1
|
Xu M, Xu Y, Liu H, Liu Q, Yang Q, Long R, Chen L, He F. Genome-wide association study revealed candidate genes associated with leaf size in alfalfa (Medicago sativa L.). BMC PLANT BIOLOGY 2025; 25:180. [PMID: 39930339 PMCID: PMC11812196 DOI: 10.1186/s12870-025-06170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial leguminous forages globally, known for its high yield and quality. Leaf size plays a crucial role in influencing its photosynthetic capacity, forage yield, and quality. Therefore, understanding the genetic factors regulating leaf size is of great importance for breeding new alfalfa varieties with improved yield and quality. In this study, we performed a genome-wide association study on four leaf size-related traits in 176 alfalfa germplasm resources to identify candidate genes associated with leaf size. RESULTS Phenotypic analysis revealed varying degrees of variation among the four traits, with coefficients of variation ranging from 3.43 to 36.84%. The broad sense heritability of these traits was found to be between 38.30% and 53.23%. Correlation analysis showed a significant positive correlation among the four traits (P < 0.01). The GWAS identified 39 SNPs associated with leaf size, distributed across eight chromosomes, of which 9 SNPs were linked to multiple traits. Haplotype analysis further confirmed that the number of superior alleles in each material was positively correlated with leaf area. Finally, we identified five genes near these 39 significant SNPs that are associated with leaf size or development. CONCLUSION Our findings provide new molecular markers for marker-assisted selection in alfalfa breeding programs. Moreover, this study provides a solid foundation for subsequent functional verification and genetic improvement in alfalfa.
Collapse
Affiliation(s)
- Ming Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanchao Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hao Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingsong Liu
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, 061001, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lin Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Pankaj R, Lima RB, Figueiredo DD. Hormonal regulation and crosstalk during early endosperm and seed coat development. PLANT REPRODUCTION 2024; 38:5. [PMID: 39724433 PMCID: PMC11671439 DOI: 10.1007/s00497-024-00516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
KEY MESSAGE This review covers the latest developments on the regulation of early seed development by phytohormones. The development of seeds in flowering plants starts with the fertilization of the maternal gametes by two paternal sperm cells. This leads to the formation of two products, embryo and endosperm, which are surrounded by a tissue of maternal sporophytic origin, called the seed coat. The development of each of these structures is under tight genetic control. Moreover, several phytohormones have been shown to modulate the development of all three seed compartments and have been implicated in the communication between them. This is particularly relevant, as embryo, endosperm, and seed coat have to coordinate their development for successful seed formation. Here, we review the latest advances on the hormonal regulation of early seed development in the model plant species Arabidopsis thaliana, with a focus on the endosperm and the seed coat. Moreover, we highlight how phytohormones serve as mechanisms of non-cell autonomous communication between these two compartments and how they are determinant in shaping seed formation.
Collapse
Affiliation(s)
- R Pankaj
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - R B Lima
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - D D Figueiredo
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
3
|
He Q, Wu H, Zeng L, Yin C, Wang L, Tan Y, Lv W, Liao Z, Zheng X, Zhang S, Han Q, Wang D, Zhang Y, Xiong G, Wang Q. OsKANADI1 and OsYABBY5 regulate rice plant height by targeting GIBERELLIN 2-OXIDASE6. THE PLANT CELL 2024; 37:koae276. [PMID: 39383255 DOI: 10.1093/plcell/koae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Plant height is an important agronomic characteristic of rice (Oryza sativa L.). Map-based cloning analyses of a natural semi-dwarf rice mutant with inwardly curled leaves found in the field revealed that the defects were due to a mutation of a SHAQKYF-class MYB family transcription factor, OsKANADI1 (OsKAN1). OsKAN1 directly bound to the OsYABBY5 (OsYAB5) promoter to repress its expression and interacted with OsYAB5 to form a functional OsKAN1-OsYAB5 complex. GIBERELLIN 2-OXIDASE6 (OsGA2ox6), encoding an enzyme in the gibberellin (GA) catabolic pathway, was activated by OsYAB5. Furthermore, the OsKAN1-OsYAB5 complex suppressed the inhibitory effect of OsKAN1 toward OsYAB5 and inhibited OsYAB5-induced OsGA2ox6 expression. The proOsKAN1:OsYAB5 transgenic plants were taller than wild-type plants, whereas oskan1 proOsKAN1:OsYAB5 plants exhibited a severe dwarf phenotype due to the absence of the OsKAN1-OsYAB5 complex. The OsKAN1-OsYAB5 complex modulated OsGA2ox6 expression, thereby regulating the levels of bioactive gibberellins and, consequently, plant height. This study elucidated the mechanism underlying the effect of the OsKAN1-OsYAB5-OsGA2ox6 regulatory pathway on plant height at different positions in rice stems and provided insights on stem development and candidate genes for the aerial architecture improvement of crop plants.
Collapse
Affiliation(s)
- Qi He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hao Wu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Longjun Zeng
- Institute of Crop Sciences, Yichun Academy of Science, Yichun 336000, China
| | - Caiyun Yin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Li Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yiqing Tan
- Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanqing Lv
- Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiqiang Liao
- Institute of Crop Sciences, Yichun Academy of Science, Yichun 336000, China
| | - Xuelian Zheng
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shuting Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qinqin Han
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Danning Wang
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yong Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guosheng Xiong
- Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Quan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
4
|
Zhou W, Li X, Li D, Jiang X, Yang Y, You J, Liu H, Cheng H, Wang H, Zhang M. Comparative transcriptome analysis provides novel insights into the seed germination of Panax japonicus, an endangered species in China. BMC PLANT BIOLOGY 2024; 24:1167. [PMID: 39639201 PMCID: PMC11619102 DOI: 10.1186/s12870-024-05904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Panax japonicus, an endangered species in China, is usually used as a traditional medicine with functions of hemostasis, pain relief, and detoxify. However, the seeds of P. japonicus are hard to germinate in natural conditions, and the molecular events and systematic changes occurring in seed germination are still largely unknown. In this study, we compared the seeds in different germination stages in terms of morphological features, antioxidant enzyme activities, and transcriptomics. The results indicated that sand storage at 25℃ for 120 d effectively released the seed dormancy of P. japonicus and promoted the seed germination. Moreover, sand storage treatment increased the antioxidant capacity of P. japonicus seeds through increasing the activities of SOD, POD, and CAT. The RNA-seq identified 28,908 differentially expressed genes (DEGs) between different germination stages, of which 1697 DEGs significantly changed throughout the whole germination process. Functional annotations showed that the seed germination of P. japonicus was mainly regulated by the DEGs related to pathways of ROS-scavenging metabolism, plant hormonal signal transduction, starch and sucrose metabolism, energy supply (glycolysis, pyruvate metabolism, and oxidative phosphorylation), and phenylpropanoid biosynthesis, as well as the transcription factors such as bHLHs, MYBs, WRKYs, and bZIPs. This study provides a foundation for unveiling molecular mechanisms underlying the seed germination and is beneficial for accelerating the development of P. japonicus industry.
Collapse
Affiliation(s)
- Wuxian Zhou
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Xiaoling Li
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
- Gongshui River Wetland Park Management Bureau of Xuan'en County, Enshi, 445000, China
| | - Darong Li
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Xiaogang Jiang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Yuying Yang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Jinwen You
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Haihua Liu
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Heng Cheng
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Hua Wang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China.
| | - Meide Zhang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China.
| |
Collapse
|
5
|
Yang T, Ma X, Zhang Q, Li L, Zhu R, Zeng A, Liu W, Liu H, Wang Y, Han S, Khan NU, Li J, Li Z, Zhang Z, Zhang H. Natural variation in the Tn1a promoter regulates tillering in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3345-3360. [PMID: 39189440 PMCID: PMC11606419 DOI: 10.1111/pbi.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/29/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Rice tillering is an important agronomic trait that influences plant architecture and ultimately affects yield. This can be genetically improved by mining favourable variations in genes associated with tillering. Based on a previous study on dynamic tiller number, we cloned the gene Tiller number 1a (Tn1a), which encodes a membrane-localised protein containing the C2 domain that negatively regulates tillering in rice. A 272 bp insertion/deletion at 387 bp upstream of the start codon in the Tn1a promoter confers a differential transcriptional response and results in a change in tiller number. Moreover, the TCP family transcription factors Tb2 and TCP21 repress the Tn1a promoter activity by binding to the TCP recognition site within the 272 bp indel. In addition, we identified that Tn1a may affect the intracellular K+ content by interacting with a cation-chloride cotransporter (OsCCC1), thereby affecting the expression of downstream tillering-related genes. The Tn1a+272 bp allele, associated with high tillering, might have been preferably preserved in rice varieties in potassium-poor regions during domestication. The discovery of Tn1a is of great significance for further elucidating the genetic basis of tillering characteristics in rice and provides a new and favourable allele for promoting the geographic adaptation of rice to soil potassium.
