1
|
Zheng K, Martinez MDP, Bouzid M, Balparda M, Schwarzländer M, Maurino VG. Regulation of plant glycolysis and the tricarboxylic acid cycle by posttranslational modifications. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70142. [PMID: 40185637 PMCID: PMC11971034 DOI: 10.1111/tpj.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Plant glycolysis and the tricarboxylic acid (TCA) cycle are key pathways of central carbon metabolism. They facilitate energy transformation, provide redox balance, and supply the building blocks for biosynthetic processes that underpin plant survival, growth, and productivity. Yet, rather than acting as static pathways, the fluxes that are mediated by the enzymes involved form a branched network. Flux modes can change flexibly to match cellular demands and environmental fluctuations. Several of the enzymes involved in glycolysis and the TCA cycle have been identified as targets of posttranslational modifications (PTMs). PTMs can act as regulators to facilitate changes in flux by rapidly and reversibly altering enzyme organization and function. Consequently, PTMs enable plants to rapidly adjust their metabolic flux landscape, match energy and precursor provision with the changeable needs, and enhance overall metabolic flexibility. Here, we review the impact of different PTMs on glycolytic and TCA cycle enzymes, focusing on modifications that induce functional changes rather than the mere occurrence of PTMs at specific sites. By synthesizing recent findings, we provide a foundation for a system-level understanding of how PTMs choreograph the remarkable flexibility of plant central carbon metabolism.
Collapse
Affiliation(s)
- Ke Zheng
- Plant Energy Biology LabInstitute of Plant Biology and Biotechnology (IBBP), University of MünsterSchlossplatz 8Münster48145Germany
| | - Maria del Pilar Martinez
- Molecular Plant PhysiologyInstitute of Cellular Molecular Botany (IZMB), University of BonnKirschallee 1Bonn53115Germany
| | - Maroua Bouzid
- Molecular Plant PhysiologyInstitute of Cellular Molecular Botany (IZMB), University of BonnKirschallee 1Bonn53115Germany
| | - Manuel Balparda
- Molecular Plant PhysiologyInstitute of Cellular Molecular Botany (IZMB), University of BonnKirschallee 1Bonn53115Germany
| | - Markus Schwarzländer
- Plant Energy Biology LabInstitute of Plant Biology and Biotechnology (IBBP), University of MünsterSchlossplatz 8Münster48145Germany
| | - Veronica G. Maurino
- Molecular Plant PhysiologyInstitute of Cellular Molecular Botany (IZMB), University of BonnKirschallee 1Bonn53115Germany
| |
Collapse
|
2
|
Yan T, Kuang L, Gao F, Chen J, Li L, Wu D. Differentiation of genome-wide DNA methylation between japonica and indica rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17218. [PMID: 39887541 DOI: 10.1111/tpj.17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/11/2024] [Indexed: 02/01/2025]
Abstract
Rice (Oryza sativa L.) subspecies japonica and indica show distinct morphological and genetic differentiation. However, the differences in the genome-wide DNA methylation and its effects on gene expression and metabolic levels between japonica and indica rice remain unclear. In this study, we investigated the genome-wide DNA methylation, transcriptomes and metabolomes of 12 representative japonica and indica rice accessions, to reveal the differentiation between rice subspecies. We detected 83 327 differentially methylated regions (DMRs) and 14 903 DMR-associated genes between two subspecies. Indica rice showed significantly lower levels of the CG, CHG, and CHH methylation compared with japonica rice. Subsequently, we identified 5596 differentially expressed genes between the two subspecies, predominantly enriched in pathways related to carbohydrate and amino acid metabolism. By integrating DNA methylation with transcriptomic data, a significant correlation was established between methylation patterns and the expression level of key agronomic genes in rice. Furthermore, multi-omics analyses reveal that carbohydrate metabolism pathways, especially the tricarboxylic acid (TCA) cycle metabolites, are remarkable differentiation between rice subspecies. These results provide a foundation for future studies in rice domestication and genetic improvement.
Collapse
Affiliation(s)
- Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Liuhui Kuang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Jian Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Lin Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| |
Collapse
|
3
|
Angermann C, Heinemann B, Hansen J, Töpfer N, Braun HP, Hildebrandt TM. Proteome reorganization and amino acid metabolism during germination and seedling establishment in Lupinus albus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4891-4903. [PMID: 38686677 DOI: 10.1093/jxb/erae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
During germination plants rely entirely on their seed storage compounds to provide energy and precursors for the synthesis of macromolecular structures until the seedling has emerged from the soil and photosynthesis can be established. Lupin seeds use proteins as their major storage compounds, accounting for up to 40% of the seed dry weight. Lupins are therefore a valuable complement to soy as a source of plant protein for human and animal nutrition. The aim of this study was to elucidate how storage protein metabolism is coordinated with other metabolic processes to meet the requirements of the growing seedling. In a quantitative approach, we analysed seedling growth, as well as alterations in biomass composition, the proteome, and metabolite profiles during germination and seedling establishment in Lupinus albus. The reallocation of nitrogen resources from seed storage proteins to functional seed proteins was mapped based on a manually curated functional protein annotation database. Although classified as a protein crop, Lupinus albus does not use amino acids as a primary substrate for energy metabolism during germination. However, fatty acid and amino acid metabolism may be integrated at the level of malate synthase to combine stored carbon from lipids and proteins into gluconeogenesis.
Collapse
Affiliation(s)
- Cecile Angermann
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Björn Heinemann
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Jule Hansen
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Nadine Töpfer
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Luxemburger Str. 90, 50939 Cologne, Germany
| | - Hans-Peter Braun
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Tatjana M Hildebrandt
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| |
Collapse
|
4
|
Alonso S, Gautam K, Iglesias-Moya J, Martínez C, Jamilena M. Crosstalk between Ethylene, Jasmonate and ABA in Response to Salt Stress during Germination and Early Plant Growth in Cucurbita pepo. Int J Mol Sci 2024; 25:8728. [PMID: 39201415 PMCID: PMC11354493 DOI: 10.3390/ijms25168728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The crosstalk of phytohormones in the regulation of growth and development and the response of plants to environmental stresses is a cutting-edge research topic, especially in crop species. In this paper, we study the role and crosstalk between abscisic acid (ABA), ethylene (ET), and jasmonate (JA) in the control of germination and seedling growth in water or in standard nutrient solution and under salt stress (supplemented with 100-200 mM NaCl). The roles of ET and JA were studied using squash ET- and JA-deficient mutants aco1a and lox3a, respectively, while the crosstalk between ET, JA, and ABA was determined by comparing the expression of the key ABA, JA, and ET genes in wild-type (WT) and mutant genotypes under standard conditions and salt stress. Data showed that ET and JA are positive regulators of squash germination, a function that was found to be mediated by downregulating the ABA biosynthesis and signaling pathways. Under salt stress, aco1a germinated earlier than WT, while lox3a showed the same germination rate as WT, indicating that ET, but not JA, restricts squash germination under unfavorable salinity conditions, a function that was also mediated by upregulation of ABA. ET and JA were found to be negative regulators of plant growth during seedling establishment, although ET inhibits both the aerial part and the root, while JA inhibits only the root. Both aco1a and lox3a mutant roots showed increased tolerance to salt stress, a phenotype that was found to be mainly mediated by JA, although we cannot exclude that it is also mediated by ABA.
Collapse
Affiliation(s)
| | | | | | - Cecilia Martínez
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120 Almería, Spain; (S.A.); (K.G.); (J.I.-M.)
| | - Manuel Jamilena
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120 Almería, Spain; (S.A.); (K.G.); (J.I.-M.)
| |
Collapse
|
5
|
Xie T, Hu W, Shen J, Xu J, Yang Z, Chen X, Zhu P, Chen M, Chen S, Zhang H, Cheng J. Allantoate Amidohydrolase OsAAH is Essential for Preharvest Sprouting Resistance in Rice. RICE (NEW YORK, N.Y.) 2024; 17:28. [PMID: 38622442 PMCID: PMC11018578 DOI: 10.1186/s12284-024-00706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024]
Abstract
Preharvest sprouting (PHS) is an undesirable trait that decreases yield and quality in rice production. Understanding the genes and regulatory mechanisms underlying PHS is of great significance for breeding PHS-resistant rice. In this study, we identified a mutant, preharvest sprouting 39 (phs39), that exhibited an obvious PHS phenotype in the field. MutMap+ analysis and transgenic experiments demonstrated that OsAAH, which encodes allantoate amidohydrolase, is the causal gene of phs39 and is essential for PHS resistance. OsAAH was highly expressed in roots and leaves at the heading stage and gradually increased and then weakly declined in the seed developmental stage. OsAAH protein was localized to the endoplasmic reticulum, with a function of hydrolyzing allantoate in vitro. Disruption of OsAAH increased the levels of ureides (allantoate and allantoin) and activated the tricarboxylic acid (TCA) cycle, and thus increased energy levels in developing seeds. Additionally, the disruption of OsAAH significantly increased asparagine, arginine, and lysine levels, decreased tryptophan levels, and decreased levels of indole-3-acetic acid (IAA) and abscisic acid (ABA). Our findings revealed that the OsAAH of ureide catabolism is involved in the regulation of rice PHS via energy and hormone metabolisms, which will help to facilitate the breeding of rice PHS-resistant varieties.
Collapse
Affiliation(s)
- Ting Xie
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenling Hu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiaxin Shen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiangyu Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zeyuan Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xinyi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peiwen Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Mingming Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Sunlu Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Jinping Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
6
|
Li Z, Bai H, Bai Z, Han J, Luo D, Bai L. Multi-omics analysis identifies EcCS4 is negatively regulated in response to phytotoxin isovaleric acid stress in Echinochloa crus-galli. PEST MANAGEMENT SCIENCE 2024; 80:1957-1967. [PMID: 38088480 DOI: 10.1002/ps.7927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Knowledge of herbicidal targets is critical for weed management and food safety. The phytotoxin isovaleric acid (ISA) is effective against weeds with a broad spectrum, carries low environmental risks, and is thus an excellent herbicide lead. However, the biochemical and molecular mechanisms underlying the action of ISA remain unclear. RESULTS Multi-omics data showed that acetyl coenzyme A (acetyl-CoA) was the key affected metabolite, and that citrate synthase (CS) 4 was substantially down-regulated under ISA treatment in Echinochloa crus-galli leaves. In particular, the transcript level of EcCS4 was the most significantly regulated among the six genes involved in the top 10 different pathways. The EcCS4 encodes a protein of 472 amino acids and is localized to the cell membrane and mitochondria, similar to the CS4s of other plants. The protein content of EcCS4 was down-regulated after ISA treatment at 0.5 h. ISA markedly inhibited the CS4 activity in vitro in a concentration-dependent manner (IC50 = 41.35 μM). In addition, the transgenic rice plants overexpressing EcCS4 (IC50 = 111.8 mM for OECS4-8 line) were more sensitive, whereas loss-of-function rice mutant lines (IC50 = 746.5 mM for oscs4-19) were more resistant to ISA, compared to wild type (WT) plants (IC50 = 355.6 mM). CONCLUSION CS4 was first reported as a negative regulator of plant responses to ISA. These results highlight that CS4 is a candidate target gene for the development of novel herbicides and for breeding herbicide-resistant crops. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zuren Li
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Haodong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhendong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jincai Han
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Dingfeng Luo
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lianyang Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
7
|
Fedorin DN, Eprintsev AT, Igamberdiev AU. The role of promoter methylation of the genes encoding the enzymes metabolizing di- and tricarboxylic acids in the regulation of plant respiration by light. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154195. [PMID: 38377939 DOI: 10.1016/j.jplph.2024.154195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
We discuss the role of epigenetic changes at the level of promoter methylation of the key enzymes of carbon metabolism in the regulation of respiration by light. While the direct regulation of enzymes via modulation of their activity and post-translational modifications is fast and readily reversible, the role of cytosine methylation is important for providing a prolonged response to environmental changes. In addition, adenine methylation can play a role in the regulation of transcription of genes. The mitochondrial and extramitochondrial forms of several enzymes participating in the tricarboxylic acid cycle and associated reactions are regulated via promoter methylation in opposite ways. The mitochondrial forms of citrate synthase, aconitase, fumarase, NAD-malate dehydrogenase are inhibited while the cytosolic forms of aconitase, fumarase, NAD-malate dehydrogenase, and the peroxisomal form of citrate synthase are activated. It is concluded that promoter methylation represents a universal mechanism of the regulation of activity of respiratory enzymes in plant cells by light. The role of the regulation of the mitochondrial and cytosolic forms of respiratory enzymes in the operation of malate and citrate valves and in controlling the redox state and balancing the energy level of photosynthesizing plant cells is discussed.
