typical defense-related transcriptional changes. Instead, low BHTC levels trigger a coordinated intercompartmental transcriptional response manifested in the suppression of photosynthesis- and respiration-related genes in the nucleus, chloroplasts, and mitochondria as well as the induction of development-related nuclear genes. Taken together, our functional characterization of BHTC links defense regulation to hormesis and provides a hypothetical transcriptional scenario for the induction of hormetic root growth.
Collapse
Affiliation(s)
- Melinda Rodriguez-Salus
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| | - Yasemin Bektas
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| | - Mercedes Schroeder
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| | - Colleen Knoth
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| | - Trang Vu
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| | - Philip Roberts
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| | - Isgouhi Kaloshian
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| | - Thomas Eulgem
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| |
Collapse
|
40
|
Gou M, Zhang Z, Zhang N, Huang Q, Monaghan J, Yang H, Shi Z, Zipfel C, Hua J. Opposing Effects on Two Phases of Defense Responses from Concerted Actions of HEAT SHOCK COGNATE70 and BONZAI1 in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:2304-23. [PMID: 26408532 PMCID: PMC4634071 DOI: 10.1104/pp.15.00970] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/24/2015] [Indexed: 05/04/2023]
Abstract
The plant immune system consists of multiple layers of responses targeting various phases of pathogen infection. Here, we provide evidence showing that two responses, one controlling stomatal closure and the other mediated by intracellular receptor proteins, can be regulated by the same proteins but in an antagonistic manner. The HEAT SHOCK COGNATE70 (HSC70), while previously known as a negative regulator of stomatal closure, is a positive regulator of immune responses mediated by the immune receptor protein SUPPRESSOR OF NPR1-1, CONSTITUTIVE1 (SNC1) as well as basal defense responses. In contrast to HSC70, a calcium-binding protein, BONZAI1 (BON1), promotes abscisic acid- and pathogen-triggered stomatal closure in addition to and independent of its previously known negative role in SNC1 regulation. BON1 likely regulates stomatal closure through activating SUPPESSOR OF THE G2 ALLELE OF SKP1 VARIANT B and inhibiting HSC70. New functions of BON1 and HSC70 identified in this study thus reveal opposite effects of each of them on immunity. The opposing roles of these regulators at different phases of plant immune responses exemplify the complexity in immunity regulation and suggest that immune receptors may guard positive regulators functioning at stomatal closure control.
Collapse
Affiliation(s)
- Mingyue Gou
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, New York 14853 (M.G., Z.Z., N.Z., Q.H., H.Y., Z.S., J.H.);State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China (Z.Z.);State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China (N.Z.);Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China (Q.H.);The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.M., C.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China (Z.S.)
| | - Zemin Zhang
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, New York 14853 (M.G., Z.Z., N.Z., Q.H., H.Y., Z.S., J.H.);State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China (Z.Z.);State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China (N.Z.);Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China (Q.H.);The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.M., C.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China (Z.S.)
| | - Ning Zhang
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, New York 14853 (M.G., Z.Z., N.Z., Q.H., H.Y., Z.S., J.H.);State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China (Z.Z.);State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China (N.Z.);Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China (Q.H.);The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.M., C.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China (Z.S.)
| | - Quansheng Huang
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, New York 14853 (M.G., Z.Z., N.Z., Q.H., H.Y., Z.S., J.H.);State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China (Z.Z.);State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China (N.Z.);Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China (Q.H.);The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.M., C.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China (Z.S.)
| | - Jacqueline Monaghan
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, New York 14853 (M.G., Z.Z., N.Z., Q.H., H.Y., Z.S., J.H.);State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China (Z.Z.);State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China (N.Z.);Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China (Q.H.);The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.M., C.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China (Z.S.)
| | - Huijun Yang
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, New York 14853 (M.G., Z.Z., N.Z., Q.H., H.Y., Z.S., J.H.);State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China (Z.Z.);State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China (N.Z.);Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China (Q.H.);The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.M., C.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China (Z.S.)
| | - Zhenying Shi
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, New York 14853 (M.G., Z.Z., N.Z., Q.H., H.Y., Z.S., J.H.);State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China (Z.Z.);State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China (N.Z.);Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China (Q.H.);The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.M., C.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China (Z.S.)
| | - Cyril Zipfel
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, New York 14853 (M.G., Z.Z., N.Z., Q.H., H.Y., Z.S., J.H.);State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China (Z.Z.);State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China (N.Z.);Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China (Q.H.);The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.M., C.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China (Z.S.)