Collapse
Affiliation(s)
- Tao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Xiaoqian Ma
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- College of Agriculture, Henan University of Science and TechnologyLuoyangChina
| | - Quan Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Lin Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Rui Zhu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - An Zeng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Wanying Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Haixia Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Yulong Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Shichen Han
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Najeeb Ullah Khan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
| | - Jinjie Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Zhanying Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Hongliang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and Biotechnology, China Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
- Sanya Nanfan Research Institute of Hainan UniversitySanyaChina
| |
Collapse
|
6
|
Liangdeng W, Fengrui Y, Weifeng Z, Ming Z, Xufeng X, Yuekeng Y, Fei G, Wenjing W. Transcriptomics integrated with targeted metabolomics reveals endogenous hormone changes in tuberous root expansion of Pueraria. BMC Genomics 2024; 25:1112. [PMID: 39563238 DOI: 10.1186/s12864-024-11010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Pueraria is a widely cultivated medicinal and edible homologous plant in Asia, and its tuberous roots are commonly used in the food, nutraceutical, and pharmaceutical industries. "Gange No. 5" is a local variety of Pueraria montana var. thomsonii (Bentham) M.R. Almeida (PMT) in Jiangxi Province, China. After optimizing its cultivation technique, we shortened the cultivation cycle of this variety from two years to one year, suggesting that the regulatory mechanism of the endogenous hormone system during tuberous root expansion may have changed significantly. In this study, we focused on the molecular mechanisms of endogenous hormones in promoting tuberous root expansion during one-year cultivation of "Gange No. 5". RESULTS The mid-late expansion period (S4) is critical for the rapid swelling of "Gange No. 5" tuberous roots during annual cultivation. At S4, the number of cells increased dramatically and their volume enlarged rapidly in the tuberous roots, the fresh weight of a single root quickly increased, and the contents of multiple nutrients (total protein, total phenol, isoflavones) and medicinal components (puerarin, puerarin apigenin, and soy sapogenin) were at their peak values. We compared the transcriptomes and metabolomes of S1 (the pre-expansion period), S4, and S6 (the final expansion period), and screened 42 differentially accumulated hormone metabolites and 1,402 differentially expressed genes (DEGs) associated with hormone biosynthesis, metabolism, and signaling. Most Auxin, cytokinins (CKs), jasmonic acids (JAs), salicylic acid (SA), melatonin (MLT), and ethylene (ETH), reached their maximum levels at S1 and then gradually decreased; however, abscisic acid (ABA) appeared in S6, indicating that most of the endogenous hormones may play a key role in regulating the initiation of tuberous root expansion, while ABA mainly promotes tuberous root maturation. Notably, multiple key genes of the 'Tryptophan metabolism' pathway (ko00380) were significantly differentially expressed, and COBRA1, COBRA2, YUCCA10, IAA13, IAA16, IAA20, IAA27, VAN3, ACAA2, and ARF were also identified to be significantly correlated with the expansion of "Gange No. 5" tuberous roots. CONCLUSIONS Our study has revealed how endogenous hormone regulation affects the expansion of "Gange No. 5" tuberous roots. These findings offer a theoretical foundation for improving the yield of PMT tuberous roots.
Collapse
Affiliation(s)
- Wang Liangdeng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yin Fengrui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhu Weifeng
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Zhang Ming
- Department of Animal Science, Jiangxi Biotech Vocational College, Nanchang, 330200, China
| | - Xiao Xufeng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yao Yuekeng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ge Fei
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Wang Wenjing
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
7
|
Zhang J, Wang X, Dou G, Meng D, Tang C, Lv J, Wang N, Wang X, Li J, Bao Y, Zhang G, Huang T, Shi Y. Genome-wide identification of rice CXE gene family and mining of alleles for potential application in rice improvement. FRONTIERS IN PLANT SCIENCE 2024; 15:1435420. [PMID: 39483679 PMCID: PMC11524881 DOI: 10.3389/fpls.2024.1435420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024]
Abstract
Carboxylesterases (CXE, EC 3.1.1.1), a class of hydrolases with an α/β folding domain, play important roles in plant growth and development and stress response. Here, we identified 32, 63, 41, and 45 CXE genes in Oryza sativa Japonica (Nipponbare), Oryza sativa Indica (93-11), Oryza sativa Indica (Xian-1B1 var.IR64), and Oryza sativa Japonica (Geng-sbtrp var.ChaoMeo), respectively. Then, we analyzed the chromosomal location, physical and chemical properties, subcellular localization, collinearity, and selection pressure of CXE genes in four rice varieties. We also analyzed the functional interaction network, cis-regulatory elements, evolutionary relationship, and protein tertiary structure, and performed gene expression profiling and qPCR verification under abiotic stress, as well as diversity analysis of 3010 gene-CDS-haplotype (gcHap) rice samples, aiming to understand the potential function of the 32 OsCXE genes. Our results indicated that fragment replication is the main reason for amplification of the CXE gene family in rice, and the gene family has undergone strong purification selection. OsCXE3.1, OsCXE3.2, OsCXE3.3, OsCXE5.1, and OsCXE7.3 may be used to improve the tolerance of rice to abiotic stress. OsCXE play important roles in rice population differentiation and improvement, and the major gcHaps at most OsCXE locus are significantly associated with yield traits. Therefore, natural variations of most OsCXE locus have great potential value for improvement of rice productivity.
Collapse
Affiliation(s)
- Jinguo Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xinchen Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Guohui Dou
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Dezhuang Meng
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Chenghang Tang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jiaqi Lv
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Nansheng Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xingmeng Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jianfeng Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yaling Bao
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Guogeng Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Huang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yingyao Shi
- School of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Wang Z, Zhang S, Chen B, Xu X. Functional Characterization of the Gibberellin (GA) Receptor ScGID1 in Sugarcane. Int J Mol Sci 2024; 25:10688. [PMID: 39409017 PMCID: PMC11477236 DOI: 10.3390/ijms251910688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Sugarcane smut caused by Sporisorium scitamineum represents the most destructive disease in the sugarcane industry, causing host hormone disruption and producing a black whip-like sorus in the apex of the stalk. In this study, the gibberellin metabolic pathway was found to respond to S. scitamineum infection, and the contents of bioactive gibberellins were significantly reduced in the leaves of diseased plants. The gibberellin receptor gene ScGID1 was identified and significantly downregulated. ScGID1 localized in both the nucleus and cytoplasm and had the highest expression level in the leaves. Eight proteins that interact with ScGID1 were screened out using a yeast two-hybrid assay. Novel DELLA proteins named ScGAI1a and ScGA20ox2, key enzymes in GA biosynthesis, were both found to interact with ScGID1 in a gibberellin-independent manner. Transcription factor trapping with a yeast one-hybrid system identified 50 proteins that interacted with the promoter of ScGID1, among which ScS1FA and ScPLATZ inhibited ScGID1 transcription, while ScGDSL promoted transcription. Overexpression of ScGID1 in transgenic Nicotiana benthamiana plants could increase plant height and promote flowering. These results not only contribute to improving our understanding of the metabolic regulatory network of sugarcane gibberellin but also expand our knowledge of the interaction between sugarcane and pathogens.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
| | - Shujun Zhang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
| | - Baoshan Chen
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Guangxi University, Nanning 530004, China
| | - Xiongbiao Xu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Drapek C, Rizza A, Mohd-Radzman NA, Schiessl K, Dos Santos Barbosa F, Wen J, Oldroyd GED, Jones AM. Gibberellin dynamics governing nodulation revealed using GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula lateral organs. THE PLANT CELL 2024; 36:4442-4456. [PMID: 39012965 PMCID: PMC11449112 DOI: 10.1093/plcell/koae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen-fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically encoded second-generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions, and maintaining accumulation in the mature nodule meristem. We show, through misexpression of GA-catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.
