1
|
Duan H, Li J, Xue Z, Yang L, Sun Y, Ju X, Zhang J, Xu G, Xiong X, Sun L, Xu S, Xie H, Ding D, Zhang X, Zhang X, Tang J. Genetic dissection of internode length confers improvement for ideal plant architecture in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17245. [PMID: 39935173 DOI: 10.1111/tpj.17245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025]
Abstract
The optimal plant architecture, characterized by short stature, helps mitigate lodging, enables high-density planting, and facilitates mechanized harvesting. Internode length (IL), a crucial component of plant height in maize, plays a significant role in these processes. However, the genetic mechanisms underlying internode elongation remain poorly understood. In this study, we conducted a genome-wide association study to dissect the genetic architecture of IL in maize. The lengths of five internodes above and below the ear (referred as IL-related traits) were collected across multiple environments, revealing substantial variation. A total of 108 quantitative trait loci (QTL) were associated with 11 IL-related traits, with 17 QTL co-detected by different traits. Notably, three QTL have been selected in maize breeding progress. Three hundred and three genes associated with IL were found to operate through plant hormone signal transduction, receptor activity, and carbon metabolism pathways, influencing internode elongation. ZmIL1, which encodes alcohol dehydrogenase, exhibited a high expression level in internodes during the vegetative stage and has been selected in Chinese modern maize breeding. Additionally, ZmIL2 and ZmIL3 emerged as other crucial regulators of IL. Importantly, ZmIL1 has potential applications in maize varieties in the Huang-Huai-Hai region. This study represents the first comprehensive report on the genetic architecture of nearly all ILs in maize, providing profound insights into internode elongation mechanisms and genetic resources. These findings hold significant implications for dwarf breeding programs aimed at optimizing plant architecture for enhancing agronomic performance.
Collapse
Affiliation(s)
- Haiyang Duan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jianxin Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhengjie Xue
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Lu Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yan Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaolong Ju
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jihong Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Guoqiang Xu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xuehang Xiong
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Sun
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shuhao Xu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Huiling Xie
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| |
Collapse
|
2
|
Ye W, Di Caprio L, Bruno P, Jaccard C, Bustos-Segura C, Arce CCM, Benrey B. Cultivar-Specific Defense Responses in Wild and Cultivated Squash Induced by Belowground and Aboveground Herbivory. J Chem Ecol 2024; 50:738-750. [PMID: 38914799 PMCID: PMC11543723 DOI: 10.1007/s10886-024-01523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Plant domestication often alters plant traits, including chemical and physical defenses against herbivores. In squash, domestication leads to reduced levels of cucurbitacins and leaf trichomes, influencing interactions with insects. However, the impact of domestication on inducible defenses in squash remains poorly understood. Here, we investigated the chemical and physical defensive traits of wild and domesticated squash (Cucurbita argyrosperma), and compared their responses to belowground and aboveground infestation by the root-feeding larvae and the leaf-chewing adults of the banded cucumber beetle Diabrotica balteata (Coleoptera: Chrysomelidae). Wild populations contained cucurbitacins in roots and cotyledons but not in leaves, whereas domesticated varieties lacked cucurbitacins in all tissues. Belowground infestation by D. balteata larvae did not increase cucurbitacin levels in the roots but triggered the expression of cucurbitacin biosynthetic genes, irrespective of domestication status, although the response varied among different varieties. Conversely, whereas wild squash had more leaf trichomes than domesticated varieties, the induction of leaf trichomes in response to herbivory was greater in domesticated plants. Leaf herbivory varied among varieties but there was a trend of higher leaf damage on wild squash than domesticated varieties. Overall, squash plants responded to both belowground and aboveground herbivory by activating chemical defense-associated gene expression in roots and upregulating their physical defense in leaves, respectively. While domestication suppressed both chemical and physical defenses, our findings suggest that it may enhance inducible defense mechanisms by increasing trichome induction in response to herbivory.
Collapse
Affiliation(s)
- Wenfeng Ye
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Leandro Di Caprio
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Pamela Bruno
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Plant Production Systems, Route Des Eterpys 18, 1964, Agroscope, Conthey, Switzerland
| | - Charlyne Jaccard
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Carlos Bustos-Segura
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Versailles, France
| | - Carla C M Arce
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
3
|
Jabeen S, Saif R, Haq R, Hayat A, Naz S. Whole-genome sequencing and variant discovery of Citrus reticulata "Kinnow" from Pakistan. Funct Integr Genomics 2023; 23:227. [PMID: 37422603 DOI: 10.1007/s10142-023-01153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023]
Abstract
Citrus is a source of nutritional and medicinal advantages, cultivated worldwide with major groups of sweet oranges, mandarins, grapefruits, kumquats, lemons and limes. Pakistan produces all major citrus groups with mandarin (Citrus reticulata) being the prominent group that includes local commercial cultivars Feutral's Early, Dancy, Honey, and Kinnow. The present study designed to understand the genetic architecture of this unique variety of Citrus reticulata 'Kinnow.' The whole-genome resequencing and variant calling was performed to map the genomic variability that might be responsible for its particular characteristics like taste, seedlessness, juice content, thickness of peel, and shelf-life. A total of 139,436,350 raw sequence reads were generated with 20.9 Gb data in Fastq format having 98% effectiveness and 0.2% base call error rate. Overall, 3,503,033 SNPs, 176,949 MNPs, 323,287 INS, and 333,083 DEL were identified using the GATK4 variant calling pipeline against Citrus clementina. Furthermore, g:Profiler was applied for annotating the newly found variants, harbor genes/transcripts and their involved pathways. A total of 73,864 transcripts harbors 4,336,352 variants, most of the observed variants were predicted in non-coding regions and 1009 transcripts were found well annotated by different databases. Out of total aforementioned transcripts, 588 involved in biological processes, 234 in molecular functions and 167 transcripts in cellular components. In a nutshell, 18,153 high impact variants and 216 genic variants found in the current study, which may be used after its functional validation for marker-assisted breeding programs of "Kinnow" to propagate its valued traits for the improvement of contemporary citrus varieties in the region.
Collapse
Affiliation(s)
- Sadia Jabeen
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Rashid Saif
- Department of Biotechnology, Qarshi University, Lahore, Pakistan
- Decode Genomics, Punjab University Employees Housing Scheme, Lahore, Pakistan
| | - Rukhama Haq
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Akbar Hayat
- Citrus Research Institute, Sargodha, Pakistan
| | - Shagufta Naz
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan.
| |
Collapse
|
4
|
Arca M, Gouesnard B, Mary-Huard T, Le Paslier MC, Bauland C, Combes V, Madur D, Charcosset A, Nicolas SD. Genotyping of DNA pools identifies untapped landraces and genomic regions to develop next-generation varieties. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1123-1139. [PMID: 36740649 DOI: 10.1111/pbi.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/18/2023] [Indexed: 05/27/2023]
Abstract
Landraces, that is, traditional varieties, have a large diversity that is underexploited in modern breeding. A novel DNA pooling strategy was implemented to identify promising landraces and genomic regions to enlarge the genetic diversity of modern varieties. As proof of concept, DNA pools from 156 American and European maize landraces representing 2340 individuals were genotyped with an SNP array to assess their genome-wide diversity. They were compared to elite cultivars produced across the 20th century, represented by 327 inbred lines. Detection of selective footprints between landraces of different geographic origin identified genes involved in environmental adaptation (flowering times, growth) and tolerance to abiotic and biotic stress (drought, cold, salinity). Promising landraces were identified by developing two novel indicators that estimate their contribution to the genome of inbred lines: (i) a modified Roger's distance standardized by gene diversity and (ii) the assignation of lines to landraces using supervised analysis. It showed that most landraces do not have closely related lines and that only 10 landraces, including famous landraces as Reid's Yellow Dent, Lancaster Surecrop and Lacaune, cumulated half of the total contribution to inbred lines. Comparison of ancestral lines directly derived from landraces with lines from more advanced breeding cycles showed a decrease in the number of landraces with a large contribution. New inbred lines derived from landraces with limited contributions enriched more the haplotype diversity of reference inbred lines than those with a high contribution. Our approach opens an avenue for the identification of promising landraces for pre-breeding.
Collapse
Affiliation(s)
- Mariangela Arca
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Brigitte Gouesnard
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Tristan Mary-Huard
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Cyril Bauland
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Valérie Combes
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Delphine Madur
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alain Charcosset
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Stéphane D Nicolas
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Li Q, Yang T, Rui W, Wang H, Wang Y, Yang Z, Xu C, Li P. Genetic Diversification of Starch Branching Enzymes during Maize Domestication and Improvement. Genes (Basel) 2023; 14:genes14051068. [PMID: 37239428 DOI: 10.3390/genes14051068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Elucidating the genetic basis of starch pasting and gelatinization properties is crucial for enhancing the quality of maize and its utility as feed and industrial raw material. In maize, ZmSBE genes encode important starch branching enzymes in the starch biosynthesis pathway. In this study, we re-sequenced the genomic sequences of ZmSBEI, ZmSBEIIa, ZmSBEIIb, and ZmSBEIII in three lines called 335 inbred lines, 68 landrace lines, and 32 teosinte lines. Analyses of nucleotide polymorphisms and haplotype diversity revealed differences in the selection patterns of ZmSBEI, ZmSBEIIa, ZmSBEIIb, and ZmSBEIII during maize domestication and improvement. A marker-trait association analysis of inbred lines detected 22 significant loci, including 18 SNPs and 4 indels significantly associated with three maize starch physicochemical properties. The allele frequencies of two variants (SNP17249C and SNP5055G) were examined in three lines. The frequency of SNP17249C in ZmSBEIIb was highest in teosinte lines, followed by landrace lines, and inbred lines, whereas there were no significant differences in the frequency of SNP5055G in ZmSBEIII among the three lines. These results suggest that ZmSBE genes play an important role in the phenotypic variations in the starch physicochemical properties in maize. The genetic variants detected in this study may be used to develop functional markers for improving maize starch quality.
Collapse
Affiliation(s)
- Qi Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Tiantian Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Wenye Rui
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Houmiao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yunyun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Burban E, Tenaillon MI, Le Rouzic A. Gene network simulations provide testable predictions for the molecular domestication syndrome. Genetics 2021; 220:6440055. [PMID: 34849852 DOI: 10.1093/genetics/iyab214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 11/14/2022] Open
Abstract
The domestication of plant species lead to repeatable morphological evolution, often referred to as the phenotypic domestication syndrome. Domestication is also associated with important genomic changes, such as the loss of genetic diversity compared to adequately large wild populations, and modifications of gene expression patterns. Here, we explored theoretically the effect of a domestication-like scenario on the evolution of gene regulatory networks. We ran population genetics simulations in which individuals were featured by their genotype (an interaction matrix encoding a gene regulatory network) and their gene expressions, representing the phenotypic level. Our domestication scenario included a population bottleneck and a selection switch mimicking human-mediated directional and canalizing selection, i.e., change in the optimal gene expression level and selection towards more stable expression across environments. We showed that domestication profoundly alters genetic architectures. Based on four examples of plant domestication scenarios, our simulations predict (i) a drop in neutral allelic diversity, (ii) a change in gene expression variance that depends upon the domestication scenario, (iii) transient maladaptive plasticity, (iv) a deep rewiring of the gene regulatory networks, with a trend towards gain of regulatory interactions, and (v) a global increase in the genetic correlations among gene expressions, with a loss of modularity in the resulting coexpression patterns and in the underlying networks. We provide empirically testable predictions on the differences of genetic architectures between wild and domesticated forms. The characterization of such systematic evolutionary changes in the genetic architecture of traits contributes to define a molecular domestication syndrome.
