1
|
Liu H, Iyer LM, Norris P, Liu R, Yu K, Grant M, Aravind L, Kachroo A, Kachroo P. Piperideine-6-carboxylic acid regulates vitamin B6 homeostasis and modulates systemic immunity in plants. NATURE PLANTS 2025; 11:263-278. [PMID: 39953358 DOI: 10.1038/s41477-025-01906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/19/2024] [Indexed: 02/17/2025]
Abstract
Dietary consumption of lysine in humans leads to the biosynthesis of Δ1-piperideine-6-carboxylic acid (P6C), with elevated levels linked to the neurological disorder epilepsy. Here we demonstrate that P6C biosynthesis is also a critical component of lysine catabolism in Arabidopsis thaliana. P6C regulates vitamin B6 homeostasis, and increased P6C levels deplete B6 vitamers, resulting in compromised plant immunity. We further establish a key role for pyridoxal and pyridoxal-5-phosphate biosynthesis in plant immunity. Our analysis indicates that P6C metabolism probably evolved through combining select lysine and proline metabolic enzymes horizontally acquired from diverse bacterial sources at different points during evolution. More generally, certain enzymes from the lysine and proline metabolic pathways were probably recruited in evolution as potential guardians of B6 vitamers and for semialdehyde detoxification.
Collapse
Affiliation(s)
- Huazhen Liu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Lakshminarayan M Iyer
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Ruiying Liu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Keshun Yu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, UK
| | - L Aravind
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Tenorio Berrío R, Dubois M. Single-cell transcriptomics reveals heterogeneity in plant responses to the environment: a focus on biotic and abiotic interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5188-5203. [PMID: 38466621 DOI: 10.1093/jxb/erae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Biotic and abiotic environmental cues are major factors influencing plant growth and productivity. Interactions with biotic (e.g. symbionts and pathogens) and abiotic (e.g. changes in temperature, water, or nutrient availability) factors trigger signaling and downstream transcriptome adjustments in plants. While bulk RNA-sequencing technologies have traditionally been used to profile these transcriptional changes, tissue homogenization may mask heterogeneity of responses resulting from the cellular complexity of organs. Thus, whether different cell types respond equally to environmental fluctuations, or whether subsets of the responses are cell-type specific, are long-lasting questions in plant biology. The recent breakthrough of single-cell transcriptomics in plant research offers an unprecedented view of cellular responses under changing environmental conditions. In this review, we discuss the contribution of single-cell transcriptomics to the understanding of cell-type-specific plant responses to biotic and abiotic environmental interactions. Besides major biological findings, we present some technical challenges coupled to single-cell studies of plant-environment interactions, proposing possible solutions and exciting paths for future research.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
3
|
Kumar N, Mishra BK, Liu J, Mohan B, Thingujam D, Pajerowska-Mukhtar KM, Mukhtar MS. Network Biology Analyses and Dynamic Modeling of Gene Regulatory Networks under Drought Stress Reveal Major Transcriptional Regulators in Arabidopsis. Int J Mol Sci 2023; 24:ijms24087349. [PMID: 37108512 PMCID: PMC10139068 DOI: 10.3390/ijms24087349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Drought is one of the most serious abiotic stressors in the environment, restricting agricultural production by reducing plant growth, development, and productivity. To investigate such a complex and multifaceted stressor and its effects on plants, a systems biology-based approach is necessitated, entailing the generation of co-expression networks, identification of high-priority transcription factors (TFs), dynamic mathematical modeling, and computational simulations. Here, we studied a high-resolution drought transcriptome of Arabidopsis. We identified distinct temporal transcriptional signatures and demonstrated the involvement of specific biological pathways. Generation of a large-scale co-expression network followed by network centrality analyses identified 117 TFs that possess critical properties of hubs, bottlenecks, and high clustering coefficient nodes. Dynamic transcriptional regulatory modeling of integrated TF targets and transcriptome datasets uncovered major transcriptional events during the course of drought stress. Mathematical transcriptional simulations allowed us to ascertain the activation status of major TFs, as well as the transcriptional intensity and amplitude of their target genes. Finally, we validated our predictions by providing experimental evidence of gene expression under drought stress for a set of four TFs and their major target genes using qRT-PCR. Taken together, we provided a systems-level perspective on the dynamic transcriptional regulation during drought stress in Arabidopsis and uncovered numerous novel TFs that could potentially be used in future genetic crop engineering programs.
Collapse
Affiliation(s)
- Nilesh Kumar
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Bharat K Mishra
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Jinbao Liu
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Binoop Mohan
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Doni Thingujam
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Karolina M Pajerowska-Mukhtar
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Department of Surgery, University of Alabama at Birmingham, 1808 7th Ave S, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Wang X, Liu X, Yi X, Wang M, Shi W, Li R, Tang W, Zhang L, Sun M, Peng X. The female germ unit is essential for pollen tube funicular guidance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 238:155-168. [PMID: 36527238 DOI: 10.1111/nph.18686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In angiosperm, two immotile sperm cells are delivered to the female gametes for fertilization by a pollen tube, which perceives guidance cues from ovules at least at two critical sites, micropyle for short-distance guidance and funiculus for comparably longer distance guidance. Compared with the great progress in understanding pollen tube micropylar guidance, little is known about the signaling for funicular guidance. Here, we show that funiculus plays an important role in pollen tube guidance and report that female gametophyte (FG) plays a critical role in funicular guidance by analysis of a 3-dehydroquinate synthase (DHQS) mutant. Loss function of DHQS in FG interrupts pollen tube funicular guidance, suggesting that the guiding signal is generated from FG. We show the evidence that the capacity of funicular guidance is established during FG functional specification after the establishment of cell identity. Specific expression of DHQS in the synergid cells, central cells, or egg cells can rescue funicular guidance defect in dhqs/+, indicating all the female germ unit cells are involved in the funicular guidance. The finding reveals that the attracting signal of pollen tube funicular guidance was generated at a site and stage manner and provides novel clue to locate and search for the signal.
Collapse
Affiliation(s)
- Xiu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiangfeng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinlei Yi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Min Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenxin Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruiping Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenyue Tang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liyao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
5
|
Yoo SJ, Choi HJ, Noh SW, Cecchini NM, Greenberg JT, Jung HW. Genetic requirements for infection-specific responses in conferring disease resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1068438. [PMID: 36523630 PMCID: PMC9745044 DOI: 10.3389/fpls.2022.1068438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 06/01/2023]
Abstract
Immunity in plants arises from defense regulatory circuits that can be conceptualized as modules. Both the types (and isolates) of pathogen and the repertoire of plant receptors may cause different modules to be activated and affect the magnitude of activation. Two major defense enzymes of Arabidopsis are ALD1 and ICS1/SID2. ALD1 is an aminotransferase needed for producing the metabolites pipecolic acid, hydroxy-pipecolic acid, and possibly other defense signals. ICS1/SID2 produces isochorismate, an intermediate in the synthesis of salicylic acid (SA) and SA-derivatives. Metabolites resulting from the activation of these enzymes are found in petiole exudates and may serve as priming signals for systemic disease resistance in Arabidopsis. Mutants lacking ALD1 are known to have reduced SA accumulation. To further investigate the role of ALD1 in relation to the SA-related module, immunity phenotypes of double mutants that disrupt ALD1 and ICS1/SID2 or SA perception by NPR1 were compared with each single mutant after infection by different Pseudomonas strains. Exudates collected from these mutants after infection were also evaluated for their ability to confer disease resistance when applied to wild-type plants. During infection with virulent or attenuated strains, the loss of ALD1 does not increase the susceptibility of npr1 or sid2 mutants, suggesting the main role of ALD1 in this context is in amplifying the SA-related module. In contrast, after an infection that leads to strong pathogen recognition via the cytoplasmic immune receptor RPS2, ALD1 acts additively with both NPR1 and ICS1/SID2 to suppress pathogen growth. The additive effects are observed in early basal defense responses as well as SA-related events. Thus, there are specific conditions that dictate whether the modules independently contribute to immunity to provide additive protection during infection. In the exudate experiments, intact NPR1 and ICS1/SID2, but not ALD1 in the donor plants were needed for conferring immunity. Mixing exudates showed that loss of SID2 yields exudates that suppress active exudates from wild-type or ald1 plants. This indicates that ICS1/SID2 may not only lead to positive defense signals, but also prevent a suppressive signal(s).
Collapse
Affiliation(s)
- Sung-Je Yoo
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
| | - Hyo Ju Choi
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
| | - Seong Woo Noh
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Nicolás M. Cecchini
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Ho Won Jung
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| |
Collapse
|
6
|
Luo F, Tang G, Hong S, Gong T, Xin XF, Wang C. Promotion of Arabidopsis immune responses by a rhizosphere fungus via supply of pipecolic acid to plants and selective augment of phytoalexins. SCIENCE CHINA LIFE SCIENCES 2022; 66:1119-1133. [PMID: 36449213 DOI: 10.1007/s11427-022-2238-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 12/03/2022]
Abstract
The ascomycete insect pathogenic fungi such as Metarhizium species have been demonstrated with the abilities to form the rhizosphere or endophytic relationships with different plants for nutrient exchanges. In this study, after the evident infeasibility of bacterial disease development in the boxed sterile soils, we established a hydroponic system for the gnotobiotic growth of Arabidopsis thaliana with the wild-type and transgenic strain of Metarhizium robertsii. The transgenic fungus could produce a high amount of pipecolic acid (PIP), a pivotal plant-immune-stimulating metabolite. Fungal inoculation experiments showed that M. robertsii could form a non-selective rhizosphere relationship with Arabidopsis. Similar to the PIP uptake by plants after exogenous application, PIP level increased in Col-0 and could be detected in the PIP-non-producing Arabidopsis mutant (ald1) after fungal inoculations, indicating that plants can absorb the PIP produced by fungi. The transgenic fungal strain had a better efficacy than the wild type to defend plants against the bacterial pathogen and aphid attacks. Contrary to ald1, fmo1 plants could not be boosted to resist bacterial infection after treatments. After fungal inoculations, the phytoalexins camalexin and aliphatic glucosinolate were selectively increased in Arabidopsis via both PIP-dependent and -independent ways. This study unveils the potential mechanism of the fungus-mediated beneficial promotion of plant immunity against biological stresses. The data also highlight the added values of M. robertsii to plants beyond the direct suppression of insect pest populations.