Collapse
Affiliation(s)
- Colleen Drapek
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Annalisa Rizza
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | | | | | | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Stillwater, OK 73401, USA
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB3 0LE, UK
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| |
Collapse
|
10
|
Fan Y, Chen H, Wang B, Li D, Zhou R, Lian W, Shao G, Wei X, Wu W, Liu Q, Sun L, Zhan X, Cheng S, Zhang Y, Cao L. DWARF AND LESS TILLERS ON CHROMOSOME 3 promotes tillering in rice by sustaining FLORAL ORGAN NUMBER 1 expression. PLANT PHYSIOLOGY 2024; 196:1064-1079. [PMID: 38996044 DOI: 10.1093/plphys/kiae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 07/14/2024]
Abstract
Three key factors determine yield in rice (Oryza sativa): panicle number, grain number, and grain weight. Panicle number is strongly associated with tiller number. Although many genes regulating tillering have been identified, whether Dof proteins are involved in controlling plant architecture remains unknown. The dwarf and less tillers on chromosome 3 (dlt3) rice mutant produces fewer tillers than the wild type. We cloned DLT3, which encodes a Dof protein that interacts with MONOCULM 3 (MOC3) in vivo and in vitro and recruits MOC1, forming a DLT3-MOC3-MOC1 complex. DLT3 binds to the promoter of FLORAL ORGAN NUMBER 1 (FON1) to activate its transcription and positively regulate tiller number. The overexpression of MOC1, MOC3, or FON1 in the dlt3 mutant increased tiller number. Collectively, these results suggest a model in which DLT3 regulates tiller number by maintaining the expression of MOC1, MOC3, and FON1. We discovered that DLT3 underwent directional selection in the Xian/indica and Geng/japonica populations during rice domestication. To provide genetic resources for breeding varieties with optimal panicle numbers, we performed large-scale diversity sequencing of the 1,080-bp DLT3 coding region of 531 accessions from different countries and regions. Haplotype analysis showed that the superior haplotype, DLT3H1, produced the most tillers, while haplotype DLT3H6 produced the fewest tillers. Our study provides important germplasm resources for breeding super high-yielding rice varieties with combinations of superior haplotypes in different target genes, which will help overcome the challenge of food and nutritional security in the future.
Collapse
Affiliation(s)
- Yongyi Fan
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Hongmei Chen
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Beifang Wang
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
- China National Rice Research Institute, Baoqing Northern Rice Research Center, Baoqing, Heilongjiang 155600, China
| | - Dian Li
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Ran Zhou
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Wangmin Lian
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Qunen Liu
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Lianping Sun
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
- China National Rice Research Institute, Baoqing Northern Rice Research Center, Baoqing, Heilongjiang 155600, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
11
|
Rudolf J, Tomovicova L, Panzarova K, Fajkus J, Hejatko J, Skalak J. Epigenetics and plant hormone dynamics: a functional and methodological perspective. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5267-5294. [PMID: 38373206 PMCID: PMC11389840 DOI: 10.1093/jxb/erae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Plant hormones, pivotal regulators of plant growth, development, and response to environmental cues, have recently emerged as central modulators of epigenetic processes governing gene expression and phenotypic plasticity. This review addresses the complex interplay between plant hormones and epigenetic mechanisms, highlighting the diverse methodologies that have been harnessed to decipher these intricate relationships. We present a comprehensive overview to understand how phytohormones orchestrate epigenetic modifications, shaping plant adaptation and survival strategies. Conversely, we explore how epigenetic regulators ensure hormonal balance and regulate the signalling pathways of key plant hormones. Furthermore, our investigation includes a search for novel genes that are regulated by plant hormones under the control of epigenetic processes. Our review offers a contemporary overview of the epigenetic-plant hormone crosstalk, emphasizing its significance in plant growth, development, and potential agronomical applications.
Collapse
Affiliation(s)
- Jiri Rudolf
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Lucia Tomovicova
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Klara Panzarova
- Photon Systems Instruments, Prumyslova 470, CZ-664 24 Drasov, Czech Republic
| | - Jiri Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Hejatko
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Skalak
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
12
|
Wei J, Zhang Q, Zhang Y, Yang L, Zeng Z, Zhou Y, Chen B. Advance in the Thermoinhibition of Lettuce ( Lactuca sativa L.) Seed Germination. PLANTS (BASEL, SWITZERLAND) 2024; 13:2051. [PMID: 39124169 PMCID: PMC11314492 DOI: 10.3390/plants13152051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Thermoinhibition refers to the inability of seeds to germinate when inhibited by high temperatures, but when environmental conditions return to normal, the seeds are able to germinate rapidly again, which is different from thermodormancy. Meanwhile, with global warming, the effect of the thermoinhibition phenomenon on the yield and quality of crops in agricultural production is becoming common. Lettuce, as a horticultural crop sensitive to high temperature, is particularly susceptible to the effects of thermoinhibition, resulting in yield reduction. Therefore, it is crucial to elucidate the intrinsic mechanism of action of thermoinhibition in lettuce seeds. This review mainly outlines several factors affecting thermoinhibition of lettuce seed germination, including endosperm hardening, alteration of endogenous or exogenous phytohormone concentrations, action of photosensitizing pigments, production and inhibition of metabolites, maternal effects, genetic expression, and other physical and chemical factors. Finally, we also discuss the challenges and potential of lettuce seed germination thermoinhibition research. The purpose of this study is to provide theoretical support for future research on lettuce seed germination thermoinhibition, and with the aim of revealing the mechanisms and effects behind lettuce seed thermoinhibition. This will enable the identification of more methods to alleviate seed thermoinhibition or the development of superior heat-tolerant lettuce seeds.
Collapse
Affiliation(s)
- Jinpeng Wei
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yixin Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Le Yang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoqi Zeng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510550, China
| | - Yuliang Zhou
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Bingxian Chen
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
13
|
Tan X, Long W, Ma N, Sang S, Cai S. Transcriptome analysis suggested that lncRNAs regulate rapeseed seedlings in responding to drought stress by coordinating the phytohormone signal transduction pathways. BMC Genomics 2024; 25:704. [PMID: 39030492 PMCID: PMC11264961 DOI: 10.1186/s12864-024-10624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
The growth, yield, and seed quality of rapeseed are negatively affected by drought stress. Therefore, it is of great value to understand the molecular mechanism behind this phenomenon. In a previous study, long non-coding RNAs (lncRNAs) were found to play a key role in the response of rapeseed seedlings to drought stress. However, many questions remained unanswered. This study was the first to investigate the expression profile of lncRNAs not only under control and drought treatment, but also under the rehydration treatment. A total of 381 differentially expressed lncRNA and 10,253 differentially expressed mRNAs were identified in the comparison between drought stress and control condition. In the transition from drought stress to rehydration, 477 differentially expressed lncRNAs and 12,543 differentially expressed mRNAs were detected. After identifying the differentially expressed (DE) lncRNAs, the comprehensive lncRNAs-engaged network with the co-expressed mRNAs in leaves under control, drought and rehydration was investigated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of co-expressed mRNAs identified the most significant pathways related with plant hormones (expecially abscisic acid, auxin, cytokinins, and gibberellins) in the signal transduction. The genes, co-expressed with the most-enriched DE-lncRNAs, were considered as the most effective candidates in the water-loss and water-recovery processes, including protein phosphatase 2 C (PP2C), ABRE-binding factors (ABFs), and SMALL AUXIN UP-REGULATED RNAs (SAURs). In summary, these analyses clearly demonstrated that DE-lncRNAs can act as a regulatory hub in plant-water interaction by controlling phytohormone signaling pathways and provided an alternative way to explore the complex mechanisms of drought tolerance in rapeseed.
Collapse
Affiliation(s)
- Xiaoyu Tan
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Weihua Long
- School of Rural Revitalization, Jiangsu Open University, Nanjing, China.
| | - Ni Ma
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oilcrops Research Institute of the Chinese Academy of Agricultural, Wuhan, China
| | - Shifei Sang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shanya Cai
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| |
Collapse
|
14
|
Shen Y, Li L. Research Overview and Trends of the Effects of Gibberellins (GAs) on Rice Biological Processes: A Bibliometric Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1548. [PMID: 38891356 PMCID: PMC11174460 DOI: 10.3390/plants13111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Rice (Oryza sativa L.) is a vital crop that feeds more than half of the world's population. Gibberellins (GAs), a crucial phytohormone, play a significant role in the growth and development of rice. Since 1985, there has been a notable increase in the number of studies investigating the effects of GA on various biological processes in rice. Nevertheless, conducting scientific and quantitative research on the extensive literature available poses significant challenges, particularly in understanding the development trajectory of the field, examining major contributors, and identifying emerging research trends. The objective of this study is to address these challenges by analyzing global research patterns and trends using bibliometric methods from 1985 to 2024. Through the application of advanced analytical tools, progress in this field is studied in depth and the global research landscape is characterized from multiple dimensions including countries, institutions, authors, and journals. The analysis of 2118 articles extracted and screened from the Web of Science Core dataset shows a steady growth in the number of publications. The research published in China and the USA has significantly advanced the development of the field. In particular, institutions such as the Chinese Academy of Sciences and Nagoya University have shown impressive productivity. Lee In-Jung stands out as the most influential author. The journal Plant Physiology publishes the highest number of articles. The study also provides a thorough examination of current research hotspots, indicating a predominant focus on understanding the role of GAs in the biological processes that regulate diverse rice phenotypes, including plant height, seed dormancy, germination, and stress resistance. By tracing the development characteristics and key points in this area, this study contributes to a quantitative and comprehensive understanding of the impact of GAs on rice.
