1
|
Roychoudhry S, Greenberg JT, Cecchini NM. Protocol for analyzing the movement and uptake of isotopically labeled signaling molecule azelaic acid in Arabidopsis. STAR Protoc 2024; 5:102944. [PMID: 38470913 PMCID: PMC10945267 DOI: 10.1016/j.xpro.2024.102944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the generation, movement, uptake, and perception of mobile defense signals is key for unraveling the systemic resistance programs in flowering plants against pathogens. Here, we present a protocol for analyzing the movement and uptake of isotopically labeled signaling molecule azelaic acid (AZA) in Arabidopsis thaliana. We describe steps to assess 14C-AZA uptake into leaf discs and its movement from local to systemic tissues. We also detail the assay for uptake and movement of 2H-AZA from roots to the shoot. For complete details on the use and execution of this protocol, please refer to Cecchini et al.1,2.
Collapse
Affiliation(s)
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, USA.
| | - Nicolás M Cecchini
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina.
| |
Collapse
|
2
|
Li Q, Zhou M, Chhajed S, Yu F, Chen S, Zhang Y, Mou Z. N-hydroxypipecolic acid triggers systemic acquired resistance through extracellular NAD(P). Nat Commun 2023; 14:6848. [PMID: 37891163 PMCID: PMC10611778 DOI: 10.1038/s41467-023-42629-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Systemic acquired resistance (SAR) is a long-lasting broad-spectrum plant defense mechanism induced in distal systemic tissues by mobile signals generated at the primary infection site. Despite the discoveries of multiple potential mobile signals, how these signals cooperate to trigger downstream SAR signaling is unknown. Here, we show that endogenous extracellular nicotinamide adenine dinucleotide (phosphate) [eNAD(P)] accumulates systemically upon pathogen infection and that both eNAD(P) and the lectin receptor kinase (LecRK), LecRK-VI.2, are required in systemic tissues for the establishment of SAR. Moreover, putative mobile signals, e.g., N-hydroxypipecolic acid (NHP), trigger de novo systemic eNAD(P) accumulation largely through the respiratory burst oxidase homolog RBOHF-produced reactive oxygen species (ROS). Importantly, NHP-induced systemic immunity mainly depends on ROS, eNAD(P), LecRK-VI.2, and BAK1, indicating that NHP induces SAR primarily through the ROS-eNAD(P)-LecRK-VI.2/BAK1 signaling pathway. Our results suggest that mobile signals converge on eNAD(P) in systemic tissues to trigger SAR through LecRK-VI.2.
Collapse
Affiliation(s)
- Qi Li
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
| | - Mingxi Zhou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA
| | - Shweta Chhajed
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL, 32611, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS, 38677-1848, USA
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
Silva-Martins G, Roussin-Léveillée C, Bolaji A, Veerapen VP, Moffett P. A Jasmonic Acid-Related Mechanism Affects ARGONAUTE5 Expression and Antiviral Defense Against Potato Virus X in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:425-433. [PMID: 36853196 DOI: 10.1094/mpmi-11-22-0224-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
During virus infection, Argonaute (AGO) proteins bind to Dicer-produced virus small interfering RNAs and target viral RNA based on sequence complementarity, thereby limiting virus proliferation. The Arabidopsis AGO2 protein is important for resistance to multiple viruses, including potato virus X (PVX). In addition, AGO5 is important in systemic defense against PVX. Normally AGO5 is expressed only in reproductive tissues, and its induction by virus infection is thought to be important for its participation in antiviral defense. However, it is unclear what mechanisms induce AGO5 expression in response to virus infection. Here, we show that dde2-2, a mutant compromised in jasmonic acid (JA) biosynthesis, displays constitutive upregulation of AGO5. This mutant also showed increased resistance to PVX and this resistance was dependent on a functional AGO5 gene. Furthermore, methyl jasmonate treatment ablated AGO5 expression in leaves during virus infection and resulted in increased susceptibility to virus. Our results further support a role for AGO5 in antiviral RNA silencing and a negative regulation by JA, a plant hormone associated with defense against plant-feeding arthropods, which are often the vectors of plant viruses. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Guilherme Silva-Martins
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | | | - Ayooluwa Bolaji
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Varusha Pillay Veerapen
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
4
|
Shekhar S, Panwar R, Prasad SC, Kumar D, Rustagi A. Overexpression of flowering locus D (FLD) in Indian mustard (Brassica juncea) enhances tolerance to Alternaria brassicae and Sclerotinia sclerotiorum. PLANT CELL REPORTS 2023; 42:1233-1250. [PMID: 37119284 DOI: 10.1007/s00299-023-03021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 06/16/2023]
Abstract
KEY MESSAGE Overexpression of BjFLD in Brassica juncea imparts resistance against fungal pathogens and increases the yield. These transgenics could lower the use of fungicides, which have detrimental effects on the environment. Productivity of Indian mustard (Brassica juncea) is adversely affected by fungal phytopathogens, Alternaria brassicae and Sclerotinia sclerotiorum. Arabidopsis flowering locus D (FLD) positively regulates jasmonic acid signaling and defense against necrotrophic pathogens. In this study, the endogenous FLD (B. juncea FLD; BjFLD) in Indian mustard was overexpressed in B. juncea to determine its role in biotic stress tolerance. We report the isolation, characterization, and functional validation of BjFLD. The transgene expression was confirmed by qRT-PCR. The constitutive overexpression of BjFLD enhanced the tolerance of B. juncea to A. brassicae and S. sclerotiorum, which was manifested as delayed appearance of symptom, impeded disease progression, and enhanced percentage of disease protection. The transgenic lines maintained a higher photosynthetic capacity and redox potential under biotic stress and could detoxify reactive oxygen species (ROS) by modulating the antioxidant machinery and physiochemical attributes. The BjFLD-overexpressing lines showed enhanced SA level as well higher NPR1 expression. The overexpression of BjFLD induced early flowering and higher seed yield in the transgenic lines. These findings indicate that overexpression of BjFLD enhances the tolerance of B. juncea to A. brassicae and S. sclerotiorum by induction of systemic acquired resistance and mitigating the damage caused by stress-induced ROS.
Collapse
Affiliation(s)
- Shashi Shekhar
- Department of Botany, Gargi College, University of Delhi, New Delhi, 110049, India
| | - Ruby Panwar
- Department of Botany, Gargi College, University of Delhi, New Delhi, 110049, India
| | | | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Anjana Rustagi
- Department of Botany, Gargi College, University of Delhi, New Delhi, 110049, India.
| |
Collapse
|
5
|
Liu YT, Senkler J, Herrfurth C, Braun HP, Feussner I. Defining the lipidome of Arabidopsis leaf mitochondria: Specific lipid complement and biosynthesis capacity. PLANT PHYSIOLOGY 2023; 191:2185-2203. [PMID: 36691154 PMCID: PMC10069894 DOI: 10.1093/plphys/kiad035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Mitochondria are often considered as the power stations of the cell, playing critical roles in various biological processes such as cellular respiration, photosynthesis, stress responses, and programmed cell death. To maintain the structural and functional integrities of mitochondria, it is crucial to achieve a defined membrane lipid composition between different lipid classes wherein specific proportions of individual lipid species are present. Although mitochondria are capable of self-synthesizing a few lipid classes, many phospholipids are synthesized in the endoplasmic reticulum and transferred to mitochondria via membrane contact sites, as mitochondria are excluded from the vesicular transportation pathway. However, knowledge on the capability of lipid biosynthesis in mitochondria and the precise mechanism of maintaining the homeostasis of mitochondrial lipids is still scarce. Here we describe the lipidome of mitochondria isolated from Arabidopsis (Arabidopsis thaliana) leaves, including the molecular species of glycerolipids, sphingolipids, and sterols, to depict the lipid landscape of mitochondrial membranes. In addition, we define proteins involved in lipid metabolism by proteomic analysis and compare our data with mitochondria from cell cultures since they still serve as model systems. Proteins putatively localized to the membrane contact sites are proposed based on the proteomic results and online databases. Collectively, our results suggest that leaf mitochondria are capable-with the assistance of membrane contact site-localized proteins-of generating several lipid classes including phosphatidylethanolamines, cardiolipins, diacylgalactosylglycerols, and free sterols. We anticipate our work to be a foundation to further investigate the functional roles of lipids and their involvement in biochemical reactions in plant mitochondria.