Collapse
Affiliation(s)
- Dmitry N Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
8
|
Zhou XW, Yao XD, He DX, Sun HX, Xie FT. Comparative physiological and transcriptomic analysis of two salt-tolerant soybean germplasms response to low phosphorus stress: role of phosphorus uptake and antioxidant capacity. BMC PLANT BIOLOGY 2023; 23:662. [PMID: 38124037 PMCID: PMC10731862 DOI: 10.1186/s12870-023-04677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Phosphorus (P) and salt stress are common abiotic stressors that limit crop growth and development, but the response mechanism of soybean to low phosphorus (LP) and salt (S) combined stress remains unclear. RESULTS In this study, two soybean germplasms with similar salt tolerance but contrasting P-efficiency, A74 (salt-tolerant and P-efficient) and A6 (salt-tolerant and P-inefficient), were selected as materials. By combining physiochemical and transcriptional analysis, we aimed to elucidate the mechanism by which soybean maintains high P-efficiency under salt stress. In total, 14,075 differentially expressed genes were identified through pairwise comparison. PageMan analysis subsequently revealed several significantly enriched categories in the LP vs. control (CK) or low phosphorus + salt (LPS) vs. S comparative combination when compared to A6, in the case of A74. These categories included genes involved in mitochondrial electron transport, secondary metabolism, stress, misc, transcription factors and transport. Additionally, weighted correlation network analysis identified two modules that were highly correlated with acid phosphatase and antioxidant enzyme activity. Citrate synthase gene (CS), acyl-coenzyme A oxidase4 gene (ACX), cytokinin dehydrogenase 7 gene (CKXs), and two-component response regulator ARR2 gene (ARR2) were identified as the most central hub genes in these two modules. CONCLUSION In summary, we have pinpointed the gene categories responsible for the LP response variations between the two salt-tolerant germplasms, which are mainly related to antioxidant, and P uptake process. Further, the discovery of the hub genes layed the foundation for further exploration of the molecular mechanism of salt-tolerant and P-efficient in soybean.
Collapse
Affiliation(s)
- Xiu-Wen Zhou
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xing-Dong Yao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - De-Xin He
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - He-Xiang Sun
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Fu-Ti Xie
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
9
|
Yuan L, Liu H, Cao Y, Wu W. Transcription factor TERF1 promotes seed germination through HEXOKINASE 1 (HXK1)-mediated signaling pathway. JOURNAL OF PLANT RESEARCH 2023; 136:743-753. [PMID: 37233958 DOI: 10.1007/s10265-023-01471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Seed germination, a vital process for plant growth and development, is regulated by ethylene. Previously, we showed that Tomato Ethylene Responsive Factor 1 (TERF1), an ethylene-responsive factor (ERF) transcription factor, could significantly promote seed germination by increasing glucose content. As glucose can function as a signaling molecule to regulate plant growth and development through HEXOKINASE 1 (HXK1), we aim to illustrate how TERF1 promotes seed germination through the HXK1-mediated signaling pathway. We showed that seeds overexpressing TERF1 exhibited more resistance to N-acetylglucosamine (NAG), an inhibitor of the HXK1- mediated signaling pathway. We identified genes regulated by TERF1 through HXK1 based on transcriptome analysis. Gene expression and phenotype analysis demonstrated that TERF1 repressed the ABA signaling pathway through HXK1, which promoted germination through activating the plasma membrane (PM) H+-ATPase. TERF1 also alleviated the endoplasmic reticulum (ER) stress to accelerate germination by maintaining reactive oxygen species (ROS) homeostasis through HXK1. Our findings provide new insights into the mechanism regulated by ethylene through the glucose-HXK1 signaling pathway during seed germination.
Collapse
Affiliation(s)
- Long Yuan
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Hongzhi Liu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Yupeng Cao
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Wei Wu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China.
| |
Collapse
|
10
|
Ojosnegros S, Alvarez JM, Grossmann J, Gagliardini V, Quintanilla LG, Grossniklaus U, Fernández H. Proteome and Interactome Linked to Metabolism, Genetic Information Processing, and Abiotic Stress in Gametophytes of Two Woodferns. Int J Mol Sci 2023; 24:12429. [PMID: 37569809 PMCID: PMC10419320 DOI: 10.3390/ijms241512429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Ferns and lycophytes have received scant molecular attention in comparison to angiosperms. The advent of high-throughput technologies allowed an advance towards a greater knowledge of their elusive genomes. In this work, proteomic analyses of heart-shaped gametophytes of two ferns were performed: the apomictic Dryopteris affinis ssp. affinis and its sexual relative Dryopteris oreades. In total, a set of 218 proteins shared by these two gametophytes were analyzed using the STRING database, and their proteome associated with metabolism, genetic information processing, and responses to abiotic stress is discussed. Specifically, we report proteins involved in the metabolism of carbohydrates, lipids, and nucleotides, the biosynthesis of amino acids and secondary compounds, energy, oxide-reduction, transcription, translation, protein folding, sorting and degradation, and responses to abiotic stresses. The interactome of this set of proteins represents a total network composed of 218 nodes and 1792 interactions, obtained mostly from databases and text mining. The interactions among the identified proteins of the ferns D. affinis and D. oreades, together with the description of their biological functions, might contribute to a better understanding of the function and development of ferns as well as fill knowledge gaps in plant evolution.
Collapse
Affiliation(s)
- Sara Ojosnegros
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain; (S.O.); (J.M.A.)
| | - José Manuel Alvarez
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain; (S.O.); (J.M.A.)
| | - Jonas Grossmann
- Functional Genomic Center Zurich, University and ETH Zurich, 8092 Zurich, Switzerland;
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland; (V.G.); (U.G.)
| | - Luis G. Quintanilla
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, 28933 Móstoles, Spain;
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland; (V.G.); (U.G.)
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain; (S.O.); (J.M.A.)
| |
Collapse
|
11
|
Fernie AR, Sampathkumar A. SPOTLIGHT: Chemical imaging reveals diverse functions of TCA cycle intermediates in root growth and development. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154053. [PMID: 37506404 DOI: 10.1016/j.jplph.2023.154053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Arun Sampathkumar
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
12
|
Zhang T, Peng JT, Klair A, Dickinson AJ. Non-canonical and developmental roles of the TCA cycle in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102382. [PMID: 37210789 PMCID: PMC10524895 DOI: 10.1016/j.pbi.2023.102382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/23/2023]
Abstract
Over recent years, our understanding of the tricarboxylic acid cycle (TCAC) in living organisms has expanded beyond its canonical role in cellular energy production. In plants, TCAC metabolites and related enzymes have important roles in physiology, including vacuolar function, chelation of metals and nutrients, photorespiration, and redox regulation. Research in other organisms, including animals, has demonstrated unexpected functions of the TCAC metabolites in a number of biological processes, including signaling, epigenetic regulation, and cell differentiation. Here, we review the recent progress in discovery of non-canonical roles of the TCAC. We then discuss research on these metabolites in the context of plant development, with a focus on research related to tissue-specific functions of the TCAC. Additionally, we review research describing connections between TCAC metabolites and phytohormone signaling pathways. Overall, we discuss the opportunities and challenges in discovering new functions of TCAC metabolites in plants.
Collapse
Affiliation(s)
- Tao Zhang
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Jesus T Peng
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Amman Klair
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Alexandra J Dickinson
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Tuo D, Wu J, Zou J, Dong G, Zeng W, Li J, Du D. Analysis of Hormone Regulation on Seed Germination of Coix Based on Muli-Omics Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2700. [PMID: 37514314 PMCID: PMC10385750 DOI: 10.3390/plants12142700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
Seed germination is an important stage of growth and reproduction and plays an important role in the life cycle of spermatophyte. It is co-determined by both genetic and environmental factors, and plant hormone regulation may be a highly conservative mechanism. Coix lachryrma-jobi (coix) is a grain with balanced nutrition for medicine and food and has substantial production value. It is an important part of agricultural production, and the efficiency of seed germination after sowing is a key link. In this study, coix species "small white shell Xingren" was used as the experimental material, and changes in gene expression levels and metabolite enrichment in seeds were identified by transcriptome and metabonomic analysis before and after seed germination. A total of 599 metabolites, including those from amino acid metabolism, sugar metabolism, and fatty acid metabolism, were significantly increased in germinating coix. Simultaneously, 10,929 differentially expressed genes (DEGs) were identified, and functional clusters of genes were also significantly clustered in hormone-signaling and glucose and fatty acid metabolism. In addition, this study found that a considerable number of hormone-signaling genes were significantly up-regulated during seed germination, activating multiple metabolic processes. The results of our conjoint analysis of multi omics showed that glucose and fatty acid metabolism played an important role in seed germination under hormone regulation.
Collapse
Affiliation(s)
- Donghao Tuo
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiawen Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Juan Zou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanyong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinhua Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dengxiang Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
14
|
Zhang T, Noll SE, Peng JT, Klair A, Tripka A, Stutzman N, Cheng C, Zare RN, Dickinson AJ. Chemical imaging reveals diverse functions of tricarboxylic acid metabolites in root growth and development. Nat Commun 2023; 14:2567. [PMID: 37142569 PMCID: PMC10160030 DOI: 10.1038/s41467-023-38150-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Understanding how plants grow is critical for agriculture and fundamental for illuminating principles of multicellular development. Here, we apply desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to the chemical mapping of the developing maize root. This technique reveals a range of small molecule distribution patterns across the gradient of stem cell differentiation in the root. To understand the developmental logic of these patterns, we examine tricarboxylic acid (TCA) cycle metabolites. In both Arabidopsis and maize, we find evidence that elements of the TCA cycle are enriched in developmentally opposing regions. We find that these metabolites, particularly succinate, aconitate, citrate, and α-ketoglutarate, control root development in diverse and distinct ways. Critically, the developmental effects of certain TCA metabolites on stem cell behavior do not correlate with changes in ATP production. These results present insights into development and suggest practical means for controlling plant growth.