Collapse
Affiliation(s)
- Feifei Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyu Gong
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiu-Fang Xin
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
7
|
Kiekens R, de Koning R, Toili MEM, Angenon G. The Hidden Potential of High-Throughput RNA-Seq Re-Analysis, a Case Study for DHDPS, Key Enzyme of the Aspartate-Derived Lysine Biosynthesis Pathway and Its Role in Abiotic and Biotic Stress Responses in Soybean. PLANTS 2022; 11:plants11131762. [PMID: 35807714 PMCID: PMC9269547 DOI: 10.3390/plants11131762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
DHDPS is a key enzyme in the aspartate-derived lysine biosynthesis pathway and an evident object of study for biofortification strategies in plants. DHDPS isoforms with novel regulatory properties in Medicago truncatula were demonstrated earlier and hypothesized to be involved in abiotic and biotic stress responses. Here, we present a phylogenetic analysis of the DHPDS gene family in land plants which establishes the existence of a legume-specific class of DHDPS, termed DHDPS B-type, distinguishable from the DHDPS A-type commonly present in all land plants. The G. max genome comprises two A-type DHDPS genes (Gm.DHDPS-A1; Glyma.09G268200, Gm.DHDPS-A2; Glyma.18G221700) and one B-type (Gm.DHDPS-B; Glyma.03G022300). To further investigate the expression pattern of the G. max DHDPS isozymes in different plant tissues and under various stress conditions, 461 RNA-seq experiments were exploited and re-analyzed covering two expression atlases, 13 abiotic and 5 biotic stress studies. Gm.DHDPS-B is seen almost exclusively expressed in roots and nodules in addition to old cotyledons or senescent leaves while both DHDPS A-types are expressed constitutively in all tissues analyzed with the highest expression in mature seeds. Furthermore, Gm.DHDPS-B expression is significantly upregulated in some but not all stress responses including salt stress, flooding, ethylene or infection with Phytophthora sojae and coincides with downregulation of DHDPS A-types. In conclusion, we demonstrate the potential of an in-depth RNA-seq re-analysis for the guidance of future experiments and to expand on current knowledge.
Collapse
Affiliation(s)
- Raphaël Kiekens
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
| | - Ramon de Koning
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
| | - Mary Esther Muyoka Toili
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
- Department of Horticulture and Food Security, School of Agriculture and Environmental Sciences, College of Agriculture and Natural Resources, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Geert Angenon
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
- Correspondence: ; Tel.: +32-2-629-1935
| |
Collapse
|
8
|
Roles of AGD2a in Plant Development and Microbial Interactions of Lotus japonicus. Int J Mol Sci 2022; 23:ijms23126863. [PMID: 35743304 PMCID: PMC9224730 DOI: 10.3390/ijms23126863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Arabidopsis AGD2 (Aberrant Growth and Death2) and its close homolog ALD1 (AGD2-like defense response protein 1) have divergent roles in plant defense. We previously reported that modulation of salicylic acid (SA) contents by ALD1 affects numbers of nodules produced by Lotus japonicus, but AGD2's role in leguminous plants remains unclear. A combination of enzymatic analysis and biological characterization of genetic materials was used to study the function of AGD2 (LjAGD2a and LjAGD2b) in L. japonicus. Both LjAGD2a and LjAGD2b could complement dapD and dapE mutants of Escherichia coli and had aminotransferase activity in vitro. ljagd2 plants, with insertional mutations of LjAGD2, had delayed flowering times and reduced seed weights. In contrast, overexpression of LjAGD2a in L. japonicus induced early flowering, with increases in seed and flower sizes, but reductions in pollen fertility and seed setting rates. Additionally, ljagd2a mutation resulted in increased expression of nodulin genes and corresponding increases in infection threads and nodule numbers following inoculation with Rhizobium. Changes in expression of LjAGD2a in L. japonicus also affected endogenous SA contents and hence resistance to pathogens. Our results indicate that LjAGD2a functions as an LL-DAP aminotransferase and plays important roles in plant development. Moreover, LjAGD2a activates defense signaling via the Lys synthesis pathway, thereby participating in legume-microbe interaction.
Collapse
|
9
|
Koper K, Han SW, Pastor DC, Yoshikuni Y, Maeda HA. Evolutionary Origin and Functional Diversification of Aminotransferases. J Biol Chem 2022; 298:102122. [PMID: 35697072 PMCID: PMC9309667 DOI: 10.1016/j.jbc.2022.102122] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Aminotransferases (ATs) are pyridoxal 5′-phosphate–dependent enzymes that catalyze the transamination reactions between amino acid donor and keto acid acceptor substrates. Modern AT enzymes constitute ∼2% of all classified enzymatic activities, play central roles in nitrogen metabolism, and generate multitude of primary and secondary metabolites. ATs likely diverged into four distinct AT classes before the appearance of the last universal common ancestor and further expanded to a large and diverse enzyme family. Although the AT family underwent an extensive functional specialization, many AT enzymes retained considerable substrate promiscuity and multifunctionality because of their inherent mechanistic, structural, and functional constraints. This review summarizes the evolutionary history, diverse metabolic roles, reaction mechanisms, and structure–function relationships of the AT family enzymes, with a special emphasis on their substrate promiscuity and multifunctionality. Comprehensive characterization of AT substrate specificity is still needed to reveal their true metabolic functions in interconnecting various branches of the nitrogen metabolic network in different organisms.
Collapse
Affiliation(s)
- Kaan Koper
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sang-Woo Han
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Yasuo Yoshikuni
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Global Center for Food, Land, and Water Resources, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
10
|
Huang X, Liu Y, Huang J, Fernando WGD, Li X, Xia S. Activation of NLR-Mediated Autoimmunity in Arabidopsis Early in Short Days 4 Mutant. FRONTIERS IN PLANT SCIENCE 2022; 13:881212. [PMID: 35693184 PMCID: PMC9174647 DOI: 10.3389/fpls.2022.881212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
From a reverse genetic screen using CRISPR/Cas9 gene editing tool, we unintentionally identified an autoimmune mutant. Map-based cloning and whole-genome sequencing revealed that it contains a deletion in SMALL UBIQUITIN-RELATED MODIFIER (SUMO) protease encoding gene EARLY IN SHORT DAYS 4 (ESD4). Previous studies reported that esd4 mutants accumulate elevated levels of plant defense hormone salicylic acid (SA). However, upregulated PATHOGENESIS-RELATED GENE 1 (PR1) expression in esd4 only partly relies on SA level. In this study, we show that plant metabolite N-hydroxypipecolic acid (NHP) biosynthetic genes are upregulated in esd4, and NHP biosynthesis mutant flavin-dependent-monooxygenase 1 (fmo1) partially suppresses the autoimmune phenotypes of esd4, suggestive of a requirement of NHP signaling for the autoimmunity in esd4. As activation of nucleotide-binding leucine-rich repeat immune receptors (NLRs) are associates with the biosynthesis of SA and NHP and lipase-like protein ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) is a key component downstream of many NLRs, we examined the relationship between EDS1 and ESD4 by analyzing the eds1 esd4 double mutant. We found that eds1 largely suppresses esd4 autoimmunity and blocks the elevated expressions of SA and NHP biosynthesis-related genes in esd4. Overall, our study provides evidence supporting the hypothesis that SUMO protease ESD4 likely targets a yet to be identified guardee of NLR by removing its SUMO modification to avoid recognition by the cognate NLR. Loss of ESD4 results in activation of NLR-mediated autoimmunity.
Collapse
Affiliation(s)
- Xingchuan Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Yanan Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jianhua Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
11
|
Emerging Roles of Motile Epidermal Chloroplasts in Plant Immunity. Int J Mol Sci 2022; 23:ijms23074043. [PMID: 35409402 PMCID: PMC8999904 DOI: 10.3390/ijms23074043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Plant epidermis contains atypical small chloroplasts. However, the physiological role of this organelle is unclear compared to that of large mesophyll chloroplasts, the well-known function of which is photosynthesis. Although knowledge of the involvement of chloroplasts in the plant immunity has been expanded to date, the differences between the epidermal and mesophyll chloroplasts are beyond the scope of this study. Given the role of the plant epidermis as a barrier to environmental stresses, including pathogen attacks, and the immune-related function of chloroplasts, plant defense research on epidermal chloroplasts is an emerging field. Recent studies have revealed the dynamic movements of epidermal chloroplasts in response to fungal and oomycete pathogens. Furthermore, epidermal chloroplast-associated proteins and cellular events that are tightly linked to epidermal resistance against pathogens have been reported. In this review, I have focused on the recent progress in epidermal chloroplast-mediated plant immunity.
Collapse
|
12
|
Ku YS, Cheng SS, Ng MS, Chung G, Lam HM. The Tiny Companion Matters: The Important Role of Protons in Active Transports in Plants. Int J Mol Sci 2022; 23:ijms23052824. [PMID: 35269965 PMCID: PMC8911182 DOI: 10.3390/ijms23052824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/07/2022] Open
Abstract
In plants, the translocation of molecules, such as ions, metabolites, and hormones, between different subcellular compartments or different cells is achieved by transmembrane transporters, which play important roles in growth, development, and adaptation to the environment. To facilitate transport in a specific direction, active transporters that can translocate their substrates against the concentration gradient are needed. Examples of major active transporters in plants include ATP-binding cassette (ABC) transporters, multidrug and toxic compound extrusion (MATE) transporters, monosaccharide transporters (MSTs), sucrose transporters (SUTs), and amino acid transporters. Transport via ABC transporters is driven by ATP. The electrochemical gradient across the membrane energizes these secondary transporters. The pH in each cell and subcellular compartment is tightly regulated and yet highly dynamic, especially when under stress. Here, the effects of cellular and subcellular pH on the activities of ABC transporters, MATE transporters, MSTs, SUTs, and amino acid transporters will be discussed to enhance our understanding of their mechanics. The relation of the altered transporter activities to various biological processes of plants will also be addressed. Although most molecular transport research has focused on the substrate, the role of protons, the tiny counterparts of the substrate, should also not be ignored.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
- Correspondence: (Y.-S.K.); (H.-M.L.); Tel.: +852-3943-8132 (Y.-S.K.); +852-3943-6336 (H.-M.L.)
| | - Sau-Shan Cheng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea;
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
- Correspondence: (Y.-S.K.); (H.-M.L.); Tel.: +852-3943-8132 (Y.-S.K.); +852-3943-6336 (H.-M.L.)
| |
Collapse
|
13
|
Zeier J. Metabolic regulation of systemic acquired resistance. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102050. [PMID: 34058598 DOI: 10.1016/j.pbi.2021.102050] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 05/03/2023]
Abstract
Plants achieve an optimal balance between growth and defense by a fine-tuned biosynthesis and metabolic inactivation of immune-stimulating small molecules. Recent research illustrates that three common hubs are involved in the cooperative regulation of systemic acquired resistance (SAR) by the defense hormones N-hydroxypipecolic acid (NHP) and salicylic acid (SA). First, a common set of regulatory proteins is involved in their biosynthesis. Second, NHP and SA are glucosylated by the same glycosyltransferase, UGT76B1, and thereby inactivated in concert. And third, NHP confers immunity via the SA receptor NPR1 to reprogram plants at the level of transcription and primes plants for an enhanced defense capacity. An overview of SA and NHP metabolism is provided, and their contribution to long-distance signaling in SAR is discussed.