Collapse
Affiliation(s)
| | | | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, 37077 Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, University of Goettingen, 37077 Goettingen, Germany
| | | | | |
Collapse
|
6
|
Liu X, Li C, Chen Y, Xue Z, Miao J, Liu X. Untargeted lipidomics reveals lipid metabolism disorders induced by oxathiapiprolin in Phytophthora sojae. PEST MANAGEMENT SCIENCE 2023; 79:1593-1603. [PMID: 36562252 DOI: 10.1002/ps.7334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Oxathiapiprolin, an oxysterol-binding protein inhibitor (OSBPI), shows unexceptionable inhibitory activity against plant pathogenic oomycetes. FRAC (Fungicide Resistance Action Committee) classifies it into the mode of action group F9 (lipid homeostasis and transfer/storage), but very little is known about the lipid metabolism of oomycete pathogens when subjected to oxathiapiprolin. RESULTS In this study, seven lipid categories and 1435 lipid molecules were identified in Phytophthora sojae, among which glycerolipids, glycerophospholipids, and sphingolipids account for 30.10%, 50.59%, and 7.28%, respectively. These lipids were categorized into 31 subclasses, which varied to different extents when treated with oxathiapiprolin. A total of 11 lipid subclasses showed significant changes. Among them, 10 lipid subclasses, lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), phosphatidylserine (PS), ceramide (Cer), triglyceride (TG), (o-acyl)-1-hydroxy fatty acid, diglycosylceramide, sphingoshine (So), and sitosterol ester, were significantly up-regulated, while digalactosyldiacylglycerol was the only lipid that was significantly down-regulated by a factor of almost three. These lipid molecules were further analyzed at the lipid species level. A total of 542 species were significantly altered when treated with oxathiapiprolin, including 212 glycerolipids [186 TG and 26 diglycerides (DG)], 167 glycerophospholipids (38 PC, 15 LPC, 19 LPE, seven PS, etc.), 156 sphingolipids (146 Cer, four So, etc.), and some other lipid molecules. Finally, from the orthogonal partial least-squares discrimination analysis model, variable importance for the projection score analysis showed that Cer, TG, and some glycerophospholipids contribute to the metabolic disorder when subjected to oxathiapiprolin. CONCLUSION Glycerolipids, glycerophospholipids, and sphingolipids in P. sojae undergo significant changes with oxathiapiprolin treatment. These results provided valuable information for further understanding the function of the target protein and the mode of action of OSBPIs in oomycetes. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaofei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengcheng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Ziwei Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Patil V, Nandi AK. POWERDRESS positively regulates systemic acquired resistance in Arabidopsis. PLANT CELL REPORTS 2022; 41:2351-2362. [PMID: 36152035 DOI: 10.1007/s00299-022-02926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
PWR, an epigenetic regulator, and PIF4, a transcription factor coordinately regulate both local resistance and systemic acquired resistance in Arabidopsis. A plant that gets infected once becomes resistant to subsequent infections through the development of systemic acquired resistance (SAR). Primary-infected tissues generate mobile signals that travel to systemic tissues and cause epigenetic changes associated with the SAR activation. Epigenetic regulators and the process of infection memory development are largely obscure for plants. POWERDRESS (PWR), a SANT domain-containing histone deacetylation (HDAC) promoting gene, is essential for thermomorphogenesis. Here we show that PWR is required for the SAR activation in Arabidopsis. The pwr mutants in Ler and Col-0 background possess normal local resistance but are defective in SAR. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) genetically interacts with PWR for flowering and thermomorphogenesis and is a negative regulator of basal immunity. We found a cooperative function for suppressing basal immunity and SAR activation by PIF4 and PWR, respectively. PWR promotes the expression of SA biosynthesis genes and the accumulation of SA in the systemic tissues. RSI1/FLD, which influences histone methylation and acetylation, is essential to infection memory development in Arabidopsis. Our results show that PWR and RSI1 positively regulate each other's expression. Exogenous application of HDAC inhibitor sodium butyrate abolishes SAR-mediated SA accumulation, expression of PR1 gene, and protection against pathogens after challenge inoculation. The results indicate the possibility of the involvement of HDAC activity of PWR in the formation of infection memory development in Arabidopsis.
Collapse
Affiliation(s)
- Vishal Patil
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India.
| |
Collapse
|
8
|
Singh A, Sharma A, Singh N, Nandi AK. MTO1-RESPONDING DOWN 1 (MRD1) is a transcriptional target of OZF1 for promoting salicylic acid-mediated defense in Arabidopsis. PLANT CELL REPORTS 2022; 41:1319-1328. [PMID: 35325291 DOI: 10.1007/s00299-022-02861-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
OZF1 promotes the transcription of MRD1, which is essential for SA-mediated defense against virulent and avirulent bacterial pathogens in Arabidopsis. Salicylic acid (SA) is critical for defense against biotrophic pathogens. A trans-activator protein NPR1 plays significant roles in SA-signaling. However, evidences suggest the existence of NPR1-independent pathways for SA signaling in plants. Previously, we reported Arabidopsis OXIDATION-RELATED ZN-FINGER PROTEIN1 (OZF1) as a positive regulator of NPR1-independent SA-signaling. However, the mechanism or components of OZF1-mediated SA signaling was not known. Through the analysis of differentially expressing genes, we report the identification of MTO1-RESPONDING DOWN 1 (MRD1) as a transcriptional target of OZF1. Expressions of MRD1 and its overlapping gene in Arabidopsis genome, HEI10 increase upon pathogen inoculation in an OZF1-dependent manner. Their mutants are susceptible to both virulent and avirulent bacterial pathogens and show compromised SA-mediated immunity. Overexpression of MRD1 but not the HEI10 rescues the loss-of-resistance phenotype of the ozf1 mutant. OZF1 physically associates at the MRD1 promoter area upon pathogen inoculation. Results altogether support that MRD1 is a transcriptional target of OZF1 for promoting SA-mediated defense in Arabidopsis.
Collapse
Affiliation(s)
- Anupriya Singh
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Akash Sharma
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Nidhi Singh
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
9
|
Song JB, Huang RK, Guo MJ, Zhou Q, Guo R, Zhang SY, Yao JW, Bai YN, Huang X. Lipids associated with plant-bacteria interaction identified using a metabolomics approach in an Arabidopsis thaliana model. PeerJ 2022; 10:e13293. [PMID: 35502205 PMCID: PMC9055996 DOI: 10.7717/peerj.13293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
Background Systemic acquired resistance (SAR) protects plants against a wide variety of pathogens. In recent decades, numerous studies have focused on the induction of SAR, but its molecular mechanisms remain largely unknown. Methods We used a metabolomics approach based on ultra-high-performance liquid chromatographic (UPLC) and mass spectrometric (MS) techniques to identify SAR-related lipid metabolites in an Arabidopsis thaliana model. Multiple statistical analyses were used to identify the differentially regulated metabolites. Results Numerous lipids were implicated as potential factors in both plant basal resistance and SAR; these include species of phosphatidic acid (PA), monogalactosyldiacylglycerol (MGDG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and triacylglycerol (TG). Conclusions Our findings indicate that lipids accumulated in both local and systemic leaves, while other lipids only accumulated in local leaves or in systemic leaves. PA (16:0_18:2), PE (34:5) and PE (16:0_18:2) had higher levels in both local leaves inoculated with Psm ES4326 or Psm avrRpm1 and systemic leaves of the plants locally infected with Psm avrRpm1 or Psm ES4326. PC (32:5) had high levels in leaves inoculated with Psm ES4326. Other differentially regulated metabolites, including PA (18:2_18:2), PA (16:0_18:3), PA (18:3_18:2), PE (16:0_18:3), PE (16:1_16:1), PE (34:4) and TGs showed higher levels in systemic leaves of the plants locally infected with Psm avrRpm1 or Psm ES4326. These findings will help direct future studies on the molecular mechanisms of SAR.
Collapse
Affiliation(s)
- Jian-Bo Song
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Rui-Ke Huang
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Miao-Jie Guo
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Qian Zhou
- Shanghai Omicsspace Biotechnology Co.Ltd., Shanghai, Shanghai, China
| | - Rui Guo
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Shu-Yuan Zhang
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Jing-Wen Yao
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Ya-Ni Bai
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Xuan Huang
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| |
Collapse
|
10
|
Macoy DMJ, Uddin S, Ahn G, Peseth S, Ryu GR, Cha JY, Lee JY, Bae D, Paek SM, Chung HJ, Mackey D, Lee SY, Kim WY, Kim MG. Effect of Hydroxycinnamic Acid Amides, Coumaroyl Tyramine and Coumaroyl Tryptamine on Biotic Stress Response in Arabidopsis. JOURNAL OF PLANT BIOLOGY 2022; 65:145-155. [DOI: 10.1007/s12374-021-09341-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 08/28/2023]
|
11
|
David L, Kang J, Nicklay J, Dufresne C, Chen S. Identification of DIR1-Dependant Cellular Responses in Guard Cell Systemic Acquired Resistance. Front Mol Biosci 2022; 8:746523. [PMID: 34977152 PMCID: PMC8718647 DOI: 10.3389/fmolb.2021.746523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
After localized invasion by bacterial pathogens, systemic acquired resistance (SAR) is induced in uninfected plant tissues, resulting in enhanced defense against a broad range of pathogens. Although SAR requires mobilization of signaling molecules via the plant vasculature, the specific molecular mechanisms remain elusive. The lipid transfer protein defective in induced resistance 1 (DIR1) was identified in Arabidopsis thaliana by screening for mutants that were defective in SAR. Here, we demonstrate that stomatal response to pathogens is altered in systemic leaves by SAR, and this guard cell SAR defense requires DIR1. Using a multi-omics approach, we have determined potential SAR signaling mechanisms specific for guard cells in systemic leaves by profiling metabolite, lipid, and protein differences between guard cells in the wild type and dir1-1 mutant during SAR. We identified two long-chain 18 C and 22 C fatty acids and two 16 C wax esters as putative SAR-related molecules dependent on DIR1. Proteins and metabolites related to amino acid biosynthesis and response to stimulus were also changed in guard cells of dir1-1 compared to the wild type. Identification of guard cell-specific SAR-related molecules may lead to new avenues of genetic modification/molecular breeding for disease-resistant plants.
Collapse
Affiliation(s)
- Lisa David
- Department of Biology, University of Florida, Gainesville, FL, United States.,University of Florida Genetics Institute (UFGI), Gainesville, FL, United States
| | - Jianing Kang
- Department of Biology, University of Florida, Gainesville, FL, United States.,University of Florida Genetics Institute (UFGI), Gainesville, FL, United States.,College of Life Science, Northeast Agricultural University, Harbin, China
| | - Josh Nicklay
- Thermo Fisher Scientific, Somerset, NJ, United States
| | - Craig Dufresne
- Thermo Training Institute, Thermo Fisher Scientific, West Palm Beach, FL, United States
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, United States.,University of Florida Genetics Institute (UFGI), Gainesville, FL, United States.,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States.,Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Shi R, Bai H, Li B, Liu C, Ying Z, Xiong Z, Wang W. Combined Transcriptome and Lipidomic Analyses of Lipid Biosynthesis in Macadamia ternifolia Nuts. Life (Basel) 2021; 11:1431. [PMID: 34947962 PMCID: PMC8707767 DOI: 10.3390/life11121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Macadamia nuts are considered a high-quality oil crop worldwide. To date, the lipid diversity and the genetic factors that mediate storage lipid biosynthesis in Macadamia ternifolia are poorly known. Here, we performed a comprehensive transcriptomic and lipidomic data analysis to understand the mechanism of lipid biosynthesis by using young, medium-aged, and mature fruit kernels. Our lipidomic analysis showed that the M. ternifolia kernel was a rich source of unsaturated fatty acids. Moreover, different species of triacylglycerols, diacylglycerol, ceramides, phosphatidylethanolamine, and phosphatidic acid had altered accumulations during the developmental stages. The transcriptome analysis revealed a large percentage of differently expressed genes during the different stages of macadamia growth. Most of the genes with significant differential expression performed functional activity of oxidoreductase and were enriched in the secondary metabolite pathway. The integration of lipidomic and transcriptomic data allowed for the identification of glycerol-3-phosphate acyltransferase, diacylglycerol kinase, phosphatidylinositols, nonspecific phospholipase C, pyruvate kinase 2, 3-ketoacyl-acyl carrier protein reductase, and linoleate 9S-lipoxygenase as putative candidate genes involved in lipid biosynthesis, storage, and oil quality. Our study found comprehensive datasets of lipidomic and transcriptomic changes in the developing kernel of M. ternifolia. In addition, the identification of candidate genes provides essential prerequisites to understand the molecular mechanism of lipid biosynthesis in the kernel of M. ternifolia.