Collapse
Affiliation(s)
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
15
|
Li Q, Chen S, Chen L, Zhuang L, Wei H, Jiang S, Wang C, Qi J, Fang P, Xu J, Tao A, Zhang L. Cloning and functional mechanism of the dwarf gene gba affecting stem elongation and cellulose biosynthesis in jute (Corchorus olitorius). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2003-2019. [PMID: 38536089 DOI: 10.1111/tpj.16724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 06/14/2024]
Abstract
Plant height (PH) is an important factor affecting bast fiber yield in jute. Here, we report the mechanism of dwarfism in the 'Guangbaai' (gba) of jute. The mutant gba had shorter internode length and cell length compared to the standard cultivar 'TaiZi 4' (TZ4). Exogenous GA3 treatment indicated that gba is a GA-insensitive dwarf mutant. Quantitative trait locus (QTL) analysis of three PH-related traits via a high-density genetic linkage map according to re-seq showed that a total of 25 QTLs were identified, including 13 QTLs for PH, with phenotypic variation explained ranging from 2.42 to 74.16%. Notably, the functional mechanism of the candidate gene CoGID1a, the gibberellic acid receptor, of the major locus qPHIL5 was evaluated by transgenic analysis and virus-induced gene silencing. A dwarf phenotype-related single nucleotide mutation in CoGID1a was identified in gba, which was also unique to the dwarf phenotype of gba among 57 cultivars. Cogid1a was unable to interact with the growth-repressor DELLA even in the presence of highly accumulated gibberellins in gba. Differentially expressed genes between transcriptomes of gba and TZ4 after GA3 treatment indicated up-regulation of genes involved in gibberellin and cellulose synthesis in gba. Interestingly, it was found that up-regulation of CoMYB46, a key transcription factor in the secondary cell wall, by the highly accumulated gibberellins in gba promoted the expression of cellulose synthase genes CoCesA4 and CoCesA7. These findings provide valuable insights into fiber development affected by endogenous gibberellin accumulation in plants.
Collapse
Affiliation(s)
- Qin Li
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Siyuan Chen
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu Chen
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lingling Zhuang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huawei Wei
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaolian Jiang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chuanyu Wang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianmin Qi
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pingping Fang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiantang Xu
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Aifen Tao
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liwu Zhang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
16
|
Hernández-García J, Serrano-Mislata A, Lozano-Quiles M, Úrbez C, Nohales MA, Blanco-Touriñán N, Peng H, Ledesma-Amaro R, Blázquez MA. DELLA proteins recruit the Mediator complex subunit MED15 to coactivate transcription in land plants. Proc Natl Acad Sci U S A 2024; 121:e2319163121. [PMID: 38696472 PMCID: PMC11087773 DOI: 10.1073/pnas.2319163121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024] Open
Abstract
DELLA proteins are negative regulators of the gibberellin response pathway in angiosperms, acting as central hubs that interact with hundreds of transcription factors (TFs) and regulators to modulate their activities. While the mechanism of TF sequestration by DELLAs to prevent DNA binding to downstream targets has been extensively documented, the mechanism that allows them to act as coactivators remains to be understood. Here, we demonstrate that DELLAs directly recruit the Mediator complex to specific loci in Arabidopsis, facilitating transcription. This recruitment involves DELLA amino-terminal domain and the conserved MED15 KIX domain. Accordingly, partial loss of MED15 function mainly disrupted processes known to rely on DELLA coactivation capacity, including cytokinin-dependent regulation of meristem function and skotomorphogenic response, gibberellin metabolism feedback, and flavonol production. We have also found that the single DELLA protein in the liverwort Marchantia polymorpha is capable of recruiting MpMED15 subunits, contributing to transcriptional coactivation. The conservation of Mediator-dependent transcriptional coactivation by DELLA between Arabidopsis and Marchantia implies that this mechanism is intrinsic to the emergence of DELLA in the last common ancestor of land plants.
Collapse
Affiliation(s)
- Jorge Hernández-García
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
- Laboratory of Biochemistry, Wageningen University, Wageningen6703 WE, The Netherlands
| | - Antonio Serrano-Mislata
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - María Lozano-Quiles
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - María A. Nohales
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| | - Huadong Peng
- Imperial College Centre for Synthetic Biology, Imperial College London, LondonSW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London, LondonSW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Miguel A. Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia46022, Spain
| |
Collapse
|
17
|
Li S, Ran S, Yuan S, Chang K, Han M, Zhong F. Gibberellin-mediated far-red light-induced leaf expansion in cucumber seedlings. PROTOPLASMA 2024; 261:571-579. [PMID: 38170395 DOI: 10.1007/s00709-023-01923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Our experiments explored the effects of far-red (FR) light on cucumber (Cucumis sativus L. 'Zhongnong No. 26') seedling growth. Our results indicated that FR light significantly promoted the growth of cucumber seedlings. Specifically, it promoted the accumulation of shoot biomass and the elongation of internodes and leaves (except the first leaf at the bottom). Further analysis showed that FR light had no effect on the accumulation contents of abscisic acid (ABA) and auxin (IAA) in seedling leaves. Still, it significantly caused the increase of the gibberellin (GA3, GA4, and GA7) contents and the decrease of GA1 content, which suggested that the leaf expansion progress under FR light may be primarily related to GA. Therefore, the cucumber seedling leaf expansion response to GA was evaluated under different light sources. The exogenous spraying of different GA4/7 contents significantly promoted the leaf expansion of cucumber seedlings under white light, while the GA biosynthesis inhibitor paclobutrazol (PAC) significantly promoted the expression of GA hydrolytic genes (GA2ox2 and GA2ox4) and decreased the content of endogenous active GA, which inhibited the leaf expansion induced by FR light. As expected, the combination of exogenous GA4/7 and PAC restored the growth promotion effect of FR light on cucumber seedling leaves. It increased the contents of endogenous active GA (GA1, GA3, GA4, and GA7), and the expression trend in GA synthetic/hydrolytic-related genes was the opposite of that of PAC was applied alone. All of the above results indicated that FR light regulates leaf expansion progress in cucumber seedlings through GA.
Collapse
Affiliation(s)
- Shuhao Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Shengxiang Ran
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Song Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Kaizhen Chang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Mingxuan Han
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
18
|
Li C, Hou X, Zhao Z, Liu H, Huang P, Shi M, Wu X, Gao R, Liu Z, Wei L, Li Y, Liao W. A tomato NAC transcription factor, SlNAP1, directly regulates gibberellin-dependent fruit ripening. Cell Mol Biol Lett 2024; 29:57. [PMID: 38649857 PMCID: PMC11036752 DOI: 10.1186/s11658-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.
Collapse
Affiliation(s)
- Changxia Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
- College of Agriculture, Guangxi University, 100 East University Road, Xixiangtang District, Nanning, 530004, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zongxi Zhao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Huwei Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Panpan Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Meimei Shi
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuetong Wu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Rong Gao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Lijuan Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
19
|
Huang Y, Ji Z, Zhang S, Li S. Function of hormone signaling in regulating nitrogen-use efficiency in plants. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154191. [PMID: 38335845 DOI: 10.1016/j.jplph.2024.154191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Nitrogen (N) is one of the most important nutrients for crop plant performance, however, the excessive application of nitrogenous fertilizers in agriculture significantly increases production costs and causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N-use efficiency (NUE) with the aim of developing new crop varieties that combine high yields with improved NUE is an urgent goal for achieving more sustainable agriculture. Plant NUE is a complex trait that is affected by multiple factors, of which hormones are known to play pivotal roles. In this review, we focus on the interaction between the biosynthesis and signaling pathways of plant hormones with N metabolism, and summarize recent studies on the interplay between hormones and N, including how N regulates multiple hormone biosynthesis, transport and signaling and how hormones modulate root system architecture (RSA) in response to external N sources. Finally, we explore potential strategies for promoting crop NUE by modulating hormone synthesis, transport and signaling. This provides insights for future breeding of N-efficient crop varieties and the advancement of sustainable agriculture.
Collapse
Affiliation(s)
- Yunzhi Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ji
- Department of Biology, University of Oxford, Oxford, UK
| | - Siyu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
20
|
Li Y, Cao Y, Fan Y, Fan G. Comprehensive Analysis of the GRAS Gene Family in Paulownia fortunei and the Response of DELLA Proteins to Paulownia Witches' Broom. Int J Mol Sci 2024; 25:2425. [PMID: 38397102 PMCID: PMC10888722 DOI: 10.3390/ijms25042425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The GRAS (GAI\RGA\SCL) gene family encodes plant-specific transcription factors that play crucial roles in plant growth and development, stress tolerance, and hormone network regulation. Plant dwarfing symptom is mainly regulated by DELLA proteins of the GRAS gene subfamily. In this study, the association between the GRAS gene family and Paulownia witches' broom (PaWB) was investigated. A total of 79 PfGRAS genes were identified using bioinformatics methods and categorized into 11 groups based on amino acid sequences. Tandem duplication and fragment duplication were found to be the main modes of amplification of the PfGRAS gene family. Gene structure analysis showed that more than 72.1% of the PfGRASs had no introns. The genes PfGRAS12/18/58 also contained unique DELLA structural domains; only PfGRAS12, which showed significant response to PaWB phytoplasma infection in stems, showed significant tissue specificity and responded to gibberellin (GA3) in PaWB-infected plants. We found that the internodes were significantly elongated under 100 µmol·L-1 GA3 treatment for 30 days. The subcellular localization analysis indicated that PfGRAS12 is located in the nucleus and cell membrane. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays confirmed that PfGRAS12 interacted with PfJAZ3 in the nucleus. Our results will lay a foundation for further research on the functions of the PfGRAS gene family and for genetic improvement and breeding of PaWB-resistant trees.