Collapse
Affiliation(s)
- Ewen Burban
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.,CNRS, Univ. Rennes, ECOBIO-UMR 6553, F-35000 Rennes, France
| | - Maud I Tenaillon
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, 91190, Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Maung TZ, Yoo JM, Chu SH, Kim KW, Chung IM, Park YJ. Haplotype Variations and Evolutionary Analysis of the Granule-Bound Starch Synthase I Gene in the Korean World Rice Collection. FRONTIERS IN PLANT SCIENCE 2021; 12:707237. [PMID: 34504507 PMCID: PMC8421862 DOI: 10.3389/fpls.2021.707237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Granule-bound starch synthase I (GBSSI) is responsible for Waxy gene encoding the, which is involved in the amylose synthesis step of starch biosynthesis. We investigated the genotypic and haplotypic variations of GBSSI (Os06g0133000) gene, including its evolutionary relatedness in the nucleotide sequence level using single-nucleotide polymorphisms (SNPs), indels, and structural variations (SVs) from 475 Korean World Rice Collection (KRICE_CORE), which comprised 54 wild rice and 421 cultivated represented by 6 ecotypes (temperate japonica, indica, tropical japonica, aus, aromatic, and admixture) or in another way by 3 varietal types (landrace, weedy, and bred). The results revealed that 27 of 59 haplotypes indicated a total of 12 functional SNPs (fSNPs), identifying 9 novel fSNPs. According to the identified novel fSNPs, we classified the entire rice collection into three groups: cultivated, wild, and mixed (cultivated and wild) rice. Five novel fSNPs were localized in wild rice: four G/A fSNPs in exons 2, 9, and 12 and one T/C fSNP in exon 13. We also identified the three previously reported fSNPs, namely, a G/A fSNP (exon 4), an A/C fSNP (exon 6), and a C/T fSNP (exon 10), which were observed only in cultivated rice, whereas an A/G fSNP (exon 4) was observed exclusively in wild rice. All-against-all comparison of four varietal types or six ecotypes of cultivated rice with wild rice showed that the GBSSI diversity was higher only in wild rice (π = 0.0056). The diversity reduction in cultivated rice can be useful to encompass the origin of this gene GBSSI during its evolution. Significant deviations of positive (wild and indica under balancing selection) and negative (temperate and tropical japonica under purifying selection) Tajima's D values from a neutral model can be informative about the selective sweeps of GBSSI genome insights. Despite the estimation of the differences in population structure and principal component analysis (PCA) between wild and subdivided cultivated subgroups, an inbreeding effect was quantified by F ST statistic, signifying the genetic relatedness of GBSSI. Our findings of a novel wild fSNPS can be applicable for future breeding of waxy rice varieties. Furthermore, the signatures of selective sweep can also be of informative into further deeper insights during domestication.
Collapse
Affiliation(s)
- Thant Zin Maung
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan-gun, South Korea
| | - Ji-Min Yoo
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan-gun, South Korea
| | - Sang-Ho Chu
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan-gun, South Korea
| | - Kyu-Won Kim
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan-gun, South Korea
| | - Ill-Min Chung
- Department of Applied Life Science, Konkuk University, Seoul, South Korea
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan-gun, South Korea
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan-gun, South Korea
| |
Collapse
|
8
|
Groppi A, Liu S, Cornille A, Decroocq S, Bui QT, Tricon D, Cruaud C, Arribat S, Belser C, Marande W, Salse J, Huneau C, Rodde N, Rhalloussi W, Cauet S, Istace B, Denis E, Carrère S, Audergon JM, Roch G, Lambert P, Zhebentyayeva T, Liu WS, Bouchez O, Lopez-Roques C, Serre RF, Debuchy R, Tran J, Wincker P, Chen X, Pétriacq P, Barre A, Nikolski M, Aury JM, Abbott AG, Giraud T, Decroocq V. Population genomics of apricots unravels domestication history and adaptive events. Nat Commun 2021; 12:3956. [PMID: 34172741 PMCID: PMC8233370 DOI: 10.1038/s41467-021-24283-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/08/2021] [Indexed: 01/27/2023] Open
Abstract
Among crop fruit trees, the apricot (Prunus armeniaca) provides an excellent model to study divergence and adaptation processes. Here, we obtain nearly 600 Armeniaca apricot genomes and four high-quality assemblies anchored on genetic maps. Chinese and European apricots form two differentiated gene pools with high genetic diversity, resulting from independent domestication events from distinct wild Central Asian populations, and with subsequent gene flow. A relatively low proportion of the genome is affected by selection. Different genomic regions show footprints of selection in European and Chinese cultivated apricots, despite convergent phenotypic traits, with predicted functions in both groups involved in the perennial life cycle, fruit quality and disease resistance. Selection footprints appear more abundant in European apricots, with a hotspot on chromosome 4, while admixture is more pervasive in Chinese cultivated apricots. Our study provides clues to the biology of selected traits and targets for fruit tree research and breeding.
Collapse
Affiliation(s)
- Alexis Groppi
- Univ. Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, 33076, France
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, 33077, France
| | - Shuo Liu
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue, Bayuquan District, Yingkou City, 115009, Liaoning, China
| | - Amandine Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Stéphane Decroocq
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - Quynh Trang Bui
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - David Tricon
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Sandrine Arribat
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Caroline Belser
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - William Marande
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Jérôme Salse
- INRAE/UBP UMR 1095 GDEC Genetique, Diversite et Ecophysiologie des Cereales, Laboratory PaleoEVO Paleogenomics & Evolution, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Cécile Huneau
- INRAE/UBP UMR 1095 GDEC Genetique, Diversite et Ecophysiologie des Cereales, Laboratory PaleoEVO Paleogenomics & Evolution, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Nathalie Rodde
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Wassim Rhalloussi
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Stéphane Cauet
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Benjamin Istace
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Erwan Denis
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Jean-Marc Audergon
- INRAE UR1052 GAFL, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Guillaume Roch
- INRAE UR1052 GAFL, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
- CEP INNOVATION, 23 Rue Jean Baldassini, Lyon, 69364, Cedex 07, France
| | - Patrick Lambert
- INRAE UR1052 GAFL, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Tetyana Zhebentyayeva
- The Schatz Center for Tree Molecular Genetics, Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, 16802, PA, USA
| | - Wei-Sheng Liu
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue, Bayuquan District, Yingkou City, 115009, Liaoning, China
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, 31326, France
| | | | - Rémy-Félix Serre
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, 31326, France
| | - Robert Debuchy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Joseph Tran
- EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, Villenave d'Ornon, 33882, France
| | - Patrick Wincker
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Xilong Chen
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - Aurélien Barre
- Univ. Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, 33076, France
| | - Macha Nikolski
- Univ. Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, 33076, France
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, 33077, France
| | - Jean-Marc Aury
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Albert Glenn Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, USA
| | - Tatiana Giraud
- Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay AgroParisTech, Orsay, 91400, France.
| | - Véronique Decroocq
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France.
| |
Collapse
|
9
|
Insights into the genomic evolution of insects from cricket genomes. Commun Biol 2021; 4:733. [PMID: 34127782 PMCID: PMC8203789 DOI: 10.1038/s42003-021-02197-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus, and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis. We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping. Ylla, Extavour et al. use genomic data from crickets to investigate the evolution of large genome sizes and DNA methylation events in insects. Their findings indicate that transposable element activity drove genome expansion in hemimetabolous insects, such as crickets and grasshoppers, and that DNA methylation is predominant in conserved genes.
Collapse
|
10
|
Xiao Y, Jiang S, Cheng Q, Wang X, Yan J, Zhang R, Qiao F, Ma C, Luo J, Li W, Liu H, Yang W, Song W, Meng Y, Warburton ML, Zhao J, Wang X, Yan J. The genetic mechanism of heterosis utilization in maize improvement. Genome Biol 2021; 22:148. [PMID: 33971930 PMCID: PMC8108465 DOI: 10.1186/s13059-021-02370-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In maize hybrid breeding, complementary pools of parental lines with reshuffled genetic variants are established for superior hybrid performance. To comprehensively decipher the genetics of heterosis, we present a new design of multiple linked F1 populations with 42,840 F1 maize hybrids, generated by crossing a synthetic population of 1428 maternal lines with 30 elite testers from diverse genetic backgrounds and phenotyped for agronomic traits. RESULTS We show that, although yield heterosis is correlated with the widespread, minor-effect epistatic QTLs, it may be resulted from a few major-effect additive and dominant QTLs in early developmental stages. Floral transition is probably one critical stage for heterosis formation, in which epistatic QTLs are activated by paternal contributions of alleles that counteract the recessive, deleterious maternal alleles. These deleterious alleles, while rare, epistatically repress other favorable QTLs. We demonstrate this with one example, showing that Brachytic2 represses the Ubiquitin3 locus in the maternal lines; in hybrids, the paternal allele alleviates this repression, which in turn recovers the height of the plant and enhances the weight of the ear. Finally, we propose a molecular design breeding by manipulating key genes underlying the transition from vegetative-to-reproductive growth. CONCLUSION The new population design is used to dissect the genetic basis of heterosis which accelerates maize molecular design breeding by diminishing deleterious epistatic interactions.