Collapse
Affiliation(s)
- Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (R.S.); (C.L.); (Z.Y.)
| | - Haidong Bai
- Lincang Academy of Forestry, Lincang 677009, China;
| | - Biao Li
- Yuxi Sannong Plateau Characteristic Modern Agriculture Co., Ltd., Chengjiang 652599, China;
| | - Can Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (R.S.); (C.L.); (Z.Y.)
| | - Zhiping Ying
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (R.S.); (C.L.); (Z.Y.)
| | - Zhi Xiong
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (R.S.); (C.L.); (Z.Y.)
| | - Wenlin Wang
- Guangxi South Subtropical Agricultural Science Research Institute, Longzhou 532415, China
| |
Collapse
|
13
|
Chandra S, Oh Y, Han H, Salinas N, Anciro A, Whitaker VM, Chacon JG, Fernandez G, Lee S. Comparative Transcriptome Analysis to Identify Candidate Genes for FaRCg1 Conferring Resistance Against Colletotrichum gloeosporioides in Cultivated Strawberry ( Fragaria × ananassa). Front Genet 2021; 12:730444. [PMID: 34504518 PMCID: PMC8422960 DOI: 10.3389/fgene.2021.730444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Colletotrichum crown rot (CCR) caused by Colletotrichum gloeosporioides is a serious threat to the cultivated strawberry (Fragaria × ananassa). Our previous study reported that a major locus, FaRCg1, increases resistance. However, the genomic structure of FaRCg1 and potential candidate genes associated with the resistance remained unknown. Here, we performed comparative transcriptome analyses of resistant 'Florida Elyana' and susceptible 'Strawberry Festival' after infection and identified candidate genes potentially involved in resistance. In 'Florida Elyana', 6,099 genes were differentially expressed in response to C. gloeosporioides. Gene ontology analysis showed that the most upregulated genes were functionally associated with signaling pathways of plant defense responses. Three genes in the genomic region of FaRCg1 were highly upregulated: a von Willebrand Factor A domain-containing protein, a subtilisin-like protease, and a TIFY 11A-like protein. Subgenome-specific markers developed for the candidate genes were tested with a diverse panel of 219 accessions from University of Florida and North Carolina State University breeding programs. Significant and positive associations were found between the high-resolution melting (HRM) marker genotypes and CCR phenotypes. These newly developed subgenome-specific functional markers for FaRCg1 can facilitate development of resistant varieties through marker-assisted selection.
Collapse
Affiliation(s)
- Saket Chandra
- Department of Horticultural Sciences, University of Florida-IFAS Gulf Coast Research and Education Center, Wimauma, FL, United States
| | - Youngjae Oh
- Department of Horticultural Sciences, University of Florida-IFAS Gulf Coast Research and Education Center, Wimauma, FL, United States
| | - Hyeondae Han
- Department of Horticultural Sciences, University of Florida-IFAS Gulf Coast Research and Education Center, Wimauma, FL, United States
| | - Natalia Salinas
- Department of Horticultural Sciences, University of Florida-IFAS Gulf Coast Research and Education Center, Wimauma, FL, United States
| | - Ashlee Anciro
- Department of Horticultural Sciences, University of Florida-IFAS Gulf Coast Research and Education Center, Wimauma, FL, United States
| | - Vance M Whitaker
- Department of Horticultural Sciences, University of Florida-IFAS Gulf Coast Research and Education Center, Wimauma, FL, United States
| | - Jose Guillermo Chacon
- Department of Horticultural Sciences, North Carolina State University, Raleigh, NC, United States
| | - Gina Fernandez
- Department of Horticultural Sciences, North Carolina State University, Raleigh, NC, United States
| | - Seonghee Lee
- Department of Horticultural Sciences, University of Florida-IFAS Gulf Coast Research and Education Center, Wimauma, FL, United States
| |
Collapse
|
14
|
Signals in systemic acquired resistance of plants against microbial pathogens. Mol Biol Rep 2021; 48:3747-3759. [PMID: 33893927 DOI: 10.1007/s11033-021-06344-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/07/2021] [Indexed: 01/06/2023]
Abstract
After a local infection by the microbial pathogens, plants will produce strong resistance in distal tissues to cope with the subsequent biotic attacks. This type of the resistance in the whole plant is termed as systemic acquired resistance (SAR). The priming of SAR can confer the robust defense responses and the broad-spectrum disease resistances in plants. In general, SAR is activated by the signal substances generated at the local sites of infection, and these small signaling molecules can be rapidly transported to the systemic tissues through the phloem. In the last two decades, numerous endogenous metabolites were proved to be the potential elicitors of SAR, including methyl salicylate (MeSA), azelaic acid (AzA), glycerol-3-phosphate (G3P), free radicals (NO and ROS), pipecolic acid (Pip), N-hydroxy-pipecolic acid (NHP), dehydroabietinal (DA), monoterpenes (α-pinene and β-pinene) and NAD(P). In the meantime, the proteins associated with the transport of these signaling molecules were also identified, such as DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1) and AZI1 (AZELAIC ACID INDUCED 1). This review summarizes the recent findings related to synthesis, transport and interaction of the different signal substances in SAR.
Collapse
|
15
|
Park YS, Ryu CM. Understanding Plant Social Networking System: Avoiding Deleterious Microbiota but Calling Beneficials. Int J Mol Sci 2021; 22:ijms22073319. [PMID: 33805032 PMCID: PMC8037233 DOI: 10.3390/ijms22073319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 01/24/2023] Open
Abstract
Plant association with microorganisms elicits dramatic effects on the local phytobiome and often causes systemic and transgenerational modulation on plant immunity against insect pests and microbial pathogens. Previously, we introduced the concept of the plant social networking system (pSNS) to highlight the active involvement of plants in the recruitment of potentially beneficial microbiota upon exposure to insects and pathogens. Microbial association stimulates the physiological responses of plants and induces the development of their immune mechanisms while interacting with multiple enemies. Thus, beneficial microbes serve as important mediators of interactions among multiple members of the multitrophic, microscopic and macroscopic communities. In this review, we classify the steps of pSNS such as elicitation, signaling, secreting root exudates, and plant protection; summarize, with evidence, how plants and beneficial microbes communicate with each other; and also discuss how the molecular mechanisms underlying this communication are induced in plants exposed to natural enemies. Collectively, the pSNS modulates robustness of plant physiology and immunity and promotes survival potential by helping plants to overcome the environmental and biological challenges.
Collapse
Affiliation(s)
- Yong-Soon Park
- Biotechnology Research Institute, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea;
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infection Disease Research Center, KRIBB, Daejeon 34141, Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST) KRIBB School, Daejeon 34141, Korea
- Correspondence:
| |
Collapse
|
16
|
Vlot AC, Sales JH, Lenk M, Bauer K, Brambilla A, Sommer A, Chen Y, Wenig M, Nayem S. Systemic propagation of immunity in plants. THE NEW PHYTOLOGIST 2021; 229:1234-1250. [PMID: 32978988 DOI: 10.1111/nph.16953] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/08/2020] [Indexed: 05/03/2023]
Abstract
Systemic immunity triggered by local plant-microbe interactions is studied as systemic acquired resistance (SAR) or induced systemic resistance (ISR) depending on the site of induction and the lifestyle of the inducing microorganism. SAR is induced by pathogens interacting with leaves, whereas ISR is induced by beneficial microbes interacting with roots. Although salicylic acid (SA) is a central component of SAR, additional signals exclusively promote systemic and not local immunity. These signals cooperate in SAR- and possibly also ISR-associated signaling networks that regulate systemic immunity. The non-SA SAR pathway is driven by pipecolic acid or its presumed bioactive derivative N-hydroxy-pipecolic acid. This pathway further regulates inter-plant defense propagation through volatile organic compounds that are emitted by SAR-induced plants and recognized as defense cues by neighboring plants. Both SAR and ISR influence phytohormone crosstalk towards enhanced defense against pathogens, which at the same time affects the composition of the plant microbiome. This potentially leads to further changes in plant defense, plant-microbe, and plant-plant interactions. Therefore, we propose that such inter-organismic interactions could be combined in potentially highly effective plant protection strategies.