Collapse
Affiliation(s)
- Yixiao Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (Y.C.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Yabing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (Y.C.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Yujie Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (Y.C.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (Y.C.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
21
|
Min WK, Kwon DH, Song JT, Seo HS. Arabidopsis retromer subunit AtVPS29 is involved in SLY1-mediated gibberellin signaling. PLANT CELL REPORTS 2024; 43:53. [PMID: 38315261 PMCID: PMC10844355 DOI: 10.1007/s00299-024-03144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024]
Abstract
KEY MESSAGE Retromer protein AtVPS29 upregulates the SLY1 protein and downregulates the RGA protein, positively stimulating the development of the root meristematic zone, which indicates an important role of AtVPS29 in gibberellin signaling. In plants, the large retromer complex is known to play roles in multiple development processes, including cell polarity, programmed cell death, and root hair growth in Arabidopsis. However, many of its roles in plant development remain unknown. Here, we show that Arabidopsis trimeric retromer protein AtVPS29 (vacuolar protein sorting 29) modulates gibberellin signaling. The SLEEPY1 (SLY1) protein, known as a positive regulator of gibberellic acid (GA) signaling, exhibited lower abundance in vps29-3 mutants compared to wild-type (WT) plants. Conversely, the DELLA repressor protein, targeted by the E3 ubiquitin ligase SCF (Skp, Cullin, F-box) complex and acting as a negative regulator of GA signaling, showed increased abundance in vps29-3 mutants compared to WT. The vps29-3 mutants exhibited decreased sensitivity to exogenous GA supply in contrast to WT, despite an upregulation in the expression of GA receptor genes within the vps29-3 mutants. In addition, the expression of the GA synthesis genes was downregulated in vps29-3 mutants, implying that the loss of AtVPS29 causes the downregulation of GA synthesis and signaling. Furthermore, vps29-3 mutants exhibited a reduced meristematic zone accompanied by a decreased cell number. Together, these data indicate that AtVPS29 positively regulates SLY1-mediated GA signaling and plant growth.
Collapse
Affiliation(s)
- Wang Ki Min
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Gwanakro 200, Gwanak-Gu, Seoul, 08826, Korea
| | - Dae Hwan Kwon
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Gwanakro 200, Gwanak-Gu, Seoul, 08826, Korea
| | - Jong Tae Song
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Gwanakro 200, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
22
|
Li X, Xu Y, Wei Z, Kuang J, She M, Wang Y, Jin Q. NnSnRK1-NnATG1-mediated autophagic cell death governs flower bud abortion in shaded lotus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:979-998. [PMID: 38102881 DOI: 10.1111/tpj.16590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Many plants can terminate their flowering process in response to unfavourable environments, but the mechanisms underlying this response are poorly understood. In this study, we observed that the lotus flower buds were susceptible to abortion under shaded conditions. The primary cause of abortion was excessive autophagic cell death (ACD) in flower buds. Blockade of autophagic flux in lotus flower buds consistently resulted in low levels of ACD and improved flowering ability under shaded conditions. Further evidence highlights the importance of the NnSnRK1-NnATG1 signalling axis in inducing ACD in lotus flower buds and culminating in their timely abortion. Under shaded conditions, elevated levels of NnSnRK1 activated NnATG1, which subsequently led to the formation of numerous autophagosome structures in lotus flower bud cells. Excessive autophagy levels led to the bulk degradation of cellular material, which triggered ACD and the abortion of flower buds. NnSnRK1 does not act directly on NnATG1. Other components, including TOR (target of rapamycin), PI3K (phosphatidylinositol 3-kinase) and three previously unidentified genes, appeared to be pivotal for the interaction between NnSnRK1 and NnATG1. This study reveals the role of autophagy in regulating the abortion of lotus flower buds, which could improve reproductive success and act as an energy-efficient measure in plants.
Collapse
Affiliation(s)
- Xiehongsheng Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zongyao Wei
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaying Kuang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingzhao She
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Noviello G, Gjaltema RAF. Fine-Tuning the Epigenetic Landscape: Chemical Modulation of Epigenome Editors. Methods Mol Biol 2024; 2842:57-77. [PMID: 39012590 DOI: 10.1007/978-1-0716-4051-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenome editing has emerged as a powerful technique for targeted manipulation of the chromatin and transcriptional landscape, employing designer DNA binding domains fused with effector domains, known as epi-editors. However, the constitutive expression of dCas9-based epi-editors presents challenges, including off-target activity and lack of temporal resolution. Recent advancements of dCas9-based epi-editors have addressed these limitations by introducing innovative switch systems that enable temporal control of their activity. These systems allow precise modulation of gene expression over time and offer a means to deactivate epi-editors, thereby reducing off-target effects associated with prolonged expression. The development of novel dCas9 effectors regulated by exogenous chemical signals has revolutionized temporal control in epigenome editing, significantly expanding the researcher's toolbox. Here, we provide a comprehensive review of the current state of these cutting-edge systems and specifically discuss their advantages and limitations, offering context to better understand their capabilities.
Collapse
Affiliation(s)
- Gemma Noviello
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Rutger A F Gjaltema
- Molecular & Cellular Epigenetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Zhang Y, Wang L, Wu Y, Wang D, He XQ. Gibberellin promotes cambium reestablishment during secondary vascular tissue regeneration after girdling in an auxin-dependent manner in Populus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:86-102. [PMID: 38051026 DOI: 10.1111/jipb.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Secondary vascular tissue (SVT) development and regeneration are regulated by phytohormones. In this study, we used an in vitro SVT regeneration system to demonstrate that gibberellin (GA) treatment significantly promotes auxin-induced cambium reestablishment. Altering GA content by overexpressing or knocking down ent-kaurene synthase (KS) affected secondary growth and SVT regeneration in poplar. The poplar DELLA gene GIBBERELLIC ACID INSENSITIVE (PtoGAI) is expressed in a specific pattern during secondary growth and cambium regeneration after girdling. Overexpression of PtoGAI disrupted poplar growth and inhibited cambium regeneration, and the inhibition of cambium regeneration could be partially restored by GA application. Further analysis of the PtaDR5:GUS transgenic plants, the localization of PIN-FORMED 1 (PIN1) and the expression of auxin-related genes found that an additional GA treatment could enhance the auxin response as well as the expression of PIN1, which mediates auxin transport during SVT regeneration. Taken together, these findings suggest that GA promotes cambium regeneration by stimulating auxin signal transduction.
Collapse
Affiliation(s)
- Yufei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lingyan Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuexin Wu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Donghui Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
25
|
Ueguchi-Tanaka M. Gibberellin metabolism and signaling. Biosci Biotechnol Biochem 2023; 87:1093-1101. [PMID: 37403377 DOI: 10.1093/bbb/zbad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
Gibberellins (GAs) are plant hormones with a tetracyclic diterpenoid structure that are involved in various important developmental processes. Two GA-deficient mutants were isolated: a semidwarf mutant "sd1", which was found to have a defective GA20ox2 gene and was introduced to the world in a green revolution cultivar, and a severe dwarf allele of "d18", with a defective GA3ox2 gene. Based on the phenotypic similarity of d18, rice dwarf mutants were screened, further classifying them into GA-sensitive and GA-insensitive by applying exogenous GA3. Finally, GA-deficient rice mutants at 6 different loci and 3 GA signaling mutants (gid1, gid2, and slr1) were isolated. The GID1 gene encodes a GA nuclear receptor, and the GID1-DELLA (SLR1) system for GA perception is widely used in vascular plants. The structural characteristics of GID1 and GA metabolic enzymes have also been reviewed.