Collapse
Affiliation(s)
- Tao Zhang
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sarah E Noll
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Pomona College, Claremont, CA, 91711, USA
| | - Jesus T Peng
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amman Klair
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Abigail Tripka
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nathan Stutzman
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Casey Cheng
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| | - Alexandra J Dickinson
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
15
|
Le XH, Millar AH. The diversity of substrates for plant respiration and how to optimize their use. PLANT PHYSIOLOGY 2023; 191:2133-2149. [PMID: 36573332 PMCID: PMC10069909 DOI: 10.1093/plphys/kiac599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Plant respiration is a foundational biological process with the potential to be optimized to improve crop yield. To understand and manipulate the outputs of respiration, the inputs of respiration-respiratory substrates-need to be probed in detail. Mitochondria house substrate catabolic pathways and respiratory machinery, so transport into and out of these organelles plays an important role in committing substrates to respiration. The large number of mitochondrial carriers and catabolic pathways that remain unidentified hinder this process and lead to confusion about the identity of direct and indirect respiratory substrates in plants. The sources and usage of respiratory substrates vary and are increasing found to be highly regulated based on cellular processes and environmental factors. This review covers the use of direct respiratory substrates following transport through mitochondrial carriers and catabolism under normal and stressed conditions. We suggest the introduction of enzymes not currently found in plant mitochondria to enable serine and acetate to be direct respiratory substrates in plants. We also compare respiratory substrates by assessing energetic yields, availability in cells, and their full or partial oxidation during cell catabolism. This information can assist in decisions to use synthetic biology approaches to alter the range of respiratory substrates in plants. As a result, respiration could be optimized by introducing, improving, or controlling specific mitochondrial transporters and mitochondrial catabolic pathways.
Collapse
Affiliation(s)
- Xuyen H Le
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - A Harvey Millar
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
16
|
Korte P, Unzner A, Damm T, Berger S, Krischke M, Mueller MJ. High triacylglycerol turnover is required for efficient opening of stomata during heat stress in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36976526 DOI: 10.1111/tpj.16210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/04/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Heat stress triggers the accumulation of triacylglycerols in Arabidopsis leaves, which increases basal thermotolerance. However, how triacylglycerol synthesis is linked to thermotolerance remains unclear and the mechanisms involved remain to be elucidated. It has been shown that triacylglycerol and starch degradation are required to provide energy for stomatal opening induced by blue light at dawn. To investigate whether triacylglycerol turnover is involved in heat-induced stomatal opening during the day, we performed feeding experiments with labeled fatty acids. Heat stress strongly induced both triacylglycerol synthesis and degradation to channel fatty acids destined for peroxisomal ß-oxidation through the triacylglycerol pool. Analysis of mutants defective in triacylglycerol synthesis or peroxisomal fatty acid uptake revealed that triacylglycerol turnover and fatty acid catabolism are required for heat-induced stomatal opening in illuminated leaves. We show that triacylglycerol turnover is continuous (1.2 mol% per min) in illuminated leaves even at 22°C. The ß-oxidation of triacylglycerol-derived fatty acids generates C2 carbon units that are channeled into the tricarboxylic acid pathway in the light. In addition, carbohydrate catabolism is required to provide oxaloacetate as an acceptor for peroxisomal acetyl-CoA and maintain the tricarboxylic acid pathway for energy and amino acid production during the day.
Collapse
Affiliation(s)
- Pamela Korte
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Amelie Unzner
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Theresa Damm
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Susanne Berger
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Martin J Mueller
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| |
Collapse
|
17
|
Racca S, Gras DE, Canal MV, Ferrero LV, Rojas BE, Figueroa CM, Ariel FD, Welchen E, Gonzalez DH. Cytochrome c and the transcription factor ABI4 establish a molecular link between mitochondria and ABA-dependent seed germination. THE NEW PHYTOLOGIST 2022; 235:1780-1795. [PMID: 35637555 DOI: 10.1111/nph.18287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
During germination, seed reserves are mobilised to sustain the metabolic and energetic demands of plant growth. Mitochondrial respiration is presumably required to drive germination in several species, but only recently its role in this process has begun to be elucidated. Using Arabidopsis thaliana lines with changes in the levels of the respiratory chain component cytochrome c (CYTc), we investigated the role of this protein in germination and its relationship with hormonal pathways. Cytochrome c deficiency causes delayed seed germination, which correlates with decreased cyanide-sensitive respiration and ATP production at the onset of germination. In addition, CYTc affects the sensitivity of germination to abscisic acid (ABA), which negatively regulates the expression of CYTC-2, one of two CYTc-encoding genes in Arabidopsis. CYTC-2 acts downstream of the transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4), which binds to a region of the CYTC-2 promoter required for repression by ABA and regulates its expression. The results show that CYTc is a main player during seed germination through its role in respiratory metabolism and energy production. In addition, the direct regulation of CYTC-2 by ABI4 and its effect on ABA-responsive germination establishes a link between mitochondrial and hormonal functions during this process.
Collapse
Affiliation(s)
- Sofía Racca
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - M Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Lucía V Ferrero
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
18
|
Luo Q, Zhu H, Wang C, Li Y, Zou X, Hu Z. A U-Box Type E3 Ubiquitin Ligase Prp19-Like Protein Negatively Regulates Lipid Accumulation and Cell Size in Chlamydomonas reinhardtii. Front Microbiol 2022; 13:860024. [PMID: 35464935 PMCID: PMC9019728 DOI: 10.3389/fmicb.2022.860024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Microalgae lipid triacylglycerol is considered as a promising feedstock for national production of biofuels. A hotspot issue in the biodiesel study is to increase TAG content and productivity of microalgae. Precursor RNA processing protein (Prp19), which is the core component of eukaryotic RNA splice NTC (nineteen associated complex), plays important roles in the mRNA maturation process in eukaryotic cells, has a variety of functions in cell development, and is even directly involved in the biosynthesis of oil bodies in mouse. Nevertheless, its function in Chlamydomonas reinhardtii remains unknown. Here, transcriptional level of CrPrp19 under nutrition deprivation was analyzed, and both its RNA interference and overexpressed transformants were constructed. The expression level of CrPrp19 was suppressed by nitrogen or sulfur deficiency. Cell densities of CrPrp19 RNAi lines decreased, and their neutral lipid contents increased 1.33 and 1.34 times over those of controls. The cells of CrPrp19 RNAi lines were larger and more resistant to sodium acetate than control. Considerably none of the alterations in growth or neutral lipid contents was found in the CrPrp19 overexpression transformants than wild type. Fatty acids were also significantly increased in CrPrp19 RNAi transformants. Subcellular localization and yeast two-hybrid analysis showed that CrPrp19 was a nuclear protein, which might be involved in cell cycle regulation. In conclusion, CrPrp19 protein was necessary for negatively regulating lipid enrichment and cell size, but not stimulatory for lipid storage.
Collapse
Affiliation(s)
- Qiulan Luo
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Hui Zhu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Chaogang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, China
| | - Yajun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xianghui Zou
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhangli Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, China
| |
Collapse
|
19
|
Overexpression of Peroxisome-Localized GmABCA7 Promotes Seed Germination in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23042389. [PMID: 35216505 PMCID: PMC8879324 DOI: 10.3390/ijms23042389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Peroxisome is one of the important organelles for intracellular lipid metabolism in plant cells and β-oxidation of fatty acids in peroxisomes provides the energy for oil-containing seed germination. In this study, we identified an ATP-binding cassette (ABC) transporter gene, GmABCA7 from soybean, which is highly expressed in the different developmental stages of seeds. Transient expression of GmABCA7 in tobacco epidermal cells showed that GmABCA7 was specifically localized at the peroxisomes. Overexpression of GmABCA7 in Arabidopsis does not change seed phenotypes, or the overall levels of lipid, protein and sugar stored in the seeds; however, the transgenic seeds produced more gluconeogenic pathway precursors such as succinate and malate and germinated earlier compared to the wild type seeds. These results suggest that GmABCA7 may affect the β-oxidation of fatty acids and play an important role in seed germination.
Collapse
|
20
|
Koudounas K, Guirimand G, Hoyos LFR, Carqueijeiro I, Cruz PL, Stander E, Kulagina N, Perrin J, Oudin A, Besseau S, Lanoue A, Atehortùa L, St-Pierre B, Giglioli-Guivarc'h N, Papon N, O'Connor SE, Courdavault V. Tonoplast and Peroxisome Targeting of γ-tocopherol N-methyltransferase Homologs Involved in the Synthesis of Monoterpene Indole Alkaloids. PLANT & CELL PHYSIOLOGY 2022; 63:200-216. [PMID: 35166361 DOI: 10.1093/pcp/pcab160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Many plant species from the Apocynaceae, Loganiaceae and Rubiaceae families evolved a specialized metabolism leading to the synthesis of a broad palette of monoterpene indole alkaloids (MIAs). These compounds are believed to constitute a cornerstone of the plant chemical arsenal but above all several MIAs display pharmacological properties that have been exploited for decades by humans to treat various diseases. It is established that MIAs are produced in planta due to complex biosynthetic pathways engaging a multitude of specialized enzymes but also a complex tissue and subcellular organization. In this context, N-methyltransferases (NMTs) represent an important family of enzymes indispensable for MIA biosynthesis but their characterization has always remained challenging. In particular, little is known about the subcellular localization of NMTs in MIA-producing plants. Here, we performed an extensive analysis on the subcellular localization of NMTs from four distinct medicinal plants but also experimentally validated that two putative NMTs from Catharanthus roseus exhibit NMT activity. Apart from providing unprecedented data regarding the targeting of these enzymes in planta, our results point out an additional layer of complexity to the subcellular organization of the MIA biosynthetic pathway by introducing tonoplast and peroxisome as new actors of the final steps of MIA biosynthesis.