Collapse
Affiliation(s)
- A Corina Vlot
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Jennifer H Sales
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Miriam Lenk
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Kornelia Bauer
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Alessandro Brambilla
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Anna Sommer
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Yuanyuan Chen
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Marion Wenig
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| | - Shahran Nayem
- Department of Environmental Science, Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr. 1, Neuherberg, 85764, Germany
| |
Collapse
|
17
|
Kumar R, Barua P, Chakraborty N, Nandi AK. Systemic acquired resistance specific proteome of Arabidopsis thaliana. PLANT CELL REPORTS 2020; 39:1549-1563. [PMID: 32876806 DOI: 10.1007/s00299-020-02583-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/20/2020] [Indexed: 05/20/2023]
Abstract
A comparative proteomic study between WT and SAR-compromised rsi1/fld mutant reveals a set of proteins having possible roles in the SAR development. A partly infected plant shows enhanced resistance during subsequent infection through the development of systemic acquired resistance (SAR). Mobile signals generated at the site of primary infection travel across the plant for the activation of SAR. These mobile signals are likely to cause changes in the expression of a set of proteins in the distal tissue, which contributes to the SAR development. However, SAR-specific proteome is not revealed for any plant. The reduced systemic immunity 1 (rsi1)/(allelic to flowering locus D; fld) mutant of Arabidopsis is compromised for SAR but shows normal local resistance. Here we report the SAR-specific proteome of Arabidopsis by comparing differentially abundant proteins (DAPs) between WT and fld mutant. Plants were either mock-treated or SAR-induced by primary pathogen inoculation. For proteomic analysis, samples were collected from the systemic tissues before and after the secondary inoculation. Protein identification was carried out by using two-dimensional gel electrophoresis (2-DE) followed by tandem mass spectrometry. Our work identified a total of 94 DAPs between mock and pathogen treatment in WT and fld mutant. The DAPs were categorized into different functional groups along with their subcellular localization. The majority of DAPs are involved in metabolic processes and stress response. Among the subcellular compartments, plastids contained the highest number of DAPs, suggesting the importance of plastidic proteins in SAR activation. The findings of this study would provide resources to engineer efficient SAR activation traits in Arabidopsis and other plants.
Collapse
Affiliation(s)
- Rajiv Kumar
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Pragya Barua
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | | | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India.
| |
Collapse
|
18
|
Chowdhury Z, Mohanty D, Giri MK, Venables BJ, Chaturvedi R, Chao A, Petros RA, Shah J. Dehydroabietinal promotes flowering time and plant defense in Arabidopsis via the autonomous pathway genes FLOWERING LOCUS D, FVE, and RELATIVE OF EARLY FLOWERING 6. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4903-4913. [PMID: 32392578 DOI: 10.1093/jxb/eraa232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Abietane diterpenoids are tricyclic diterpenes whose biological functions in angiosperms are largely unknown. Here, we show that dehydroabietinal (DA) fosters transition from the vegetative phase to reproductive development in Arabidopsis thaliana by promoting flowering time. DA's promotion of flowering time was mediated through up-regulation of the autonomous pathway genes FLOWERING LOCUS D (FLD), RELATIVE OF EARLY FLOWERING 6 (REF6), and FVE, which repress expression of FLOWERING LOCUS C (FLC), a negative regulator of the key floral integrator FLOWERING LOCUS T (FT). Our results further indicate that FLD, REF6, and FVE are also required for systemic acquired resistance (SAR), an inducible defense mechanism that is also activated by DA. However, unlike flowering time, FT was not required for DA-induced SAR. Conversely, salicylic acid, which is essential for the manifestation of SAR, was not required for the DA-promoted flowering time. Thus, although the autonomous pathway genes FLD, REF6, and FVE are involved in SAR and flowering time, these biological processes are not interdependent. We suggest that SAR and flowering time signaling pathways bifurcate at a step downstream of FLD, REF6, and FVE, with an FLC-dependent arm controlling flowering time, and an FLC-independent pathway controlling SAR.
Collapse
Affiliation(s)
- Zulkarnain Chowdhury
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Devasantosh Mohanty
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Mrunmay K Giri
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Barney J Venables
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- Advanced Environmental Research Institute, University of North Texas, Denton, TX, USA
| | - Ratnesh Chaturvedi
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Aaron Chao
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Robby A Petros
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Jyoti Shah
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| |
Collapse
|
19
|
Roy S, Saxena S, Sinha A, Nandi AK. DORMANCY/AUXIN ASSOCIATED FAMILY PROTEIN 2 of Arabidopsis thaliana is a negative regulator of local and systemic acquired resistance. JOURNAL OF PLANT RESEARCH 2020; 133:409-417. [PMID: 32227262 DOI: 10.1007/s10265-020-01183-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
To fine tune defense response output, plants recruit both positive and negative regulators. Here we report Arabidopsis DORMANCY/AUXIN ASSOCIATED FAMILY PROTEIN 2(DAP2) gene as a negative regulator of basal defense against virulent bacterial pathogens. Expression of DAP2 enhances upon pathogen inoculation. Our experiments show that DAP2 suppressed resistance against virulent strains of bacterial pathogens, pathogen-induced callose deposition, and ROS accumulation; however, it did not influence effector-triggered immunity. In addition, DAP2 negatively regulated systemic acquired resistance (SAR). DAP2 expression was enhanced in the pathogen-free systemic tissues of SAR-induced plants. Previously, Arabidopsis Flowering locus D (FLD) gene has been shown to be essential for SAR but not for local resistance. We show here that FLD function is necessary for SAR-induced expression of DAP2, suggesting DAP2 as a target of FLD for activation of SAR in Arabidopsis.
Collapse
Affiliation(s)
- Shweta Roy
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shobhita Saxena
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aviroop Sinha
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
20
|
Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex. Nat Commun 2019; 10:4810. [PMID: 31641112 PMCID: PMC6805918 DOI: 10.1038/s41467-019-12781-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
Systemic acquired resistance (SAR) is a long-lasting broad-spectrum plant immunity induced by mobile signals produced in the local leaves where the initial infection occurs. Although multiple structurally unrelated signals have been proposed, the mechanisms responsible for perception of these signals in the systemic leaves are unknown. Here, we show that exogenously applied nicotinamide adenine dinucleotide (NAD+) moves systemically and induces systemic immunity. We demonstrate that the lectin receptor kinase (LecRK), LecRK-VI.2, is a potential receptor for extracellular NAD+ (eNAD+) and NAD+ phosphate (eNADP+) and plays a central role in biological induction of SAR. LecRK-VI.2 constitutively associates with BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) in vivo. Furthermore, BAK1 and its homolog BAK1-LIKE1 are required for eNAD(P)+ signaling and SAR, and the kinase activities of LecR-VI.2 and BAK1 are indispensable to their function in SAR. Our results indicate that eNAD+ is a putative mobile signal, which triggers SAR through its receptor complex LecRK-VI.2/BAK1 in Arabidopsis thaliana. Systemic signals allows plants to mount immune responses in sites that are distal from the local infection site. Here, the authors provide evidence that nicotinamide adenine dinucleotide (NAD + ) is a potential systemic signal that induces immunity via the lectin receptor kinase LecRK-VI.2 and BAK1.
Collapse
|
21
|
David L, Harmon AC, Chen S. Plant immune responses - from guard cells and local responses to systemic defense against bacterial pathogens. PLANT SIGNALING & BEHAVIOR 2019; 14:e1588667. [PMID: 30907231 PMCID: PMC6512940 DOI: 10.1080/15592324.2019.1588667] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
When plants are infected by pathogens two distinct responses can occur, the early being a local response in the infected area, and later a systemic response in non-infected tissues. Closure of stomata has recently been found to be a local response to bacterial pathogens. Stomata closure is linked to both salicylic acid (SA), an essential hormone in local responses and systemic acquired resistance (SAR), and absisic acid (ABA) a key regulator of drought and other abiotic stresses. SAR reduces the effects of later infections. In this review we discuss recent research elucidating the role of guard cells in local and systemic immune responses, guard cell interactions with abiotic and hormone signals, as well as putative functions and interactions between long-distance SAR signals.
Collapse
Affiliation(s)
- Lisa David
- Department of Biology, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute (UFGI), Gainesville, FL, USA
| | - Alice C. Harmon
- Department of Biology, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute (UFGI), Gainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute (UFGI), Gainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
- CONTACT Sixue Chen Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Cecchini NM, Roychoudhry S, Speed DJ, Steffes K, Tambe A, Zodrow K, Konstantinoff K, Jung HW, Engle NL, Tschaplinski TJ, Greenberg JT. Underground Azelaic Acid-Conferred Resistance to Pseudomonas syringae in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:86-94. [PMID: 30156481 DOI: 10.1094/mpmi-07-18-0185-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Local interactions between individual plant organs and diverse microorganisms can lead to whole plant immunity via the mobilization of defense signals. One such signal is the plastid lipid-derived oxylipin azelaic acid (AZA). Arabidopsis lacking AZI1 or EARLI1, related lipid transfer family proteins, exhibit reduced AZA transport among leaves and cannot mount systemic immunity. AZA has been detected in roots as well as leaves. Therefore, the present study addresses the effects on plants of AZA application to roots. AZA but not the structurally related suberic acid inhibits root growth when directly in contact with roots. Treatment of roots with AZA also induces resistance to Pseudomonas syringae in aerial tissues. These effects of AZA on root growth and disease resistance depend, at least partially, on AZI1 and EARLI1. AZI1 in roots localizes to plastids, similar to its known location in leaves. Interestingly, kinases previously shown to modify AZI1 in vitro, MPK3 and MPK6, are also needed for AZA-induced root-growth inhibition and aboveground immunity. Finally, deuterium-labeled AZA applied to the roots does not move to aerial tissues. Thus, AZA application to roots triggers systemic immunity through an AZI1/EARLI1/MPK3/MPK6-dependent pathway and AZA effects may involve one or more additional mobile signals.