| | - Jian Hua
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, New York 14853 (M.G., Z.Z., N.Z., Q.H., H.Y., Z.S., J.H.);State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China (Z.Z.);State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China (N.Z.);Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China (Q.H.);The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.M., C.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China (Z.S.)
| |
Collapse
|
41
|
Kaurilind E, Xu E, Brosché M. A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genomics 2015; 16:837. [PMID: 26493993 PMCID: PMC4619244 DOI: 10.1186/s12864-015-1964-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/29/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To survive in a changing environment plants constantly monitor their surroundings. In response to several stresses and during photorespiration plants use reactive oxygen species as signaling molecules. The Arabidopsis thaliana catalase2 (cat2) mutant lacks a peroxisomal catalase and under photorespiratory conditions accumulates H2O2, which leads to activation of cell death. METHODS A cat2 double mutant collection was generated through crossing and scored for cell death in different assays. Selected double mutants were further analyzed for photosynthetic performance and H2O2 accumulation. RESULTS We used a targeted mutant analysis with more than 50 cat2 double mutants to investigate the role of stress hormones and other defense regulators in H2O2-mediated cell death. Several transcription factors (AS1, MYB30, MYC2, WRKY70), cell death regulators (RCD1, DND1) and hormone regulators (AXR1, ERA1, SID2, EDS1, SGT1b) were essential for execution of cell death in cat2. Genetic loci required for cell death in cat2 was compared with regulators of cell death in spontaneous lesion mimic mutants and led to the identification of a core set of plant cell death regulators. Analysis of gene expression data from cat2 and plants undergoing cell death revealed similar gene expression profiles, further supporting the existence of a common program for regulation of plant cell death. CONCLUSIONS Our results provide a genetic framework for further study on the role of H2O2 in regulation of cell death. The hormones salicylic acid, jasmonic acid and auxin, as well as their interaction, are crucial determinants of cell death regulation.
Collapse
Affiliation(s)
- Eve Kaurilind
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Enjun Xu
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - Mikael Brosché
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia.
| |
Collapse
|
42
|
Liu J, Yang H, Bao F, Ao K, Zhang X, Zhang Y, Yang S. IBR5 Modulates Temperature-Dependent, R Protein CHS3-Mediated Defense Responses in Arabidopsis. PLoS Genet 2015; 11:e1005584. [PMID: 26451844 PMCID: PMC4599859 DOI: 10.1371/journal.pgen.1005584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022] Open
Abstract
Plant responses to low temperature are tightly associated with defense responses. We previously characterized the chilling-sensitive mutant chs3-1 resulting from the activation of the Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR)-type resistance (R) protein harboring a C-terminal LIM (Lin-11, Isl-1 and Mec-3 domains) domain. Here we report the identification of a suppressor of chs3, ibr5-7 (indole-3-butyric acid response 5), which largely suppresses chilling-activated defense responses. IBR5 encodes a putative dual-specificity protein phosphatase. The accumulation of CHS3 protein at chilling temperatures is inhibited by the IBR5 mutation. Moreover, chs3-conferred defense phenotypes were synergistically suppressed by mutations in HSP90 and IBR5. Further analysis showed that IBR5, with holdase activity, physically associates with CHS3, HSP90 and SGT1b (Suppressor of the G2 allele of skp1) to form a complex that protects CHS3. In addition to the positive role of IBR5 in regulating CHS3, IBR5 is also involved in defense responses mediated by R genes, including SNC1 (Suppressor of npr1-1, Constitutive 1), RPS4 (Resistance to P. syringae 4) and RPM1 (Resistance to Pseudomonas syringae pv. maculicola 1). Thus, the results of the present study reveal a role for IBR5 in the regulation of multiple R protein-mediated defense responses. Resistance (R) genes play central roles in recognizing pathogens and triggering plant defense responses. CHS3 encodes a TIR-NB-LRR-type R protein harboring a C-terminal LIM domain. A point mutation in CHS3 activates the defense response under chilling stress. Here we identified and characterized ibr5-7, a mutant that suppresses the chilling-induced defense responses of chs3-1. We observed that the enhanced defense responses and cell death in the chs3-1 mutant are synergistically dependent on IBR5 and HSP90. IBR5 physically interacts with CHS3, forming a complex with SGT1b/ HSP90. Moreover, IBR5 is also involved in the R-gene resistance mediated by SNC1, RPS4 and RPM1. Thus, IBR5 plays key roles in regulating defense responses mediated by multiple R proteins.