Collapse
Affiliation(s)
- Konstantinos Koudounas
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | | | - Luisa Fernanda Rojas Hoyos
- Grupo de Biotransformación-Escuela de Microbiología, Universidad de Antioquia, Calle 70 No 52-21, A.A 1226, Medellín, Colombia
| | - Ines Carqueijeiro
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Pamela Lemos Cruz
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Emily Stander
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Natalja Kulagina
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Jennifer Perrin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Audrey Oudin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Arnaud Lanoue
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellin 50010, Colombia
| | - Benoit St-Pierre
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | | | - Nicolas Papon
- GEIHP, SFR ICAT, University of Angers, Université de Bretagne Occidentale, 4 rue de Larrey - F49933, Angers 49000, France
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
- Graduate School of Sciences, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
21
|
da Fonseca-Pereira P, Pham PA, Cavalcanti JHF, Omena-Garcia RP, Barros JAS, Rosado-Souza L, Vallarino JG, Mutwil M, Avin-Wittenberg T, Nunes-Nesi A, Fernie AR, Araújo WL. The Arabidopsis electron-transfer flavoprotein:ubiquinone oxidoreductase is required during normal seed development and germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:196-214. [PMID: 34741366 DOI: 10.1111/tpj.15566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The importance of the alternative donation of electrons to the ubiquinol pool via the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex has been demonstrated. However, the functional significance of this pathway during seed development and germination remains to be elucidated. To assess the function of this pathway, we performed a detailed metabolic and transcriptomic analysis of Arabidopsis mutants to test the molecular consequences of a dysfunctional ETF/ETFQO pathway. We demonstrate that the disruption of this pathway compromises seed germination in the absence of an external carbon source and also impacts seed size and yield. Total protein and storage protein content is reduced in dry seeds, whilst sucrose levels remain invariant. Seeds of ETFQO and related mutants were also characterized by an altered fatty acid composition. During seed development, lower levels of fatty acids and proteins accumulated in the etfqo-1 mutant as well as in mutants in the alternative electron donors isovaleryl-CoA dehydrogenase (ivdh-1) and d-2-hydroxyglutarate dehydrogenase (d2hgdh1-2). Furthermore, the content of several amino acids was increased in etfqo-1 mutants during seed development, indicating that these mutants are not using such amino acids as alternative energy source for respiration. Transcriptome analysis revealed alterations in the expression levels of several genes involved in energy and hormonal metabolism. Our findings demonstrated that the alternative pathway of respiration mediated by the ETF/ETFQO complex affects seed germination and development by directly adjusting carbon storage during seed filling. These results indicate a role for the pathway in the normal plant life cycle to complement its previously defined roles in the response to abiotic stress.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
- Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany
| | - Phuong Anh Pham
- Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany
| | - João Henrique F Cavalcanti
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá, Amazonas, Brazil
| | - Rebeca P Omena-Garcia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Laise Rosado-Souza
- Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany
| | - José G Vallarino
- Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 9190401, Israel
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
22
|
Calderan-Rodrigues MJ, Luzarowski M, Monte-Bello CC, Minen RI, Zühlke BM, Nikoloski Z, Skirycz A, Caldana C. Proteogenic Dipeptides Are Characterized by Diel Fluctuations and Target of Rapamycin Complex-Signaling Dependency in the Model Plant Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:758933. [PMID: 35003157 PMCID: PMC8727597 DOI: 10.3389/fpls.2021.758933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
As autotrophic organisms, plants capture light energy to convert carbon dioxide into ATP, nicotinamide adenine dinucleotide phosphate (NADPH), and sugars, which are essential for the biosynthesis of building blocks, storage, and growth. At night, metabolism and growth can be sustained by mobilizing carbon (C) reserves. In response to changing environmental conditions, such as light-dark cycles, the small-molecule regulation of enzymatic activities is critical for reprogramming cellular metabolism. We have recently demonstrated that proteogenic dipeptides, protein degradation products, act as metabolic switches at the interface of proteostasis and central metabolism in both plants and yeast. Dipeptides accumulate in response to the environmental changes and act via direct binding and regulation of critical enzymatic activities, enabling C flux distribution. Here, we provide evidence pointing to the involvement of dipeptides in the metabolic rewiring characteristics for the day-night cycle in plants. Specifically, we measured the abundance of 13 amino acids and 179 dipeptides over short- (SD) and long-day (LD) diel cycles, each with different light intensities. Of the measured dipeptides, 38 and eight were characterized by day-night oscillation in SD and LD, respectively, reaching maximum accumulation at the end of the day and then gradually falling in the night. Not only the number of dipeptides, but also the amplitude of the oscillation was higher in SD compared with LD conditions. Notably, rhythmic dipeptides were enriched in the glucogenic amino acids that can be converted into glucose. Considering the known role of Target of Rapamycin (TOR) signaling in regulating both autophagy and metabolism, we subsequently investigated whether diurnal fluctuations of dipeptides levels are dependent on the TOR Complex (TORC). The Raptor1b mutant (raptor1b), known for the substantial reduction of TOR kinase activity, was characterized by the augmented accumulation of dipeptides, which is especially pronounced under LD conditions. We were particularly intrigued by the group of 16 dipeptides, which, based on their oscillation under SD conditions and accumulation in raptor1b, can be associated with limited C availability or photoperiod. By mining existing protein-metabolite interaction data, we delineated putative protein interactors for a representative dipeptide Pro-Gln. The obtained list included enzymes of C and amino acid metabolism, which are also linked to the TORC-mediated metabolic network. Based on the obtained results, we speculate that the diurnal accumulation of dipeptides contributes to its metabolic adaptation in response to changes in C availability. We hypothesize that dipeptides would act as alternative respiratory substrates and by directly modulating the activity of the focal enzymes.
Collapse
Affiliation(s)
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | | | - Boris M. Zühlke
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Boyce Thompson Institute, Ithaca, NY, United States
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
23
|
Lee CP, Elsässer M, Fuchs P, Fenske R, Schwarzländer M, Millar AH. The versatility of plant organic acid metabolism in leaves is underpinned by mitochondrial malate-citrate exchange. THE PLANT CELL 2021; 33:3700-3720. [PMID: 34498076 PMCID: PMC8643697 DOI: 10.1093/plcell/koab223] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 05/07/2023]
Abstract
Malate and citrate underpin the characteristic flexibility of central plant metabolism by linking mitochondrial respiratory metabolism with cytosolic biosynthetic pathways. However, the identity of mitochondrial carrier proteins that influence both processes has remained elusive. Here we show by a systems approach that DICARBOXYLATE CARRIER 2 (DIC2) facilitates mitochondrial malate-citrate exchange in vivo in Arabidopsis thaliana. DIC2 knockout (dic2-1) retards growth of vegetative tissues. In vitro and in organello analyses demonstrate that DIC2 preferentially imports malate against citrate export, which is consistent with altered malate and citrate utilization in response to prolonged darkness of dic2-1 plants or a sudden shift to darkness of dic2-1 leaves. Furthermore, isotopic glucose tracing reveals a reduced flux towards citrate in dic2-1, which results in a metabolic diversion towards amino acid synthesis. These observations reveal the physiological function of DIC2 in mediating the flow of malate and citrate between the mitochondrial matrix and other cell compartments.
Collapse
Affiliation(s)
- Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Marlene Elsässer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Philippe Fuchs
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| |
Collapse
|
24
|
Huang T, Suen D. Iron insufficiency in floral buds impairs pollen development by disrupting tapetum function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:244-267. [PMID: 34310779 PMCID: PMC9292431 DOI: 10.1111/tpj.15438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Reduction of crop yield due to iron (Fe) deficiency has always been a concern in agriculture. How Fe insufficiency in floral buds affects pollen development remains unexplored. Here, plants transferred to Fe-deficient medium at the reproductive stage had reduced floral Fe content and viable pollen and showed a defective pollen outer wall, all restored by supplying floral buds with Fe. A comparison of differentially expressed genes (DEGs) in Fe-deficient leaves, roots, and anthers suggested that changes in several cellular processes were unique to anthers, including increased lipid degradation. Co-expression analysis revealed that ABORTED MICROSPORES (AMS), DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION1, and BASIC HELIX-LOOP-HELIX 089/091/010 encode key upstream transcription factors of Fe deficiency-responsive DEGs involved in tapetum function and development, including tapetal ROS homeostasis, programmed cell death, and pollen outer wall formation-related lipid metabolism. Analysis of RESPIRATORY-BURST OXIDASE HOMOLOG E (RBOHE) gain- and loss-of-function under Fe deficiency indicated that RBOHE- and Fe-dependent regulation cooperatively control anther reactive oxygen species levels and pollen development. Since DEGs in Fe-deficient anthers were not significantly enriched in genes related to mitochondrial function, the changes in mitochondrial status under Fe deficiency, including respiration activity, density, and morphology, were probably because the Fe amount was insufficient to maintain proper mitochondrial protein function in anthers. To sum up, Fe deficiency in anthers may affect Fe-dependent protein function and impact upstream transcription factors and their downstream genes, resulting in extensively impaired tapetum function and pollen development.
Collapse
Affiliation(s)
- Tzu‐Hsiang Huang
- Agricultural Biotechnology Research CenterAcademia SinicaTaipei11529Taiwan
- Molecular and Biological Agricultural Sciences ProgramTaiwan International Graduate ProgramAcademia Sinica and National Chung‐Hsing UniversityTaipei11529Taiwan
- Graduate Institute of BiotechnologyNational Chung‐Hsing UniversityTaichung40227Taiwan
| | - Der‐Fen Suen
- Agricultural Biotechnology Research CenterAcademia SinicaTaipei11529Taiwan
- Molecular and Biological Agricultural Sciences ProgramTaiwan International Graduate ProgramAcademia Sinica and National Chung‐Hsing UniversityTaipei11529Taiwan
- Biotechnology CenterNational Chung‐Hsing UniversityTaichung40227Taiwan
| |
Collapse
|
25
|
Zhao H, Chen G, Sang L, Deng Y, Gao L, Yu Y, Liu J. Mitochondrial citrate synthase plays important roles in anthocyanin synthesis in petunia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110835. [PMID: 33691969 DOI: 10.1016/j.plantsci.2021.110835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Anthocyanins are important flavonoid pigments in plants. Malonyl CoA is an important intermediate in anthocyanin synthesis, and citrate, formed by citrate synthase (CS) catalysing oxaloacetate, is the precursor for the formation of malonyl-CoA. CS is composed of two isoforms, mitochondrial citrate synthase (mCS), a key enzyme of the tricarboxylic acid (TCA) cycle, and citrate synthase (CSY) localizated in microbodies in plants. However, no CS isoform involvement in anthocyanin synthesis has been reported. In this study, we identified the entire CS family in petunia (Petunia hybrida): PhmCS, PhCSY1 and PhCSY2. We obtained petunia plants silenced for the three genes. PhmCS silencing resulted in abnormal development of leaves and flowers. The contents of citrate and anthocyanins were significantly reduced in flowers in PhmCS-silenced plants. However, silencing of PhCSY1 and/or PhCSY2 did not cause a visible phenotype change in petunia. These results showed that PhmCS is involved in anthocyanin synthesis and the development of leaves and flowers, and that the citrate involved in anthocyanin synthesis mainly derived from mitochondria rather than microbodies in petunia.
Collapse
Affiliation(s)
- Huina Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| | - Guoju Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Lina Sang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Ying Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Lili Gao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Yixun Yu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
26
|
Biochemical and functional characterization of a mitochondrial citrate carrier in Arabidopsis thaliana. Biochem J 2020; 477:1759-1777. [PMID: 32329787 DOI: 10.1042/bcj20190785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
A homolog of the mitochondrial succinate/fumarate carrier from yeast (Sfc1p) has been found in the Arabidopsis genome, named AtSFC1. The AtSFC1 gene was expressed in Escherichia coli, and the gene product was purified and reconstituted in liposomes. Its transport properties and kinetic parameters demonstrated that AtSFC1 transports citrate, isocitrate and aconitate and, to a lesser extent, succinate and fumarate. This carrier catalyzes a fast counter-exchange transport as well as a low uniport of substrates, exhibits a higher transport affinity for tricarboxylates than dicarboxylates, and is inhibited by pyridoxal 5'-phosphate and other inhibitors of mitochondrial carriers to various degrees. Gene expression analysis indicated that the AtSFC1 transcript is mainly present in heterotrophic tissues, and fusion with a green-fluorescent protein localized AtSFC1 to the mitochondria. Furthermore, 35S-AtSFC1 antisense lines were generated and characterized at metabolic and physiological levels in different organs and at various developmental stages. Lower expression of AtSFC1 reduced seed germination and impaired radicle growth, a phenotype that was related to reduced respiration rate. These findings demonstrate that AtSFC1 might be involved in storage oil mobilization at the early stages of seedling growth and in nitrogen assimilation in root tissue by catalyzing citrate/isocitrate or citrate/succinate exchanges.