Collapse
Affiliation(s)
- Nicolás M Cecchini
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Suruchi Roychoudhry
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - DeQuantarius J Speed
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Kevin Steffes
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Arjun Tambe
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Kristin Zodrow
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Katerina Konstantinoff
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Ho Won Jung
- 2 Department of Molecular Genetics, Dong-A University, 37 Nakdong-Daero 550beon-gil, Saha-gu, Busan 49315, Korea; and
| | - Nancy L Engle
- 3 Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, U.S.A
| | | | - Jean T Greenberg
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| |
Collapse
|
23
|
Gautam JK, Nandi AK. APD1, the unique member of Arabidopsis AP2 family influences systemic acquired resistance and ethylene-jasmonic acid signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 133:92-99. [PMID: 30396118 DOI: 10.1016/j.plaphy.2018.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/11/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
Arabidopsis AP2 FAMILY PROTEIN INVOLVED IN DISEASE DEFENSE (APD1) is a member of AP2/EREBP super-family that positively regulates SA biosynthesis and defense against virulent bacterial pathogens. Here we report additional roles of APD1 in plant defense and development. We show that APD1 function is required for light-mediated defense against bacterial pathogens and systemic acquired resistance (SAR). We demonstrate that APD1 function is not required for generating SAR mobile signal at the site of primary inoculation but is required at the distal end for SAR manifestation. In addition, the APD1 function is required for PTI-induced callose deposition, defense against necrotrophic pathogen Botrytis cinerea and Alternaria alternata, which are ethylene (ET) or ethylene-Jasmonate (JA) dependent responses. Development of seedling under dark and ET is partly dependent on APD1. The mutant apd1 plants are non-responsive towards exogenous ACC application regarding apical hook formation and hypocotyl shortening, however, possess WT-like ET-mediated root growth inhibition. JA-mediated root growth inhibition is also impaired in apd1 seedlings. Altogether our results suggest that APD1 impacts multiple aspects of plant growth and development.
Collapse
Affiliation(s)
- Janesh Kumar Gautam
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
24
|
Ádám AL, Nagy ZÁ, Kátay G, Mergenthaler E, Viczián O. Signals of Systemic Immunity in Plants: Progress and Open Questions. Int J Mol Sci 2018; 19:E1146. [PMID: 29642641 PMCID: PMC5979450 DOI: 10.3390/ijms19041146] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 12/17/2022] Open
Abstract
Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens.
Collapse
Affiliation(s)
- Attila L Ádám
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Zoltán Á Nagy
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic.
| | - György Kátay
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Emese Mergenthaler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Orsolya Viczián
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| |
Collapse
|
25
|
Singh N, Swain S, Singh A, Nandi AK. AtOZF1 Positively Regulates Defense Against Bacterial Pathogens and NPR1-Independent Salicylic Acid Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:323-333. [PMID: 29327969 DOI: 10.1094/mpmi-08-17-0208-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plant hormone salicylic acid (SA) plays critical roles in defense signaling against biotrophic pathogens. Pathogen inoculation leads to SA accumulation in plants. SA activates a transactivator protein NPR1, which, in turn, transcriptionally activates many defense response genes. Reports also suggest the presence of NPR1-independent pathways for SA signaling in Arabidopsis. Here, we report the characterization of a zinc-finger protein-coding gene AtOZF1 that positively influences NPR1-independent SA signaling. Mutants of AtOZF1 are compromised, whereas AtOZF1-overexpressing plants are hyperactive for defense against virulent and avirulent pathogens. AtOZF1 expression is SA-inducible. AtOZF1 function is not required for pathogenesis-associated biosynthesis and accumulation of SA. However, it is required for SA responsiveness. By generating atozf1npr1 double mutant, we show that contributions of these two genes are additive in terms of defense. We identified AtOZF1-interacting proteins by a yeast-two-hybrid screening of an Arabidopsis cDNA library. VDAC2 and NHL3 are two AtOZF1-interacting proteins, which are positive regulators of basal defense. AtOZF1 interacts with NHL3 and VDAC2 in plasma membrane and mitochondria, respectively. Our results demonstrate that AtOZF1 coordinates multiple steps of plant-pathogen interaction.
Collapse
Affiliation(s)
- Nidhi Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swadhin Swain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anupriya Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
26
|
Banday ZZ, Nandi AK. Arabidopsis thaliana GLUTATHIONE-S-TRANSFERASE THETA 2 interacts with RSI1/FLD to activate systemic acquired resistance. MOLECULAR PLANT PATHOLOGY 2018; 19:464-475. [PMID: 28093893 PMCID: PMC6638090 DOI: 10.1111/mpp.12538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 05/08/2023]
Abstract
A partly infected plant develops systemic acquired resistance (SAR) and shows heightened resistance during subsequent infections. The infected parts generate certain mobile signals that travel to the distal tissues and help to activate SAR. SAR is associated with epigenetic modifications of several defence-related genes. However, the mechanisms by which mobile signals contribute to epigenetic changes are little known. Previously, we have shown that the Arabidopsis REDUCED SYSTEMIC IMMUNITY 1 (RSI1, alias FLOWERING LOCUS D; FLD), which codes for a putative histone demethylase, is required for the activation of SAR. Here, we report the identification of GLUTATHIONE-S-TRANSFERASE THETA 2 (GSTT2) as an interacting factor of FLD. GSTT2 expression increases in pathogen-inoculated as well as pathogen-free distal tissues. The loss-of-function mutant of GSTT2 is compromised for SAR, but activates normal local resistance. Complementation lines of GSTT2 support its role in SAR activation. The distal tissues of gstt2 mutant plants accumulate significantly less salicylic acid (SA) and express a reduced level of the SA biosynthetic gene PAL1. In agreement with the established histone modification activity of FLD, gstt2 mutant plants accumulate an enhanced level of methylated and acetylated histones in the promoters of WRKY6 and WRKY29 genes. Together, these results demonstrate that GSTT2 is an interactor of FLD, which is required for SAR and SAR-associated epigenetic modifications.
Collapse
Affiliation(s)
| | - Ashis Kumar Nandi
- School of Life SciencesJawaharlal Nehru UniversityNew Delhi110067India
| |
Collapse
|
27
|
Lim GH, Singhal R, Kachroo A, Kachroo P. Fatty Acid- and Lipid-Mediated Signaling in Plant Defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:505-536. [PMID: 28777926 DOI: 10.1146/annurev-phyto-080516-035406] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fatty acids and lipids, which are major and essential constituents of all plant cells, not only provide structural integrity and energy for various metabolic processes but can also function as signal transduction mediators. Lipids and fatty acids can act as both intracellular and extracellular signals. In addition, cyclic and acyclic products generated during fatty acid metabolism can also function as important chemical signals. This review summarizes the biosynthesis of fatty acids and lipids and their involvement in pathogen defense.
Collapse
Affiliation(s)
- Gah-Hyun Lim
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| | - Richa Singhal
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| |
Collapse
|
28
|
Xue LL, Chen HH, Jiang JG. Implications of glycerol metabolism for lipid production. Prog Lipid Res 2017; 68:12-25. [PMID: 28778473 DOI: 10.1016/j.plipres.2017.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/06/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
Triacylglycerol (TAG) is an important product in oil-producing organisms. Biosynthesis of TAG can be completed through either esterification of fatty acids to glycerol backbone, or through esterification of 2-monoacylglycerol. This review will focus on the former pathway in which two precursors, fatty acid and glycerol-3-phosphate (G3P), are required for TAG formation. Tremendous progress has been made about the enzymes or genes that regulate the biosynthetic pathway of TAG. However, much attention has been paid to the fatty acid provision and the esterification process, while the possible role of G3P is largely neglected. Glycerol is extensively studied on its usage as carbon source for value-added products, but the modification of glycerol metabolism, which is directly associated with G3P synthesis, is seldom recognized in lipid investigations. The relevance among glycerol metabolism, G3P synthesis and lipid production is described, and the role of G3P in glycerol metabolism and lipid production are discussed in detail with an emphasis on how G3P affects lipid production through the modulation of glycerol metabolism. Observations of lipid metabolic changes due to glycerol related disruption in mammals, plants, and microorganisms are introduced. Altering glycerol metabolism results in the changes of final lipid content. Possible regulatory mechanisms concerning the relationship between glycerol metabolism and lipid production are summarized.
Collapse
Affiliation(s)
- Lu-Lu Xue
- (a)College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China; (b)Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hao-Hong Chen
- (a)College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- (a)College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
29
|
Bhattacharjee L, Singh D, Gautam JK, Nandi AK. Arabidopsis thaliana serpins AtSRP4 and AtSRP5 negatively regulate stress-induced cell death and effector-triggered immunity induced by bacterial effector AvrRpt2. PHYSIOLOGIA PLANTARUM 2017; 159:329-339. [PMID: 27709637 DOI: 10.1111/ppl.12516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
Protease inhibitors and their cognate proteases regulate growth, development and defense. Serine protease inhibitors (serpins) constitute a large family of genes in most metazoans and plants. Drosophila NECROTIC (NEC) gene and its homologues in the mammalian system are well-characterized serpins, which play a role in regulating proteases that participate in cell death pathways. Although the Arabidopsis genome contains several serpin homologs, biological function is not known for most of them. Here we show that two Arabidopsis serpins, AtSRP4 and AtSRP5, are closest sequence homologue of Drosophila NEC protein, and are involved in stress-induced cell death and defense. Expression of both AtSRP4 and AtSRP5 genes induced upon ultra-violet (UV)-treatment and inoculation with avirulent pathogens. The knockout mutants and amiRNA lines of AtSRP4 and AtSRP5 exaggerated UV- and hypersensitive response (HR)-induced cell death. Over-expression of AtSRP4 reduced UV- and HR-induced cell death. Mutants of AtSRP4 and AtSRP5 suppressed whereas over-expression of AtSRP4 supported the growth of bacterial pathogen Pseudomonas syringae pv. tomato DC3000 carrying the AvrRpt2 effector, but not other avirulent or virulent pathogens. Results altogether identified AtSRP4 and AtSRP5 as negative regulators of stress-induced cell death and AvrRpt2-triggered immunity; however, the influence of AtSRP4 was more prominent than AtSRP5.