Collapse
Affiliation(s)
- Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
14
|
Signals in systemic acquired resistance of plants against microbial pathogens. Mol Biol Rep 2021; 48:3747-3759. [PMID: 33893927 DOI: 10.1007/s11033-021-06344-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/07/2021] [Indexed: 01/06/2023]
Abstract
After a local infection by the microbial pathogens, plants will produce strong resistance in distal tissues to cope with the subsequent biotic attacks. This type of the resistance in the whole plant is termed as systemic acquired resistance (SAR). The priming of SAR can confer the robust defense responses and the broad-spectrum disease resistances in plants. In general, SAR is activated by the signal substances generated at the local sites of infection, and these small signaling molecules can be rapidly transported to the systemic tissues through the phloem. In the last two decades, numerous endogenous metabolites were proved to be the potential elicitors of SAR, including methyl salicylate (MeSA), azelaic acid (AzA), glycerol-3-phosphate (G3P), free radicals (NO and ROS), pipecolic acid (Pip), N-hydroxy-pipecolic acid (NHP), dehydroabietinal (DA), monoterpenes (α-pinene and β-pinene) and NAD(P). In the meantime, the proteins associated with the transport of these signaling molecules were also identified, such as DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1) and AZI1 (AZELAIC ACID INDUCED 1). This review summarizes the recent findings related to synthesis, transport and interaction of the different signal substances in SAR.
Collapse
|
15
|
Henningsen EC, Omidvar V, Della Coletta R, Michno JM, Gilbert E, Li F, Miller ME, Myers CL, Gordon SP, Vogel JP, Steffenson BJ, Kianian SF, Hirsch CD, Figueroa M. Identification of Candidate Susceptibility Genes to Puccinia graminis f. sp. tritici in Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:657796. [PMID: 33968112 PMCID: PMC8097158 DOI: 10.3389/fpls.2021.657796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/22/2021] [Indexed: 05/30/2023]
Abstract
Wheat stem rust disease caused by Puccinia graminis f. sp. tritici (Pgt) is a global threat to wheat production. Fast evolving populations of Pgt limit the efficacy of plant genetic resistance and constrain disease management strategies. Understanding molecular mechanisms that lead to rust infection and disease susceptibility could deliver novel strategies to deploy crop resistance through genetic loss of disease susceptibility. We used comparative transcriptome-based and orthology-guided approaches to characterize gene expression changes associated with Pgt infection in susceptible and resistant Triticum aestivum genotypes as well as the non-host Brachypodium distachyon. We targeted our analysis to genes with differential expression in T. aestivum and genes suppressed or not affected in B. distachyon and report several processes potentially linked to susceptibility to Pgt, such as cell death suppression and impairment of photosynthesis. We complemented our approach with a gene co-expression network analysis to identify wheat targets to deliver resistance to Pgt through removal or modification of putative susceptibility genes.
Collapse
Affiliation(s)
- Eva C. Henningsen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Vahid Omidvar
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Rafael Della Coletta
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Jean-Michel Michno
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN, United States
| | - Erin Gilbert
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Feng Li
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Marisa E. Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Chad L. Myers
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN, United States
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | | | - John P. Vogel
- Joint Genome Institute, Walnut Creek, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Shahryar F. Kianian
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, United States
| | - Cory D. Hirsch
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
16
|
Torrens-Spence MP, Glinkerman CM, Günther J, Weng JK. Imine chemistry in plant metabolism. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:101999. [PMID: 33450608 DOI: 10.1016/j.pbi.2020.101999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Imine chemistry represents an important category of chemical reactions involved in the biosynthesis of plant natural products, ranging from the newly discovered mobile defense hormone N-hydroxy-pipecolic acid to the red-to-yellow tyrosine-derived betalain pigments. Spontaneous imine formation reactions have also served as the basis for the evolution of numerous plant metabolic enzymes, such as specialized Pictet-Spenglerases that produce the backbone structures of benzylisoquinoline and monoterpene indole alkaloids and pyridoxal 5'-phosphate-dependent enzymes of diverse functions. Here, we review occurrences of imine chemistry in plant metabolism and their chemical and biochemical mechanisms. A better understanding of plant imine chemistry will ultimately facilitate synthetic biology approaches to further expand the scope of imine natural product biosynthesis for broad biotechnological applications.
Collapse
Affiliation(s)
| | | | - Jan Günther
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Jiang SC, Engle NL, Banday ZZ, Cecchini NM, Jung HW, Tschaplinski TJ, Greenberg JT. ALD1 accumulation in Arabidopsis epidermal plastids confers local and non-autonomous disease resistance. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2710-2726. [PMID: 33463678 PMCID: PMC8006555 DOI: 10.1093/jxb/eraa609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/24/2020] [Indexed: 05/10/2023]
Abstract
The Arabidopsis plastid-localized ALD1 protein acts in the lysine catabolic pathway that produces infection-induced pipecolic acid (Pip), Pip derivatives, and basal non-Pip metabolite(s). ALD1 is indispensable for disease resistance associated with Pseudomonas syringae infections of naïve plants as well as those previously immunized by a local infection, a phenomenon called systemic acquired resistance (SAR). Pseudomonas syringae is known to associate with mesophyll as well as epidermal cells. To probe the importance of epidermal cells in conferring bacterial disease resistance, we studied plants in which ALD1 was only detectable in the epidermal cells of specific leaves. Local disease resistance and many features of SAR were restored when ALD1 preferentially accumulated in the epidermal plastids at immunization sites. Interestingly, SAR restoration occurred without appreciable accumulation of Pip or known Pip derivatives in secondary distal leaves. Our findings establish that ALD1 has a non-autonomous effect on pathogen growth and defense activation. We propose that ALD1 is sufficient in the epidermis of the immunized leaves to activate SAR, but basal ALD1 and possibly a non-Pip metabolite(s) are also needed at all infection sites to fully suppress bacterial growth. Thus, epidermal plastids that contain ALD1 play a key role in local and whole-plant immune signaling.
Collapse
Affiliation(s)
- Shang-Chuan Jiang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | | | - Zeeshan Zahoor Banday
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Nicolás M Cecchini
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Ho Won Jung
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | | | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Sharma S, Choudhary B, Yadav S, Mishra A, Mishra VK, Chand R, Chen C, Pandey SP. Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against Aspergillus flavus infection. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124155. [PMID: 33049626 DOI: 10.1016/j.jhazmat.2020.124155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
In a previous study, we identified a halotolerant rhizobacterium belonging to the genus Klebsiella (MBE02) that protected peanut seeds from Aspergillus flavus infection. Here, we investigated the mechanisms underlying the effect of MBE02 against A. flavus via untargeted metabolite profiling of peanut seeds treated with MBE02, A. flavus, or MBE02+A. flavus. Thirty-five metabolites were differentially accumulated across the three treatments (compared to the control), and the levels of pipecolic acid (Pip) were reduced upon A. flavus treatment only. We validated the function of Pip against A. flavus using multiple resistant and susceptible peanut cultivars. Pip accumulation was strongly associated with the resistant genotypes that also accumulated several mRNAs of the ALD1-like gene in the Pip biosynthesis pathway. Furthermore, exogenous treatment of a susceptible peanut cultivar with Pip reduced A. flavus infection in the seeds. Our findings indicate that Pip is a key component of peanut resistance to A. flavus.
Collapse
Affiliation(s)
- Sandeep Sharma
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| | - Babita Choudhary
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, India.
| | - Sonam Yadav
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, India.
| | - Avinash Mishra
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, India.
| | - Vinod K Mishra
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| | - Ramesh Chand
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
| | - Shree P Pandey
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
19
|
Saiz-Fernández I, Černý M, Skalák J, Brzobohatý B. Split-root systems: detailed methodology, alternative applications, and implications at leaf proteome level. PLANT METHODS 2021; 17:7. [PMID: 33422104 PMCID: PMC7797125 DOI: 10.1186/s13007-020-00706-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/31/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Split-root systems (SRS) have many applications in plant sciences, but their implementation, depending on the experimental design, can be difficult and time-consuming. Additionally, the system is not exempt from limitations, since the time required for the establishment of the SRS imposes a limit to how early in plant development experiments can be performed. Here, we optimized and explained in detail a method for establishing a SRS in young Arabidopsis thaliana seedlings, both in vitro and in soil. RESULTS We found that the partial de-rooting minimized the recovery time compared to total de-rooting, thus allowing the establishment of the split-root system in younger plants. Analysis of changes in the Arabidopsis leaf proteome following the de-rooting procedure highlighted the distinct metabolic alterations that totally and partially de-rooted plants undergo during the healing process. This system was also validated for its use in drought experiments, as it offers a way to apply water-soluble compounds to plants subjected to drought stress. By growing plants in a split-root system with both halves being water-deprived, it is possible to apply the required compound to one half of the root system, which can be cut from the main plant once the compound has been absorbed, thus minimizing rehydration and maintaining drought conditions. CONCLUSIONS Partial de-rooting is the suggested method for obtaining split-root systems in small plants like Arabidopsis thaliana, as growth parameters, survival rate, and proteomic analysis suggest that is a less stressful procedure than total de-rooting, leading to a final rosette area much closer to that of uncut plants. Additionally, we provide evidence that split root-systems can be used in drought experiments where water-soluble compounds are applied with minimal effects of rehydration.
Collapse
Affiliation(s)
- Iñigo Saiz-Fernández
- Phytophthora Research Centre, Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Jan Skalák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
- Functional Genomics & Proteomics of Plants, CEITEC MU, Central European Institute of Technology, Kamenice 5, 625 00, Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| |
Collapse
|
20
|
Sun T, Zhang Y. Short- and long-distance signaling in plant defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:505-517. [PMID: 33145833 DOI: 10.1111/tpj.15068] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/29/2020] [Indexed: 05/24/2023]
Abstract
When encountering microbial pathogens, plant cells can recognize danger signals derived from pathogens, activate plant immune responses and generate cell-autonomous as well as non-cell-autonomous defense signaling molecules, which promotes defense responses at the infection site and in the neighboring cells. Meanwhile, local damages can result in the release of immunogenic signals including damage-associated molecule patterns and phytocytokines, which also serve as danger signals to potentiate immune responses in cells surrounding the infection site. Activation of local defense responses further induces the production of long-distance defense signals, which can move to distal tissue to activate systemic acquired resistance. In this review, we summarize current knowledge on various signaling molecules involved in short- and long-distance defense signaling, and emphasize the roles of regulatory proteins involved in the processes.
Collapse
Affiliation(s)
- Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
21
|
Orlovskis Z, Reymond P. Pieris brassicae eggs trigger interplant systemic acquired resistance against a foliar pathogen in Arabidopsis. THE NEW PHYTOLOGIST 2020; 228:1652-1661. [PMID: 32619278 DOI: 10.1111/nph.16788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/26/2020] [Indexed: 05/11/2023]
Abstract
Recognition of plant pathogens or herbivores activate a broad-spectrum plant defense priming in distal leaves against potential future attacks, leading to systemic acquired resistance (SAR). Additionally, attacked plants can release aerial or below-ground signals that trigger defense responses, such as SAR, in neighboring plants lacking initial exposure to pathogen or pest elicitors. However, the molecular mechanisms involved in interplant defense signal generation in sender plants and decoding in neighboring plants are not fully understood. We previously reported that Pieris brassicae eggs induce intraplant SAR against the foliar pathogen Pseudomonas syringae in Arabidopsis thaliana. Here we extend this effect to neighboring plants by discovering an egg-induced interplant SAR via mobile root-derived signal(s). The generation of an egg-induced interplant SAR signal requires pipecolic acid (Pip) pathway genes ALD1 and FMO1 but occurs independently of salicylic acid (SA) accumulation in sender plants. Furthermore, reception of the signal leads to accumulation of SA in the recipient plants. In response to insect eggs, plants may induce interplant SAR to prepare for potential pathogen invasion following feeding-induced wounding or to keep neighboring plants healthy for hatching larvae. Our results highlight a previously uncharacterized below-ground plant-to-plant signaling mechanism and reveals genetic components required for its generation.