Collapse
|
26
|
Zakhrabekova S, Chauhan P, Dockter C, Ealumalai P, Ivanova A, Jørgensen ME, Lu Q, Shoeva O, Werner K, Hansson M. Identification of a candidate dwarfing gene in Pallas, the first commercial barley cultivar generated through mutational breeding. Front Genet 2023; 14:1213815. [PMID: 37470037 PMCID: PMC10352844 DOI: 10.3389/fgene.2023.1213815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/07/2023] [Indexed: 07/21/2023] Open
Abstract
Many induced mutants are available in barley (Hordeum vulgare L.). One of the largest groups of induced mutants is the Erectoides (ert) mutants, which is characterized by a compact and upright spike and a shortened culm. One isolated mutant, ert-k.32, generated by X-ray treatment and registered in 1958 under the named "Pallas", was the first ever induced barley mutant to be released on the market. Its value was improved culm strength and enhanced lodging resistance. In this study, we aimed to identify the casual gene of the ert-k.32 mutant by whole genome sequencing of allelic ert-k mutants. The suggested Ert-k candidate gene, HORVU.MOREX.r3.6HG0574880, is located in the centromeric region of chromosome 6H. The gene product is an alpha/beta hydrolase with a catalytic triad in the active site composed of Ser-167, His-261 and Asp-232. In comparison to proteins derived from the Arabidopsis genome, ErtK is most similar to a thioesterase with de-S-acylation activity. This suggests that ErtK catalyzes post-translational modifications by removing fatty acids that are covalently attached to cysteine residues of target proteins involved in regulation of plant architecture and important commercial traits such as culm stability and lodging resistance.
Collapse
Affiliation(s)
| | | | | | | | - Anastasiia Ivanova
- Department of Biology, Lund University, Lund, Sweden
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Qiongxian Lu
- Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Olesya Shoeva
- Department of Biology, Lund University, Lund, Sweden
- Department of Plant Genetics,Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Mats Hansson
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
27
|
An JP, Zhang XW, Li HL, Wang DR, You CX, Han Y. The E3 ubiquitin ligases SINA1 and SINA2 integrate with the protein kinase CIPK20 to regulate the stability of RGL2a, a positive regulator of anthocyanin biosynthesis. THE NEW PHYTOLOGIST 2023. [PMID: 37235698 DOI: 10.1111/nph.18997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Although DELLA protein destabilization mediated by post-translational modifications is essential for gibberellin (GA) signal transduction and GA-regulated anthocyanin biosynthesis, the related mechanisms remain largely unknown. In this study, we report the ubiquitination and phosphorylation of an apple DELLA protein MdRGL2a in response to GA signaling and its regulatory role in anthocyanin biosynthesis. MdRGL2a could interact with MdWRKY75 to enhance the MdWRKY75-activated transcription of anthocyanin activator MdMYB1 and interfere with the interaction between anthocyanin repressor MdMYB308 and MdbHLH3 or MdbHLH33, thereby promoting anthocyanin accumulation. A protein kinase MdCIPK20 was found to phosphorylate and protect MdRGL2a from degradation, and it was essential for MdRGL2a-promoting anthocyanin accumulation. However, MdRGL2a and MdCIPK20 were ubiquitinated and degraded by E3 ubiquitin ligases MdSINA1 and MdSINA2, respectively, both of which were activated in the presence of GA. Our results display the integration of SINA1/2 with CIPK20 to dynamically regulate GA signaling and will be helpful toward understanding the mechanism of GA signal transduction and GA-inhibited anthocyanin biosynthesis. The discovery of extensive interactions between DELLA and SINA and CIPK proteins in apple will provide reference for the study of ubiquitination and phosphorylation of DELLA proteins in other species.
Collapse
Affiliation(s)
- Jian-Ping An
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Wei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hong-Liang Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
28
|
Nelson SK, Kanno Y, Seo M, Steber CM. Seed dormancy loss from dry after-ripening is associated with increasing gibberellin hormone levels in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1145414. [PMID: 37275251 PMCID: PMC10232786 DOI: 10.3389/fpls.2023.1145414] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023]
Abstract
Introduction The seeds of many plants are dormant and unable to germinate at maturity, but gain the ability to germinate through after-ripening during dry storage. The hormone abscisic acid (ABA) stimulates seed dormancy, whereas gibberellin A (GA) stimulates dormancy loss and germination. Methods To determine whether dry after-ripening alters the potential to accumulate ABA and GA, hormone levels were measured during an after-ripening time course in dry and imbibing ungerminated seeds of wildtype Landsberg erecta (Ler) and of the highly dormant GA-insensitive mutant sleepy1-2 (sly1-2). Results The elevated sly1-2 dormancy was associated with lower rather than higher ABA levels. Ler germination increased with 2-4 weeks of after-ripening whereas sly1-2 required 21 months to after-ripen. Increasing germination capacity with after-ripening was associated with increasing GA4 levels in imbibing sly1-2 and wild-type Ler seeds. During the same 12 hr imbibition period, after-ripening also resulted in increased ABA levels. Discussion The decreased ABA levels with after-ripening in other studies occurred later in imbibition, just before germination. This suggests a model where GA acts first, stimulating germination before ABA levels decline, and ABA acts as the final checkpoint preventing germination until processes essential to survival, like DNA repair and activation of respiration, are completed. Overexpression of the GA receptor GID1b (GA INSENSITIVE DWARF1b) was associated with increased germination of sly1-2 but decreased germination of wildtype Ler. This reduction of Ler germination was not associated with increased ABA levels. Apparently, GID1b is a positive regulator of germination in one context, but a negative regulator in the other.
Collapse
Affiliation(s)
- Sven K. Nelson
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Plant and Data Science, Heliponix, LLC, Evansville, IN, United States
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Camille M. Steber
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA, United States
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| |
Collapse
|
29
|
Zheng G, Li W, Zhang S, Mi Q, Luo W, Zhao Y, Qin X, Li W, Pu S, Xu F. Multiomics strategies for decoding seed dormancy breakdown in Paris polyphylla. BMC PLANT BIOLOGY 2023; 23:247. [PMID: 37170087 PMCID: PMC10173654 DOI: 10.1186/s12870-023-04262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND The disruption of seed dormancy is a complicated process and is controlled by various factors. Among these factors, membrane lipids and plant hormones are two of the most important ones. Paris polyphylla is an important Chinese herbaceous species, and the dormancy trait of its seed limits the cultivation of this herb. RESULTS In this study, we investigate the global metabolic and transcriptomic profiles of Paris polyphylla during seed dormancy breaking. Widely targeted metabolomics revealed that lysophospholipids (lysoPLs) increased during P. polyphylla seed dormancy breaking. The expression of phospholipase A2 (PLA2), genes correlated to the production of lysoPLs, up-regulated significantly during this process. Abscisic acid (ABA) decreased dramatically during seed dormancy breaking of P. polyphylla. Changes of different GAs varied during P. polyphylla seeds dormancy breaking, 13-OH GAs, such as GA53 were not detected, and GA3 decreased significantly, whereas 13-H GAs, such as GA15, GA24 and GA4 increased. The expression of CYP707As was not synchronous with the change of ABA content, and the expression of most UGTs, GA20ox and GA3ox up-regulated during seed dormancy breaking. CONCLUSIONS These results suggest that PLA2 mediated production of lysoPLs may correlate to the seed dormancy breaking of P. polyphylla. The conversion of ABA to ABA-GE catalysed by UGTs may be the main cause of ABA degradation. Through inhibition the expression of genes related to the synthesis of 13-OH GAs and up-regulation genes related to the synthesis of 13-H GAs, P. polyphylla synthesized more bioactive 13-H GA (GA4) to break its seed dormancy.
Collapse
Affiliation(s)
- Guowei Zheng
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Wenchun Li
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Shunzhen Zhang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Qi Mi
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Wenxiu Luo
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yanli Zhao
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xiangshi Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Weijiao Li
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Shibiao Pu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Furong Xu
- College of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
30
|
Nozawa A, Miyazaki R, Aoki Y, Hirose R, Hori R, Muramatsu C, Shigematsu Y, Nemoto K, Hasegawa Y, Fujita K, Miyakawa T, Tanokura M, Suzuki S, Sawasaki T. Identification of a new gibberellin receptor agonist, diphegaractin, by a cell-free chemical screening system. Commun Biol 2023; 6:448. [PMID: 37160969 PMCID: PMC10170162 DOI: 10.1038/s42003-023-04760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/24/2023] [Indexed: 05/11/2023] Open
Abstract
Gibberellin (GA) is a phytohormone that regulates various developmental processes during the plant life cycle. In this study, we identify a new GA agonist, diphegaractin, using a wheat cell-free based drug screening system with grape GA receptor. A GA-dependent interaction assay system using GA receptors and DELLA proteins from Vitis vinifera was constructed using AlphaScreen technology and cell-free produced proteins. From the chemical compound library, diphegaractin was found to enhance the interactions between GA receptors and DELLA proteins from grape in vitro. In grapes, we found that diphegaractin induces elongation of the bunch and increases the sugar concentration of grape berries. Furthermore, diphegaractin shows GA-like activity, including promotion of root elongation in lettuce and Arabidopsis, as well as reducing peel pigmentation and suppressing peel puffing in citrus fruit. To the best of our knowledge, this study is the first to successfully identify a GA receptor agonist showing GA-like activity in agricultural plants using an in vitro molecular-targeted drug screening system.