Collapse
Affiliation(s)
| | - Deepjyoti Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Janesh Kumar Gautam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
30
|
Roy S, Nandi AK. Arabidopsis thaliana methionine sulfoxide reductase B8 influences stress-induced cell death and effector-triggered immunity. PLANT MOLECULAR BIOLOGY 2017; 93:109-120. [PMID: 27900506 DOI: 10.1007/s11103-016-0550-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/03/2016] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) oxidize methionine to methionine sulfoxide (MetSO) and thereby inactivate proteins. Methionine sulfoxide reductase (MSR) enzyme converts MetSO back to the reduced form and thereby detoxifies the effect of ROS. Our results show that Arabidopsis thaliana MSR enzyme coding gene MSRB8 is required for effector-triggered immunity and containment of stress-induced cell death in Arabidopsis. Plants activate pattern-triggered immunity (PTI), a basal defense, upon recognition of evolutionary conserved molecular patterns present in the pathogens. Pathogens release effector molecules to suppress PTI. Recognition of certain effector molecules activates a strong defense, known as effector-triggered immunity (ETI). ETI induces high-level accumulation of reactive oxygen species (ROS) and hypersensitive response (HR), a rapid programmed death of infected cells. ROS oxidize methionine to methionine sulfoxide (MetSO), rendering several proteins nonfunctional. The methionine sulfoxide reductase (MSR) enzyme converts MetSO back to the reduced form and thereby detoxifies the effect of ROS. Though a few plant MSR genes are known to provide tolerance against oxidative stress, their role in plant-pathogen interaction is not known. We report here that activation of cell death by avirulent pathogen or UV treatment induces expression of MSRB7 and MSRB8 genes. The T-DNA insertion mutant of MSRB8 exaggerates HR-associated and UV-induced cell death and accumulates a higher level of ROS than wild-type plants. The negative regulatory role of MSRB8 in HR is further supported by amiRNA and overexpression lines. Mutants and overexpression lines of MSRB8 are susceptible and resistant respectively, compared to the wild-type plants, against avirulent strains of Pseudomonas syringae pv. tomato DC3000 (Pst) carrying AvrRpt2, AvrB, or AvrPphB genes. However, the MSRB8 gene does not influence resistance against virulent Pst or P. syringae pv. maculicola (Psm) pathogens. Our results altogether suggest that MSRB8 function is required for ETI and containment of stress-induced cell death in Arabidopsis.
Collapse
Affiliation(s)
- Shweta Roy
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
31
|
Yan Z, Xingfen W, Wei R, Jun Y, Zhiying M. Island Cotton Enhanced Disease Susceptibility 1 Gene Encoding a Lipase-Like Protein Plays a Crucial Role in Response to Verticillium dahliae by Regulating the SA Level and H 2O 2 Accumulation. FRONTIERS IN PLANT SCIENCE 2016; 7:1830. [PMID: 28018374 PMCID: PMC5156716 DOI: 10.3389/fpls.2016.01830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/21/2016] [Indexed: 05/23/2023]
Abstract
Cotton is one of the most economically important crops, but most cultivated varieties lack adequate innate immunity or resistance to Verticillium wilt. This results in serious losses to both yield and fiber quality. To identify the genetic resources for innate immunity and understand the pathways for pathogen defenses in this crop, here we focus on orthologs of the central Arabidopsis thaliana defense regulator Enhanced Disease Susceptibility 1 (EDS1). The full-length cDNA of GbEDS1 was obtained by screening the full-length cDNA library of Gossypium barbadense combining with RACE strategy. Its open reading frame is 1848 bp long, encoding 615 amino acid residues. Sequence analysis showed that GbEDS1 contains a conserved N-terminal lipase domain and an EDS1-specific KNEDT motif. Expression profiling indicated that the gene is induced by Verticillium dahliae as well as salicylic acid (SA) treatment. Subcellular localization assays revealed that GbEDS1 is located in the cell cytoplasm and nucleus. Overexpression of GbEDS1 in Arabidopsis dramatically up-regulated SA and H2O2 production, resulting in enhanced disease resistance to V. dahliae. Silencing of GbEDS1 in G. barbadense significantly decreased SA and H2O2 accumulation, leading to the cotton more susceptibility. Moreover, combining the gene expression results from transgenic Arabidopsis and silenced-GbEDS1 cotton, it indicated that GbEDS1 could activate GbNDR1 and GbBAK1 expression. These findings not only broaden our knowledge about the biological role of GbEDS1, but also provide new insights into the defense mechanisms of GbEDS1 against V. dahliae in cotton.
Collapse
|
32
|
Yang H, Chen H, Hao G, Mei T, Zhang H, Chen W, Chen YQ. Increased fatty acid accumulation following overexpression of glycerol‐3‐phosphate dehydrogenase and suppression of β‐oxidation in oleaginous fungus
Mortierella alpina. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hua Yang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Guangfei Hao
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Tiantian Mei
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNCUSA
| |
Collapse
|
33
|
Singh V, Singh PK, Siddiqui A, Singh S, Banday ZZ, Nandi AK. Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants. JOURNAL OF PLANT RESEARCH 2016; 129:285-293. [PMID: 26747130 PMCID: PMC5077251 DOI: 10.1007/s10265-015-0781-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/25/2015] [Indexed: 05/07/2023]
Abstract
Lipids are the major constituents of all membranous structures in plants. Plants possess two pathways for lipid biosynthesis: the prokaryotic pathway (i.e., plastidic pathway) and the eukaryotic pathway (i.e., endoplasmic-reticulum (ER) pathway). Whereas some plants synthesize galactolipids from diacylglycerol assembled in the plastid, others, including rice, derive their galactolipids from diacylglycerols assembled by the eukaryotic pathway. Arabidopsis thaliana glycerol-3-phosphate dehydrogenase (G3pDH), coded by SUPPRESSOR OF FATTY ACID DESATURASE 1 (SFD1; alias GLY1) gene, catalyzes the formation of glycerol 3-phosphate (G3p), the backbone of many membrane lipids. Here SFD1 was introduced to rice as a transgene. Arabidopsis SFD1 localizes in rice plastids and its over-expression increases plastidic membrane lipid content in transgenic rice plants without any major impact on ER lipids. The results suggest that over-expression of plastidic G3pDH enhances biosynthesis of plastid-localized lipids in rice. Lipid composition in the transgenic plants is consistent with increased phosphatidylglycerol synthesis in the plastid and increased galactolipid synthesis from diacylglycerol produced via the ER pathway. The transgenic plants show a higher photosynthetic assimilation rate, suggesting a possible application of this finding in crop improvement.
Collapse
Affiliation(s)
- Vijayata Singh
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi 110067, India
| | - Praveen Kumar Singh
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi 110067, India
| | - Adnan Siddiqui
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi 110067, India
| | - Subaran Singh
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi 110067, India
| | | | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi 110067, India
| |
Collapse
|
34
|
Li RJ, Gao X, Li LM, Liu XL, Wang ZY, Lü SY. De novo Assembly and Characterization of the Fruit Transcriptome of Idesia polycarpa Reveals Candidate Genes for Lipid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:801. [PMID: 27375655 PMCID: PMC4896211 DOI: 10.3389/fpls.2016.00801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/22/2016] [Indexed: 05/12/2023]
Abstract
Idesia polycarpa, is a valuable oilseed-producing tree of the Flacourtiaceae family that has the potential to fulfill edible oil production and is also a possible biofuel feedstock. The fruit is unique in that it contains both saturated and unsaturated lipids present in pericarp and seed, respectively. However, triglyceride synthesis and storage in tissues outside of the seeds has been poorly studied in previous researches. To gain insight into the unique properties of I. polycarpa fruit lipid synthesis, biochemical, and transcriptomic approaches were used to compare the lipid accumulation between pericarp and seed of the fruit. Lipid accumulation rates, final lipid content and composition were significantly different between two tissues. Furthermore, we described the annotated transcriptome assembly and differential gene expression analysis generated from the pericarp and seed tissues. The data allowed the identification of distinct candidate genes and reconstruction of lipid pathways, which may explain the differences of oil synthesis between the two tissues. The results may be useful for engineering alternative pathways for lipid production in non-seed or vegetative tissues.