Collapse
Affiliation(s)
- Zigmunds Orlovskis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, 1015, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
22
|
Gao H, Zhou Q, Yang L, Zhang K, Ma Y, Xu ZQ. Metabolomics analysis identifies metabolites associated with systemic acquired resistance in Arabidopsis. PeerJ 2020; 8:e10047. [PMID: 33062444 PMCID: PMC7532762 DOI: 10.7717/peerj.10047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/05/2020] [Indexed: 12/22/2022] Open
Abstract
Background Systemic acquired resistance (SAR) is a type of plant defense response that provides a long-lasting resistance to broad-spectrum pathogens in uninfected distal tissues following an initial localized infection. However, little information is available at present on the biological basis of SAR at the molecular level, especially in uninfected distal leaves. Methods In the present work, we used two SAR-inducing pathogens, avirulent Pseudomonas syringae pv. maculicola ES4326 harboring avrRpm1 (Psm avrRpm1) and virulent P. syringae pv. maculicola ES4326 (Psm ES4326), to induce SAR in Arabidopsis ecotype Col-0. A metabolomics approach based on ultra-high-performance liquid chromatography (UPLC) coupled with mass spectrometry (MS) was used to identify SAR-related metabolites in infected local leaves, and in uninfected distal leaves. Results Differentially accumulated metabolites were distinguished by statistical analyses. The results showed that both the primary metabolism and the secondary metabolism were significantly altered in infected local leaves and in uninfected distal leaves, including phenolic compounds, amino acids, nucleotides, organic acids, and many other metabolites. Conclusions The content of amino acids and phenolic compounds increased in uninfected distal leaves, suggesting their contribution to the establishment of SAR. In addition, 2′-hydroxy-4, 4′, 6′-trimethoxychalcone, phenylalanine, and p-coumaric acid were identified as potential components which may play important roles both in basic resistance and in SAR. This work provides a reference for understanding of the metabolic mechanism associated with SAR in plants, which will be useful for further investigation of the molecular basis of the systemic immunity.
Collapse
Affiliation(s)
- Hang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Qian Zhou
- Shanghai Omicsspace Biotechnology Co. Ltd., Shanghai, People's Republic of China
| | - Liu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Kaili Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Yeye Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
23
|
Meinke DW. Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis. THE NEW PHYTOLOGIST 2020; 226:306-325. [PMID: 31334862 DOI: 10.1111/nph.16071] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/10/2019] [Indexed: 05/20/2023]
Abstract
With the emergence of high-throughput methods in plant biology, the importance of long-term projects characterized by incremental advances involving multiple laboratories can sometimes be overlooked. Here, I highlight my 40-year effort to isolate and characterize the most common class of mutants encountered in Arabidopsis (Arabidopsis thaliana): those defective in embryo development. I present an updated dataset of 510 EMBRYO-DEFECTIVE (EMB) genes identified throughout the Arabidopsis community; include important details on 2200 emb mutants and 241 pigment-defective embryo (pde) mutants analyzed in my laboratory; provide curated datasets with key features and publication links for each EMB gene identified; revisit past estimates of 500-1000 total EMB genes in Arabidopsis; document 83 double mutant combinations reported to disrupt embryo development; emphasize the importance of following established nomenclature guidelines and acknowledging allele history in research publications; and consider how best to extend community-based curation and screening efforts to approach saturation for this diverse class of mutants in the future. Continued advances in identifying EMB genes and characterizing their loss-of-function mutant alleles are needed to understand genotype-to-phenotype relationships in Arabidopsis on a broad scale, and to document the contributions of large numbers of essential genes to plant growth and development.
Collapse
Affiliation(s)
- David W Meinke
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
24
|
Huang W, Wang Y, Li X, Zhang Y. Biosynthesis and Regulation of Salicylic Acid and N-Hydroxypipecolic Acid in Plant Immunity. MOLECULAR PLANT 2020; 13:31-41. [PMID: 31863850 DOI: 10.1016/j.molp.2019.12.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 05/23/2023]
Abstract
Salicylic acid (SA) has long been known to be essential for basal defense and systemic acquired resistance (SAR). N-Hydroxypipecolic acid (NHP), a recently discovered plant metabolite, also plays a key role in SAR and to a lesser extent in basal resistance. Following pathogen infection, levels of both compounds are dramatically increased. Analysis of SA- or SAR-deficient mutants has uncovered how SA and NHP are biosynthesized. The completion of the SA and NHP biosynthetic pathways in Arabidopsis allowed better understanding of how they are regulated. In this review, we discuss recent progress on SA and NHP biosynthesis and their regulation in plant immunity.
Collapse
Affiliation(s)
- Weijie Huang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yiran Wang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
25
|
Kim Y, Gilmour SJ, Chao L, Park S, Thomashow MF. Arabidopsis CAMTA Transcription Factors Regulate Pipecolic Acid Biosynthesis and Priming of Immunity Genes. MOLECULAR PLANT 2020; 13:157-168. [PMID: 31733370 DOI: 10.1016/j.molp.2019.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 05/24/2023]
Abstract
The Arabidopsis thaliana Calmodulin-binding Transcription Activator (CAMTA) transcription factors CAMTA1, CAMTA2, and CAMTA3 (CAMTA123) serve as master regulators of salicylic acid (SA)-mediated immunity, repressing the biosynthesis of SA in healthy plants. Here, we show that CAMTA123 also repress the biosynthesis of pipecolic acid (Pip) in healthy plants. Loss of CAMTA123 function resulted in the induction of AGD2-like defense response protein 1 (ALD1), which encodes an enzyme involved in Pip biosynthesis. Induction of ALD1 resulted in the accumulation of high levels of Pip, which brought about increased levels of the SA receptor protein NPR1 without induction of NPR1 expression or requirement for an increase in SA levels. Pip-mediated induction of ALD1 and genes regulating the biosynthesis of SA-CBP60g, SARD1, PAD4, and EDS1-was largely dependent on NPR1. Furthermore, Pip-mediated increase in NPR1 protein levels was associated with priming of Pip and SA biosynthesis genes to induction by low levels of SA. Taken together, our findings expand the role for CAMTA123 in regulating key immunity genes and suggest a working model whereby loss of CAMTA123 repression leads to the induction of plant defense genes and initiation of SAR.
Collapse
Affiliation(s)
- Yongsig Kim
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; MSU Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah J Gilmour
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Lumen Chao
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; MSU Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Sunchung Park
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Michael F Thomashow
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; MSU Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
26
|
Suzuki M, Wu S, Mimura M, Alseekh S, Fernie AR, Hanson AD, McCarty DR. Construction and applications of a B vitamin genetic resource for investigation of vitamin-dependent metabolism in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:442-454. [PMID: 31520508 DOI: 10.1111/tpj.14535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 05/06/2023]
Abstract
The B vitamins provide essential co-factors for central metabolism in all organisms. In plants, B vitamins have surprising emerging roles in development, stress tolerance and pathogen resistance. Hence, there is a paramount interest in understanding the regulation of vitamin biosynthesis as well as the consequences of vitamin deficiency in crop species. To facilitate genetic analysis of B vitamin biosynthesis and functions in maize, we have mined the UniformMu transposon resource to identify insertional mutations in vitamin pathway genes. A screen of 190 insertion lines for seed and seedling phenotypes identified mutations in biotin, pyridoxine and niacin biosynthetic pathways. Importantly, isolation of independent insertion alleles enabled genetic confirmation of genotype-to-phenotype associations. Because B vitamins are essential for survival, null mutations often have embryo lethal phenotypes that prevent elucidation of subtle, but physiologically important, metabolic consequences of sub-optimal (functional) vitamin status. To circumvent this barrier, we demonstrate a strategy for refined genetic manipulation of vitamin status based on construction of heterozygotes that combine strong and hypomorphic mutant alleles. Dosage analysis of pdx2 alleles in endosperm revealed that endosperm supplies pyridoxine to the developing embryo. Similarly, a hypomorphic bio1 allele enabled analysis of transcriptome and metabolome responses to incipient biotin deficiency in seedling leaves. We show that systemic pipecolic acid accumulation is an early metabolic response to sub-optimal biotin status highlighting an intriguing connection between biotin, lysine metabolism and systemic disease resistance signaling. Seed-stocks carrying insertions for vitamin pathway genes are available for free, public distribution via the Maize Genetics Cooperation Stock Center.
Collapse
Affiliation(s)
- Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Shan Wu
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Manaki Mimura
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology, 4000, Plovdiv, Bulgaria
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
27
|
Systemic acquired resistance networks amplify airborne defense cues. Nat Commun 2019; 10:3813. [PMID: 31444353 PMCID: PMC6707303 DOI: 10.1038/s41467-019-11798-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Salicylic acid (SA)-mediated innate immune responses are activated in plants perceiving volatile monoterpenes. Here, we show that monoterpene-associated responses are propagated in feed-forward loops involving the systemic acquired resistance (SAR) signaling components pipecolic acid, glycerol-3-phosphate, and LEGUME LECTIN-LIKE PROTEIN1 (LLP1). In this cascade, LLP1 forms a key regulatory unit in both within-plant and between-plant propagation of immunity. The data integrate molecular components of SAR into systemic signaling networks that are separate from conventional, SA-associated innate immune mechanisms. These networks are central to plant-to-plant propagation of immunity, potentially raising SAR to the population level. In this process, monoterpenes act as microbe-inducible plant volatiles, which as part of plant-derived volatile blends have the potential to promote the generation of a wave of innate immune signaling within canopies or plant stands. Hence, plant-to-plant propagation of SAR holds significant potential to fortify future durable crop protection strategies following a single volatile trigger. Plants immune responses are triggered upon perception of volatile monoterpenes. Here, Wenig et al. show that a feed-forward loop featuring LEGUME LECTIN-LIKE PROTEIN1 propagates monoterpene-associated cues both within and between plants, illustrating how systemic immunity could act at a population level.