Collapse
Affiliation(s)
- Jingyan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Haibian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Fei Bao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Kevin Ao
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shuhua Yang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
43
|
Domínguez-Ferreras A, Kiss-Papp M, Jehle AK, Felix G, Chinchilla D. An Overdose of the Arabidopsis Coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 or Its Ectodomain Causes Autoimmunity in a SUPPRESSOR OF BIR1-1-Dependent Manner. PLANT PHYSIOLOGY 2015; 168:1106-21. [PMID: 25944825 PMCID: PMC4741324 DOI: 10.1104/pp.15.00537] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/29/2015] [Indexed: 05/02/2023]
Abstract
The membrane-bound Brassinosteroid insensitive1-associated receptor kinase1 (BAK1) is a common coreceptor in plants and regulates distinct cellular programs ranging from growth and development to defense against pathogens. BAK1 functions through binding to ligand-stimulated transmembrane receptors and activating their kinase domains via transphosphorylation. In the absence of microbes, BAK1 activity may be suppressed by different mechanisms, like interaction with the regulatory BIR (for BAK1-interacting receptor-like kinase) proteins. Here, we demonstrated that BAK1 overexpression in Arabidopsis (Arabidopsis thaliana) could cause detrimental effects on plant development, including growth arrest, leaf necrosis, and reduced seed production. Further analysis using an inducible expression system showed that BAK1 accumulation quickly stimulated immune responses, even under axenic conditions, and led to increased resistance to pathogenic Pseudomonas syringae pv tomato DC3000. Intriguingly, our study also revealed that the plasma membrane-associated BAK1 ectodomain was sufficient to induce autoimmunity, indicating a novel mode of action for BAK1 in immunity control. We postulate that an excess of BAK1 or its ectodomain could trigger immune receptor activation in the absence of microbes through unbalancing regulatory interactions, including those with BIRs. Consistently, mutation of suppressor of BIR1-1, which encodes an emerging positive regulator of transmembrane receptors in plants, suppressed the effects of BAK1 overexpression. In conclusion, our findings unravel a new role for the BAK1 ectodomain in the tight regulation of Arabidopsis immune receptors necessary to avoid inappropriate activation of immunity.
Collapse
Affiliation(s)
- Ana Domínguez-Ferreras
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Marta Kiss-Papp
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Anna Kristina Jehle
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Georg Felix
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Delphine Chinchilla
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| |
Collapse
|
44
|
Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nat Commun 2015; 6:7395. [PMID: 26096057 DOI: 10.1038/ncomms8395] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/05/2015] [Indexed: 12/11/2022] Open
Abstract
In plants, auxin signalling is initiated by the auxin-promoted interaction between the auxin receptor TIR1, an E3 ubiquitin ligase, and the Aux/IAA transcriptional repressors, which are subsequently degraded by the proteasome. Gain-of-function mutations in the highly conserved domain II of Aux/IAAs abolish the TIR1-Aux/IAA interaction and thus cause an auxin-resistant phenotype. Here we show that peptidyl-prolyl isomerization of rice OsIAA11 catalysed by LATERAL ROOTLESS2 (LRT2), a cyclophilin-type peptidyl-prolyl cis/trans isomerase, directly regulates the stability of OsIAA11. NMR spectroscopy reveals that LRT2 efficiently catalyses the cis/trans isomerization of OsIAA11. The lrt2 mutation reduces OsTIR1-OsIAA11 interaction and consequently causes the accumulation of a higher level of OsIAA11 protein. Moreover, knockdown of the OsIAA11 expression partially rescues the lrt2 mutant phenotype in lateral root development. Together, these results illustrate cyclophilin-catalysed peptidyl-prolyl isomerization promotes Aux/IAA degradation, as a mechanism regulating auxin signalling.
Collapse
|
45
|
Wang GF, Fan R, Wang X, Wang D, Zhang X. TaRAR1 and TaSGT1 associate with TaHsp90 to function in bread wheat (Triticum aestivum L.) seedling growth and stripe rust resistance. PLANT MOLECULAR BIOLOGY 2015; 87:577-89. [PMID: 25697954 DOI: 10.1007/s11103-015-0298-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/13/2015] [Indexed: 05/03/2023]
Abstract
RAR1 and SGT1 are important co-chaperones of Hsp90. We previously showed that TaHsp90.1 is required for wheat seedling growth, and that TaHsp90.2 and TaHsp90.3 are essential for resistance (R) gene mediated resistance to stripe rust fungus. Here, we report the characterization of TaRAR1 and TaSGT1 genes in bread wheat. TaRAR1 and TaSGT1 each had three homoeologs, which were located on wheat groups 2 and 3 chromosomes, respectively. Strong inhibition of seedling growth was observed after silencing TaSGT1 but not TaRAR1. In contrast, decreasing the expression of TaRAR1 or TaSGT1 could all compromise R gene mediated resistance to stripe rust fungus infection. Protein-protein interactions were found among TaRAR1, TaSGT1 and TaHsp90. The N-terminus of TaHsp90, the CHORD-I and CHORD-II domains of TaRAR1 and the CS domain of TaSGT1 may be instrumental for the interactions among the three proteins. Based on this work and our previous study on TaHsp90, we speculate that the TaSGT1-TaHsp90.1 interaction is important for maintaining bread wheat seedling growth. The TaRAR1-TaSGT1-TaHsp90.2 and TaRAR1-TaSGT1-TaHsp90.3 interactions are involved in controlling the resistance to stripe rust disease. The new information obtained here should aid further functional investigations of TaRAR1-TaSGT1-TaHsp90 complexes in regulating bread wheat growth and disease resistance.