Collapse
Affiliation(s)
- Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuqin Jiang
- National Maize Improvement Center, Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qian Cheng
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, China
| | - Xiaqing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agricultural & Forestry Sciences, Beijing, 100097, China
| | - Jun Yan
- National Maize Improvement Center, Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ruyang Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agricultural & Forestry Sciences, Beijing, 100097, China
| | - Feng Qiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuang Ma
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, China
| | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyu Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhao Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yijiang Meng
- College of Life Science, Hebei Agricultural University, Baoding, 071001, China
| | - Marilyn L Warburton
- United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit, Box 9555, MS, 39762, Mississippi State, USA
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agricultural & Forestry Sciences, Beijing, 100097, China.
| | - Xiangfeng Wang
- National Maize Improvement Center, Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
11
|
Yang Y, Tian H, Wang R, Wang L, Yi H, Liu Y, Xu L, Fan Y, Zhao J, Wang F. Variety Discrimination Power: An Appraisal Index for Loci Combination Screening Applied to Plant Variety Discrimination. FRONTIERS IN PLANT SCIENCE 2021; 12:566796. [PMID: 33815430 PMCID: PMC8014032 DOI: 10.3389/fpls.2021.566796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Molecular marker technology is used widely in plant variety discrimination, molecular breeding, and other fields. To lower the cost of testing and improve the efficiency of data analysis, molecular marker screening is very important. Screening usually involves two phases: the first to control loci quality and the second to reduce loci quantity. To reduce loci quantity, an appraisal index that is very sensitive to a specific scenario is necessary to select loci combinations. In this study, we focused on loci combination screening for plant variety discrimination. A loci combination appraisal index, variety discrimination power (VDP), is proposed, and three statistical methods, probability-based VDP (P-VDP), comparison-based VDP (C-VDP), and ratio-based VDP (R-VDP), are described and compared. The results using the simulated data showed that VDP was sensitive to statistical populations with convergence toward the same variety, and the total probability of discrimination power (TDP) method was effective only for partial populations. R-VDP was more sensitive to statistical populations with convergence toward various varieties than P-VDP and C-VDP, which both had the same sensitivity; TDP was not sensitive at all. With the real data, R-VDP values for sorghum, wheat, maize and rice data begin to show downward tendency when the number of loci is 20, 7, 100, 100 respectively, while in the case of P-VDP and C-VDP (which have the same results), the number is 6, 4, 9, 19 respectively and in the case of TDP, the number is 6, 4, 4, 11 respectively. For the variety threshold setting, R-VDP values of loci combinations with different numbers of loci responded evenly to different thresholds. C-VDP values responded unevenly to different thresholds, and the extent of the response increased as the number of loci decreased. All the methods gave underestimations when data were missing, with systematic errors for TDP, C-VDP, and R-VDP going from smallest to biggest. We concluded that VDP was a better loci combination appraisal index than TDP for plant variety discrimination and the three VDP methods have different applications. We developed the software called VDPtools, which can calculate the values of TDP, P-VDP, C-VDP, and R-VDP. VDPtools is publicly available at https://github.com/caurwx1/VDPtools.git.
Collapse
|
12
|
Liu L, Gallagher J, Arevalo ED, Chen R, Skopelitis T, Wu Q, Bartlett M, Jackson D. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. NATURE PLANTS 2021; 7:287-294. [PMID: 33619356 DOI: 10.1038/s41477-021-00858-5] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/21/2021] [Indexed: 05/04/2023]
Abstract
Several yield-related traits selected during crop domestication and improvement1,2 are associated with increases in meristem size3, which is controlled by CLE peptide signals in the CLAVATA-WUSCHEL pathway4-13. Here, we engineered quantitative variation for yield-related traits in maize by making weak promoter alleles of CLE genes, and a null allele of a newly identified partially redundant compensating CLE gene, using CRISPR-Cas9 genome editing. These strategies increased multiple maize grain-yield-related traits, supporting the enormous potential for genomic editing in crop enhancement.
Collapse
Affiliation(s)
- Lei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joseph Gallagher
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Richelle Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Qingyu Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Madelaine Bartlett
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
13
|
Jaiswal AK, Mengiste TD, Myers JR, Egel DS, Hoagland LA. Tomato Domestication Attenuated Responsiveness to a Beneficial Soil Microbe for Plant Growth Promotion and Induction of Systemic Resistance to Foliar Pathogens. Front Microbiol 2020; 11:604566. [PMID: 33391227 PMCID: PMC7775394 DOI: 10.3389/fmicb.2020.604566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Crop domestication events followed by targeted breeding practices have been pivotal for improvement of desirable traits and to adapt cultivars to local environments. Domestication also resulted in a strong reduction in genetic diversity among modern cultivars compared to their wild relatives, though the effect this could have on tripartite relationships between plants, belowground beneficial microbes and aboveground pathogens remains undetermined. We quantified plant growth performance, basal resistance and induced systemic resistance (ISR) by Trichoderma harzianum, a beneficial soil microbe against Botrytis cinerea, a necrotrophic fungus and Phytophthora infestans, a hemi-biotrophic oomycete, in 25 diverse tomato genotypes. Wild tomato related species, tomato landraces and modern commercial cultivars that were conventionally or organically bred, together, representing a domestication gradient were evaluated. Relationships between basal and ISR, plant physiological status and phenolic compounds were quantified to identify potential mechanisms. Trichoderma enhanced shoot and root biomass and ISR to both pathogens in a genotype specific manner. Moreover, improvements in plant performance in response to Trichoderma gradually decreased along the domestication gradient. Wild relatives and landraces were more responsive to Trichoderma, resulting in greater suppression of foliar pathogens than modern cultivars. Photosynthetic rate and stomatal conductance of some tomato genotypes were improved by Trichoderma treatment whereas leaf nitrogen status of the majority of tomato genotypes were not altered. There was a negative relationship between basal resistance and induced resistance for both diseases, and a positive correlation between Trichoderma-ISR to B. cinerea and enhanced total flavonoid contents. These findings suggest that domestication and breeding practices have altered plant responsiveness to beneficial soil microbes. Further studies are needed to decipher the molecular mechanisms underlying the differential promotion of plant growth and resistance among genotypes, and identify molecular markers to integrate selection for responsiveness into future breeding programs.
Collapse
Affiliation(s)
- Amit K Jaiswal
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Tesfaye D Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - James R Myers
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Daniel S Egel
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Lori A Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
14
|
Li T, Qu J, Tian X, Lao Y, Wei N, Wang Y, Hao Y, Zhang X, Xue J, Xu S. Identification of Ear Morphology Genes in Maize ( Zea mays L.) Using Selective Sweeps and Association Mapping. Front Genet 2020; 11:747. [PMID: 32793283 PMCID: PMC7384441 DOI: 10.3389/fgene.2020.00747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
The performance of maize hybrids largely depend on two parental inbred lines. Improving inbred lines using artificial selection is a key task in breeding programs. However, it is important to elucidate the effects of this selection on inbred lines. Altogether, 208 inbred lines from two maize heterosis groups, named Shaan A and Shaan B, were sequenced by the genotype-by-sequencing to detect genomic changes under selection pressures. In addition, we completed genome-wide association analysis in 121 inbred lines to identify candidate genes for ear morphology related traits. In a genome-wide selection scan, the inbred lines from Shaan A and Shaan B groups showed obvious population divergences and different selective signals distributed in 337 regions harboring 772 genes. Meanwhile, functional enrichment analysis showed those selected genes are mainly involved in regulating cell development. Interestingly, some ear morphology related traits showed significant differentiation between the inbred lines from the two heterosis groups. The genome-wide association analysis of ear morphology related traits showed that four associated genes were co-localized in the selected regions with high linkage disequilibrium. Our spatiotemporal pattern and gene interaction network results for the four genes further contribute to our understanding of the mechanisms behind ear and fruit length development. This study provides a novel insight into digging a candidate gene for complex traits using breeding materials. Our findings in relation to ear morphology will help accelerate future maize improvement.
Collapse
Affiliation(s)
- Ting Li
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Jianzhou Qu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Xiaokang Tian
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Yonghui Lao
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Ningning Wei
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Yahui Wang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Yinchuan Hao
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Xinghua Zhang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Jiquan Xue
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| | - Shutu Xu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Xianyang, China.,The Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, China
| |
Collapse
|
15
|
Genome-wide selection and genetic improvement during modern maize breeding. Nat Genet 2020; 52:565-571. [DOI: 10.1038/s41588-020-0616-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 03/23/2020] [Indexed: 11/08/2022]
|
16
|
Cortinovis G, Frascarelli G, Di Vittori V, Papa R. Current State and Perspectives in Population Genomics of the Common Bean. PLANTS (BASEL, SWITZERLAND) 2020; 9:E330. [PMID: 32150958 PMCID: PMC7154925 DOI: 10.3390/plants9030330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022]
Abstract
* Correspondence: r [...].
Collapse
Affiliation(s)
| | | | | | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.C.); (G.F.); (V.D.V.)
| |
Collapse
|
17
|
Wills DM, Fang Z, York AM, Holland JB, Doebley JF. Defining the Role of the MADS-Box Gene, Zea Agamous-like1, a Target of Selection During Maize Domestication. J Hered 2019; 109:333-338. [PMID: 28992108 DOI: 10.1093/jhered/esx073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/02/2017] [Indexed: 11/12/2022] Open
Abstract
Genomic scans for genes that show the signature of past selection have been widely applied to a number of species and have identified a large number of selection candidate genes. In cultivated maize (Zea mays ssp. mays) selection scans have identified several hundred candidate domestication genes by comparing nucleotide diversity and differentiation between maize and its progenitor, teosinte (Z. mays ssp. parviglumis). One of these is a gene called zea agamous-like1 (zagl1), a MADS-box transcription factor, that is known for its function in the control of flowering time. To determine the trait(s) controlled by zagl1 that was (were) the target(s) of selection during maize domestication, we created a set of recombinant chromosome isogenic lines that differ for the maize versus teosinte alleles of zagl1 and which carry cross-overs between zagl1 and its neighbor genes. These lines were grown in a randomized trial and scored for flowering time and domestication related traits. The results indicated that the maize versus teosinte alleles of zagl1 affect flowering time as expected, as well as multiple traits related to ear size with the maize allele conferring larger ears with more kernels. Our results suggest that zagl1 may have been under selection during domestication to increase the size of the maize ear.
Collapse
Affiliation(s)
- David M Wills
- Laboratory of Genetics, The University of Wisconsin-Madison, Madison, WI.,USDA-ARS Plant Genetics Research Unit, Columbia, MO
| | - Zhou Fang
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC.,Bayer Corporation, Morrisville, NC
| | - Alessandra M York
- Laboratory of Genetics, The University of Wisconsin-Madison, Madison, WI
| | - James B Holland
- USDA-ARS Plant Science Research Unit, Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC
| | - John F Doebley
- Laboratory of Genetics, The University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
18
|
Natural Variation and Domestication Selection of ZmPGP1 Affects Plant Architecture and Yield-Related Traits in Maize. Genes (Basel) 2019; 10:genes10090664. [PMID: 31480272 PMCID: PMC6770335 DOI: 10.3390/genes10090664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
ZmPGP1, involved in the polar auxin transport, has been shown to be associated with plant height, leaf angle, yield traits, and root development in maize. To explore natural variation and domestication selection of ZmPGP1, we re-sequenced the ZmPGP1 gene in 349 inbred lines, 68 landraces, and 32 teosintes. Sequence polymorphisms, nucleotide diversity, and neutral tests revealed that ZmPGP1 might be selected during domestication and improvement processes. Marker–trait association analysis in inbred lines identified 11 variants significantly associated with 4 plant architecture and 5 ear traits. SNP1473 was the most significant variant for kernel length and ear grain weight. The frequency of an increased allele T was 40.6% in teosintes, and it was enriched to 60.3% and 89.1% during maize domestication and improvement. This result revealed that ZmPGP1 may be selected in the domestication and improvement process, and significant variants could be used to develop functional markers to improve plant architecture and ear traits in maize.