Collapse
|
28
|
Wang S, Han K, Peng J, Zhao J, Jiang L, Lu Y, Zheng H, Lin L, Chen J, Yan F. NbALD1 mediates resistance to turnip mosaic virus by regulating the accumulation of salicylic acid and the ethylene pathway in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2019; 20:990-1004. [PMID: 31012537 PMCID: PMC6589722 DOI: 10.1111/mpp.12808] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
AGD2-LIKE DEFENCE RESPONSE PROTEIN 1 (ALD1) triggers plant defence against bacterial and fungal pathogens by regulating the salicylic acid (SA) pathway and an unknown SA-independent pathway. We now show that Nicotiana benthamiana ALD1 is involved in defence against a virus and that the ethylene pathway also participates in ALD1-mediated resistance. NbALD1 was up-regulated in plants infected with turnip mosaic virus (TuMV). Silencing of NbALD1 facilitated TuMV infection, while overexpression of NbALD1 or exogenous application of pipecolic acid (Pip), the downstream product of ALD1, enhanced resistance to TuMV. The SA content was lower in NbALD1-silenced plants and higher where NbALD1 was overexpressed or following Pip treatments. SA mediated resistance to TuMV and was required for NbALD1-mediated resistance. However, on NahG plants (in which SA cannot accumulate), Pip treatment still alleviated susceptibility to TuMV, further demonstrating the presence of an SA-independent resistance pathway. The ethylene precursor, 1-aminocyclopropanecarboxylic acid (ACC), accumulated in NbALD1-silenced plants but was reduced in plants overexpressing NbALD1 or treated with Pip. Silencing of ACS1, a key gene in the ethylene pathway, alleviated the susceptibility of NbALD1-silenced plants to TuMV, while exogenous application of ACC compromised the resistance of Pip-treated or NbALD1 transgenic plants. The results indicate that NbALD1 mediates resistance to TuMV by positively regulating the resistant SA pathway and negatively regulating the susceptible ethylene pathway.
Collapse
Affiliation(s)
- Shu Wang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Kelei Han
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Jiejun Peng
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Jinping Zhao
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Liangliang Jiang
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Yuwen Lu
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Hongying Zheng
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Lin Lin
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Jianping Chen
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| |
Collapse
|
29
|
Lortzing V, Oberländer J, Lortzing T, Tohge T, Steppuhn A, Kunze R, Hilker M. Insect egg deposition renders plant defence against hatching larvae more effective in a salicylic acid-dependent manner. PLANT, CELL & ENVIRONMENT 2019; 42:1019-1032. [PMID: 30252928 DOI: 10.1111/pce.13447] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/15/2018] [Indexed: 05/06/2023]
Abstract
Plants can improve their antiherbivore defence by taking insect egg deposition as cue of impending feeding damage. Previous studies showed that Pieris brassicae larvae feeding upon egg-deposited Brassicaceae perform worse and gain less weight than larvae on egg-free plants. We investigated how P. brassicae oviposition on Arabidopsis thaliana affects the plant's molecular and chemical responses to larvae. A transcriptome comparison of feeding-damaged leaves without and with prior oviposition revealed about 200 differently expressed genes, including enhanced expression of PR5, which is involved in salicylic acid (SA)-signalling. SA levels were induced by larval feeding to a slightly greater extent in egg-deposited than egg-free plants. The adverse effect of egg-deposited wild-type (WT) plants on larval weight was absent in an egg-deposited PR5-deficient mutant or other mutants impaired in SA-mediated signalling, that is, sid2/ics1, ald1, and pad4. In contrast, the adverse effect of egg-deposited WT plants on larvae was retained in egg-deposited npr1 and wrky70 mutants impaired further downstream in SA-signalling. Oviposition induced accumulation of flavonols in WT plants with and without feeding damage, but not in the PR5-deficient mutant. We demonstrated that egg-mediated improvement of A. thaliana's antiherbivore defence involves SA-signalling in an NPR1-independent manner and is associated with accumulation of flavonols.
Collapse
Affiliation(s)
- Vivien Lortzing
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Jana Oberländer
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Tobias Lortzing
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Department Secondary Metabolism, Potsdam, Germany
| | - Anke Steppuhn
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Reinhard Kunze
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Monika Hilker
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
30
|
Jahan MA, Harris B, Lowery M, Coburn K, Infante AM, Percifield RJ, Ammer AG, Kovinich N. The NAC family transcription factor GmNAC42-1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean. BMC Genomics 2019; 20:149. [PMID: 30786857 PMCID: PMC6381636 DOI: 10.1186/s12864-019-5524-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/11/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Glyceollins are isoflavonoid-derived pathogen-inducible defense metabolites (phytoalexins) from soybean (Glycine max L. Merr) that have important roles in providing defense against pathogens. They also have impressive anticancer and neuroprotective activities in mammals. Despite their potential usefulness as therapeutics, glyceollins are not economical to synthesize and are biosynthesized only transiently and in low amounts in response to specific stresses. Engineering the regulation of glyceollin biosynthesis may be a promising approach to enhance their bioproduction, yet the transcription factors (TFs) that regulate their biosynthesis have remained elusive. To address this, we first aimed to identify novel abiotic stresses that enhance or suppress the elicitation of glyceollins and then used a comparative transcriptomics approach to search for TF gene candidates that may positively regulate glyceollin biosynthesis. RESULTS Acidity stress (pH 3.0 medium) and dehydration exerted prolonged (week-long) inductive or suppressive effects on glyceollin biosynthesis, respectively. RNA-seq found that all known biosynthetic genes were oppositely regulated by acidity stress and dehydration, but known isoflavonoid TFs were not. Systemic acquired resistance (SAR) genes were highly enriched in the geneset. We chose to functionally characterize the NAC (NAM/ATAF1/2/CUC2)-family TF GmNAC42-1 that was annotated as an SAR gene and a homolog of the Arabidopsis thaliana (Arabidopsis) indole alkaloid phytoalexin regulator ANAC042. Overexpressing and silencing GmNAC42-1 in elicited soybean hairy roots dramatically enhanced and suppressed the amounts of glyceollin metabolites and biosynthesis gene mRNAs, respectively. Yet, overexpressing GmNAC42-1 in non-elicited hairy roots failed to stimulate the expressions of all biosynthesis genes. Thus, GmNAC42-1 was necessary but not sufficient to activate all biosynthesis genes on its own, suggesting an important role in the glyceollin gene regulatory network (GRN). The GmNAC42-1 protein directly bound the promoters of biosynthesis genes IFS2 and G4DT in the yeast one-hybrid (Y1H) system. CONCLUSIONS Acidity stress is a novel elicitor and dehydration is a suppressor of glyceollin biosynthesis. The TF gene GmNAC42-1 is an essential positive regulator of glyceollin biosynthesis. Overexpressing GmNAC42-1 in hairy roots can be used to increase glyceollin yields > 10-fold upon elicitation. Thus, manipulating the expressions of glyceollin TFs is an effective strategy for enhancing the bioproduction of glyceollins in soybean.
Collapse
Affiliation(s)
- Md Asraful Jahan
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia 26506 USA
| | - Brianna Harris
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506 USA
| | - Matthew Lowery
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506 USA
| | - Katie Coburn
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506 USA
| | - Aniello M. Infante
- Department of Biostatistics, West Virginia University, Morgantown, West Virginia 26506 USA
| | - Ryan J. Percifield
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506 USA
| | - Amanda G. Ammer
- Microscope Imaging Facility, West Virginia University, Morgantown, West Virginia 26506 USA
| | - Nik Kovinich
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia 26506 USA
| |
Collapse
|
31
|
Li J, Zhang X, Lu Y, Feng D, Gu A, Wang S, Wu F, Su X, Chen X, Li X, Liu M, Fan S, Feng D, Luo S, Xuan S, Wang Y, Shen S, Zhao J. Characterization of Non-heading Mutation in Heading Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2019; 10:112. [PMID: 30809236 PMCID: PMC6379458 DOI: 10.3389/fpls.2019.00112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/23/2019] [Indexed: 05/26/2023]
Abstract
Heading is a key agronomic trait of Chinese cabbage. A non-heading mutant with flat growth of heading leaves (fg-1) was isolated from an EMS-induced mutant population of the heading Chinese cabbage inbred line A03. In fg-1 mutant plants, the heading leaves are flat similar to rosette leaves. The epidermal cells on the adaxial surface of these leaves are significantly smaller, while those on the abaxial surface are much larger than in A03 plants. The segregation of the heading phenotype in the F2 and BC1 population suggests that the mutant trait is controlled by a pair of recessive alleles. Phytohormone analysis at the early heading stage showed significant decreases in IAA, ABA, JA and SA, with increases in methyl IAA and trans-Zeatin levels, suggesting they may coordinate leaf adaxial-abaxial polarity, development and morphology in fg-1. RNA-sequencing analysis at the early heading stage showed a decrease in expression levels of several auxin transport (BrAUX1, BrLAXs, and BrPINs) and responsive genes. Transcript levels of important ABA responsive genes, including BrABF3, were up-regulated in mid-leaf sections suggesting that both auxin and ABA signaling pathways play important roles in regulating leaf heading. In addition, a significant reduction in BrIAMT1 transcripts in fg-1 might contribute to leaf epinastic growth. The expression profiles of 19 genes with known roles in leaf polarity were significantly different in fg-1 leaves compared to wild type, suggesting that these genes might also regulate leaf heading in Chinese cabbage. In conclusion, leaf heading in Chinese cabbage is controlled through a complex network of hormone signaling and abaxial-adaxial patterning pathways. These findings increase our understanding of the molecular basis of head formation in Chinese cabbage.
Collapse
Affiliation(s)
- Jingrui Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xiaomeng Zhang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yin Lu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Dongxiao Feng
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Aixia Gu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shan Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Fang Wu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xiangjie Su
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xing Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Mengyang Liu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuangxi Fan
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Daling Feng
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuangxia Luo
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxin Xuan
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yanhua Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxing Shen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jianjun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
32
|
Shine MB, Xiao X, Kachroo P, Kachroo A. Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:81-86. [PMID: 30709496 DOI: 10.1016/j.plantsci.2018.01.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 05/20/2023]
Abstract
Plants respond to biotic stress by inducing a variety of responses, which not only protect against the immediate diseases but also provide immunity from future infections. One example is systemic acquired resistance (SAR), which provides long-lasting and broad-spectrum protection at the whole plant level. The induction of SAR prepares the plant for a more robust response to subsequent infections from related and unrelated pathogens. SAR involves the rapid generation of signals at the primary site of infection, which are transported to the systemic parts of the plant presumably via the phloem. SAR signal generation and perception requires an intact cuticle, a waxy layer covering all aerial parts of the plant. A chemically diverse set of SAR inducers has already been identified, including hormones (salicylic acid, methyl salicylate), primary/secondary metabolites (nitric oxide, reactive oxygen species, glycerol-3-phosphate, azelaic acid, pipecolic acid, dihyroabetinal), fatty acid/lipid derivatives (18 carbon unsaturated fatty acids, galactolipids), and proteins (DIR1-Defective in Induced Resistance 1, AZI1-Azelaic acid Induced 1). Some of these are demonstrably mobile and the phloem loading routes for three of these SAR inducers is known. Here we discuss the recent findings related to synthesis, transport, and the relationship between these various SAR inducers.