Collapse
Affiliation(s)
- Akira Nozawa
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Ryoko Miyazaki
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Yoshinao Aoki
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1, Kitashin, Kofu, Yamanashi, 400-0005, Japan
| | - Reina Hirose
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Ryosuke Hori
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Chihiro Muramatsu
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Yukinori Shigematsu
- Fruit Tree Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, 1618 Shimo-idai, Matsuyama, Ehime, 791-0112, Japan
| | - Keiichirou Nemoto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Keiko Fujita
- Faculty of Bioresource Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka-cho, Shobara, Hiroshima, 727-0023, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shunji Suzuki
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1, Kitashin, Kofu, Yamanashi, 400-0005, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
31
|
Sun F, Ye W, Li S, Wang Z, Xie K, Wang W, Zhang C, Xi Y. Analysis of morphological traits and regulatory mechanism of a semi-dwarf, albino, and blue grain wheat line. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:35. [PMID: 37312751 PMCID: PMC10248668 DOI: 10.1007/s11032-023-01379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 06/15/2023]
Abstract
The plant height and leaf color are important traits in crops since they contribute to the production of grains and biomass. Progress has been made in mapping the genes that regulate plant height and leaf color in wheat (Triticum aestivum L.) and other crops. Wheat line DW-B (dwarfing, white leaves, and blue grains) with semi-dwarfing and albinism at the tillering stage and re-greening at the jointing stage was created using Lango and Indian Blue Grain. Transcriptomic analyses of the three wheat lines at the early jointing stages indicated that the genes of gibberellin (GA) signaling pathway and chlorophyll (Chl) biosynthesis were expressed differently in DW-B and its parents. Furthermore, the response to GA and Chl contents differed between DW-B and its parents. The dwarfing and albinism in DW-B were owing to defects in the GA signaling pathway and abnormal chloroplast development. This study can improve understanding of the regulation of plant height and leaf color. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01379-z.
Collapse
Affiliation(s)
- Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wenjie Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Song Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhulin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Kunliang Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Weiwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
32
|
Chen Y, Zhang M, Wang X, Shao Y, Hu X, Cheng J, Zheng X, Tan B, Ye X, Wang W, Li J, Li M, Zhang L, Feng J. Peach DELLA Protein PpeDGYLA Is Not Degraded in the Presence of Active GA and Causes Dwarfism When Overexpressed in Poplar and Arabidopsis. Int J Mol Sci 2023; 24:ijms24076789. [PMID: 37047773 PMCID: PMC10095214 DOI: 10.3390/ijms24076789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Controlling the tree size of fruit species such as peach can reduce the amount of labor and input needed for orchard management. The phytohormone gibberellin (GA) positively regulates tree size by inducing degradation of the GA signaling repressor DELLA. The N-terminal DELLA domain in this protein is critical for its GA-dependent interaction with the GA receptor GID1 and the resulting degradation of the DELLA protein, which allows for growth-promoting GA signaling. In this study, a DELLA family member, PpeDGYLA, contains a DELLA domain but has amino acid changes in three conserved motifs (DELLA into DGYLA, LEQLE into LERLE, and TVHYNP into AVLYNP). In the absence or presence of GA3, the PpeDGYLA protein did not interact with PpeGID1c and was stable in 35S-PpeDGYLA peach transgenic callus. The overexpression of PpeDGYLA in both polar and Arabidopsis showed an extremely dwarfed phenotype, and these transgenic plants were insensitive to GA3 treatment. PpeDGYLA could interact with PpeARF6-1 and -2, supposed growth-promoting factors. It is suggested that the changes in the DELLA domain of PpeDGYLA may, to some extent, account for the severe dwarf phenotype of poplar and Arabidopsis transgenic plants. In addition, our study showed that the DELLA family contained three clades (DELLA-like, DELLA, and DGLLA). PpeDGYLA clustered into the DGLLA clade and was expressed in all of the analyzed tissues. These results lay the foundation for the further study of the repression of tree size by PpeDGYLA.
Collapse
Affiliation(s)
- Yun Chen
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Mengmeng Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Xiaofei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Yun Shao
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Xinyue Hu
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Jidong Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Ming Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Langlang Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| |
Collapse
|
33
|
Phokas A, Meyberg R, Briones‐Moreno A, Hernandez‐Garcia J, Wadsworth PT, Vesty EF, Blazquez MA, Rensing SA, Coates JC. DELLA proteins regulate spore germination and reproductive development in Physcomitrium patens. THE NEW PHYTOLOGIST 2023; 238:654-672. [PMID: 36683399 PMCID: PMC10952515 DOI: 10.1111/nph.18756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Proteins of the DELLA family integrate environmental signals to regulate growth and development throughout the plant kingdom. Plants expressing non-degradable DELLA proteins underpinned the development of high-yielding 'Green Revolution' dwarf crop varieties in the 1960s. In vascular plants, DELLAs are regulated by gibberellins, diterpenoid plant hormones. How DELLA protein function has changed during land plant evolution is not fully understood. We have examined the function and interactions of DELLA proteins in the moss Physcomitrium (Physcomitrella) patens, in the sister group of vascular plants (Bryophytes). PpDELLAs do not undergo the same regulation as flowering plant DELLAs. PpDELLAs are not degraded by diterpenes, do not interact with GID1 gibberellin receptor proteins and do not participate in responses to abiotic stress. PpDELLAs do share a function with vascular plant DELLAs during reproductive development. PpDELLAs also regulate spore germination. PpDELLAs interact with moss-specific photoreceptors although a function for PpDELLAs in light responses was not detected. PpDELLAs likely act as 'hubs' for transcriptional regulation similarly to their homologues across the plant kingdom. Taken together, these data demonstrate that PpDELLA proteins share some biological functions with DELLAs in flowering plants, but other DELLA functions and regulation evolved independently in both plant lineages.
Collapse
Affiliation(s)
- Alexandros Phokas
- School of BiosciencesUniversity of BirminghamEdgbastinBirminghamB15 2TTUK
| | - Rabea Meyberg
- Plant Cell Biology, Faculty of BiologyUniversity of MarburgKarl‐von‐Frisch‐Straße 8Marburg35043Germany
| | - Asier Briones‐Moreno
- Instituto de Biología Molecular y Celular de Plantas (CSIC‐Universitat Politècnica de València)C/Ingeniero Fausto Elio s/nValencia46022Spain
| | - Jorge Hernandez‐Garcia
- Instituto de Biología Molecular y Celular de Plantas (CSIC‐Universitat Politècnica de València)C/Ingeniero Fausto Elio s/nValencia46022Spain
| | | | - Eleanor F. Vesty
- School of BiosciencesUniversity of BirminghamEdgbastinBirminghamB15 2TTUK
| | - Miguel A. Blazquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC‐Universitat Politècnica de València)C/Ingeniero Fausto Elio s/nValencia46022Spain
| | - Stefan A. Rensing
- Faculty of Chemistry and PharmacyUniversity of FreiburgStefan‐Meier‐Straße 19Freiburg79104Germany
| | - Juliet C. Coates
- School of BiosciencesUniversity of BirminghamEdgbastinBirminghamB15 2TTUK
| |
Collapse
|
34
|
Kim S, Huh SM, Han HJ, Lee GS, Hwang YS, Cho MH, Kim BG, Song JS, Chung JH, Nam MH, Ji H, Kim KH, Yoon IS. A rice seed-specific glycine-rich protein OsDOR1 interacts with GID1 to repress GA signaling and regulates seed dormancy. PLANT MOLECULAR BIOLOGY 2023; 111:523-539. [PMID: 36973492 DOI: 10.1007/s11103-023-01343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Seed dormancy is an important agronomic trait under the control of complex genetic and environmental interactions, which have not been yet comprehensively understood. From the field screening of rice mutant library generated by a Ds transposable element, we identified a pre-harvest sprouting (PHS) mutant dor1. This mutant has a single insertion of Ds element at the second exon of OsDOR1 (LOC_Os03g20770), which encodes a novel seed-specific glycine-rich protein. This gene successfully complemented the PHS phenotype of dor1 mutant and its ectopic expression enhanced seed dormancy. Here, we demonstrated that OsDOR1 protein binds to the GA receptor protein, OsGID1 in rice protoplasts, and interrupts with the formation OsGID1-OsSLR1 complex in yeast cells. Co-expression of OsDOR1 with OsGID1 in rice protoplasts attenuated the GA-dependent degradation of OsSLR1, the key repressor of GA signaling. We showed the endogenous OsSLR1 protein level in the dor1 mutant seeds is significantly lower than that of wild type. The dor1 mutant featured a hypersensitive GA-response of α-amylase gene expression during seed germination. Based on these findings, we suggest that OsDOR1 is a novel negative player of GA signaling operated in the maintenance of seed dormancy. Our findings provide a novel source of PHS resistance.