Collapse
|
19
|
Asadollahpour Nanaei H, Ayatollahi Mehrgardi A, Esmailizadeh A. Comparative population genomics unveils candidate genes for athletic performance in Hanoverians. Genome 2019; 62:279-285. [DOI: 10.1139/gen-2018-0151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Equine athletes have a genetic heritage that has been evolved for millions of years, which provides an opportunity to study the genetics of locomotion pattern and performance in mammals. The Hanoverian, a breed originating in Germany, is arguably among the most athletic of horse breeds, as well as possessing a balanced character and beautiful appearance. Here, we compared the whole genomes of Hanoverian with three other horse breeds (Akhal-Teke, Franches-Montagnes, and Standardbred), using the fixation index (Fst) and cross-population composite likelihood ratio (XP-CLR) methods for testing the multi-locus allele frequency differentiation between populations. We identified 299 and 485 positively selected genes using the Fst and XP-CLR methods, respectively. Further functional analyses showed that the ACTA1 gene is potentially involved in athletic performance in the Hanoverian breed, consistent with its role observed in human population. In addition, three other loci on chromosomes 1 and 20 were identified to be potentially involved in equine physical performance. The selected candidate genes identified in this study may be useful in current breeding efforts to develop improved breeds in regard to athletic performance.
Collapse
Affiliation(s)
- Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| |
Collapse
|
20
|
Zhao J, Wang Z, Liu H, Zhao J, Li T, Hou J, Zhang X, Hao C. Global status of 47 major wheat loci controlling yield, quality, adaptation and stress resistance selected over the last century. BMC PLANT BIOLOGY 2019; 19:5. [PMID: 30606117 PMCID: PMC6318892 DOI: 10.1186/s12870-018-1612-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/20/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Wheat breeding over the last 100 years has increased productivity by adapting genotypes to local conditions, but the genomic changes and selection signals that caused phenotypic change during breeding are essentially unknown. Studying and understanding human selection of multiple important genes controlling key phenotypic traits will promote wheat molecular breeding. RESULTS A total of 1152 diverse global wheat materials were genotyped based on KASP markers from 47 genes controlling grain yield, grain quality, adaptation, and stress resistance. Significant phenotypic variations between landraces and modern cultivars were found in 11 adaptive and yield-related traits. Thirty-six improvement-selective favorable alleles, including 22 positive prolonged and 14 negative selection alleles, were identified through comparing frequency spectra. Sus1-7A-Hap-H, Sus1-7B-Hap-T, Sus2-2A-Hap-A, TGW6-A1a, Cwi-4A-Hap-C, vrn-A1, PHS1-PHS+ and Lr34+ were subjected to strong selection, and overwhelmingly strong selection had occurred before improvement selection at Psy-A1b, Psy-B1a or b, Psy-D1a and Cwi-5D-Hap-C. However, Rht-B1b, Rht-D1b and 1BL.1RS were rare or absent in Chinese landraces but present in modern Chinese cultivars and introduced accessions. Importantly, Lr68+, Fhb1+, Wx-B1b and Yr15+, currently existing at a low frequency, should be regarded as further major improvement targets in global wheat breeding. Gene flow analysis showed that introduced cultivars especially from the former USSR and Italy contributed to enriched genetic variation in modern Chinese cultivars. CONCLUSIONS This work objectively reports human selection on favorable alleles of multiple crucial genes in Asia, Europe, North America and CIMMYT, and traces the distribution of important genes in global wheat for molecular breeding.
Collapse
Affiliation(s)
- Junjie Zhao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhiwei Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jing Zhao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
21
|
Comparative mapping of quantitative trait loci for tassel-related traits of maize in $$\hbox {F}_{2:3}$$ F 2 : 3 and RIL populations. J Genet 2018. [DOI: 10.1007/s12041-018-0908-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Yi Q, Liu Y, Zhang X, Hou X, Zhang J, Liu H, Hu Y, Yu G, Huang Y. Comparative mapping of quantitative trait loci for tassel-related traits of maize in F 2:3 and RIL populations. J Genet 2018; 97:253-266. [PMID: 29666344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tassel architecture is an important trait in maize breeding and hybrid seed production. In this study, we investigated total tassel length (TTL) and tassel branch number (TBN) in 266 F2:3 families across six environments and in 301 recombinant inbred lines (RILs) across three environments, where all the plants were derived from a cross between 08-641 and Ye478. We compared the genetic architecture of the two traits across two generations through combined analysis. In total, 27 quantitative trait loci (QTLs) (15 in F2:3; 16 in RIL), two QTL × environment interactions (both in F2:3), 11 pairs of epistatic interactions (seven in F2:3; four in RIL) and four stable QTLs in both the F2:3 and RILs were detected. The RIL population had higher detection power than the F2:3 population. Nevertheless, QTL × environment interactions and epistatic interactions could be more easily detected in the F2:3 population than in the RILs. Overall, the QTL mapping results in the F2:3 and RILs were greatly influenced by genetic generations and environments. Finally, fine mapping for a novel and major QTL, qTTL-2-3 (bin 2.07), which accounted for over 8.49% of the phenotypic variation across different environments and generations, could be useful in marker-assisted breeding.
Collapse
Affiliation(s)
- Qiang Yi
- Agronomy College, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gaillard MDP, Glauser G, Robert CAM, Turlings TCJ. Fine-tuning the 'plant domestication-reduced defense' hypothesis: specialist vs generalist herbivores. THE NEW PHYTOLOGIST 2018; 217:355-366. [PMID: 28877341 DOI: 10.1111/nph.14757] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/14/2017] [Indexed: 05/19/2023]
Abstract
Domesticated plants are assumed to have weakened chemical defenses. We argue, however, that artificial selection will have maintained defense traits against specialized herbivores that have coexisted with the crops throughout their domestication. We assessed the performance of eight species of insect herbivores from three feeding guilds on six European maize lines and six populations of their wild ancestor, teosinte. A metabolomics approach was used in an attempt to identify compounds responsible for observed differences in insect performance. Insects consistently performed better on maize than on teosinte. As hypothesized, this difference was greater for generalist herbivores that are normally not found on teosinte. We also found clear differences in defense metabolites among the different genotypes, but none that consistently correlated with differences in performance. Concentrations of benzoxazinoids, the main chemical defense in maize, tended to be higher in leaves of teosinte, but the reverse was true for the roots. It appears that chemical defenses that target specialized insects are still present at higher concentrations in cultivated maize than compounds that are more effective against generalists. These weakened broad-spectrum defenses in crops may explain the successes of novel pests.
Collapse
Affiliation(s)
- Mickaël D P Gaillard
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry (NPAC), University of Neuchâtel, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Christelle A M Robert
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Institute of Plant Sciences, Section Biotic Interactions, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Ted C J Turlings
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| |
Collapse
|
24
|
Hackauf B, Haffke S, Fromme FJ, Roux SR, Kusterer B, Musmann D, Kilian A, Miedaner T. QTL mapping and comparative genome analysis of agronomic traits including grain yield in winter rye. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1801-1817. [PMID: 28567664 DOI: 10.1007/s00122-017-2926-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Genetic diversity in elite rye germplasm as well as F 2:3 testcross design enables fast QTL mapping to approach genes controlling grain yield, grain weight, tiller number and heading date in rye hybrids. Winter rye (Secale cereale L.) is a multipurpose cereal crop closely related to wheat, which offers the opportunity for a sustainable production of food and feed and which continues to emerge as a renewable energy source for the production of bioethanol and biomethane. Rye contributes to increase agricultural crop species diversity particularly in Central and Eastern Europe. In contrast to other small grain cereals, knowledge on the genetic architecture of complex inherited, agronomic important traits is yet limited for the outbreeding rye. We have performed a QTL analysis based on a F2:3 design and testcross performance of 258 experimental hybrids in multi-environmental field trials. A genetic linkage map covering 964.9 cM based on SSR, conserved-orthologous set (COS), and mixed-phase dominant DArT markers allowed to describe 22 QTL with significant effects for grain yield, heading date, tiller number, and thousand grain weight across seven environments. Using rye COS markers, orthologous segments for these traits have been identified in the rice genome, which carry cloned and functionally characterized rice genes. The initial genome scan described here together with the existing knowledge on candidate genes provides the basis for subsequent analyses of the genetic and molecular mechanisms underlying agronomic important traits in rye.
Collapse
Affiliation(s)
- Bernd Hackauf
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Groß Lüsewitz, 18190, Sanitz, Germany.
| | - Stefan Haffke
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
- Bundessortenamt, Osterfelddamm 80, 30627, Hannover, Germany
| | | | - Steffen R Roux
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Groß Lüsewitz, 18190, Sanitz, Germany
| | | | - Dörthe Musmann
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Groß Lüsewitz, 18190, Sanitz, Germany
- HYBRO Saatzucht GmbH and Co. KG, 17291, Schenkenberg, Germany
| | - Andrzej Kilian
- Diversity Arrays Technology, Bruce, ACT, 2617, Australia
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
25
|
Gu Y, Li W, Jiang H, Wang Y, Gao H, Liu M, Chen Q, Lai Y, He C. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2717-2729. [PMID: 28472462 PMCID: PMC5853923 DOI: 10.1093/jxb/erx147] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/08/2017] [Indexed: 05/24/2023]
Abstract
Soybean (Glycine max) probably originated from the wild soybean (Glycine soja). Glycine max has a significantly larger seed size, but the underlying genomic changes are largely unknown. Candidate regulatory genes were preliminarily proposed by data co-localizing RNA sequencing with the quantitative loci (QTLs) for seed size. The soybean gene locus SoyWRKY15a and its orthologous genes from G. max (GmWRKY15a) and G. soja (GsWRKY15a) were analyzed in detail. The coding sequences were nearly identical between the two orthologs, but GmWRKY15a was significantly more highly expressed than GsWRKY15a. Four haplotypes (H1-H4) were found and they varied in the size of a CT-core microsatellite locus in the 5'-untranslated region of this gene. H1 (with six CT-repeats) was the only allelic version found in G. max, while H3 (with five CT-repeats) was the dominant G. soja allele. Differential expression of this gene in soybean pods was correlated with CT-repeat variation, and manipulation of the CT copy number altered the reporter gene expression, suggesting a regulatory role for the simple sequence repeats. Seed weight of wild soybeans harboring H1 was significantly greater than that of soybeans having haplotypes H2, H3, or H4, and seed weight was correlated with gene expression, suggesting the influence of GsWRKY15a in controlling seed size. However, the seed size might be refractory to increased SoyWRKY15a expression in cultivated soybeans. The evolutionary significance of SoyWRKY15a variation in soybean seed domestication is discussed.