Collapse
Affiliation(s)
- M B Shine
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Xueqiong Xiao
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
33
|
Mariotti L, Fambrini M, Scartazza A, Picciarelli P, Pugliesi C. Characterization of lingering hope, a new brachytic mutant in sunflower (Helianthus annuus L.) with altered salicylic acid metabolism. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:402-414. [PMID: 30399536 DOI: 10.1016/j.jplph.2018.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Dwarf mutants are useful to elucidate regulatory mechanisms of plant growth and development. A brachytic mutant, named lingering hope (linho), was recently isolated from sunflower (Helianthus annuus). The aim of this report is the characterization of the mutant through genetic, morphometric, physiological and gene expression analyses. The brachytic trait is controlled by a recessive gene. The reduction of plant height depends on shorter apical internodes. The mutant shows an altered ratio length/width of the leaf blade, chlorosis and defects in inflorescence development. The brachytic trait is not associated to a specific hormonal deficiency, but an increased level of several gibberellins is detected in leaves. Notably, the endogenous salicylic acid (SA) content in young leaves of the mutant is very high despite a low level of SA 2-O-β-d-glucoside (SAG). The CO2 assimilation rate significantly decreases in the second pair of leaves of linho, due to effects of both stomatal and non-stomatal constraints. In addition, the reduction of both actual and potential photochemical efficiency of photosystem II is associated with a reduced content of chlorophylls and carotenoids, a lower chlorophyll a to chlorophyll b ratio and a higher SA content. In comparison to wild type, linho shows a different pattern of gene expression with respect two pathogenesis-related genes and two genes involved in SA biosynthesis and SA metabolism. linho is the first mutant described in sunflower with altered SA metabolism and this genotype could be useful to improve information about the effects of high endogenous content of SA on plant development, reproductive growth and photosynthesis, in a major crop.
Collapse
Affiliation(s)
- Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Andrea Scartazza
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR),Via Salaria Km 29,300, I-00015 Monterotondo Scalo, RM, Italy
| | - Piero Picciarelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy.
| |
Collapse
|
34
|
Cavalcanti JHF, Kirma M, Barros JAS, Quinhones CGS, Pereira-Lima ÍA, Obata T, Nunes-Nesi A, Galili G, Fernie AR, Avin-Wittenberg T, Araújo WL. An L,L-diaminopimelate aminotransferase mutation leads to metabolic shifts and growth inhibition in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5489-5506. [PMID: 30215754 PMCID: PMC6255705 DOI: 10.1093/jxb/ery325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Lysine (Lys) connects the mitochondrial electron transport chain to amino acid catabolism and the tricarboxylic acid cycle. However, our understanding of how a deficiency in Lys biosynthesis impacts plant metabolism and growth remains limited. Here, we used a previously characterized Arabidopsis mutant (dapat) with reduced activity of the Lys biosynthesis enzyme L,L-diaminopimelate aminotransferase to investigate the physiological and metabolic impacts of impaired Lys biosynthesis. Despite displaying similar stomatal conductance and internal CO2 concentration, we observed reduced photosynthesis and growth in the dapat mutant. Surprisingly, whilst we did not find differences in dark respiration between genotypes, a lower storage and consumption of starch and sugars was observed in dapat plants. We found higher protein turnover but no differences in total amino acids during a diurnal cycle in dapat plants. Transcriptional and two-dimensional (isoelectric focalization/SDS-PAGE) proteome analyses revealed alterations in the abundance of several transcripts and proteins associated with photosynthesis and photorespiration coupled with a high glycine/serine ratio and increased levels of stress-responsive amino acids. Taken together, our findings demonstrate that biochemical alterations rather than stomatal limitations are responsible for the decreased photosynthesis and growth of the dapat mutant, which we hypothesize mimics stress conditions associated with impairments in the Lys biosynthesis pathway.
Collapse
Affiliation(s)
- João Henrique F Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Menny Kirma
- Department of Plant Science, The Weizmann Institute of Science, Rehovot, Israel
| | - Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Carla G S Quinhones
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ítalo A Pereira-Lima
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Gad Galili
- Department of Plant Science, The Weizmann Institute of Science, Rehovot, Israel
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Tamar Avin-Wittenberg
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem Israel
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
35
|
Hartmann M, Zeier J. l-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:5-21. [PMID: 30035374 DOI: 10.1111/tpj.14037] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 05/03/2023]
Abstract
l-lysine catabolic routes in plants include the saccharopine pathway to α-aminoadipate and decarboxylation of lysine to cadaverine. The current review will cover a third l-lysine metabolic pathway having a major role in plant systemic acquired resistance (SAR) to pathogen infection that was recently discovered in Arabidopsis thaliana. In this pathway, the aminotransferase AGD2-like defense response protein (ALD1) α-transaminates l-lysine and generates cyclic dehydropipecolic (DP) intermediates that are subsequently reduced to pipecolic acid (Pip) by the reductase SAR-deficient 4 (SARD4). l-pipecolic acid, which occurs ubiquitously in the plant kingdom, is further N-hydroxylated to the systemic acquired resistance (SAR)-activating metabolite N-hydroxypipecolic acid (NHP) by flavin-dependent monooxygenase1 (FMO1). N-hydroxypipecolic acid induces the expression of a set of major plant immune genes to enhance defense readiness, amplifies resistance responses, acts synergistically with the defense hormone salicylic acid, promotes the hypersensitive cell death response and primes plants for effective immune mobilization in cases of future pathogen challenge. This pathogen-inducible NHP biosynthetic pathway is activated at the transcriptional level and involves feedback amplification. Apart from FMO1, some cytochrome P450 monooxygenases involved in secondary metabolism catalyze N-hydroxylation reactions in plants. In specific taxa, pipecolic acid might also serve as a precursor in the biosynthesis of specialized natural products, leading to C-hydroxylated and otherwise modified piperidine derivatives, including indolizidine alkaloids. Finally, we show that NHP is glycosylated in Arabidopsis to form a hexose-conjugate, and then discuss open questions in Pip/NHP-related research.
Collapse
Affiliation(s)
- Michael Hartmann
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
36
|
Kang W, Zhu X, Wang Y, Chen L, Duan Y. Transcriptomic and metabolomic analyses reveal that bacteria promote plant defense during infection of soybean cyst nematode in soybean. BMC PLANT BIOLOGY 2018; 18:86. [PMID: 29751738 PMCID: PMC5948838 DOI: 10.1186/s12870-018-1302-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/30/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Soybean cyst nematode (SCN) is the most devastating pathogen of soybean. Our previous study showed that the plant growth-promoting rhizobacterium Bacillus simplex strain Sneb545 promotes soybean resistance to SCN. Here, we conducted a combined metabolomic and transcriptomic analysis to gain information regarding the biological mechanism of defence enhancement against SCN in Sneb545-treated soybean. To this end, we compared the transcriptome and metabolome of Sneb545-treated and non-treated soybeans under SCN infection. RESULTS Transcriptomic analysis showed that 6792 gene transcripts were common in Sneb545-treated and non-treated soybeans. However, Sneb545-treated soybeans showed a higher concentration of various nematicidal metabolites, including 4-vinylphenol, methionine, piperine, and palmitic acid, than non-treated soybeans under SCN infection. CONCLUSIONS Overall, our results validated and expanded the existing models regarding the co-regulation of gene expression and metabolites in plants, indicating the advantage of integrated system-oriented analysis.
Collapse
Affiliation(s)
- Wenshu Kang
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Yuanyuan Wang
- Institute of Biotechnology, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| |
Collapse
|
37
|
Ádám AL, Nagy ZÁ, Kátay G, Mergenthaler E, Viczián O. Signals of Systemic Immunity in Plants: Progress and Open Questions. Int J Mol Sci 2018; 19:E1146. [PMID: 29642641 PMCID: PMC5979450 DOI: 10.3390/ijms19041146] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 12/17/2022] Open
Abstract
Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens.
Collapse
Affiliation(s)
- Attila L Ádám
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Zoltán Á Nagy
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic.
| | - György Kátay
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Emese Mergenthaler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Orsolya Viczián
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| |
Collapse
|
38
|
Seguel A, Jelenska J, Herrera-Vásquez A, Marr SK, Joyce MB, Gagesch KR, Shakoor N, Jiang SC, Fonseca A, Wildermuth MC, Greenberg JT, Holuigue L. PROHIBITIN3 Forms Complexes with ISOCHORISMATE SYNTHASE1 to Regulate Stress-Induced Salicylic Acid Biosynthesis in Arabidopsis. PLANT PHYSIOLOGY 2018; 176:2515-2531. [PMID: 29438088 PMCID: PMC5841719 DOI: 10.1104/pp.17.00941] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/22/2018] [Indexed: 05/19/2023]
Abstract
Salicylic acid (SA) is a major defense signal in plants. In Arabidopsis (Arabidopsis thaliana), the chloroplast-localized isochorismate pathway is the main source of SA biosynthesis during abiotic stress or pathogen infections. In the first step of the pathway, the enzyme ISOCHORISMATE SYNTHASE1 (ICS1) converts chorismate to isochorismate. An unknown enzyme subsequently converts isochorismate to SA. Here, we show that ICS1 protein levels increase during UV-C stress. To identify proteins that may play roles in SA production by regulating ICS1, we analyzed proteins that coimmunoprecipitated with ICS1 via mass spectrometry. The ICS1 complexes contained a large number of peptides from the PROHIBITIN (PHB) protein family, with PHB3 the most abundant. PHB proteins have diverse biological functions that include acting as scaffolds for protein complex formation and stabilization. PHB3 was reported previously to localize to mitochondria. Using fractionation, protease protection, and live imaging, we show that PHB3 also localizes to chloroplasts, where ICS1 resides. Notably, loss of PHB3 function led to decreased ICS1 protein levels in response to UV-C stress. However, ICS1 transcript levels remain unchanged, indicating that ICS1 is regulated posttranscriptionally. The phb3 mutant displayed reduced levels of SA, the SA-regulated protein PR1, and hypersensitive cell death in response to UV-C and avirulent strains of Pseudomonas syringae and, correspondingly, supported increased growth of P. syringae The expression of a PHB3 transgene in the phb3 mutant complemented all of these phenotypes. We suggest a model in which the formation of PHB3-ICS1 complexes stabilizes ICS1 to promote SA production in response to stress.