Collapse
Affiliation(s)
- Rong-Jun Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of SciencesWuhan, China
| | - Xiang Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Lin-Mao Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xiu-Lin Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Zhou-Ya Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Shi-you Lü
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of SciencesWuhan, China
- *Correspondence: Shi-you Lü
| |
Collapse
|
35
|
Lee HJ, Park YJ, Seo PJ, Kim JH, Sim HJ, Kim SG, Park CM. Systemic Immunity Requires SnRK2.8-Mediated Nuclear Import of NPR1 in Arabidopsis. THE PLANT CELL 2015; 27:3425-38. [PMID: 26672073 PMCID: PMC4707448 DOI: 10.1105/tpc.15.00371] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/09/2015] [Accepted: 11/22/2015] [Indexed: 05/20/2023]
Abstract
In plants, necrotic lesions occur at the site of pathogen infection through the hypersensitive response, which is followed by induction of systemic acquired resistance (SAR) in distal tissues. Salicylic acid (SA) induces SAR by activating NONEXPRESSER OF PATHOGENESIS-RELATED GENES1 (NPR1) through an oligomer-to-monomer reaction. However, SA biosynthesis is elevated only slightly in distal tissues during SAR, implying that SA-mediated induction of SAR requires additional factors. Here, we demonstrated that SA-independent systemic signals induce a gene encoding SNF1-RELATED PROTEIN KINASE 2.8 (SnRK2.8), which phosphorylates NPR1 during SAR. The SnRK2.8-mediated phosphorylation of NPR1 is necessary for its nuclear import. Notably, although SnRK2.8 transcription and SnRK2.8 activation are independent of SA signaling, the SnRK2.8-mediated induction of SAR requires SA. Together with the SA-mediated monomerization of NPR1, these observations indicate that SA signals and SnRK2.8-mediated phosphorylation coordinately function to activate NPR1 via a dual-step process in developing systemic immunity in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Pil Joon Seo
- Department of Chemistry, Chonbuk National University, Jeonju 561-756, Korea
| | - Ju-Heon Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 305-811, Korea
| | - Sang-Gyu Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 305-811, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
36
|
Grimberg Å, Carlsson AS, Marttila S, Bhalerao R, Hofvander P. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues. BMC PLANT BIOLOGY 2015; 15:192. [PMID: 26253704 PMCID: PMC4528408 DOI: 10.1186/s12870-015-0579-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/23/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Carbon accumulation and remobilization are essential mechanisms in plants to ensure energy transfer between plant tissues with different functions or metabolic needs and to support new generations. Knowledge about the regulation of carbon allocation into oil (triacylglycerol) in plant storage tissue can be of great economic and environmental importance for developing new high-yielding oil crops. Here, the effect on global gene expression as well as on physiological changes in leaves transiently expressing five homologs of the transcription factor WRINKLED1 (WRI1) originating from diverse species and tissues; Arabidopsis thaliana and potato (Solanum tuberosum) seed embryo, poplar (Populus trichocarpa) stem cambium, oat (Avena sativa) grain endosperm, and nutsedge (Cyperus esculentus) tuber parenchyma, were studied by agroinfiltration in Nicotiana benthamiana. RESULTS All WRI1 homologs induced oil accumulation when expressed in leaf tissue. Transcriptome sequencing revealed that all homologs induced the same general patterns with a drastic shift in gene expression profiles of leaves from that of a typical source tissue to a source-limited sink-like tissue: Transcripts encoding enzymes for plastid uptake and metabolism of phosphoenolpyruvate, fatty acid and oil biosynthesis were up-regulated, as were also transcripts encoding starch degradation. Transcripts encoding enzymes in photosynthesis and starch synthesis were instead down-regulated. Moreover, transcripts representing fatty acid degradation were up-regulated indicating that fatty acids might be degraded to feed the increased need to channel carbons into fatty acid synthesis creating a futile cycle. RT-qPCR analysis of leaves expressing Arabidopsis WRI1 showed the temporal trends of transcripts selected as 'markers' for key metabolic pathways one to five days after agroinfiltration. Chlorophyll fluorescence measurements of leaves expressing Arabidopsis WRI1 showed a significant decrease in photosynthesis, even though effect on starch content could not be observed. CONCLUSIONS This data gives for the first time a general view on the transcriptional transitions in leaf tissue upon induction of oil synthesis by WRI1. This yields important information about what effects WRI1 may exert on global gene expression during seed and embryo development. The results suggest why high oil content in leaf tissue cannot be achieved by solely transcriptional activation by WRI1, which can be essential knowledge in the development of new high-yielding oil crops.
Collapse
Affiliation(s)
- Åsa Grimberg
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp, Sweden.
| | - Anders S Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp, Sweden.
| | - Salla Marttila
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Rishikesh Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden.
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp, Sweden.
| |
Collapse
|
37
|
Arabidopsis AZI1 family proteins mediate signal mobilization for systemic defence priming. Nat Commun 2015. [PMID: 26203923 DOI: 10.1038/ncomms8658] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Priming is a major mechanism behind the immunological 'memory' observed during two key plant systemic defences: systemic acquired resistance (SAR) and induced systemic resistance (ISR). Lipid-derived azelaic acid (AZA) is a mobile priming signal. Here, we show that the lipid transfer protein (LTP)-like AZI1 and its closest paralog EARLI1 are necessary for SAR, ISR and the systemic movement and uptake of AZA in Arabidopsis. Imaging and fractionation studies indicate that AZI1 and EARLI1 localize to expected places for lipid exchange/movement to occur. These are the ER/plasmodesmata, chloroplast outer envelopes and membrane contact sites between them. Furthermore, these LTP-like proteins form complexes and act at the site of SAR establishment. The plastid targeting of AZI1 and AZI1 paralogs occurs through a mechanism that may enable/facilitate their roles in signal mobilization.
Collapse
|
38
|
Salicylic Acid Signaling in Plant Innate Immunity. PLANT HORMONE SIGNALING SYSTEMS IN PLANT INNATE IMMUNITY 2015. [DOI: 10.1007/978-94-017-9285-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Banday ZZ, Nandi AK. Interconnection between flowering time control and activation of systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2015; 6:174. [PMID: 25852723 PMCID: PMC4365546 DOI: 10.3389/fpls.2015.00174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/04/2015] [Indexed: 05/06/2023]
Abstract
The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants.
Collapse
Affiliation(s)
| | - Ashis K. Nandi
- *Correspondence: Ashis K. Nandi, School of Life Sciences, Jawaharlal Nehru University, Room 415, New Delhi-110067, Delhi, India
| |
Collapse
|
40
|
Sun L, Zhu L, Xu L, Yuan D, Min L, Zhang X. Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway. Nat Commun 2014; 5:5372. [PMID: 25371113 PMCID: PMC4241986 DOI: 10.1038/ncomms6372] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/25/2014] [Indexed: 11/09/2022] Open
Abstract
Plant oxylipins are derived from unsaturated fatty acids and play roles in plant growth and development as well as defence. Although recent studies have revealed that fatty acid metabolism is involved in systemic acquired resistance, the precise function of oxylipins in plant defence remains unknown. Here we report a cotton P450 gene SILENCE-INDUCED STEM NECROSIS (SSN), RNAi suppression of which causes a lesion mimic phenotype. SSN is also involved in jasmonate metabolism and the response to wounding. Fatty acid and oxylipin metabolite analysis showed that SSN overexpression causes hyperaccumulation of hydroxide and ketodiene fatty acids and reduced levels of 18:2 fatty acids, whereas silencing causes an imbalance in LOX (lipoxygenase) expression and excessive hydroperoxide fatty acid accumulation. We also show that an unknown oxylipin-derived factor is a putative mobile signal required for systemic cell death and hypothesize that SSN acts as a valve to regulate HR on pathogen infection. Oxylipin signalling is known to play important roles in plant growth, development and defence against pathogens. Here Sun et al. identify a novel cytochrome P450 in cotton and show that its suppression leads to activation of plant defence responses and alteration of oxylipin metabolism.
Collapse
Affiliation(s)
- Longqing Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
41
|
Arabidopsis flowering locus D influences systemic-acquired-resistance- induced expression and histone modifications of WRKY genes. J Biosci 2014; 39:119-26. [PMID: 24499796 DOI: 10.1007/s12038-013-9407-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A plant that is in part infected by a pathogen is more resistant throughout its whole body to subsequent infections--a phenomenon known as systemic acquired resistance (SAR). Mobile signals are synthesized at the site of infection and distributed throughout the plant through vascular tissues. Mechanism of SAR development subsequent to reaching the mobile signal in the distal tissue is largely unknown. Recently we showed that flowering locus D (FLD) gene of Arabidopsis thaliana is required in the distal tissue to activate SAR. FLD codes for a homologue of human-lysine-specific histone demethylase. Here we show that FLD function is required for priming (SAR induced elevated expression during challenge inoculation) of WRKY29 and WRKY6 genes. FLD also differentially influences basal and SAR-induced expression of WRKY38, WRKY65 and WRKY53 genes. In addition, we also show that FLD partly localizes in nucleus and influences histone modifications at the promoters of WRKY29 and WRKY6 genes. The results altogether indicate to the possibility of FLD's involvement in epigenetic regulation of SAR.
Collapse
|
42
|
Shah J, Chaturvedi R, Chowdhury Z, Venables B, Petros RA. Signaling by small metabolites in systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:645-58. [PMID: 24506415 DOI: 10.1111/tpj.12464] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/21/2013] [Accepted: 01/27/2014] [Indexed: 05/18/2023]
Abstract
Plants can retain the memory of a prior encounter with a pest. This memory confers upon a plant the ability to subsequently activate defenses more robustly when challenged by a pest. In plants that have retained the memory of a prior, localized, foliar infection by a pathogen, the pathogen-free distal organs develop immunity against subsequent infections by a broad-spectrum of pathogens. The long-term immunity conferred by this mechanism, which is termed systemic acquired resistance (SAR), is inheritable over a few generations. Signaling mediated by the phenolic metabolite salicylic acid (SA) is critical for the manifestation of SAR. Recent studies have described the involvement of additional small metabolites in SAR signaling, including methyl salicylate, the abietane diterpenoid dehydroabietinal, the lysine catabolite pipecolic acid, a glycerol-3-phosphate-dependent factor and the dicarboxylic acid azelaic acid. Many of these metabolites can be systemically transported through the plant and probably facilitate communication by the primary infected tissue with the distal tissues, which is essential for the activation of SAR. Some of these metabolites have been implicated in the SAR-associated rapid activation of defenses in response to subsequent exposure to the pathogen, a mechanism termed priming. Here, we summarize the role of these signaling metabolites in SAR, and the relationship between them and SA signaling in SAR.
Collapse
Affiliation(s)
- Jyoti Shah
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | | | | | | | | |
Collapse
|
43
|
Giri MK, Swain S, Gautam JK, Singh S, Singh N, Bhattacharjee L, Nandi AK. The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:860-7. [PMID: 24612849 DOI: 10.1016/j.jplph.2013.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 05/09/2023]
Abstract
The Arabidopsis genome contains a large number of putative transcription factors, containing a DNA binding domain similar to APETALA2/ethylene response element binding protein (AP2/EREBP), for most of which a function is not known. Phylogenetic analysis divides the Apetala 2 (AP2) super-family into 5 major groups: AP2, RAV, ethylene response factor (ERF), dehydration response element binding protein (DREB) and At4g13040. Similar to ERF and DREB, the At4g13040 protein contains only one AP2 domain; however, its structural uniqueness places it into a distinct group. In this article, we report that At4g13040 (referred herein as Apetala 2 family protein involved in SA mediated disease defense 1 - APD1) is an important regulator for SA mediated plant defense. The APD1 gene is upregulated upon pathogen inoculation, exogenous SA application and in the mutant that constitutively activates SA signaling. The T-DNA insertion lines (inserted in the APD1 promoter), which fail to induce expression upon pathogen inoculation, are compromised for resistance against virulent bacterial pathogens and show reduced induction of pathogenesis related 1 gene. Our results suggest that APD1 functions downstream of PAD4 in Arabidopsis and promotes pathogen-induced SA accumulation. Exogenous SA application completely restores the loss-of-resistance phenotype of the apd1 mutant. Thus, APD1 is a positive regulator of disease defense that functions upstream of SA accumulation.