Collapse
Affiliation(s)
- Yongzhe Gu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hongwei Jiang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Huihui Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miao Liu
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yongcai Lai
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Caldu-Primo JL, Mastretta-Yanes A, Wegier A, Piñero D. Finding a Needle in a Haystack: Distinguishing Mexican Maize Landraces Using a Small Number of SNPs. Front Genet 2017; 8:45. [PMID: 28458682 PMCID: PMC5394175 DOI: 10.3389/fgene.2017.00045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/29/2017] [Indexed: 11/20/2022] Open
Abstract
In Mexico's territory, the center of origin and domestication of maize (Zea mays), there is a large phenotypic diversity of this crop. This diversity has been classified into “landraces.” Previous studies have reported that genomic variation in Mexican maize is better explained by environmental factors, particularly those related with altitude, than by landrace. Still, landraces are extensively used by agronomists, who recognize them as stable and discriminatory categories for the classification of samples. In order to investigate the genomic foundation of maize landraces, we analyzed genomic data (35,909 SNPs from Illumina MaizeSNP50 BeadChip) obtained from 50 samples representing five maize landraces (Comiteco, Conejo, Tehua, Zapalote Grande, and Zapalote Chico), and searched for markers suitable for landrace assignment. Landrace clusters could not be identified taking all the genomic information, but they become manifest taking only a subset of SNPs with high FST among landraces. Discriminant analysis of principal components was conducted to classify samples using SNP data. Two classification analyses were done, first classifying samples by landrace and then by altitude category. Through this classification method, we identified 20 landrace-informative SNPs and 14 altitude-informative SNPs, with only 6 SNPs in common for both analyses. These results show that Mexican maize phenotypic diversity can be classified in landraces using a small number of genomic markers, given the fact that landrace genomic diversity is influenced by environmental factors as well as artificial selection due to bio-cultural practices.
Collapse
Affiliation(s)
- Jose L Caldu-Primo
- Laboratorio de Genética de la Conservación, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad UniversitariaCoyoacán, Mexico
| | - Alicia Mastretta-Yanes
- CONACYT/CONABIO, Comisión Nacional para el Conocimiento y Uso de la BiodiversidadTlalpan, Mexico
| | - Ana Wegier
- Laboratorio de Genética de la Conservación, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad UniversitariaCoyoacán, Mexico
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad UniversitariaCoyoacán, Mexico
| |
Collapse
|
27
|
Chen S, Lin Z, Zhou D, Wang C, Li H, Yu R, Deng H, Tang X, Zhou S, Wang Deng X, He H. Genome-wide study of an elite rice pedigree reveals a complex history of genetic architecture for breeding improvement. Sci Rep 2017; 7:45685. [PMID: 28374863 PMCID: PMC5379486 DOI: 10.1038/srep45685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/01/2017] [Indexed: 01/19/2023] Open
Abstract
Improving breeding has been widely utilized in crop breeding and contributed to yield and quality improvement, yet few researches have been done to analyze genetic architecture underlying breeding improvement comprehensively. Here, we collected genotype and phenotype data of 99 cultivars from the complete pedigree including Huanghuazhan, an elite, high-quality, conventional indica rice that has been grown over 4.5 million hectares in southern China and from which more than 20 excellent cultivars have been derived. We identified 1,313 selective sweeps (SSWs) revealing four stage-specific selection patterns corresponding to improvement preference during 65 years, and 1113 conserved Huanghuazhan traceable blocks (cHTBs) introduced from different donors and conserved in >3 breeding generations were the core genomic regions for superior performance of Huanghuazhan. Based on 151 quantitative trait loci (QTLs) identified for 13 improved traits in the pedigree, we reproduced their improvement process in silico, highlighting improving breeding works well for traits controlled by major/major + minor effect QTLs, but was inefficient for traits controlled by QTLs with complex interactions or explaining low levels of phenotypic variation. These results indicate long-term breeding improvement is efficient to construct superior genetic architecture for elite performance, yet molecular breeding with designed genotype of QTLs can facilitate complex traits improvement.
Collapse
Affiliation(s)
- Shaoxia Chen
- School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, China
| | - Zechuan Lin
- School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| | - Degui Zhou
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chongrong Wang
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hong Li
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Renbo Yu
- School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| | - Hanchao Deng
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Xiaoyan Tang
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China.,Guangdong Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shaochuan Zhou
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xing Wang Deng
- School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, China
| | - Hang He
- School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, China
| |
Collapse
|
28
|
Genome-wide indel/SSR scanning reveals significant loci associated with excellent agronomic traits of a cabbage (Brassica oleracea) elite parental line '01-20'. Sci Rep 2017; 7:41696. [PMID: 28164997 PMCID: PMC5292705 DOI: 10.1038/srep41696] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/23/2016] [Indexed: 01/05/2023] Open
Abstract
Elite parental lines are of great significance to crop breeding. To discover unique genomic loci associated with excellent economic traits in the elite cabbage inbred-line ‘01–20’, we performed comparisons of phenotypes as well as whole-genome insertion-deletion/simple sequence repeat loci between ‘01–20’ and each of its five sister lines. ‘01–20’ has a range of excellent agronomic traits, including early-maturing, and improvements in plant type and leaf colour. Eight unique loci were discovered for ‘01–20’ and ‘01-07-258’, another elite line similar to ‘01–20’ at the whole-genome level. In addition, two excellent double-haploid lines derived from a cross of ‘01–20’ also inherited these loci. Based on the quantitative trait locus association results, five of these loci were found to be associated with important agronomic traits, which could explain why the elite parent ‘01–20’ possesses greener outer leaves, a more compact and upright plant-type, rounder head, shorter core length, and better taste. Additionally, some of these loci have clustering effects for quantitative trait loci associated with different traits; therefore, important genes in these regions were analysed. The obtained results should enable marker-assisted multi-trait selection at the whole-genome level in cabbage breeding and provide insights into significant genome loci and their breeding effects.
Collapse
|
29
|
Sidhu GK, Warzecha T, Pawlowski WP. Evolution of meiotic recombination genes in maize and teosinte. BMC Genomics 2017; 18:106. [PMID: 28122517 PMCID: PMC5267385 DOI: 10.1186/s12864-017-3486-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022] Open
Abstract
Background Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. Results To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Conclusions Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3486-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gaganpreet K Sidhu
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.,Current address: Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Tomasz Warzecha
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.,Permanent address: Department of Plant Breeding and Seed Science, Agricultural University, Krakow, Poland
| | - Wojciech P Pawlowski
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
30
|
Li Y, Guo N, Zhao J, Zhou B, Xu R, Ding H, Zhao W, Gai J, Xing H. Different responses of soybean cyst nematode resistance between two RIL populations derived from Peking x 7605 under two ecological sites. J Genet 2016; 95:975-982. [PMID: 27994197 DOI: 10.1007/s12041-016-0726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a plant-parasitic nematode that feeds on the roots of soybean and most economically devastating pathogen of soybean (Glycine max (L.) Merr.) worldwide. Host plant resistance is the most effective control method. To understand SCN resistance in different environments, two recombinant-inbred lines (RILs) populations NJ(RN)P7 (217 F2:8:11 lines) and JN(RN)P7 (248 F2:7:9 lines) were developed from the cross of the cultivars Peking x 7605 in Nanjing and Jinan, respectively, and examined in this study. Peking is resistant to SCN race 1 (HG types 2.5.7), while 7605 is highly susceptible. Chi-square test of frequency distribution of families' female index (FI) showed that resistance to SCN was significantly different between NJ(RN)P7 and JN(RN)P7 populations. Three recessive genes conditioned the inheritance of resistance to SCN race 1 in both populations, but significant difference was detected for the mean of FI on two populations (DM= -16.68, P< 0.01). This indicated that natural selection may affect resistance to SCN. By analysing the variation of phenotype, the genetic structure of the two populations was determined to be different. The inheritance and variation of resistance were confirmed by simple sequence repeat (SSR) markers. For the two populations, 10 SSR markers showed polymorphism of resistant and susceptible DNA bulks. Some markers associated with the resistance of SCN races 1, 2, 3 and 5, and two markers, Satt163 and Satt309, reportedly related to rgh1 were detected both in NJ(RN)P7 and JN(RN)P7 populations. The results support the view that a disease acts as a selective force on plant resistance characteristics, which may alter the relative fitness of resistance alleles.
Collapse
Affiliation(s)
- Yongchun Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Differentiation and description of aromatic short grain rice landraces of eastern Indian state of Odisha based on qualitative phenotypic descriptors. BMC Ecol 2016; 16:36. [PMID: 27507255 PMCID: PMC4977617 DOI: 10.1186/s12898-016-0086-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 06/14/2016] [Indexed: 11/10/2022] Open
Abstract
Background Speciality rice, in general, and aromatic rice in particular, possess enormous market potential for enhancing farm profits. However, systematic characterization of the diversity present in this natural wealth is a major pre requisite for using it in the breeding programs. This study reports qualitative phenotypic trait based characterization of 126 short grain aromatic rice genotypes, collected from different areas of the state of Odisha, India. Results Out of the 24 descriptors employed, highest variability (8 different types) was observed for lemma-palea colour with a genetic diversity index (He) of 0.696. The principal component analysis reveals that the tip colour of lemma, colour of awn and colour of stigma, cumulatively explain 74 % of the total variation. The Population STRUCTURE analysis classified the population into two subpopulations which were subdivided further into four distinct groups. The western and southern districts of Odisha are endowed with maximum diversity in comparison to eastern and northern districts and at district level comparisons, Koraput and Puri districts are rich with a genetic diversity values of 0.324 and 0.303 respectively. With this set of morphological qualitative traits, based on ‘phenoprinting’, a newly proposed bar coding system, unique fingerprints of each genotype can be effectively generated that can help in easy identification of these genotypes. Conclusion Though aromatic rices represent a tiny fraction of the total rice germplasm, a small collection of 126 land races did exhibit rich diversity for all the qualitative traits. For lemma-palea colour, eight different types were detected while for tip colour of lemma, six different types were recorded, suggesting the presence of rich variability in short grain aromatic rices that are conserved in this region. The proposed ‘phenoprinting’ can be an effective descriptor with the unique finger prints generated for each genotype and coupled with molecular (DNA) finger printing, we can discriminate and identify each and every aromatic short grain rice genotype. The proposed system not only help in conservation but also can confer IPR protection to these specialty rices. Electronic supplementary material The online version of this article (doi:10.1186/s12898-016-0086-8) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Unterseer S, Pophaly SD, Peis R, Westermeier P, Mayer M, Seidel MA, Haberer G, Mayer KFX, Ordas B, Pausch H, Tellier A, Bauer E, Schön CC. A comprehensive study of the genomic differentiation between temperate Dent and Flint maize. Genome Biol 2016; 17:137. [PMID: 27387028 PMCID: PMC4937532 DOI: 10.1186/s13059-016-1009-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/15/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dent and Flint represent two major germplasm pools exploited in maize breeding. Several traits differentiate the two pools, like cold tolerance, early vigor, and flowering time. A comparative investigation of their genomic architecture relevant for quantitative trait expression has not been reported so far. Understanding the genomic differences between germplasm pools may contribute to a better understanding of the complementarity in heterotic patterns exploited in hybrid breeding and of mechanisms involved in adaptation to different environments. RESULTS We perform whole-genome screens for signatures of selection specific to temperate Dent and Flint maize by comparing high-density genotyping data of 70 American and European Dent and 66 European Flint inbred lines. We find 2.2 % and 1.4 % of the genes are under selective pressure, respectively, and identify candidate genes associated with agronomic traits known to differ between the two pools. Taking flowering time as an example for the differentiation between Dent and Flint, we investigate candidate genes involved in the flowering network by phenotypic analyses in a Dent-Flint introgression library and find that the Flint haplotypes of the candidates promote earlier flowering. Within the flowering network, the majority of Flint candidates are associated with endogenous pathways in contrast to Dent candidate genes, which are mainly involved in response to environmental factors like light and photoperiod. The diversity patterns of the candidates in a unique panel of more than 900 individuals from 38 European landraces indicate a major contribution of landraces from France, Germany, and Spain to the candidate gene diversity of the Flint elite lines. CONCLUSIONS In this study, we report the investigation of pool-specific differences between temperate Dent and Flint on a genome-wide scale. The identified candidate genes represent a promising source for the functional investigation of pool-specific haplotypes in different genetic backgrounds and for the evaluation of their potential for future crop improvement like the adaptation to specific environments.