Collapse
Affiliation(s)
- Aldo Seguel
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Ariel Herrera-Vásquez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Sharon K Marr
- Department of Plant and Microbial Pathology, University of California, Berkeley, California 94720
| | - Michael B Joyce
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Kelsey R Gagesch
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Nadia Shakoor
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Shang-Chuan Jiang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Alejandro Fonseca
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Mary C Wildermuth
- Department of Plant and Microbial Pathology, University of California, Berkeley, California 94720
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
39
|
Huang J, Chen D, Yan H, Xie F, Yu Y, Zhang L, Sun M, Peng X. Acetylglutamate kinase is required for both gametophyte function and embryo development in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:642-656. [PMID: 28294536 DOI: 10.1111/jipb.12536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
The specific functions of the genes encoding arginine biosynthesis enzymes in plants are not well characterized. We report the isolation and characterization of Arabidopsis thaliana N-acetylglutamate kinase (NAGK), which catalyzes the second step of arginine biosynthesis. NAGK is a plastid-localized protein and is expressed during most developmental processes in Arabidopsis. Heterologous expression of the Arabidopsis NAGK gene in a NAGK-deficient Escherichia coli strain fully restores bacterial growth on arginine-deficient medium. nagk mutant pollen tubes grow more slowly than wild type pollen tubes and the phenotype is restored by either specifically through complementation by NAGK in pollen, or exogenous supplementation of arginine. nagk female gametophytes are defective in micropylar pollen tube guidance due to the fact that female gametophyte cell fate specification was specifically affected. Expression of NAGK in synergid cells rescues the defect of nagk female gametophytes. Loss-of-function of NAGK results in Arabidopsis embryos not developing beyond the four-celled embryo stage. The embryo-defective phenotype in nagk/NAGK plants cannot be rescued by watering nagk/NAGK plants with arginine or ornithine supplementation. In conclusion, our results reveal a novel role of NAGK and arginine in regulating gametophyte function and embryo development, and provide valuable insights into arginine transport during embryo development.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dan Chen
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hailong Yan
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fei Xie
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Yu
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liyao Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxiang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiongbo Peng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
40
|
Hartmann M, Kim D, Bernsdorff F, Ajami-Rashidi Z, Scholten N, Schreiber S, Zeier T, Schuck S, Reichel-Deland V, Zeier J. Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity. PLANT PHYSIOLOGY 2017; 174:124-153. [PMID: 28330936 PMCID: PMC5411157 DOI: 10.1104/pp.17.00222] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/21/2017] [Indexed: 05/03/2023]
Abstract
The nonprotein amino acid pipecolic acid (Pip) regulates plant systemic acquired resistance and basal immunity to bacterial pathogen infection. In Arabidopsis (Arabidopsis thaliana), the lysine (Lys) aminotransferase AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) mediates the pathogen-induced accumulation of Pip in inoculated and distal leaf tissue. Here, we show that ALD1 transfers the α-amino group of l-Lys to acceptor oxoacids. Combined mass spectrometric and infrared spectroscopic analyses of in vitro assays and plant extracts indicate that the final product of the ALD1-catalyzed reaction is enaminic 2,3-dehydropipecolic acid (DP), whose formation involves consecutive transamination, cyclization, and isomerization steps. Besides l-Lys, recombinant ALD1 transaminates l-methionine, l-leucine, diaminopimelate, and several other amino acids to generate oxoacids or derived products in vitro. However, detailed in planta analyses suggest that the biosynthesis of 2,3-DP from l-Lys is the major in vivo function of ALD1. Since ald1 mutant plants are able to convert exogenous 2,3-DP into Pip, their Pip deficiency relies on the inability to form the 2,3-DP intermediate. The Arabidopsis reductase ornithine cyclodeaminase/μ-crystallin, alias SYSTEMIC ACQUIRED RESISTANCE-DEFICIENT4 (SARD4), converts ALD1-generated 2,3-DP into Pip in vitro. SARD4 significantly contributes to the production of Pip in pathogen-inoculated leaves but is not the exclusive reducing enzyme involved in Pip biosynthesis. Functional SARD4 is required for proper basal immunity to the bacterial pathogen Pseudomonas syringae Although SARD4 knockout plants show greatly reduced accumulation of Pip in leaves distal to P. syringae inoculation, they display a considerable systemic acquired resistance response. This suggests a triggering function of locally accumulating Pip for systemic resistance induction.
Collapse
Affiliation(s)
- Michael Hartmann
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Denis Kim
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Friederike Bernsdorff
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Ziba Ajami-Rashidi
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Nicola Scholten
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Stefan Schreiber
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Tatyana Zeier
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Stefan Schuck
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Vanessa Reichel-Deland
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| |
Collapse
|
41
|
Van Dingenen J, Blomme J, Gonzalez N, Inzé D. Plants grow with a little help from their organelle friends. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6267-6281. [PMID: 27815330 DOI: 10.1093/jxb/erw399] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplasts and mitochondria are indispensable for plant development. They not only provide energy and carbon sources to cells, but also have evolved to become major players in a variety of processes such as amino acid metabolism, hormone biosynthesis and cellular signalling. As semi-autonomous organelles, they contain a small genome that relies largely on nuclear factors for its maintenance and expression. An intensive crosstalk between the nucleus and the organelles is therefore essential to ensure proper functioning, and the nuclear genes encoding organellar proteins involved in photosynthesis and oxidative phosphorylation are obviously crucial for plant growth. Organ growth is determined by two main cellular processes: cell proliferation and cell expansion. Here, we review how plant growth is affected in mutants of organellar proteins that are differentially expressed during leaf and root development. Our findings indicate a clear role for organellar proteins in plant organ growth, primarily during cell proliferation. However, to date, the role of the nuclear-encoded organellar proteins in the cellular processes driving organ growth has not been investigated in much detail. We therefore encourage researchers to extend their phenotypic characterization beyond macroscopic features in order to get a better view on how chloroplasts and mitochondria regulate the basic processes of cell proliferation and cell expansion, essential to driving growth.
Collapse
Affiliation(s)
- Judith Van Dingenen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
42
|
Cerveau D, Kraut A, Stotz HU, Mueller MJ, Couté Y, Rey P. Characterization of the Arabidopsis thaliana 2-Cys peroxiredoxin interactome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:30-41. [PMID: 27717466 DOI: 10.1016/j.plantsci.2016.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/15/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
Peroxiredoxins are ubiquitous thiol-dependent peroxidases for which chaperone and signaling roles have been reported in various types of organisms in recent years. In plants, the peroxidase function of the two typical plastidial 2-Cys peroxiredoxins (2-Cys PRX A and B) has been highlighted while the other functions, particularly in ROS-dependent signaling pathways, are still elusive notably due to the lack of knowledge of interacting partners. Using an ex vivo approach based on co-immunoprecipitation of leaf extracts from Arabidopsis thaliana wild-type and mutant plants lacking 2-Cys PRX expression followed by mass spectrometry-based proteomics, 158 proteins were found associated with 2-Cys PRXs. Already known partners like thioredoxin-related electron donors (Chloroplastic Drought-induced Stress Protein of 32kDa, Atypical Cysteine Histidine-rich Thioredoxin 2) and enzymes involved in chlorophyll synthesis (Protochlorophyllide OxidoReductase B) or carbon metabolism (Fructose-1,6-BisPhosphatase) were identified, validating the relevance of the approach. Bioinformatic and bibliographic analyses allowed the functional classification of the identified proteins and revealed that more than 40% are localized in plastids. The possible roles of plant 2-Cys PRXs in redox signaling pathways are discussed in relation with the functions of the potential partners notably those involved in redox homeostasis, carbon and amino acid metabolisms as well as chlorophyll biosynthesis.
Collapse
Affiliation(s)
- Delphine Cerveau
- CEA, DRF, BIAM, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France; CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France; Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Alexandra Kraut
- Univ. Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, U1038, F-38000, France; CEA, BIG-BGE, Grenoble, F-38000, France; INSERM, U1038, Grenoble, F-38000, France
| | - Henrik U Stotz
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaticeutical Biology, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Martin J Mueller
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaticeutical Biology, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Yohann Couté
- Univ. Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, U1038, F-38000, France; CEA, BIG-BGE, Grenoble, F-38000, France; INSERM, U1038, Grenoble, F-38000, France
| | - Pascal Rey
- CEA, DRF, BIAM, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France; CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France; Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France.
| |
Collapse
|
43
|
Ding P, Rekhter D, Ding Y, Feussner K, Busta L, Haroth S, Xu S, Li X, Jetter R, Feussner I, Zhang Y. Characterization of a Pipecolic Acid Biosynthesis Pathway Required for Systemic Acquired Resistance. THE PLANT CELL 2016; 28:2603-2615. [PMID: 27758894 PMCID: PMC5134984 DOI: 10.1105/tpc.16.00486] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/21/2016] [Accepted: 10/05/2016] [Indexed: 05/03/2023]
Abstract
Systemic acquired resistance (SAR) is an immune response induced in the distal parts of plants following defense activation in local tissue. Pipecolic acid (Pip) accumulation orchestrates SAR and local resistance responses. Here, we report the identification and characterization of SAR-DEFICIENT4 (SARD4), which encodes a critical enzyme for Pip biosynthesis in Arabidopsis thaliana Loss of function of SARD4 leads to reduced Pip levels and accumulation of a Pip precursor, Δ1-piperideine-2-carboxylic acid (P2C). In Escherichia coli, expression of the aminotransferase ALD1 leads to production of P2C and addition of SARD4 results in Pip production, suggesting that a Pip biosynthesis pathway can be reconstituted in bacteria by coexpression of ALD1 and SARD4. In vitro experiments showed that ALD1 can use l-lysine as a substrate to produce P2C and P2C is converted to Pip by SARD4. Analysis of sard4 mutant plants showed that SARD4 is required for SAR as well as enhanced pathogen resistance conditioned by overexpression of the SAR regulator FLAVIN-DEPENDENT MONOOXYGENASE1. Compared with the wild type, pathogen-induced Pip accumulation is only modestly reduced in the local tissue of sard4 mutant plants, but it is below detection in distal leaves, suggesting that Pip is synthesized in systemic tissue by SARD4-mediated reduction of P2C and biosynthesis of Pip in systemic tissue contributes to SAR establishment.
Collapse
Affiliation(s)
- Pingtao Ding
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Dmitrij Rekhter
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, D-37073 Goettingen, Germany
| | - Yuli Ding
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Kirstin Feussner
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, D-37073 Goettingen, Germany
| | - Lucas Busta
- Department of Chemistry, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Sven Haroth
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, D-37073 Goettingen, Germany
| | - Shaohua Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Ivo Feussner
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, D-37073 Goettingen, Germany
- Department of Plant Biochemistry, Georg-August-University, Goettingen Center for Molecular Biosciences, D-37073 Goettingen, Germany
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| |
Collapse
|
44
|
Jung GY, Park JY, Choi HJ, Yoo SJ, Park JK, Jung HW. A Rice Gene Homologous to Arabidopsis AGD2-LIKE DEFENSE1 Participates in Disease Resistance Response against Infection with Magnaporthe oryzae. THE PLANT PATHOLOGY JOURNAL 2016; 32:357-62. [PMID: 27493611 PMCID: PMC4968646 DOI: 10.5423/ppj.nt.10.2015.0213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/24/2016] [Accepted: 04/01/2016] [Indexed: 05/08/2023]
Abstract
ALD1 (ABERRANT GROWTH AND DEATH2 [AGD2]-LIKE DEFENSE1) is one of the key defense regulators in Arabidopsis thaliana and Nicotiana benthamiana. In these model plants, ALD1 is responsible for triggering basal defense response and systemic resistance against bacterial infection. As well ALD1 is involved in the production of pipecolic acid and an unidentified compound(s) for systemic resistance and priming syndrome, respectively. These previous studies proposed that ALD1 is a potential candidate for developing genetically modified (GM) plants that may be resistant to pathogen infection. Here we introduce a role of ALD1-LIKE gene of Oryza sativa, named as OsALD1, during plant immunity. OsALD1 mRNA was strongly transcribed in the infected leaves of rice plants by Magnaporthe oryzae, the rice blast fungus. OsALD1 proteins predominantly localized at the chloroplast in the plant cells. GM rice plants over-expressing OsALD1 were resistant to the fungal infection. The stable expression of OsALD1 also triggered strong mRNA expression of PATHOGENESIS-RELATED PROTEIN1 genes in the leaves of rice plants during infection. Taken together, we conclude that OsALD1 plays a role in disease resistance response of rice against the infection with rice blast fungus.