Collapse
Affiliation(s)
- Guan-Feng Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China,
| | | | | | | | | |
Collapse
|
46
|
Redkar A, Hoser R, Schilling L, Zechmann B, Krzymowska M, Walbot V, Doehlemann G. A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors. THE PLANT CELL 2015; 27:1332-51. [PMID: 25888589 PMCID: PMC4558682 DOI: 10.1105/tpc.114.131086] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/31/2015] [Indexed: 05/15/2023]
Abstract
The biotrophic smut fungus Ustilago maydis infects all aerial organs of maize (Zea mays) and induces tumors in the plant tissues. U. maydis deploys many effector proteins to manipulate its host. Previously, deletion analysis demonstrated that several effectors have important functions in inducing tumor expansion specifically in maize leaves. Here, we present the functional characterization of the effector See1 (Seedling efficient effector1). See1 is required for the reactivation of plant DNA synthesis, which is crucial for tumor progression in leaf cells. By contrast, See1 does not affect tumor formation in immature tassel floral tissues, where maize cell proliferation occurs independent of fungal infection. See1 interacts with a maize homolog of SGT1 (Suppressor of G2 allele of skp1), a factor acting in cell cycle progression in yeast (Saccharomyces cerevisiae) and an important component of plant and human innate immunity. See1 interferes with the MAPK-triggered phosphorylation of maize SGT1 at a monocot-specific phosphorylation site. We propose that See1 interferes with SGT1 activity, resulting in both modulation of immune responses and reactivation of DNA synthesis in leaf cells. This identifies See1 as a fungal effector that directly and specifically contributes to the formation of leaf tumors in maize.
Collapse
Affiliation(s)
- Amey Redkar
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, D-35043 Marburg, Germany
| | - Rafal Hoser
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Lena Schilling
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, D-35043 Marburg, Germany
| | - Bernd Zechmann
- Baylor University, Center for Microscopy and Imaging, Waco, Texas 76798
| | - Magdalena Krzymowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305
| | - Gunther Doehlemann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, D-35043 Marburg, Germany Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
47
|
Zhang XC, Millet YA, Cheng Z, Bush J, Ausubel FM. Jasmonate signalling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes. NATURE PLANTS 2015; 1:15049. [PMID: 27054042 PMCID: PMC4819967 DOI: 10.1038/nplants.2015.49] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/23/2015] [Indexed: 05/20/2023]
Abstract
Plant hormones play pivotal roles in growth, development and stress responses. Although it is essential to our understanding of hormone signalling, how plants maintain a steady state level of hormone receptors is poorly understood. We show that mutation of the Arabidopsis thaliana co-chaperone SGT1b impairs responses to the plant hormones jasmonate, auxin and gibberellic acid, but not brassinolide and abscisic acid, and that SGT1b and its homologue SGT1a are involved in maintaining the steady state levels of the F-box proteins COI1 and TIR1, receptors for jasmonate and auxin, respectively. The association of SGT1b with COI1 is direct and is independent of the Arabidopsis SKP1 protein, ASK1. We further show that COI1 is a client protein of SGT1b-HSP70-HSP90 chaperone complexes and that the complexes function in hormone signalling by stabilizing the COI1 protein. This study extends the SGT1b-HSP90 client protein list and broadens the functional scope of SGT1b-HSP70-HSP90 chaperone complexes.