Collapse
Affiliation(s)
- Sandra Unterseer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Saurabh D Pophaly
- Section of Population Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Regina Peis
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Peter Westermeier
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany.,Present Address: Institute for Crop Science and Plant Breeding, Bavarian State Research Center, 85354, Freising, Germany
| | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Michael A Seidel
- Plant Genome and System Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Georg Haberer
- Plant Genome and System Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Klaus F X Mayer
- Plant Genome and System Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Bernardo Ordas
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), 36080, Pontevedra, Spain
| | - Hubert Pausch
- Animal Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Eva Bauer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
33
|
Beleggia R, Rau D, Laidò G, Platani C, Nigro F, Fragasso M, De Vita P, Scossa F, Fernie AR, Nikoloski Z, Papa R. Evolutionary Metabolomics Reveals Domestication-Associated Changes in Tetraploid Wheat Kernels. Mol Biol Evol 2016; 33:1740-53. [PMID: 27189559 PMCID: PMC4915355 DOI: 10.1093/molbev/msw050] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Domestication and breeding have influenced the genetic structure of plant populations due to selection for adaptation from natural habitats to agro-ecosystems. Here, we investigate the effects of selection on the contents of 51 primary kernel metabolites and their relationships in three Triticum turgidum L. subspecies (i.e., wild emmer, emmer, durum wheat) that represent the major steps of tetraploid wheat domestication. We present a methodological pipeline to identify the signature of selection for molecular phenotypic traits (e.g., metabolites and transcripts). Following the approach, we show that a reduction in unsaturated fatty acids was associated with selection during domestication of emmer (primary domestication). We also show that changes in the amino acid content due to selection mark the domestication of durum wheat (secondary domestication). These effects were found to be partially independent of the associations that unsaturated fatty acids and amino acids have with other domestication-related kernel traits. Changes in contents of metabolites were also highlighted by alterations in the metabolic correlation networks, indicating wide metabolic restructuring due to domestication. Finally, evidence is provided that wild and exotic germplasm can have a relevant role for improvement of wheat quality and nutritional traits.
Collapse
Affiliation(s)
- Romina Beleggia
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per la Cerealicoltura (CREA-CER), Foggia, Italy
| | - Domenico Rau
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Giovanni Laidò
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per la Cerealicoltura (CREA-CER), Foggia, Italy
| | - Cristiano Platani
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per la Cerealicoltura (CREA-CER), Foggia, Italy Consiglio per la ricerca in agricoltura e l'analisi dell' economia agraria - Unità di Ricerca per l'Orticoltura (CREA-ORA), Monsampolo del Tronto (AP), Italy
| | - Franca Nigro
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per la Cerealicoltura (CREA-CER), Foggia, Italy
| | - Mariagiovanna Fragasso
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per la Cerealicoltura (CREA-CER), Foggia, Italy
| | - Pasquale De Vita
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per la Cerealicoltura (CREA-CER), Foggia, Italy
| | - Federico Scossa
- Consiglio per la ricerca in agricoltura e l'analisi dell' economia agraria, Centro di Ricerca per la Frutticoltura (CREA-FRU), Roma, Italy
| | - Alisdair R Fernie
- Central Metabolism Group, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Roberto Papa
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per la Cerealicoltura (CREA-CER), Foggia, Italy Dipartimento di Scienze Agrarie, Alimentari e Ambientali (D3A), Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
34
|
Akagi T, Hanada T, Yaegaki H, Gradziel TM, Tao R. Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication. DNA Res 2016; 23:271-82. [PMID: 27085183 PMCID: PMC4909313 DOI: 10.1093/dnares/dsw014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/02/2016] [Indexed: 01/19/2023] Open
Abstract
Domestication and cultivar differentiation are requisite processes for establishing cultivated crops. These processes inherently involve substantial changes in population structure, including those from artificial selection of key genes. In this study, accessions of peach (Prunus persica) and its wild relatives were analysed genome-wide to identify changes in genetic structures and gene selections associated with their differentiation. Analysis of genome-wide informative single-nucleotide polymorphism loci revealed distinct changes in genetic structures and delineations among domesticated peach and its wild relatives and among peach landraces and modern fruit (F) and modern ornamental (O-A) cultivars. Indications of distinct changes in linkage disequilibrium extension/decay and of strong population bottlenecks or inbreeding were identified. Site frequency spectrum- and extended haplotype homozygosity-based evaluation of genome-wide genetic diversities supported selective sweeps distinguishing the domesticated peach from its wild relatives and each F/O-A cluster from the landrace clusters. The regions with strong selective sweeps harboured promising candidates for genes subjected to selection. Further sequence-based evaluation further defined the candidates and revealed their characteristics. All results suggest opportunities for identifying critical genes associated with each differentiation by analysing genome-wide genetic diversity in currently established populations. This approach obviates the special development of genetic populations, which is particularly difficult for long-lived tree crops.
Collapse
Affiliation(s)
- Takashi Akagi
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kita-shirakawa, Oiwake-cho, Kyoto 606-8502, Japan
| | - Toshio Hanada
- Apple Research Division, NARO Institute of Fruit Tree Science, Morioka 020-0123, Japan
| | - Hideaki Yaegaki
- Breeding and Pest Management Division, NARO Institute, Tsukuba, Ibaragi 305-8605, Japan
| | - Thomas M Gradziel
- Department of Plant Sciences, University of California Davis, CA 95616, USA
| | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kita-shirakawa, Oiwake-cho, Kyoto 606-8502, Japan
| |
Collapse
|
35
|
Parat F, Schwertfirm G, Rudolph U, Miedaner T, Korzun V, Bauer E, Schön CC, Tellier A. Geography and end use drive the diversification of worldwide winter rye populations. Mol Ecol 2016; 25:500-14. [DOI: 10.1111/mec.13495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 10/13/2015] [Accepted: 11/16/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Florence Parat
- Population Genetics; TUM School of Life Sciences Weihenstephan; Technische Universität München; Liesel-Beckmann-Str. 2 85354 Freising Germany
| | - Grit Schwertfirm
- Plant Breeding; TUM School of Life Sciences Weihenstephan; Technische Universität München; Liesel-Beckmann-Str. 2 85354 Freising Germany
| | - Ulrike Rudolph
- Plant Breeding; TUM School of Life Sciences Weihenstephan; Technische Universität München; Liesel-Beckmann-Str. 2 85354 Freising Germany
| | - Thomas Miedaner
- State Plant Breeding Institute; Universität Hohenheim; Fruwirthstr. 21 70599 Stuttgart Germany
| | | | - Eva Bauer
- Plant Breeding; TUM School of Life Sciences Weihenstephan; Technische Universität München; Liesel-Beckmann-Str. 2 85354 Freising Germany
| | - Chris-Carolin Schön
- Plant Breeding; TUM School of Life Sciences Weihenstephan; Technische Universität München; Liesel-Beckmann-Str. 2 85354 Freising Germany
| | - Aurélien Tellier
- Population Genetics; TUM School of Life Sciences Weihenstephan; Technische Universität München; Liesel-Beckmann-Str. 2 85354 Freising Germany
| |
Collapse
|
36
|
Dwivedi SL, Ceccarelli S, Blair MW, Upadhyaya HD, Are AK, Ortiz R. Landrace Germplasm for Improving Yield and Abiotic Stress Adaptation. TRENDS IN PLANT SCIENCE 2016; 21:31-42. [PMID: 26559599 DOI: 10.1016/j.tplants.2015.10.012] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/24/2015] [Accepted: 10/15/2015] [Indexed: 05/19/2023]
Abstract
Plant landraces represent heterogeneous, local adaptations of domesticated species, and thereby provide genetic resources that meet current and new challenges for farming in stressful environments. These local ecotypes can show variable phenology and low-to-moderate edible yield, but are often highly nutritious. The main contributions of landraces to plant breeding have been traits for more efficient nutrient uptake and utilization, as well as useful genes for adaptation to stressful environments such as water stress, salinity, and high temperatures. We propose that a systematic landrace evaluation may define patterns of diversity, which will facilitate identifying alleles for enhancing yield and abiotic stress adaptation, thus raising the productivity and stability of staple crops in vulnerable environments.
Collapse
Affiliation(s)
- Sangam L Dwivedi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | | | - Matthew W Blair
- Department of Agriculture and Natural Sciences, Lawson Hall, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN, USA
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Ashok K Are
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Department of Plant Breeding, Sundsvagen, 14 Box 101, 23053 Alnarp, Sweden.
| |
Collapse
|
37
|
Gu J, Chen J, Chen L, Wang Z, Zhang H, Yang J. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.cj.2015.03.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Leforestier D, Ravon E, Muranty H, Cornille A, Lemaire C, Giraud T, Durel CE, Branca A. Genomic basis of the differences between cider and dessert apple varieties. Evol Appl 2015; 8:650-61. [PMID: 26240603 PMCID: PMC4516418 DOI: 10.1111/eva.12270] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/15/2015] [Indexed: 12/26/2022] Open
Abstract
Unraveling the genomic processes at play during variety diversification is of fundamental interest for understanding evolution, but also of applied interest in crop science. It can indeed provide knowledge on the genetic bases of traits for crop improvement and germplasm diversity management. Apple is one of the most important fruit crops in temperate regions, having both great economic and cultural values. Sweet dessert apples are used for direct consumption, while bitter cider apples are used to produce cider. Several important traits are known to differentiate the two variety types, in particular fruit size, biennial versus annual fruit bearing, and bitterness, caused by a higher content in polyphenols. Here, we used an Illumina 8k SNP chip on two core collections, of 48 dessert and 48 cider apples, respectively, for identifying genomic regions responsible for the differences between cider and dessert apples. The genome-wide level of genetic differentiation between cider and dessert apples was low, although 17 candidate regions showed signatures of divergent selection, displaying either outlier FST values or significant association with phenotypic traits (bitter versus sweet fruits). These candidate regions encompassed 420 genes involved in a variety of functions and metabolic pathways, including several colocalizations with QTLs for polyphenol compounds.