Collapse
|
27
|
Yu X, Tang W, Yang Y, Zhang J, Lu Y. Comparative Transcriptome Analysis Revealing the Different Germination Process in Aryloxyphenoxypropionate-Resistant and APP-Susceptible Asia Minor Bluegrass ( Polypogon fugax). PLANTS 2020; 9:plants9091191. [PMID: 32932586 PMCID: PMC7569813 DOI: 10.3390/plants9091191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 11/25/2022]
Abstract
Herbicide-resistant mutations are predicted to exhibit fitness cost under herbicide-free conditions. Asia minor bluegrass (Polypogon fugax) is a common weed species in the winter crops. Our previous study established a P. fugax accession (LR) resistant to aryloxyphenoxypropionate (APP) herbicides, which also exhibited germination delay relative to the susceptible accession (LS). A comparative transcriptome was conducted to analyze the gene expression profile of LS and LR at two germination time points. A total of 11,856 and 23,123 differentially expressed genes (DEGs) were respectively identified in LS and LR. Most DEGs were involved in lipid metabolism, carbohydrate metabolism, amino acid metabolism, and secondary metabolites biosynthesis. Twenty-four genes involved in carbohydrate and fatty acid metabolism had higher relative expression levels in LS than LR during germination. Nine genes involved in gibberellin (GA) and abscisic acid (ABA) signal transduction showed different expression patterns in LS and LR, consistent with their different sensitivity to exogenous hormones treatments. This study first provided insight into transcriptional changes and interaction in the seed germination process of P. fugax. It compared the differential expression profile between APP herbicides resistance and susceptible accessions during germination, which contributed to understanding the association between herbicide resistance and fitness cost.
Collapse
|
28
|
Kim H, Kim OW, Ahn JH, Kim BM, Oh J, Kim HJ. Metabolomic Analysis of Germinated Brown Rice at Different Germination Stages. Foods 2020; 9:E1130. [PMID: 32824423 PMCID: PMC7491196 DOI: 10.3390/foods9081130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Brown rice (BR) is unpolished rice containing many bioactive compounds in addition to the basic nutrients of the rice grain. Herein, BR was germinated for up to 48 h to prepare germinated brown rice (GBR). The physiological and chemical changes in the GBR during germination were analyzed. GBR samples germinated for 48 h were in the radicle-emergence stage, but root formation was not observed. The change in the GBR metabolite profile during germination was analyzed to determine the effect of germination on the chemical profiles of the GBR samples. Twenty-five metabolites including acidic compounds, amino acids, sugars, lipid metabolites, and secondary metabolites were identified as the components that contributed to the variations in the GBR groups germinated for different time periods. Among the metabolites, the carbohydrates associated with energy production and lipid metabolites changed significantly. Based on the identified metabolites, a metabolomic pathway was proposed. Carbohydrate metabolism, citric acid cycle, and lipid metabolism were the main processes that were affected during germination. Although further studies on the relationship between the metabolite profile and nutritional quality of the GBR are needed, these results are useful for understanding the effect of germination on the physiological and chemical changes in BR.
Collapse
Affiliation(s)
- Hoon Kim
- Korea Food Research Institute, Research Group of Consumer Safety, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea; (H.K.); (O.-W.K.); (J.-H.A.)
| | - Oui-Woung Kim
- Korea Food Research Institute, Research Group of Consumer Safety, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea; (H.K.); (O.-W.K.); (J.-H.A.)
| | - Jae-Hwan Ahn
- Korea Food Research Institute, Research Group of Consumer Safety, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea; (H.K.); (O.-W.K.); (J.-H.A.)
| | - Bo-Min Kim
- EZmass.Co. Ltd., 501 Jinjudaero, Jinju, Gyeongsangnam-do 52828, Korea; (B.-M.K.); (J.O.)
| | - Juhong Oh
- EZmass.Co. Ltd., 501 Jinjudaero, Jinju, Gyeongsangnam-do 52828, Korea; (B.-M.K.); (J.O.)
| | - Hyun-Jin Kim
- EZmass.Co. Ltd., 501 Jinjudaero, Jinju, Gyeongsangnam-do 52828, Korea; (B.-M.K.); (J.O.)
- Division of Applied Life Sciences (BK21 plus), Department of Food Science and Technology, and Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongsangnam-do 52828, Korea
| |
Collapse
|
29
|
Suppression of chorismate synthase, which is localized in chloroplasts and peroxisomes, results in abnormal flower development and anthocyanin reduction in petunia. Sci Rep 2020; 10:10846. [PMID: 32616740 PMCID: PMC7331636 DOI: 10.1038/s41598-020-67671-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
In plants, the shikimate pathway generally occurs in plastids and leads to the biosynthesis of aromatic amino acids. Chorismate synthase (CS) catalyses the last step of the conversion of 5-enolpyruvylshikimate 3-phosphate (EPSP) to chorismate, but the role of CS in the metabolism of higher plants has not been reported. In this study, we found that PhCS, which is encoded by a single-copy gene in petunia (Petunia hybrida), contains N-terminal plastidic transit peptides and peroxisomal targeting signals. Green fluorescent protein (GFP) fusion protein assays revealed that PhCS was localized in chloroplasts and, unexpectedly, in peroxisomes. Petunia plants with reduced PhCS activity were generated through virus-induced gene silencing and further characterized. PhCS silencing resulted in reduced CS activity, severe growth retardation, abnormal flower and leaf development and reduced levels of folate and pigments, including chlorophylls, carotenoids and anthocyanins. A widely targeted metabolomics analysis showed that most primary and secondary metabolites were significantly changed in pTRV2-PhCS-treated corollas. Overall, the results revealed a clear connection between primary and specialized metabolism related to the shikimate pathway in petunia.
Collapse
|
30
|
Hernández ML, Lima-Cabello E, Alché JDD, Martínez-Rivas JM, Castro AJ. Lipid Composition and Associated Gene Expression Patterns during Pollen Germination and Pollen Tube Growth in Olive (Olea europaea L.). PLANT & CELL PHYSIOLOGY 2020; 61:1348-1364. [PMID: 32384163 PMCID: PMC7377348 DOI: 10.1093/pcp/pcaa063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 05/23/2023]
Abstract
Pollen lipids are essential for sexual reproduction, but our current knowledge regarding lipid dynamics in growing pollen tubes is still very scarce. Here, we report unique lipid composition and associated gene expression patterns during olive pollen germination. Up to 376 genes involved in the biosynthesis of all lipid classes, except suberin, cutin and lipopolysaccharides, are expressed in olive pollen. The fatty acid profile of olive pollen is markedly different compared with other plant organs. Triacylglycerol (TAG), containing mostly C12-C16 saturated fatty acids, constitutes the bulk of olive pollen lipids. These compounds are partially mobilized, and the released fatty acids enter the β-oxidation pathway to yield acetyl-CoA, which is converted into sugars through the glyoxylate cycle during the course of pollen germination. Our data suggest that fatty acids are synthesized de novo and incorporated into glycerolipids by the 'eukaryotic pathway' in elongating pollen tubes. Phosphatidic acid is synthesized de novo in the endomembrane system during pollen germination and seems to have a central role in pollen tube lipid metabolism. The coordinated action of fatty acid desaturases FAD2-3 and FAD3B might explain the increase in linoleic and alpha-linolenic acids observed in germinating pollen. Continuous synthesis of TAG by the action of diacylglycerol acyltransferase 1 (DGAT1) enzyme, but not phosphoplipid:diacylglycerol acyltransferase (PDAT), also seems plausible. All these data allow for a better understanding of lipid metabolism during the olive reproductive process, which can impact, in the future, on the increase in olive fruit yield and, therefore, olive oil production.
Collapse
Affiliation(s)
- M Luisa Hernández
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Seville 41013, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Avda. Reina Mercedes s/n, Sevilla 41012, Spain
| | - Elena Lima-Cabello
- Plant Reproductive Biology and Advanced Imaging Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada 18008, Spain
| | - Juan de D Alché
- Plant Reproductive Biology and Advanced Imaging Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada 18008, Spain
| | - José M Martínez-Rivas
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), Seville 41013, Spain
| | - Antonio J Castro
- Plant Reproductive Biology and Advanced Imaging Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Granada 18008, Spain
| |
Collapse
|
31
|
Merendino L, Courtois F, Grübler B, Bastien O, Straetmanns V, Chevalier F, Lerbs-Mache S, Lurin C, Pfannschmidt T. Retrograde signals from mitochondria reprogramme skoto-morphogenesis in Arabidopsis thaliana via alternative oxidase 1a. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190567. [PMID: 32362252 DOI: 10.1098/rstb.2019.0567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The early steps in germination and development of angiosperm seedlings often occur in the dark, inducing a special developmental programme called skoto-morphogenesis. Under these conditions photosynthesis cannot work and all energetic requirements must be fulfilled by mitochondrial metabolization of storage energies. Here, we report the physiological impact of mitochondrial dysfunctions on the skoto-morphogenic programme by using the Arabidopsis rpoTmp mutant. This mutant is defective in the T7-phage-type organellar RNA polymerase shared by plastids and mitochondria. Lack of this enzyme causes a mitochondrial dysfunction resulting in a strongly reduced mitochondrial respiratory chain and a compensatory upregulation of the alternative-oxidase (AOX)-dependent respiration. Surprisingly, the mutant exhibits a triple-response-like phenotype with a twisted apical hook and a shortened hypocotyl. Highly similar phenotypes were detected in other respiration mutants (rug3 and atphb3) and in WT seedlings treated with the respiration inhibitor KCN. Further genetic and molecular data suggest that the observed skoto-morphogenic alterations are specifically dependent on the activity of the AOX1a enzyme. Microarray analyses indicated that a retrograde signal from mitochondria activates the ANAC017-dependent pathway which controls the activation of AOX1A transcription. In sum, our analysis identifies AOX as a functional link that couples the formation of a triple-response-like phenotype to mitochondrial dysfunction. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Livia Merendino
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France.,Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université, d'Evry, 91405 Orsay, France.,Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Florence Courtois
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Björn Grübler
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Olivier Bastien
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Vera Straetmanns
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Fabien Chevalier
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Silva Lerbs-Mache
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Claire Lurin
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université, d'Evry, 91405 Orsay, France.,Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Thomas Pfannschmidt
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France
| |
Collapse
|
32
|
Igamberdiev AU. Citrate valve integrates mitochondria into photosynthetic metabolism. Mitochondrion 2020; 52:218-230. [PMID: 32278088 DOI: 10.1016/j.mito.2020.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/21/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
While in heterotrophic cells and in darkness mitochondria serve as main producers of energy, during photosynthesis this function is transferred to chloroplasts and the main role of mitochondria in bioenergetics turns to be the balance of the level of phosphorylation of adenylates and of reduction of pyridine nucleotides to avoid over-energization of the cell and optimize major metabolic fluxes. This is achieved via the establishment and regulation of local equilibria of the tricarboxylic acid (TCA) cycle enzymes malate dehydrogenase and fumarase in one branch and aconitase and isocitrate dehydrogenase in another branch. In the conditions of elevation of redox level, the TCA cycle is transformed into a non-cyclic open structure (hemicycle) leading to the export of the tricarboxylic acid (citrate) to the cytosol and to the accumulation of the dicarboxylic acids (malate and fumarate). While the buildup of NADPH in chloroplasts provides operation of the malate valve leading to establishment of NADH/NAD+ ratios in different cell compartments, the production of NADH by mitochondria drives citrate export by establishing conditions for the operation of the citrate valve. The latter regulates the intercompartmental NADPH/NADP+ ratio and contributes to the biosynthesis of amino acids and other metabolic products during photosynthesis.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
33
|
Fu X, Yang H, Pangestu F, Nikolau BJ. Failure to Maintain Acetate Homeostasis by Acetate-Activating Enzymes Impacts Plant Development. PLANT PHYSIOLOGY 2020; 182:1256-1271. [PMID: 31874860 PMCID: PMC7054878 DOI: 10.1104/pp.19.01162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 05/09/2023]
Abstract
The metabolic intermediate acetyl-CoA links anabolic and catabolic processes and coordinates metabolism with cellular signaling by influencing protein acetylation. In this study we demonstrate that in Arabidopsis (Arabidopsis thaliana), two distinctly localized acetate-activating enzymes, ACETYL-COA SYNTHETASE (ACS) in plastids and ACETATE NON-UTILIZING1 (ACN1) in peroxisomes, function redundantly to prevent the accumulation of excess acetate. In contrast to the near wild-type morphological and metabolic phenotypes of acs or acn1 mutants, the acs acn1 double mutant is delayed in growth and sterile, which is associated with hyperaccumulation of cellular acetate and decreased accumulation of acetyl-CoA-derived intermediates of central metabolism. Using multiple mutant stocks and stable isotope-assisted metabolic analyses, we demonstrate the twin metabolic origins of acetate from the oxidation of ethanol and the nonoxidative decarboxylation of pyruvate, with acetaldehyde being the common intermediate precursor of acetate. Conversion from pyruvate to acetate is activated under hypoxic conditions, and ACS recovers carbon that would otherwise be lost from the plant as ethanol. Plastid-localized ACS metabolizes cellular acetate and contributes to the de novo biosynthesis of fatty acids and Leu; peroxisome-localized ACN1 enables the incorporation of acetate into organic acids and amino acids. Thus, the activation of acetate in distinct subcellular compartments provides plants with the metabolic flexibility to maintain physiological levels of acetate and a metabolic mechanism for the recovery of carbon that would otherwise be lost as ethanol, for example following hypoxia.