Collapse
Affiliation(s)
- Xue-Cheng Zhang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Yves A. Millet
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Zhenyu Cheng
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jenifer Bush
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Frederick M. Ausubel
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
48
|
Jayaweera T, Siriwardana C, Dharmasiri S, Quint M, Gray WM, Dharmasiri N. Alternative splicing of Arabidopsis IBR5 pre-mRNA generates two IBR5 isoforms with distinct and overlapping functions. PLoS One 2014; 9:e102301. [PMID: 25144378 PMCID: PMC4140696 DOI: 10.1371/journal.pone.0102301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/12/2014] [Indexed: 01/01/2023] Open
Abstract
The INDOLE-3-BUTYRIC ACID RESPONSE5 (IBR5) gene encodes a dual specificity phosphatase that regulates plant auxin responses. IBR5 has been predicted to generate two transcripts through alternative splicing, but alternative splicing of IBR5 has not been confirmed experimentally. The previously characterized ibr5-1 null mutant exhibits many auxin related defects such as auxin insensitive primary root growth, defective vascular development, short stature and reduced lateral root development. However, whether all these defects are caused by the lack of phosphatase activity is not clear. Here we describe two new auxin insensitive IBR5 alleles, ibr5-4, a catalytic site mutant, and ibr5-5, a splice site mutant. Characterization of these new mutants indicates that IBR5 is post-transcriptionally regulated to generate two transcripts, AT2G04550.1 and AT2G04550.3, and consequently two IBR5 isoforms, IBR5.1 and IBR5.3. The IBR5.1 isoform exhibits phosphatase catalytic activity that is required for both proper degradation of Aux/IAA proteins and auxin-induced gene expression. These two processes are independently regulated by IBR5.1. Comparison of new mutant alleles with ibr5-1 indicates that all three mutant alleles share many phenotypes. However, each allele also confers distinct defects implicating IBR5 isoform specific functions. Some of these functions are independent of IBR5.1 catalytic activity. Additionally, analysis of these new mutant alleles suggests that IBR5 may link ABP1 and SCFTIR1/AFBs auxin signaling pathways.
Collapse
Affiliation(s)
- Thilanka Jayaweera
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
| | - Chamindika Siriwardana
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Sunethra Dharmasiri
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
| | - Marcel Quint
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - William M. Gray
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Nihal Dharmasiri
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Huang S, Monaghan J, Zhong X, Lin L, Sun T, Dong OX, Li X. HSP90s are required for NLR immune receptor accumulation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:427-39. [PMID: 24889324 DOI: 10.1111/tpj.12573] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 05/08/2023]
Abstract
Heat shock proteins (HSPs) serve as molecular chaperones for diverse client proteins in many biological processes. In plant immunity, cytosolic HSP90s participate in the assembly, stability control and/or activation of immune receptor complexes. In this paper we report that in addition to the well-established positive roles that HSP90 isoforms play in plant immunity, they are also involved in the negative regulation of immune receptor accumulation. Point mutations in two HSP90 genes, HSP90.2 and HSP90.3, were identified from a forward genetic screen designed to isolate mutants with enhanced disease resistance. We found that specific mutations in HSP90.2 and HSP90.3 lead to heightened accumulation of immune receptors, including SNC1, RPS2 and RPS4. HSP90s may assist SGT1 in the formation of SCF E3 ubiquitin ligase complexes that target immune receptors for degradation. Such regulation is critical for maintaining appropriate levels of immune receptor proteins to avoid autoimmunity.
Collapse
Affiliation(s)
- Shuai Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Eckl JM, Drazic A, Rutz DA, Richter K. Nematode Sgt1-homologue D1054.3 binds open and closed conformations of Hsp90 via distinct binding sites. Biochemistry 2014; 53:2505-14. [PMID: 24660900 DOI: 10.1021/bi5000542] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heat shock protein 90 (Hsp90) is a highly conserved ATP-driven machine involved in client protein maturation, folding, and activation. The chaperone is supported by a set of cochaperones that confer client specificities. One of those proteins is the suppressor of G2 allele of skp1 (Sgt1), which participates together with Hsp90 in the immune responses of plants. Sgt1 consists of three domains: a TPR-, CS-, and SGS-domain, conserved in plants, yeast, and humans. The TPR-domain though is lacking in nematodes and insects. We observe that the Caenorhabditis elegans Sgt1 homologue D1054.3 binds to Hsp90 in the absence of nucleotides but much stronger in the presence of ATP and ATPγS. The latter binding mode is similar to p23, another CS-domain containing Hsp90 cofactor, even though binding is not observable for p23 in the absence of nucleotides. We use point mutations in Hsp90, which accumulate different conformations in the ATPase cycle, to differentiate between binding to open and closed Hsp90 conformations. These data support a strong contribution of the Hsp90 conformation to Sgt1 binding and highlight the ability of this cofactor to interact with all known Hsp90 conformations albeit with different affinities.
Collapse
Affiliation(s)
- Julia M Eckl
- Department of Chemistry, Technische Universität München , 85748 Garching, Germany
| | | | | | | |
Collapse
|