Collapse
Affiliation(s)
- Mrunmay Kumar Giri
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swadhin Swain
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Janesh Kumar Gautam
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Subaran Singh
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nidhi Singh
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Lipika Bhattacharjee
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashis Kumar Nandi
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
44
|
Zhu F, Xi DH, Yuan S, Xu F, Zhang DW, Lin HH. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:567-77. [PMID: 24450774 DOI: 10.1094/mpmi-11-13-0349-r] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing-based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography-mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV.
Collapse
|
45
|
Gao QM, Kachroo A, Kachroo P. Chemical inducers of systemic immunity in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1849-55. [PMID: 24591049 DOI: 10.1093/jxb/eru010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is a highly desirable form of resistance that protects against a broad-spectrum of related or unrelated pathogens. SAR involves the generation of multiple signals at the site of primary infection, which arms distal portions against subsequent secondary infections. The last decade has witnessed considerable progress, and a number of chemical signals contributing to SAR have been isolated and characterized. The diverse chemical nature of these chemicals had led to the growing belief that SAR might involve interplay of multiple diverse and independent signals. However, recent results suggest that coordinated signalling from diverse signalling components facilitates SAR in plants. This review mainly discusses organized signalling by two such chemicals, glycerol-3-phoshphate and azelaic acid, and the role of basal salicylic acid levels in G3P-conferred SAR.
Collapse
Affiliation(s)
- Qing-Ming Gao
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | |
Collapse
|
46
|
Singh V, Banday ZZ, Nandi AK. Exogenous application of histone demethylase inhibitor trans-2-phenylcyclopropylamine mimics FLD loss-of-function phenotype in terms of systemic acquired resistance in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2014; 9:e29658. [PMID: 25763701 PMCID: PMC4203637 DOI: 10.4161/psb.29658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants often learn from previous infections to mount higher level of resistance during subsequent infections, a phenomenon referred to as systemic acquired resistance (SAR). During primary infection, mobile signals generated at the infection site subsequently move to the rest of plant to activate SAR. SAR activation is associated with alteration in the nucleosomal composition at the promoters of several defense-related genes. However, genetic regulations of such epigenetic modifications are largely obscure. Recently, we have demonstrated that Reduced Systemic immunity1/FLOWERING LOCUS D (RSI1; alias FLD) a homolog of human histone demethylase, is required for SAR development in Arabidopsis. Here, we report that exogenous application of a histone demethylase inhibitor trans-2-phenylcyclopropylamine (2-PCPA) mimics rsi1/fld loss-of-function phenotypes in terms of SAR and associated histone demethylation at the promoters of PR1, WRKY 29, and WRKY6 genes, and as well as flowering phenotypes. Our results suggest histone demethylase activity of FLD is important for controlling SAR activation.
Collapse
|
47
|
Hung CY, Aspesi Jr P, Hunter MR, Lomax AW, Perera IY. Phosphoinositide-signaling is one component of a robust plant defense response. FRONTIERS IN PLANT SCIENCE 2014; 5:267. [PMID: 24966862 PMCID: PMC4052902 DOI: 10.3389/fpls.2014.00267] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/22/2014] [Indexed: 05/03/2023]
Abstract
The phosphoinositide pathway and inositol-1,4,5-triphosphate (InsP3) have been implicated in plant responses to many abiotic stresses; however, their role in response to biotic stress is not well characterized. In the current study, we show that both basal defense and systemic acquired resistance responses are affected in transgenic plants constitutively expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase) which have greatly reduced InsP3 levels. Flagellin induced Ca(2+)-release as well as the expressions of some flg22 responsive genes were attenuated in the InsP 5-ptase plants. Furthermore, the InsP 5-ptase plants were more susceptible to virulent and avirulent strains of Pseudomonas syringae pv. tomato (Pst) DC3000. The InsP 5-ptase plants had lower basal salicylic acid (SA) levels and the induction of SAR in systemic leaves was reduced and delayed. Reciprocal exudate experiments showed that although the InsP 5-ptase plants produced equally effective molecules that could trigger PR-1 gene expression in wild type plants, exudates collected from either wild type or InsP 5-ptase plants triggered less PR-1 gene expression in InsP 5-ptase plants. Additionally, expression profiles indicated that several defense genes including PR-1, PR-2, PR-5, and AIG1 were basally down regulated in the InsP 5-ptase plants compared with wild type. Upon pathogen attack, expression of these genes was either not induced or showed delayed induction in systemic leaves. Our study shows that phosphoinositide signaling is one component of the plant defense network and is involved in both basal and systemic responses. The dampening of InsP3-mediated signaling affects Ca(2+) release, modulates defense gene expression and compromises plant defense responses.
Collapse
Affiliation(s)
| | | | | | | | - Imara Y. Perera
- *Correspondence: Imara Y. Perera, Department of Plant and Microbial Biology, North Carolina State University, Box 7612, Raleigh, NC 27695, USA e-mail:
| |
Collapse
|
48
|
Yang Y, Zhao J, Liu P, Xing H, Li C, Wei G, Kang Z. Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. sp. tritici. PLoS One 2013; 8:e81756. [PMID: 24312351 PMCID: PMC3843702 DOI: 10.1371/journal.pone.0081756] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/16/2013] [Indexed: 11/23/2022] Open
Abstract
Glycerol-3-phosphate (G3P) is a proposed regulator of plant defense signaling in basal resistance and systemic acquired resistance (SAR). The GLY1-encoded glycerol-3-phosphate dehydrogenase (G3PDH) and GLI1-encoded glycerol kinase (GK) are two key enzymes involved in the G3P biosynthesis in plants. However, their physiological importance in wheat defense against pathogens remains unclear. In this study, quantification analysis revealed that G3P levels were significantly induced in wheat leaves challenged by the avirulent Puccinia striiformis f. sp. tritici (Pst) race CYR23. The transcriptional levels of TaGLY1 and TaGLI1 were likewise significantly induced by avirulent Pst infection. Furthermore, knocking down TaGLY1 and TaGLI1 individually or simultaneously with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) inhibited G3P accumulation and compromised the resistance in the wheat cultivar Suwon 11, whereas the accumulation of salicylic acid (SA) and the expression of the SA-induced marker gene TaPR1 in plant leaves were altered significantly after gene silencing. These results suggested that G3P contributes to wheat systemic acquired resistance (SAR) against stripe rust, and provided evidence that the G3P function as a signaling molecule is conserved in dicots and monocots. Meanwhile, the simultaneous co-silencing of multiple genes by the VIGS system proved to be a powerful tool for multi-gene functional analysis in plants.
Collapse
Affiliation(s)
- Yuheng Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
49
|
Zhang Y, Wang X, Li Y, Wu L, Zhou H, Zhang G, Ma Z. Ectopic expression of a novel Ser/Thr protein kinase from cotton (Gossypium barbadense), enhances resistance to Verticillium dahliae infection and oxidative stress in Arabidopsis. PLANT CELL REPORTS 2013; 32:1703-13. [PMID: 23912851 DOI: 10.1007/s00299-013-1481-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE Overexpression of a cotton defense-related gene GbSTK in Arabidopsis resulted in enhancing pathogen infection and oxidative stress by activating multiple defense-signaling pathways. ABSTRACT Serine/threonine protein kinase (STK) plays an important role in the plant stress-signaling transduction pathway via phosphorylation. Most studies about STK genes have been conducted with model species. However, their molecular and biochemical characterizations have not been thoroughly investigated in cotton. Here, we focused on one such member, GbSTK. RT-PCR indicated that it is induced not only by Verticillium dahliae Kleb., but also by signaling molecules. Subcellular localization showed that GbSTK is present in the cell membrane, cytoplasm, and nucleus. Overexpression of GbSTK in Arabidopsis resulted into the enhanced resistance to V. dahliae. Moreover, Overexpression of GbSTK elevated the expression of PR4, PR5, and EREBP, conferring on transgenic plants enhanced reactive oxygen species scavenging capacity and oxidative stress tolerance. Our results suggest that GbSTK is active in multiple defense-signaling pathways, including those involved in responses to pathogen infection and oxidative stress.
Collapse
Affiliation(s)
- Yan Zhang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Department of Agriculture, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhang Y, Wang X, Li Y, Wu L, Zhou H, Zhang G, Ma Z. Ectopic expression of a novel Ser/Thr protein kinase from cotton (Gossypium barbadense), enhances resistance to Verticillium dahliae infection and oxidative stress in Arabidopsis. PLANT CELL REPORTS 2013. [PMID: 23912851 DOI: 10.1007/-s00299-013-1481-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE Overexpression of a cotton defense-related gene GbSTK in Arabidopsis resulted in enhancing pathogen infection and oxidative stress by activating multiple defense-signaling pathways. ABSTRACT Serine/threonine protein kinase (STK) plays an important role in the plant stress-signaling transduction pathway via phosphorylation. Most studies about STK genes have been conducted with model species. However, their molecular and biochemical characterizations have not been thoroughly investigated in cotton. Here, we focused on one such member, GbSTK. RT-PCR indicated that it is induced not only by Verticillium dahliae Kleb., but also by signaling molecules. Subcellular localization showed that GbSTK is present in the cell membrane, cytoplasm, and nucleus. Overexpression of GbSTK in Arabidopsis resulted into the enhanced resistance to V. dahliae. Moreover, Overexpression of GbSTK elevated the expression of PR4, PR5, and EREBP, conferring on transgenic plants enhanced reactive oxygen species scavenging capacity and oxidative stress tolerance. Our results suggest that GbSTK is active in multiple defense-signaling pathways, including those involved in responses to pathogen infection and oxidative stress.
Collapse
Affiliation(s)
- Yan Zhang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Department of Agriculture, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|