Collapse
Affiliation(s)
- Xinyu Fu
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
- Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, Iowa 50011
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011
| | - Hannah Yang
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Febriana Pangestu
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Basil J Nikolau
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
- Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, Iowa 50011
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
34
|
Perez de Souza L, Garbowicz K, Brotman Y, Tohge T, Fernie AR. The Acetate Pathway Supports Flavonoid and Lipid Biosynthesis in Arabidopsis. PLANT PHYSIOLOGY 2020; 182:857-869. [PMID: 31719153 PMCID: PMC6997690 DOI: 10.1104/pp.19.00683] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/31/2019] [Indexed: 05/21/2023]
Abstract
The phenylpropanoid pathway of flavonoid biosynthesis has been the subject of considerable research attention. By contrast, the proposed polyketide pathway, also known as the acetate pathway, which provides malonyl-CoA moieties for the C2 elongation reaction catalyzed by chalcone synthase, is less well studied. Here, we identified four genes as candidates for involvement in the supply of cytosolic malonyl-CoA from the catabolism of acyl-CoA, based on coexpression analysis with other flavonoid-related genes. Two of these genes, ACC and KAT5, have been previously characterized with respect to their involvement in lipid metabolism, but no information concerning their relationship to flavonoid biosynthesis is available. To assess the occurrence and importance of the acetate pathway, we characterized the metabolomes of two mutant or transgenic Arabidopsis lines for each of the four enzymes of this putative pathway using a hierarchical approach covering primary and secondary metabolites as well as lipids. Intriguingly, not only flavonoid content but also glucosinolate content was altered in lines deficient in the acetate pathway, as were levels of lipids and most primary metabolites. We discuss these data in the context of our current understanding of flavonoids and lipid metabolism as well as with regard to improving human nutrition.
Collapse
Affiliation(s)
- Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Karolina Garbowicz
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653 Beersheba, Israel
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, 14476 Potsdam-Golm, Germany
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
35
|
Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination. Proc Natl Acad Sci U S A 2019; 117:741-751. [PMID: 31871212 DOI: 10.1073/pnas.1910501117] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Seeds preserve a far developed plant embryo in a quiescent state. Seed metabolism relies on stored resources and is reactivated to drive germination when the external conditions are favorable. Since the switchover from quiescence to reactivation provides a remarkable case of a cell physiological transition we investigated the earliest events in energy and redox metabolism of Arabidopsis seeds at imbibition. By developing fluorescent protein biosensing in intact seeds, we observed ATP accumulation and oxygen uptake within minutes, indicating rapid activation of mitochondrial respiration, which coincided with a sharp transition from an oxidizing to a more reducing thiol redox environment in the mitochondrial matrix. To identify individual operational protein thiol switches, we captured the fast release of metabolic quiescence in organello and devised quantitative iodoacetyl tandem mass tag (iodoTMT)-based thiol redox proteomics. The redox state across all Cys peptides was shifted toward reduction from 27.1% down to 13.0% oxidized thiol. A large number of Cys peptides (412) were redox switched, representing central pathways of mitochondrial energy metabolism, including the respiratory chain and each enzymatic step of the tricarboxylic acid (TCA) cycle. Active site Cys peptides of glutathione reductase 2, NADPH-thioredoxin reductase a/b, and thioredoxin-o1 showed the strongest responses. Germination of seeds lacking those redox proteins was associated with markedly enhanced respiration and deregulated TCA cycle dynamics suggesting decreased resource efficiency of energy metabolism. Germination in aged seeds was strongly impaired. We identify a global operation of thiol redox switches that is required for optimal usage of energy stores by the mitochondria to drive efficient germination.
Collapse
|
36
|
Boter M, Calleja-Cabrera J, Carrera-Castaño G, Wagner G, Hatzig SV, Snowdon RJ, Legoahec L, Bianchetti G, Bouchereau A, Nesi N, Pernas M, Oñate-Sánchez L. An Integrative Approach to Analyze Seed Germination in Brassica napus. FRONTIERS IN PLANT SCIENCE 2019; 10:1342. [PMID: 31708951 PMCID: PMC6824160 DOI: 10.3389/fpls.2019.01342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/26/2019] [Indexed: 05/23/2023]
Abstract
Seed germination is a complex trait determined by the interaction of hormonal, metabolic, genetic, and environmental components. Variability of this trait in crops has a big impact on seedling establishment and yield in the field. Classical studies of this trait in crops have focused mainly on the analyses of one level of regulation in the cascade of events leading to seed germination. We have carried out an integrative and extensive approach to deepen our understanding of seed germination in Brassica napus by generating transcriptomic, metabolic, and hormonal data at different stages upon seed imbibition. Deep phenotyping of different seed germination-associated traits in six winter-type B. napus accessions has revealed that seed germination kinetics, in particular seed germination speed, are major contributors to the variability of this trait. Metabolic profiling of these accessions has allowed us to describe a common pattern of metabolic change and to identify the levels of malate and aspartate metabolites as putative metabolic markers to estimate germination performance. Additionally, analysis of seed content of different hormones suggests that hormonal balance between ABA, GA, and IAA at crucial time points during this process might underlie seed germination differences in these accessions. In this study, we have also defined the major transcriptome changes accompanying the germination process in B. napus. Furthermore, we have observed that earlier activation of key germination regulatory genes seems to generate the differences in germination speed observed between accessions in B. napus. Finally, we have found that protein-protein interactions between some of these key regulator are conserved in B. napus, suggesting a shared regulatory network with other plant species. Altogether, our results provide a comprehensive and detailed picture of seed germination dynamics in oilseed rape. This new framework will be extremely valuable not only to evaluate germination performance of B. napus accessions but also to identify key targets for crop improvement in this important process.
Collapse
Affiliation(s)
- Marta Boter
- Centro de Biotecnología y Genómica de Plantas, (Universidad Politécnica de Madrid –Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, Spain
| | - Julián Calleja-Cabrera
- Centro de Biotecnología y Genómica de Plantas, (Universidad Politécnica de Madrid –Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, Spain
| | - Gerardo Carrera-Castaño
- Centro de Biotecnología y Genómica de Plantas, (Universidad Politécnica de Madrid –Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, Spain
| | - Geoffrey Wagner
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Sarah Vanessa Hatzig
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Laurie Legoahec
- Joint Laboratory for Genetics, Institute for Genetics, Environment and Plant Protection (IGEPP), Le Rheu, France
| | - Grégoire Bianchetti
- Joint Laboratory for Genetics, Institute for Genetics, Environment and Plant Protection (IGEPP), Le Rheu, France
| | - Alain Bouchereau
- Joint Laboratory for Genetics, Institute for Genetics, Environment and Plant Protection (IGEPP), Le Rheu, France
| | - Nathalie Nesi
- Joint Laboratory for Genetics, Institute for Genetics, Environment and Plant Protection (IGEPP), Le Rheu, France
| | - Mónica Pernas
- Centro de Biotecnología y Genómica de Plantas, (Universidad Politécnica de Madrid –Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, Spain
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas, (Universidad Politécnica de Madrid –Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, Spain
| |
Collapse
|
37
|
Wang R, Yang L, Han X, Zhao Y, Zhao L, Xiang B, Zhu Y, Bai Y, Wang Y. Overexpression of AtAGT1 promoted root growth and development during seedling establishment. PLANT CELL REPORTS 2019; 38:1165-1180. [PMID: 31161264 DOI: 10.1007/s00299-019-02435-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Arabidopsis photorespiratory gene AtAGT1 is important for the growth and development of root, the non-photosynthetic organ, and it is involved in a complex metabolic network and salt resistance. AtAGT1 in Arabidopsis encodes an aminotransferase that has a wide range of donor:acceptor combinations, including Asn:glyoxylate. Although it is one of the photorespiratory genes, its encoding protein has been suggested to function also in roots to metabolize Asn. However, experimental data are still lacking. In this study, we investigated experimentally the function of AtAGT1 in roots and our results uncovered its importance in root development during seedling establishment after seed germination. Overexpression of AtAGT1 in roots promoted both the growth of primary root and outgrowth of lateral roots. To further elucidate the molecular mechanisms underlying, amino acid content and gene expression in roots were analyzed, and results revealed that AtAGT1 is involved in a complex metabolic network and salt resistance of roots.