Collapse
Affiliation(s)
- Ga Young Jung
- Department of Genetic Engineering, Dong-A University, Busan 49315,
Korea
| | - Ju Yeon Park
- Department of Applied Biosciences, Dong-A University, Busan 49315,
Korea
| | - Hyo Ju Choi
- Department of Genetic Engineering, Dong-A University, Busan 49315,
Korea
| | - Sung-Je Yoo
- Department of Genetic Engineering, Dong-A University, Busan 49315,
Korea
| | - Jung-Kwon Park
- Department of Applied Biosciences, Dong-A University, Busan 49315,
Korea
| | - Ho Won Jung
- Department of Genetic Engineering, Dong-A University, Busan 49315,
Korea
- Department of Applied Biosciences, Dong-A University, Busan 49315,
Korea
- Corresponding author. Phone) +82-51-200-7546, FAX) +82-51-200-7505, E-mail)
| |
Collapse
|
45
|
Mo HJ, Sun YX, Zhu XL, Wang XF, Zhang Y, Yang J, Yan GJ, Ma ZY. Cotton S-adenosylmethionine decarboxylase-mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signaling in the defense response to Verticillium dahliae. PLANTA 2016; 243:1023-39. [PMID: 26757733 DOI: 10.1007/s00425-015-2463-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/25/2015] [Indexed: 05/06/2023]
Abstract
Cotton S-adenosylmethionine decarboxylase-, rather than spermine synthase-, mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signaling in the defense response to Verticillium dahliae. Spermine (Spm) signaling is correlated with plant resistance to the fungal pathogen Verticillium dahliae. We identified genes for key rate-limiting enzymes in the biosynthesis of Spm, namely S-adenosylmethionine decarboxylase (GhSAMDC) and Spm synthase (GhSPMS). These were found by screening suppression subtractive hybridization and cDNA libraries of cotton (Gossypium) species tolerant to Verticillium wilt. Both were induced early and strongly by inoculation with V. dahliae and application of plant hormones. Silencing of GhSPMS or GhSAMDC in cotton leaves led to a significant accumulation of upstream substrates and, ultimately, enhanced plant susceptibility to Verticillium infection. Exogenous supplementation of Spm to the silenced cotton plants improved resistance. When compared with the wild type (WT), constitutive expression of GhSAMDC in Arabidopsis thaliana was associated with greater Verticillium wilt resistance and higher accumulations of Spm, salicylic acid, and leucine during the infection period. By contrast, transgenic Arabidopsis plants that over-expressed GhSPMS were unexpectedly more susceptible than the WT to V. dahliae and they also had impaired levels of putrescine (Put) and salicylic acid (SA). The susceptibility exhibited in GhSPMS-overexpressing Arabidopsis plants was partially reversed by the exogenous supply of Put or SA. In addition, the responsiveness of those two transgenic Arabidopsis lines to V. dahliae was associated with an alteration in transcripts of genes involved in plant resistance to epidermal penetrations and amino acid signaling. Together, these results suggest that GhSAMDC-, rather than GhSPMS-, mediated spermine biosynthesis contributes to plant resistance against V. dahliae through SA- and leucine-correlated signaling.
Collapse
Affiliation(s)
- Hui-Juan Mo
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan-Xiang Sun
- Institute of Genetics and Breeding, Langfang Teachers University, Langfang, 065000, China
| | - Xiao-Li Zhu
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Xing-Fen Wang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Gui-Jun Yan
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
- School of Plant Biology, Faculty of Science and The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
| | - Zhi-Ying Ma
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
46
|
Liu Y, Xie S, Yu J. Genome-Wide Analysis of the Lysine Biosynthesis Pathway Network during Maize Seed Development. PLoS One 2016; 11:e0148287. [PMID: 26829553 PMCID: PMC4734768 DOI: 10.1371/journal.pone.0148287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/16/2016] [Indexed: 11/30/2022] Open
Abstract
Lysine is one of the most limiting essential amino acids for humans and livestock. The nutritional value of maize (Zea mays L.) is reduced by its poor lysine content. To better understand the lysine biosynthesis pathway in maize seed, we conducted a genome-wide analysis of the genes involved in lysine biosynthesis. We identified lysine biosynthesis pathway genes (LBPGs) and investigated whether a diaminopimelate pathway variant exists in maize. We analyzed two genes encoding the key enzyme dihydrodipicolinate synthase, and determined that they contribute differently to lysine synthesis during maize seed development. A coexpression network of LBPGs was constructed using RNA-sequencing data from 21 developmental stages of B73 maize seed. We found a large set of genes encoding ribosomal proteins, elongation factors and zein proteins that were coexpressed with LBPGs. The coexpressed genes were enriched in cellular metabolism terms and protein related terms. A phylogenetic analysis of the LBPGs from different plant species revealed different relationships. Additionally, six transcription factor (TF) families containing 13 TFs were identified as the Hub TFs of the LBPGs modules. Several expression quantitative trait loci of LBPGs were also identified. Our results should help to elucidate the lysine biosynthesis pathway network in maize seed.
Collapse
Affiliation(s)
- Yuwei Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shaojun Xie
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jingjuan Yu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| |
Collapse
|
47
|
Bernsdorff F, Döring AC, Gruner K, Schuck S, Bräutigam A, Zeier J. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. THE PLANT CELL 2016; 28:102-29. [PMID: 26672068 PMCID: PMC4746677 DOI: 10.1105/tpc.15.00496] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/30/2015] [Accepted: 12/13/2015] [Indexed: 05/18/2023]
Abstract
We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants.
Collapse
Affiliation(s)
- Friederike Bernsdorff
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Anne-Christin Döring
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Katrin Gruner
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Stefan Schuck
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Institute for Plant Biochemistry, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
48
|
Sun T, Zhang Y, Li Y, Zhang Q, Ding Y, Zhang Y. ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nat Commun 2015; 6:10159. [PMID: 27206545 PMCID: PMC4703862 DOI: 10.1038/ncomms10159] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/10/2015] [Indexed: 01/05/2023] Open
Abstract
Recognition of pathogens by host plants leads to rapid transcriptional reprogramming and activation of defence responses. The expression of many defence regulators is induced in this process, but the mechanisms of how they are controlled transcriptionally are largely unknown. Here we use chromatin immunoprecipitation sequencing to show that the transcription factors SARD1 and CBP60g bind to the promoter regions of a large number of genes encoding key regulators of plant immunity. Among them are positive regulators of systemic immunity and signalling components for effector-triggered immunity and PAMP-triggered immunity, which is consistent with the critical roles of SARD1 and CBP60g in these processes. In addition, SARD1 and CBP60g target a number of genes encoding negative regulators of plant immunity, suggesting that they are also involved in negative feedback regulation of defence responses. Based on these findings we propose that SARD1 and CBP60g function as master regulators of plant immune responses. SARD1 and CBP60g are two plant transcription factors that regulate salicylic acid biosynthesis in response to pathogens. Here, Sun et al. show that they bind a wide array of loci related to multiple defence signalling pathways suggesting a broader role as regulators of the plant immune response.
Collapse
Affiliation(s)
- Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Yaxi Zhang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yan Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Qian Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Yuli Ding
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
49
|
Gill US, Uppalapati SR, Nakashima J, Mysore KS. Characterization of Brachypodium distachyon as a nonhost model against switchgrass rust pathogen Puccinia emaculata. BMC PLANT BIOLOGY 2015; 15:113. [PMID: 25953307 PMCID: PMC4424542 DOI: 10.1186/s12870-015-0502-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/22/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND Switchgrass rust, caused by Puccinia emaculata, is an important disease of switchgrass, a potential biofuel crop in the United States. In severe cases, switchgrass rust has the potential to significantly affect biomass yield. In an effort to identify novel sources of resistance against switchgrass rust, we explored nonhost resistance against P. emaculata by characterizing its interactions with six monocot nonhost plant species. We also studied the genetic variations for resistance among Brachypodium inbred accessions and the involvement of various defense pathways in nonhost resistance of Brachypodium. RESULTS We characterized P. emaculata interactions with six monocot nonhost species and identified Brachypodium distachyon (Bd21) as a suitable nonhost model to study switchgrass rust. Interestingly, screening of Brachypodium accessions identified natural variations in resistance to switchgrass rust. Brachypodium inbred accessions Bd3-1 and Bd30-1 were identified as most and least resistant to switchgrass rust, respectively, when compared to tested accessions. Transcript profiling of defense-related genes indicated that the genes which were induced in Bd21after P. emaculata inoculation also had higher basal transcript abundance in Bd3-1 when compared to Bd30-1 and Bd21 indicating their potential involvement in nonhost resistance against switchgrass rust. CONCLUSION In the present study, we identified Brachypodium as a suitable nonhost model to study switchgrass rust which exhibit type I nonhost resistance. Variations in resistance response were also observed among tested Brachypodium accessions. Brachypodium nonhost resistance against P. emaculata may involve various defense pathways as indicated by transcript profiling of defense related genes. Overall, this study provides a new avenue to utilize novel sources of nonhost resistance in Brachypodium against switchgrass rust.
Collapse
Affiliation(s)
- Upinder S Gill
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA.
| | - Srinivasa R Uppalapati
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA.
- Current address: Biologicals and Fungicide Discovery, DuPont Crop Protection, Newark, DE 19711, USA.
| | - Jin Nakashima
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA.
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, 73401, USA.
| |
Collapse
|
50
|
Cecchini NM, Jung HW, Engle NL, Tschaplinski TJ, Greenberg JT. ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:455-66. [PMID: 25372120 DOI: 10.1094/mpmi-06-14-0187-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Robust immunity requires basal defense machinery to mediate timely responses and feedback cycles to amplify defenses against potentially spreading infections. AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1) is needed for the accumulation of the plant defense signal salicylic acid (SA) during the first hours after infection with the pathogen Pseudomonas syringae and is also upregulated by infection and SA. ALD1 is an aminotransferase with multiple substrates and products in vitro. Pipecolic acid (Pip) is an ALD1-dependent bioactive product induced by P. syringae. Here, we addressed roles of ALD1 in mediating defense amplification as well as the levels and responses of basal defense machinery. ALD1 needs immune components PAD4 and ICS1 (an SA synthesis enzyme) to confer disease resistance, possibly through a transcriptional amplification loop between them. Furthermore, ALD1 affects basal defense by controlling microbial-associated molecular pattern (MAMP) receptor levels and responsiveness. Vascular exudates from uninfected ALD1-overexpressing plants confer local immunity to the wild type and ald1 mutants yet are not enriched for Pip. We infer that, in addition to affecting Pip accumulation, ALD1 produces non-Pip metabolites that play roles in immunity. Thus, distinct metabolite signals controlled by the same enzyme affect basal and early defenses versus later defense responses, respectively.
Collapse
Affiliation(s)
- Nicolás M Cecchini
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago 60637, U.S.A
| | | | | | | | | |
Collapse
|