Collapse
Affiliation(s)
- Diane Leforestier
- UMR 1345 Institut de Recherche en Horticulture et Semences, Université d'Angers Angers, France
| | - Elisa Ravon
- UMR 1345 Institut de Recherche en Horticulture et Semences, INRA Beaucouzé, France
| | - Hélène Muranty
- UMR 1345 Institut de Recherche en Horticulture et Semences, INRA Beaucouzé, France
| | - Amandine Cornille
- Ecologie, Systématique et Evolution, Université Paris-Sud Orsay, France ; Ecologie, Systématique et Evolution, CNRS Orsay, France
| | - Christophe Lemaire
- UMR 1345 Institut de Recherche en Horticulture et Semences, Université d'Angers Angers, France
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Université Paris-Sud Orsay, France ; Ecologie, Systématique et Evolution, CNRS Orsay, France
| | - Charles-Eric Durel
- UMR 1345 Institut de Recherche en Horticulture et Semences, INRA Beaucouzé, France
| | - Antoine Branca
- Ecologie, Systématique et Evolution, Université Paris-Sud Orsay, France ; Ecologie, Systématique et Evolution, CNRS Orsay, France
| |
Collapse
|
39
|
The Wukong Terminal-Repeat Retrotransposon in Miniature (TRIM) Elements in Diverse Maize Germplasm. G3-GENES GENOMES GENETICS 2015; 5:1585-92. [PMID: 26019188 PMCID: PMC4528315 DOI: 10.1534/g3.115.018317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
TRIMs (terminal-repeat retrotransposons in miniature), which are characterized by their small size, have been discovered in all investigated vascular plants and even in animals. Here, we identified a highly conservative TRIM family referred to as Wukong elements in the maize genome. The Wukong family shows a distinct pattern of tandem arrangement in the maize genome suggesting a high rate of unequal crossing over. Estimation of insertion times implies a burst of retrotransposition activity of the Wukong family after the allotetraploidization of maize. Using next-generation sequencing data, we detected 87 new Wukong insertions in parents of the maize NAM population relative to the B73 reference genome and found abundant insertion polymorphism of Wukong elements in 75 re-sequenced maize lines, including teosinte, landraces, and improved lines. These results suggest that Wukong elements possessed a persistent retrotransposition activity throughout maize evolution. Moreover, the phylogenetic relationships among 76 maize inbreds and their relatives based on insertion polymorphisms of Wukong elements should provide us with reliable molecular markers for biodiversity and genetics studies.
Collapse
|
40
|
Huang J, Gao Y, Jia H, Liu L, Zhang D, Zhang Z. Comparative transcriptomics uncovers alternative splicing changes and signatures of selection from maize improvement. BMC Genomics 2015; 16:363. [PMID: 25952680 PMCID: PMC4433066 DOI: 10.1186/s12864-015-1582-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/24/2015] [Indexed: 12/05/2022] Open
Abstract
Background Alternative splicing (AS) is an important regulatory mechanism that greatly contributes to eukaryotic transcriptome diversity. A substantial amount of evidence has demonstrated that AS complexity is relevant to eukaryotic evolution, development, adaptation, and complexity. In this study, six teosinte and ten maize transcriptomes were sequenced to analyze AS changes and signatures of selection in maize domestication and improvement. Results In maize and teosinte, 13,593 highly conserved genes, including 12,030 multiexonic genes, were detected. By identifying AS isoforms from mutliexonic genes, we found that AS types were not significantly different between maize and teosinte. In addition, the two main AS types (intron retention and alternative acceptor) contributed to more than 60% of the AS events in the two species, but the average unique AS events per each alternatively spliced gene in maize (4.12) was higher than that in teosinte (2.26). Moreover, 94 genes generating 98 retained introns with transposable element (TE) sequences were detected in maize, which is far more than 9 retained introns with TEs detected in teosinte. This indicates that TE insertion might be an important mechanism for intron retention in maize. Additionally, the AS levels of 3864 genes were significantly different between maize and teosinte. Of these, 151 AS level-altered genes that are involved in transcriptional regulation and in stress responses are located in regions that have been targets of selection during maize improvement. These genes were inferred to be putatively improved genes. Conclusions We suggest that both maize and teosinte share similar AS mechanisms, but more genes have increased AS complexity during domestication from teosinte to maize. Importantly, a subset of AS level-increased genes that encode transcription factors and stress-responsive proteins may have been selected during maize improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1582-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Youjun Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Haitao Jia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Dan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Collaborative Innovation Center for Grain Crops, Jingzhou, 434025, China.
| |
Collapse
|
41
|
Mendes-Moreira P, Alves ML, Satovic Z, dos Santos JP, Santos JN, Souza JC, Pêgo SE, Hallauer AR, Vaz Patto MC. Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny. PLoS One 2015; 10:e0124543. [PMID: 25923975 PMCID: PMC4414412 DOI: 10.1371/journal.pone.0124543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 03/15/2015] [Indexed: 01/08/2023] Open
Abstract
MAIZE EAR FASCIATION Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. MATERIAL AND METHODS Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. RESULTS AND DISCUSSION Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. CONCLUSIONS Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning.
Collapse
Affiliation(s)
- Pedro Mendes-Moreira
- Departamento de Ciências Agronómicas, Escola Superior Agrária de Coimbra, Instituto Politécnico de Coimbra, Coimbra, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| | - Mara L. Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Zlatko Satovic
- Faculty of Agriculture, Department of Seed Science and Technology, University of Zagreb, Zagreb, Croatia
| | - João Pacheco dos Santos
- Departamento de Ciências Agronómicas, Escola Superior Agrária de Coimbra, Instituto Politécnico de Coimbra, Coimbra, Portugal
| | - João Nina Santos
- Departamento de Ciências Agronómicas, Escola Superior Agrária de Coimbra, Instituto Politécnico de Coimbra, Coimbra, Portugal
| | - João Cândido Souza
- Departamento de Biologia/UFLA, Universidade Federal de Lavras, Lavras-MG, Brasil
| | | | - Arnel R. Hallauer
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
42
|
Natsume S, Takagi H, Shiraishi A, Murata J, Toyonaga H, Patzak J, Takagi M, Yaegashi H, Uemura A, Mitsuoka C, Yoshida K, Krofta K, Satake H, Terauchi R, Ono E. The Draft Genome of Hop (Humulus lupulus), an Essence for Brewing. PLANT & CELL PHYSIOLOGY 2015; 56:428-41. [PMID: 25416290 DOI: 10.1093/pcp/pcu169] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The female flower of hop (Humulus lupulus var. lupulus) is an essential ingredient that gives characteristic aroma, bitterness and durability/stability to beer. However, the molecular genetic basis for identifying DNA markers in hop for breeding and to study its domestication has been poorly established. Here, we provide draft genomes for two hop cultivars [cv. Saazer (SZ) and cv. Shinshu Wase (SW)] and a Japanese wild hop [H. lupulus var. cordifolius; also known as Karahanasou (KR)]. Sequencing and de novo assembly of genomic DNA from heterozygous SW plants generated scaffolds with a total size of 2.05 Gb, corresponding to approximately 80% of the estimated genome size of hop (2.57 Gb). The scaffolds contained 41,228 putative protein-encoding genes. The genome sequences for SZ and KR were constructed by aligning their short sequence reads to the SW reference genome and then replacing the nucleotides at single nucleotide polymorphism (SNP) sites. De novo RNA sequencing (RNA-Seq) analysis of SW revealed the developmental regulation of genes involved in specialized metabolic processes that impact taste and flavor in beer. Application of a novel bioinformatics tool, phylogenetic comparative RNA-Seq (PCP-Seq), which is based on read depth of genomic DNAs and RNAs, enabled the identification of genes related to the biosynthesis of aromas and flavors that are enriched in SW compared to KR. Our results not only suggest the significance of historical human selection process for enhancing aroma and bitterness biosyntheses in hop cultivars, but also serve as crucial information for breeding varieties with high quality and yield.
Collapse
Affiliation(s)
- Satoshi Natsume
- Iwate Biotechnology Research Center (IBRC), 174-4, Narita 22, Kitakami, Iwate, 024-0003 Japan
| | - Hiroki Takagi
- Iwate Biotechnology Research Center (IBRC), 174-4, Narita 22, Kitakami, Iwate, 024-0003 Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503 Japan
| | - Jun Murata
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503 Japan
| | - Hiromi Toyonaga
- Research Institute, Suntory Global Innovation Center (SIC) Ltd., 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503 Japan
| | - Josef Patzak
- Hop Research Institute Co., Ltd., 438-01 Zatec, Kadanska 2525, Czech Republic
| | - Motoshige Takagi
- Technology Development Department, Suntory System Technology (SST) Ltd., 2-1-5, Dojima, Kita-ku, Osaka, 530-8204 Japan
| | - Hiroki Yaegashi
- Iwate Biotechnology Research Center (IBRC), 174-4, Narita 22, Kitakami, Iwate, 024-0003 Japan
| | - Aiko Uemura
- Iwate Biotechnology Research Center (IBRC), 174-4, Narita 22, Kitakami, Iwate, 024-0003 Japan
| | - Chikako Mitsuoka
- Iwate Biotechnology Research Center (IBRC), 174-4, Narita 22, Kitakami, Iwate, 024-0003 Japan
| | - Kentaro Yoshida
- Iwate Biotechnology Research Center (IBRC), 174-4, Narita 22, Kitakami, Iwate, 024-0003 Japan
| | - Karel Krofta
- Hop Research Institute Co., Ltd., 438-01 Zatec, Kadanska 2525, Czech Republic
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503 Japan
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center (IBRC), 174-4, Narita 22, Kitakami, Iwate, 024-0003 Japan
| | - Eiichiro Ono
- Research Institute, Suntory Global Innovation Center (SIC) Ltd., 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503 Japan
| |
Collapse
|
43
|
da Fonseca RR, Smith BD, Wales N, Cappellini E, Skoglund P, Fumagalli M, Samaniego JA, Carøe C, Ávila-Arcos MC, Hufnagel DE, Korneliussen TS, Vieira FG, Jakobsson M, Arriaza B, Willerslev E, Nielsen R, Hufford MB, Albrechtsen A, Ross-Ibarra J, Gilbert MTP. The origin and evolution of maize in the Southwestern United States. NATURE PLANTS 2015; 1:14003. [PMID: 27246050 DOI: 10.1038/nplants.2014.3] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/08/2014] [Indexed: 05/18/2023]
Abstract
The origin of maize (Zea mays mays) in the US Southwest remains contentious, with conflicting archaeological data supporting either coastal(1-4) or highland(5,6) routes of diffusion of maize into the United States. Furthermore, the genetics of adaptation to the new environmental and cultural context of the Southwest is largely uncharacterized(7). To address these issues, we compared nuclear DNA from 32 archaeological maize samples spanning 6,000 years of evolution to modern landraces. We found that the initial diffusion of maize into the Southwest about 4,000 years ago is likely to have occurred along a highland route, followed by gene flow from a lowland coastal maize beginning at least 2,000 years ago. Our population genetic analysis also enabled us to differentiate selection during domestication for adaptation to the climatic and cultural environment of the Southwest, identifying adaptation loci relevant to drought tolerance and sugar content.