Collapse
Affiliation(s)
- Rui Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaofang Han
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuhong Zhao
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ling Zhao
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Beibei Xiang
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Anshan Road 312, Tianjin, 300193, China
| | - Yerong Zhu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanling Bai
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yong Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
38
|
Moreira TB, Shaw R, Luo X, Ganguly O, Kim HS, Coelho LGF, Cheung CYM, Rhys Williams TC. A Genome-Scale Metabolic Model of Soybean ( Glycine max) Highlights Metabolic Fluxes in Seedlings. PLANT PHYSIOLOGY 2019; 180:1912-1929. [PMID: 31171578 PMCID: PMC6670085 DOI: 10.1104/pp.19.00122] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/25/2019] [Indexed: 05/12/2023]
Abstract
Until they become photoautotrophic juvenile plants, seedlings depend upon the reserves stored in seed tissues. These reserves must be mobilized and metabolized, and their breakdown products must be distributed to the different organs of the growing seedling. Here, we investigated the mobilization of soybean (Glycine max) seed reserves during seedling growth by initially constructing a genome-scale stoichiometric model for this important crop plant and then adapting the model to reflect metabolism in the cotyledons and hypocotyl/root axis (HRA). A detailed analysis of seedling growth and alterations in biomass composition was performed over 4 d of postgerminative growth and used to constrain the stoichiometric model. Flux balance analysis revealed marked differences in metabolism between the two organs, together with shifts in primary metabolism occurring during different periods postgermination. In particular, from 48 h onward, cotyledons were characterized by the oxidation of fatty acids to supply carbon for the tricarboxylic acid cycle as well as production of sucrose and glutamate for export to the HRA, while the HRA was characterized by the use of a range of imported amino acids in protein synthesis and catabolic processes. Overall, the use of flux balance modeling provided new insight into well-characterized metabolic processes in an important crop plant due to their analysis within the context of a metabolic network and reinforces the relevance of the application of this technique to the analysis of complex plant metabolic systems.
Collapse
Affiliation(s)
- Thiago Batista Moreira
- Departament of Botany, University of Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, Brazil, 70910-900
| | - Rahul Shaw
- Division of Science, Yale-National University of Singapore College, Singapore, 138527
| | - Xinyu Luo
- Division of Science, Yale-National University of Singapore College, Singapore, 138527
| | - Oishik Ganguly
- Division of Science, Yale-National University of Singapore College, Singapore, 138527
| | - Hyung-Seok Kim
- Division of Science, Yale-National University of Singapore College, Singapore, 138527
| | | | | | | |
Collapse
|
39
|
Pan R, Liu J, Hu J. Peroxisomes in plant reproduction and seed-related development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:784-802. [PMID: 30578613 DOI: 10.1111/jipb.12765] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 05/21/2023]
Abstract
Peroxisomes are small multi-functional organelles essential for plant development and growth. Plant peroxisomes play various physiological roles, including phytohormone biosynthesis, lipid catabolism, reactive oxygen species metabolism and many others. Mutant analysis demonstrated key roles for peroxisomes in plant reproduction, seed development and germination and post-germinative seedling establishment; however, the underlying mechanisms remain to be fully elucidated. This review summarizes findings that reveal the importance and complexity of the role of peroxisomes in the pertinent processes. The β-oxidation pathway plays a central role, whereas other peroxisomal pathways are also involved. Understanding the biochemical and molecular mechanisms of these peroxisomal functions will be instrumental to the improvement of crop plants.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
40
|
Lipidomic studies of membrane glycerolipids in plant leaves under heat stress. Prog Lipid Res 2019; 75:100990. [DOI: 10.1016/j.plipres.2019.100990] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/29/2022]
|
41
|
Dumont S, Rivoal J. Consequences of Oxidative Stress on Plant Glycolytic and Respiratory Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:166. [PMID: 30833954 PMCID: PMC6387960 DOI: 10.3389/fpls.2019.00166] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/31/2019] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are present at low and controlled levels under normal conditions. These reactive molecules can increase to high levels under various biotic and abiotic conditions, resulting in perturbation of the cellular redox state that can ultimately lead to oxidative or nitrosative stress. In this review, we analyze the various effects that result from alterations of redox homeostasis on plant glycolytic pathway and tricarboxylic acid (TCA) cycle. Most documented modifications caused by ROS or RNS are due to the presence of redox-sensitive cysteine thiol groups in proteins. Redox modifications include Cys oxidation, disulfide bond formation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. A growing number of proteomic surveys and biochemical studies document the occurrence of ROS- or RNS-mediated modification in enzymes of glycolysis and the TCA cycle. In a few cases, these modifications have been shown to affect enzyme activity, suggesting an operational regulatory mechanism in vivo. Further changes induced by oxidative stress conditions include the proposed redox-dependent modifications in the subcellular distribution of a putative redox sensor, NAD-glyceraldehyde-3P dehydrogenase and the micro-compartmentation of cytosolic glycolytic enzymes. Data from the literature indicate that oxidative stress may induce complex changes in metabolite pools in central carbon metabolism. This information is discussed in the context of our understanding of plant metabolic response to oxidative stress.
Collapse
|
42
|
Geilfus CM, Lan J, Carpentier S. Dawn regulates guard cell proteins in Arabidopsis thaliana that function in ATP production from fatty acid beta-oxidation. PLANT MOLECULAR BIOLOGY 2018; 98:525-543. [PMID: 30392160 DOI: 10.1007/s11103-018-0794-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
Based on the nature of the proteins that are altered in abundance, we conclude that guard cells switch their energy source from fatty acid metabolism to chloroplast activity, at the onset of dawn. During stomatal opening at dawn, evidence was recently presented for a breakdown and liquidation of stored triacylglycerols in guard cells to supply ATP for use in stomatal opening. However, proteome changes that happen in the guard cells during dawn were until now poorly understood. Bad accessibility to pure and intact guard cell samples can be considered as the primary reason behind this lack of knowledge. To overcome these technical constraints, epidermal guard cell samples with ruptured pavement cells were isolated at 1 h pre-dawn, 15 min post-dawn and 1 h post-dawn from Arabidopsis thaliana. Proteomic changes were analysed by ultra-performance-liquid-chromatography-mass-spectrometry. With 994 confidently identified proteins, we present the first analysis of the A. thaliana guard cell proteome that is not influenced by side effects of guard cell protoplasting. Data are available via ProteomeXchange with identifier PXD009918. By elucidating the identities of enzymes that change in abundance by the transition from dark to light, we corroborate the hypothesis that respiratory ATP production for stomatal opening results from fatty acid beta-oxidation. Moreover, we identified many proteins that were never reported in the context of guard cell biology. Among them are proteins that might play a role in signalling or circadian rhythm.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 1, 14195, Berlin, Germany.
- Proteomics Core Facility, SYBIOMA, KU Leuven, O&N II Herestraat 49 - bus 901, 3000, Leuven, Belgium.
| | - Jue Lan
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Sebastien Carpentier
- Proteomics Core Facility, SYBIOMA, KU Leuven, O&N II Herestraat 49 - bus 901, 3000, Leuven, Belgium
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42 - Box 2455, 3001, Leuven, Belgium
| |
Collapse
|
43
|
Yoshida T, Anjos LD, Medeiros DB, Araújo WL, Fernie AR, Daloso DM. Insights into ABA-mediated regulation of guard cell primary metabolism revealed by systems biology approaches. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:37-49. [PMID: 30447225 DOI: 10.1016/j.pbiomolbio.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023]
Abstract
Despite the fact that guard cell abscisic acid (ABA) signalling pathway is well documented, our understanding concerning how and to which extent ABA regulates guard cell metabolism remains fragmentary. Here we have adopted different systems approaches to investigate how ABA modulates guard cell central metabolism by providing genes that are possibly ABA-regulated. By using previous published Arabidopsis guard cell transcript profiling data, we carried out an extensive co-expression network analysis using ABA-related genes and those related to the metabolism and transport of sugars, starch and organic acids. Next, we investigated the presence of ABA responsive elements (ABRE) in the promoter of genes that are highly expressed in guard cells, responsive to ABA and co-expressed with ABA-related genes. Together, these analyses indicated that 44 genes are likely regulated by ABA and 8 of them are highly expressed in guard cells in both the presence and absence of ABA, including genes of the tricarboxylic acid cycle and those related to sucrose and hexose transport and metabolism. It seems likely that ABA may modulate both sucrose transport through guard cell plasma membrane and sucrose metabolism within guard cells. In this context, genes associated with sucrose synthase, sucrose phosphate synthase, trehalose-6-phosphate, invertase, UDP-glucose epimerase/pyrophosphorylase and different sugar transporters contain ABRE in their promoter and are thus possibly ABA regulated. Although validation experiments are required, our study highlights the importance of systems biology approaches to drive new hypothesis and to unravel genes and pathways that are regulated by ABA in guard cells.
Collapse
Affiliation(s)
- Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, 14476, Germany.
| | - Letícia Dos Anjos
- Departamento de Biologia Vegetal, Universidade Federal de Lavras, Lavras, Minas Gerais, 62700-000, Brazil
| | - David B Medeiros
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, 14476, Germany; Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, 14476, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60451-970, Brazil.
| |
Collapse
|
44
|
Li D, Pang L, Yuan P, Zheng P, Huai B, Yao M, Kang Z, Liu J. A novel citrate synthase isoform contributes infection and stress resistance of the stripe rust fungus. Environ Microbiol 2018; 20:4037-4050. [PMID: 30307098 DOI: 10.1111/1462-2920.14444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 11/30/2022]
Abstract
The early development of a rust fungus is dependent on the endogenous lipids stored in the urediniospores. After it establishes a parasitic relationship with the host, sugars absorbed from the host cells by haustoria become the primary nutrients. The tricarboxylic acid (TCA) cycle is essential to oxidize these nutrients. However, few studies have addressed the role of citrate synthase (CS), a rate-limiting enzyme of the TCA cycle, during the infection process of rust fungi. In this study, a CS gene from Puccinia striiformis f. sp. tritici (Pst), PsCS1, was cloned and characterized. Transcripts of PsCS1 and the enzyme activity of the CS were increased in the early Pst infection stage. Biochemical features and subcellular localization revealed that PsCS1 encoded a mitochondrial CS. Size exclusion chromatography, yeast two-hybrid and bimolecular fluorescence complementation experiments confirmed that PsCS1 could form a functional homo-octamer. The overexpression of PsCS1 enhanced the resistance of Escherichia coli to salt stress. The knockdown of PsCS1 using a host-induced gene silencing (HIGS) system blocked Pst growth in wheat. These results indicate that PsCS1 is required for nutrient metabolism in Pst and contributes to Pst infection by regulating ATP production and the supply of carbon sources.
Collapse
Affiliation(s)
| | | | - Pu Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Peijing Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Baoyu Huai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Mohan Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
45
|
Ebeed HT, Stevenson SR, Cuming AC, Baker A. Conserved and differential transcriptional responses of peroxisome associated pathways to drought, dehydration and ABA. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4971-4985. [PMID: 30032264 PMCID: PMC6137984 DOI: 10.1093/jxb/ery266] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/09/2018] [Indexed: 05/06/2023]
Abstract
Plant peroxisomes are important components of cellular antioxidant networks, dealing with ROS generated by multiple metabolic pathways. Peroxisomes respond to environmental and cellular conditions by changing their size, number, and proteomic content. To investigate the role of peroxisomes in response to drought, dehydration and ABA treatment we took an evolutionary and comparative genomics approach. Colonisation of land required evolution of dehydration tolerance in the absence of subsequent anatomical adaptations. Therefore, the model bryophyte Physcomitrella patens, the model dicot Arabidopsis thaliana and wheat (Tricitcum aestivum), a globally important cereal crop were compared. Three sets of genes namely 'PTS1 genes' (a proxy for genes encoding peroxisome targeted proteins), PEX genes (involved in peroxisome biogenesis) and genes involved in plant antioxidant networks were identified in all 3 species and their expression compared under drought (dehydration) and ABA treatment. Genes encoding enzymes of β-oxidation and gluconeogenesis, antioxidant enzymes including catalase and glutathione reductase and PEX3 and PEX11 isoforms showed conserved up-regulation, and peroxisome proliferation was induced by ABA in moss. Interestingly, expression of some of these genes differed between drought sensitive and resistant genotypes of wheat in line with measured photosynthetic and biochemical differences. These results point to an underappreciated role for peroxisomes in drought response.
Collapse
Affiliation(s)
- Heba T Ebeed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Sean R Stevenson
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Andrew C Cuming
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Alison Baker
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
46
|
Eprintsev AT, Fedorin DN, Dobychina MA, Igamberdiev AU. Regulation of expression of the mitochondrial and peroxisomal forms of citrate synthase in maize during germination and in response to light. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:157-163. [PMID: 29807587 DOI: 10.1016/j.plantsci.2018.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Expression of genes encoding the mitochondrial and peroxisomal forms of citrate synthase (EC 2.3.3.1) was studied in maize (Zea mays L.) in scutella during germination and in leaves depending on light regime. During germination, citrate synthase activity increased in scutella both in mitochondria and in fatty-acid metabolizing peroxisomes (glyoxysomes) by day 6 and then declined. This was preceded by the peak of expression of the genes encoding the mitochondrial (Csy1) and peroxisomal (Csy2) forms of citrate synthase occurring on the day 3 of germination, after which the expression of Csy1 gradually and of Csy2 sharply declined. The decrease of expression of both genes was followed by the increase of promoter methylation which was more intensive for the gene encoding the mitochondrial form. In leaves, the activity of the mitochondrial form was much higher than that of the peroxisomal form and increased in darkness, while the peroxisomal form was almost undetectable in darkness and increased in the light. The mitochondrial form was inhibited by white and red light while the peroxisomal form was induced by white, red and blue light indicating the involvement of phytochrome and cryptochrome. The mechanism of light regulation of citrate synthase involved promoter methylation leading to the inhibition of corresponding genes and exhibiting opposite patterns for Csy1 and Csy2. Citrate synthase was purified from mitochondria and glyoxysomes of maize scutellum. The mitochondrial form had higher optimum pH as compared to the glyoxysomal form and possessed higher affinity to oxaloacetate and acetyl-CoA. It is concluded that expression of citrate synthase during germination and in response to light is regulated by methylation of promoters of corresponding genes.
Collapse
Affiliation(s)
- Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394006 Voronezh, Russia
| | - Dmitry N Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394006 Voronezh, Russia
| | - Maria A Dobychina
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394006 Voronezh, Russia
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1 B 3X9, Canada.
| |
Collapse
|
47
|
Law SR, Chrobok D, Juvany M, Delhomme N, Lindén P, Brouwer B, Ahad A, Moritz T, Jansson S, Gardeström P, Keech O. Darkened Leaves Use Different Metabolic Strategies for Senescence and Survival. PLANT PHYSIOLOGY 2018; 177:132-150. [PMID: 29523713 PMCID: PMC5933110 DOI: 10.1104/pp.18.00062] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/22/2018] [Indexed: 05/03/2023]
Abstract
In plants, an individually darkened leaf initiates senescence much more rapidly than a leaf from a whole darkened plant. Combining transcriptomic and metabolomic approaches in Arabidopsis (Arabidopsis thaliana), we present an overview of the metabolic strategies that are employed in response to different darkening treatments. Under darkened plant conditions, the perception of carbon starvation drove a profound metabolic readjustment in which branched-chain amino acids and potentially monosaccharides released from cell wall loosening became important substrates for maintaining minimal ATP production. Concomitantly, the increased accumulation of amino acids with a high nitrogen-carbon ratio may provide a safety mechanism for the storage of metabolically derived cytotoxic ammonium and a pool of nitrogen for use upon returning to typical growth conditions. Conversely, in individually darkened leaf, the metabolic profiling that followed our 13C-enrichment assays revealed a temporal and differential exchange of metabolites, including sugars and amino acids, between the darkened leaf and the rest of the plant. This active transport could be the basis for a progressive metabolic shift in the substrates fueling mitochondrial activities, which are central to the catabolic reactions facilitating the retrieval of nutrients from the senescing leaf. We propose a model illustrating the specific metabolic strategies employed by leaves in response to these two darkening treatments, which support either rapid senescence or a strong capacity for survival.
Collapse
Affiliation(s)
- Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden
| | - Daria Chrobok
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden
| | - Marta Juvany
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden
| | - Nicolas Delhomme
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden
| | - Pernilla Lindén
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden
- Department of Forest Genetics and Physiology, Umeå Plant Science Centre, Swedish Agriculture University, S-90183 Umea, Sweden
| | - Bastiaan Brouwer
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden
| | - Abdul Ahad
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden
| | - Thomas Moritz
- Department of Forest Genetics and Physiology, Umeå Plant Science Centre, Swedish Agriculture University, S-90183 Umea, Sweden
| | - Stefan Jansson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden
| | - Per Gardeström
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden
| |
Collapse
|
48
|
Liu WC, Han TT, Yuan HM, Yu ZD, Zhang LY, Zhang BL, Zhai S, Zheng SQ, Lu YT. CATALASE2 functions for seedling postgerminative growth by scavenging H 2 O 2 and stimulating ACX2/3 activity in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:2720-2728. [PMID: 28722222 DOI: 10.1111/pce.13031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 05/24/2023]
Abstract
Increased fatty acid β-oxidation is essential for early postgerminative growth in seedlings, but high levels of H2 O2 produced by β-oxidation can induce oxidative stress. Whether and how catalase (CAT) functions in fine-tuning H2 O2 homeostasis during seedling growth remain unclear. Here, we report that CAT2 functions in early seedling growth. Compared to the wild type, the cat2-1 mutant, with elevated H2 O2 levels, exhibited reduced root elongation on sucrose (Suc)-free medium, mimicking soils without exogenous sugar supply. Treatment with the H2 O2 scavenger potassium iodide rescued the mutant phenotype of cat2-1. In contrast to the wild type, the cat2-1 mutant was insensitive to the CAT inhibitor 3-amino-1,2,4-triazole in terms of root elongation when grown on Suc-free medium, suggesting that CAT2 modulates early seedling growth by altering H2 O2 accumulation. Furthermore, like cat2-1, the acyl-CoA oxidase (ACX) double mutant acx2-1 acx3-6 showed repressed root elongation, suggesting that CAT2 functions in early seedling growth by regulating ACX activity, as this activity was inhibited in cat2-1. Indeed, decreased ACX activity and short root of cat2-1 seedlings grown on Suc-free medium were rescued by overexpressing ACX3. Together, these findings suggest that CAT2 functions in early seedling growth by scavenging H2 O2 and stimulating ACX2/3 activity.
Collapse
Affiliation(s)
- Wen-Cheng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Tong-Tong Han
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong-Mei Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, 570228, China
| | - Zhen-Dong Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lin-Yu Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bing-Lei Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuang Zhai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Si-Qiu Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
49
|
Salvato F, Wilson R, Portilla Llerena JP, Kiyota E, Lima Reis K, Boaretto LF, Balbuena TS, Azevedo RA, Thelen JJ, Mazzafera P. Luxurious Nitrogen Fertilization of Two Sugar Cane Genotypes Contrasting for Lignin Composition Causes Changes in the Stem Proteome Related to Carbon, Nitrogen, and Oxidant Metabolism but Does Not Alter Lignin Content. J Proteome Res 2017; 16:3688-3703. [PMID: 28836437 DOI: 10.1021/acs.jproteome.7b00397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sugar cane is an important crop for sugar and biofuel production. Its lignocellulosic biomass represents a promising option as feedstock for second-generation ethanol production. Nitrogen fertilization can affect differently tissues and its biopolymers, including the cell-wall polysaccharides and lignin. Lignin content and composition are the most important factors associated with biomass recalcitrance to convert cell-wall polysaccharides into fermentable sugars. Thus it is important to understand the metabolic relationship between nitrogen fertilization and lignin in this feedstock. In this study, a large-scale proteomics approach based on GeLC-MS/MS was employed to identify and relatively quantify proteins differently accumulated in two contrasting genotypes for lignin composition after excessive nitrogen fertilization. From the ∼1000 nonredundant proteins identified, 28 and 177 were differentially accumulated in response to nitrogen from IACSP04-065 and IACSP04-627 lines, respectively. These proteins were associated with several functional categories, including carbon metabolism, amino acid metabolism, protein turnover, and oxidative stress. Although nitrogen fertilization has not changed lignin content, phenolic acids and lignin composition were changed in both species but not in the same way. Sucrose and reducing sugars increased in plants of the genotype IACSP04-065 receiving nitrogen.
Collapse
Affiliation(s)
- Fernanda Salvato
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil.,Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Rashaun Wilson
- Department of Biochemistry, University of Missouri Columbia, Missouri 65201, United States
| | - Juan Pablo Portilla Llerena
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Eduardo Kiyota
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Karina Lima Reis
- Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Luis Felipe Boaretto
- Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Tiago S Balbuena
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho" , Jaboticabal, São Paulo 14884-900, Brazil
| | - Ricardo A Azevedo
- Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri Columbia, Missouri 65201, United States
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil.,Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| |
Collapse
|
50
|
Identifying novel fruit-related genes in Arabidopsis thaliana based on the random walk with restart algorithm. PLoS One 2017; 12:e0177017. [PMID: 28472169 PMCID: PMC5417634 DOI: 10.1371/journal.pone.0177017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Fruit is essential for plant reproduction and is responsible for protection and dispersal of seeds. The development and maturation of fruit is tightly regulated by numerous genetic factors that respond to environmental and internal stimulation. In this study, we attempted to identify novel fruit-related genes in a model organism, Arabidopsis thaliana, using a computational method. Based on validated fruit-related genes, the random walk with restart (RWR) algorithm was applied on a protein-protein interaction (PPI) network using these genes as seeds. The identified genes with high probabilities were filtered by the permutation test and linkage tests. In the permutation test, the genes that were selected due to the structure of the PPI network were discarded. In the linkage tests, the importance of each candidate gene was measured from two aspects: (1) its functional associations with validated genes and (2) its similarity with validated genes on gene ontology (GO) terms and KEGG pathways. Finally, 255 inferred genes were obtained, subsequent extensive analysis of important genes revealed that they mainly contribute to ubiquitination (UBQ9, UBQ8, UBQ11, UBQ10), serine hydroxymethyl transfer (SHM7, SHM5, SHM6) or glycol-metabolism (HXKL2_ARATH, CSY5, GAPCP1), suggesting essential roles during the development and maturation of fruit in Arabidopsis thaliana.
Collapse
|