Collapse
Affiliation(s)
- Rute R da Fonseca
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
- The Bioinformatics Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bruce D Smith
- Program in Human Ecology and Archaeobiology, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington DC 20560, USA
| | - Nathan Wales
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Enrico Cappellini
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Pontus Skoglund
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Matteo Fumagalli
- Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA
| | | | - Christian Carøe
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
| | - María C Ávila-Arcos
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - David E Hufnagel
- Department of Ecology, Evolution, &Organismal Biology, Iowa State University, 50011, USA
| | | | - Filipe Garrett Vieira
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
- Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA
| | - Mattias Jakobsson
- Department of Evolutionary Biology, Uppsala University, Uppsala 752 36, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala 752 36, Sweden
| | - Bernardo Arriaza
- Instituto de Alta Investigación, Universidad de Tarapacá, 15101 Arica, Chile
| | - Eske Willerslev
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Rasmus Nielsen
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
- Department of Integrative Biology and Statistics, University of California, Berkeley, California 94720-3140, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, &Organismal Biology, Iowa State University, 50011, USA
| | - Anders Albrechtsen
- The Bioinformatics Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, Center for Population Biology and Genome Center, University of California, Davis, California 95616, USA
| | - M Thomas P Gilbert
- Centre for GeoGenetics, University of Copenhagen, 1350 Copenhagen, Denmark
- Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, 6102, Australia
| |
Collapse
|
44
|
|
45
|
Liu Q, Wang H, Hu H, Zhang H. Genome-wide identification and evolutionary analysis of positively selected miRNA genes in domesticated rice. Mol Genet Genomics 2014; 290:593-602. [DOI: 10.1007/s00438-014-0943-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 10/17/2014] [Indexed: 01/24/2023]
|
46
|
Qiu J, Wang Y, Wu S, Wang YY, Ye CY, Bai X, Li Z, Yan C, Wang W, Wang Z, Shu Q, Xie J, Lee SH, Fan L. Genome re-sequencing of semi-wild soybean reveals a complex Soja population structure and deep introgression. PLoS One 2014; 9:e108479. [PMID: 25265539 PMCID: PMC4181298 DOI: 10.1371/journal.pone.0108479] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/20/2014] [Indexed: 11/18/2022] Open
Abstract
Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou) and a wild line (Lanxi 1) collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1) no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2) besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3) high heterozygous rates (0.19-0.49) were observed in several semi-wild lines; and (4) over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Yu Wang
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Sanling Wu
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Ying-Ying Wang
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Chu-Yu Ye
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Xuefei Bai
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Zefeng Li
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Chenghai Yan
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Weidi Wang
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Ziqiang Wang
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | - Qingyao Shu
- Institute of Nuclear Agricultural Science, Zhejiang University, Hangzhou, China
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, United States of America
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Longjiang Fan
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Li YH, Reif JC, Jackson SA, Ma YS, Chang RZ, Qiu LJ. Detecting SNPs underlying domestication-related traits in soybean. BMC PLANT BIOLOGY 2014; 14:251. [PMID: 25258093 PMCID: PMC4180965 DOI: 10.1186/s12870-014-0251-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 09/18/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Cultivated soybean (Glycine max) experienced a severe genetic bottleneck during its domestication and a further loss in diversity during its subsequent selection. Here, a panel of 65 wild (G. soja) and 353 cultivated accessions was genotyped at 552 single-nucleotide polymorphism loci to search for signals of selection during and after domestication. RESULTS The wild and cultivated populations were well differentiated from one another. Application of the Fst outlier test revealed 64 loci showing evidence for selection. Of these, 35 related to selection during domestication, while the other 29 likely gradually became monomorphic as a result of prolonged selection during post domestication. Two of the SNP locus outliers were associated with testa color. CONCLUSIONS Identifying genes controlling domestication-related traits is important for maintaining the diversity of crops. SNP locus outliers detected by a combined forward genetics and population genetics approach can provide markers with utility for the conservation of wild accessions and for trait improvement in the cultivated genepool.
Collapse
Affiliation(s)
- Ying-Hui Li
- />The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, P.R. China
| | - Jochen C Reif
- />Department of Cytogenetics and Genome Analysis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Scott A Jackson
- />Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - Yan-Song Ma
- />The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, P.R. China
- />Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, 150086 Harbin, China
| | - Ru-Zhen Chang
- />The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, P.R. China
| | - Li-Juan Qiu
- />The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, P.R. China
| |
Collapse
|
48
|
Mandel JR, McAssey EV, Nambeesan S, Garcia-Navarro E, Burke JM. Molecular evolution of candidate genes for crop-related traits in sunflower (Helianthus annuus L.). PLoS One 2014; 9:e99620. [PMID: 24914686 PMCID: PMC4051887 DOI: 10.1371/journal.pone.0099620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 05/17/2014] [Indexed: 01/03/2023] Open
Abstract
Evolutionary analyses aimed at detecting the molecular signature of selection during crop domestication and/or improvement can be used to identify genes or genomic regions of likely agronomic importance. Here, we describe the DNA sequence-based characterization of a pool of candidate genes for crop-related traits in sunflower. These genes, which were identified based on homology to genes of known effect in other study systems, were initially sequenced from a panel of improved lines. All genes that exhibited a paucity of sequence diversity, consistent with the possible effects of selection during the evolution of cultivated sunflower, were then sequenced from a panel of wild sunflower accessions an outgroup. These data enabled formal tests for the effects of selection in shaping sequence diversity at these loci. When selection was detected, we further sequenced these genes from a panel of primitive landraces, thereby allowing us to investigate the likely timing of selection (i.e., domestication vs. improvement). We ultimately identified seven genes that exhibited the signature of positive selection during either domestication or improvement. Genetic mapping of a subset of these genes revealed co-localization between candidates for genes involved in the determination of flowering time, seed germination, plant growth/development, and branching and QTL that were previously identified for these traits in cultivated × wild sunflower mapping populations.
Collapse
Affiliation(s)
- Jennifer R. Mandel
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Edward V. McAssey
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Savithri Nambeesan
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Elena Garcia-Navarro
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - John M. Burke
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
49
|
Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Campbell BC, Hu W, Innes DJ, Han X, Cruickshank A, Dai C, Frère C, Zhang H, Hunt CH, Wang X, Shatte T, Wang M, Su Z, Li J, Lin X, Godwin ID, Jordan DR, Wang J. Whole-genome sequencing reveals untapped genetic potential in Africa's indigenous cereal crop sorghum. Nat Commun 2014; 4:2320. [PMID: 23982223 PMCID: PMC3759062 DOI: 10.1038/ncomms3320] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/17/2013] [Indexed: 11/09/2022] Open
Abstract
Sorghum is a food and feed cereal crop adapted to heat and drought and a staple for 500 million of the world’s poorest people. Its small diploid genome and phenotypic diversity make it an ideal C4 grass model as a complement to C3 rice. Here we present high coverage (16–45 × ) resequenced genomes of 44 sorghum lines representing the primary gene pool and spanning dimensions of geographic origin, end-use and taxonomic group. We also report the first resequenced genome of S. propinquum, identifying 8 M high-quality SNPs, 1.9 M indels and specific gene loss and gain events in S. bicolor. We observe strong racial structure and a complex domestication history involving at least two distinct domestication events. These assembled genomes enable the leveraging of existing cereal functional genomics data against the novel diversity available in sorghum, providing an unmatched resource for the genetic improvement of sorghum and other grass species. Sorghum is a drought-resistant food and feed cereal crop used by over half a billion of the world’s poorest people. Here the authors present high-coverage resequencing genome data of 44 sorghum lines of varying geographic and taxonomic origin, which include a number of sorghum wild relatives.
Collapse
Affiliation(s)
- Emma S Mace
- 1] Department of Agriculture, Fisheries and Forestry Queensland (DAFFQ), Warwick, Queensland 4370, Australia [2]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Newell MA, Vogel KE, Adams M, Aydin N, Bodnar AL, Ali M, Lauter ANM, Scott MP. Genetic and biochemical differences in populations bred for extremes in maize grain methionine concentration. BMC PLANT BIOLOGY 2014; 14:49. [PMID: 24552611 PMCID: PMC3946590 DOI: 10.1186/1471-2229-14-49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/06/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Methionine is an important nutrient in animal feed and several approaches have been developed to increase methionine concentration in maize (Zea mays L.) grain. One approach is through traditional breeding using recurrent selection. Using divergent selection, genetically related populations with extreme differences in grain methionine content were produced. In order to better understand the molecular mechanisms controlling grain methionine content, we examined seed proteins, transcript levels of candidate genes, and genotypes of these populations. RESULTS Two populations were selected for high or low methionine concentration for eight generations and 40 and 56% differences between the high and low populations in grain methionine concentration were observed. Mean values between the high and low methionine populations differed by greater than 1.5 standard deviations in some cycles of selection. Other amino acids and total protein concentration exhibited much smaller changes. In an effort to understand the molecular mechanisms that contribute to these differences, we compared transcript levels of candidate genes encoding high methionine seed storage proteins involved in sulfur assimilation or methionine biosynthesis. In combination, we also explored the genetic mechanisms at the SNP level through implementation of an association analysis. Significant differences in methionine-rich seed storage protein genes were observed in comparisons of high and low methionine populations, while transcripts of seed storage proteins lacking high levels of methionine were unchanged. Seed storage protein levels were consistent with transcript levels. Two genes involved in sulfur assimilation, Cys2 and CgS1 showed substantial differences in allele frequencies when two selected populations were compared to the starting populations. Major genes identified across cycles of selection by a high-stringency association analysis included dzs18, wx, dzs10, and zp27. CONCLUSIONS We hypothesize that transcriptional changes alter sink strength by altering the levels of methionine-rich seed storage proteins. To meet the altered need for sulfur, a cysteine-rich seed storage protein is altered while sulfur assimilation and methionine biosynthesis throughput is changed by selection for certain alleles of Cys2 and CgS1.
Collapse
Affiliation(s)
- Mark A Newell
- The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | - Karla E Vogel
- Iowa State University, Interdepartmental Genetics graduate program, Ames, IA 50011, USA
- Monsanto Company, St Louis, MO 63137, USA
| | - Marie Adams
- Iowa State University, Interdepartmental Genetics graduate program, Ames, IA 50011, USA
| | - Nevzat Aydin
- Bioengineering Department, Karamanoglu Mehmetbey University, Faculty of Engineering, Karaman 70100, Turkey
| | - Anastasia L Bodnar
- Iowa State University, Interdepartmental Genetics graduate program, Ames, IA 50011, USA
| | - Muhammad Ali
- North West Frontier Province Agricultural University, Peshawar, Pakistan
| | | | - M Paul Scott
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| |
Collapse
|