Collapse
Affiliation(s)
- Sooyeon Kim
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Sun Mi Huh
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
- Department of Medical and Biological Sciences, Institute of Convergence Science & Technology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hay Ju Han
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Gang Seob Lee
- Biosafety Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Yong-Sic Hwang
- Department of Systems Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Mi Hyun Cho
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Ji Sun Song
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Joo Hee Chung
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul, 02841, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul, 02841, Republic of Korea
| | - Hyeonso Ji
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Kyung-Hwan Kim
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - In Sun Yoon
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea.
| |
Collapse
|
35
|
Zhang K, Yao D, Chen Y, Wen H, Pan J, Xiao T, Lv D, He H, Pan J, Cai R, Wang G. Mapping and identification of CsSF4, a gene encoding a UDP-N-acetyl glucosamine-peptide N-acetylglucosaminyltransferase required for fruit elongation in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:54. [PMID: 36912991 DOI: 10.1007/s00122-023-04246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/20/2022] [Indexed: 06/18/2023]
Abstract
The short fruit length phenotype in sf4 is caused by a SNP in Csa1G665390, which encodes an O-linked N-acetylglucosamine (GlcNAc) transferase in cucumber. Cucumber fruit is an excellent resource for studying fruit morphology due to its fast growth rate and naturally abundant morphological variations. The regulatory mechanisms underlying plant organ size and shape are important and fundamental biological questions. In this study, a short-fruit length mutant, sf4, was identified from an ethyl methanesulfonate (EMS) mutagenesis population derived from the North China-type cucumber inbred line WD1. Genetic analysis indicated that the short fruit length phenotype of sf4 was controlled by a recessive nuclear gene. The SF4 locus was located in a 116.7-kb genomic region between the SNP markers GCSNP75 and GCSNP82 on chromosome 1. Genomic and cDNA sequences analysis indicated that a single G to A transition at the last nucleotide of Csa1G665390 intron 21 in sf4 changed the splice site from GT-AG to GT-AA, resulting in a 42-bp deletion in exon 22. Csa1G665390 is presumed to be a candidate gene, CsSF4 that encodes an O-linked N-acetylglucosamine (GlcNAc) transferase (OGT). CsSF4 was highly expressed in the leaves and male flowers of wild-type cucumbers. Transcriptome analysis indicated that sf4 had alterations in expression of many genes involved in hormone response pathways, cell cycle regulation, DNA replication, and cell division, suggesting that cell proliferation-associated gene networks regulate fruit development in cucumber. Identification of CsSF4 will contribute to elucidating the function of OGT in cell proliferation and to understanding fruit elongation mechanisms in cucumber.
Collapse
Affiliation(s)
- Keyan Zhang
- Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Danqing Yao
- Shanghai Agricultural Technology Extension and Service Center, Shanghai, 201103, China
| | - Yue Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Haifan Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Tingting Xiao
- Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Duo Lv
- Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Huanle He
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300384, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
36
|
Luo L, Xie Y, Yu S, Yang J, Chen S, Yuan X, Guo T, Wang H, Liu Y, Chen C, Xiao W, Chen Z. The DnaJ domain-containing heat-shock protein NAL11 determines plant architecture by mediating gibberellin homeostasis in rice (Oryza sativa). THE NEW PHYTOLOGIST 2023; 237:2163-2179. [PMID: 36564987 DOI: 10.1111/nph.18696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Ideal Plant Architecture 1 (IPA1) is a key regulator of plant architecture. However, knowledge of downstream genes applicable for improving rice plant architecture is very limited. We identified the plant architecture regulatory gene NARROW LEAF 11 (NAL11), which encodes a heat-shock protein (HSP) containing a DnaJ domain. A promising rare allele of NAL11 (NAL11-923del-1552 ) positively selected in Aus cultivars was identified; this allele exhibited increased expression and generated relatively few tillers, thick stems, and large panicles, components of the ideal plant architecture (IPA). NAL11 is involved in regulating the cell cycle and cell proliferation. NAL11 loss-of-function mutants present impaired chloroplast development and gibberellin (GA) defects. Biochemical analyses show that IPA1 directly binds to elements in the missing fragment of the NAL11-923del-1552 promoter and negatively regulates NAL11 expression. Genetic analyses support the hypothesis that NAL11 acts downstream of IPA1 to regulate IPA by modulating GA homeostasis, and NAL11 may be an essential complement for IPA1. Our work revealed that avoidance of the inhibition of NAL11-923del-1552 caused by IPA1 represents a positive strategy for rescuing GA defects accompanied by the upregulation of IPA1 in breeding high-yield rice.
Collapse
Affiliation(s)
- Lixin Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yuelan Xie
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- Yangjiang Institute of Agricultural Sciences, Yangjiang, 529500, China
| | - Sijia Yu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Sirong Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Xi Yuan
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yongzhu Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Chun Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Wuming Xiao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
37
|
Zhou W, Duan Y, Jiang X, Tan X, Li Q, Wang H, Zhang Y, Zhang M. Transcriptome and metabolome analyses reveal novel insights into the seed germination of Michelia chapensis, an endangered species in China. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111568. [PMID: 36528126 DOI: 10.1016/j.plantsci.2022.111568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Michelia chapensis Dandy, a well-known medicinal woody plant endemic to China, is endangered and seriously constricted by seed dormancy-induced low-regeneration in natural conditions. Cold stratification can effectively reduce seed dormancy and promote the seed germination of M. chapensis. However, the molecular events and systematic changes that occurred during seed germination in M. chapensis remain largely unknown. In this study, we carried out transcriptomic and metabolomic analyses to elucidate the potential molecular mechanisms underlying seed germination in M. chapensis under cold stratification. The results showed that the embryo cells became bigger and looser with increasing stratification time. Moreover, the endosperm appeared reduced due to the consumption of nutrients. Seventeen phytohormones were examined by the metabolome targeted for hormones. Compared with the ES (no stratification), the levels of indole-3-acetic acid (IAA) and gibberellin A3 (GA3) were increased in the MS (stratification for 45 days), while the abscisic acid (ABA) was downregulated in both MS and LS (stratification for 90 days). The transcriptome profiling identified 24975 differentially expressed genes (DEGs) in the seeds during germination. The seed germination of M. chapensis was mainly regulated by the biological pathways of plant hormone signal transduction, energy supply, secondary metabolite biosynthesis, photosynthesis-related metabolism, and transcriptional regulation. This study reveals the biological evidence of seed germination at the transcriptional level and provides a foundation for unraveling molecular mechanisms regulating the seed germination of M. chapensis.
Collapse
Affiliation(s)
- Wuxian Zhou
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China; Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agricultural and Rural Affairs, Enshi, China
| | - Yuanyuan Duan
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China; Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agricultural and Rural Affairs, Enshi, China
| | - Xiaogang Jiang
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China; Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agricultural and Rural Affairs, Enshi, China
| | - Xuhui Tan
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China; Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agricultural and Rural Affairs, Enshi, China
| | - Qin Li
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China; Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agricultural and Rural Affairs, Enshi, China
| | - Hua Wang
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China; Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agricultural and Rural Affairs, Enshi, China
| | - Yajuan Zhang
- Agricultural and Rural Bureau of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Meide Zhang
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China; Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agricultural and Rural Affairs, Enshi, China.
| |
Collapse
|
38
|
Zhang T, Wang J, Luo R, Man J, Long Q, Xu N. OsHLS1 regulates plant height and development by controlling active gibberellin accumulation in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111508. [PMID: 36283578 DOI: 10.1016/j.plantsci.2022.111508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this study, we identified a gene related to plant height, leaf, and premature senescence in rice, and named it OsHLS1. Through bioinformatics analysis, it was found that this gene belongs to a new gene family-HLS family, and this gene family exists widely in higher plants. Expression of OsHLS1 was significantly brought about by gibberellin (GA). Subcellular localization showed that OsHLS1 was located in the nucleus. oshls1-3 displayed a GA-deficient phenotype, with dwarf plants. In addition, oshls1-3 also showed premature senescence, shorter and narrower leaves, and pollen abortion. Exogenous GA3 can restore the plant height of oshls1-3. Histomorphological analysis showed that the gene affected the progress of internode cells in the first and third nodes under the rice panicle. Through the verification of the homologous gene AT4G25690 in Arabidopsis, it was found that the mutant at4g25690 lines also showed plant dwarfing, premature senescence, and shortening and narrowing of leaves and pollen abortion. OsHLS1 affected the expression levels of genes involved in the GA metabolic pathway and affected the content of active GA, thereby regulating plant height development in rice. In conclusion, we suggest that OsHLS1 regulates plant height and development by controlling the accumulation of active gibberellins in rice.
Collapse
Affiliation(s)
- Tonghua Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Jiafu Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Rui Luo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Jianmin Man
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qing Long
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ning Xu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
39
|
Han S, Liu Y, Bao A, Zeng H, Huang G, Geng M, Zhang C, Zhang Q, Lu J, Wu M, Guo L. OsCSN1 regulates the growth of rice seedlings through the GA signaling pathway in blue light. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153904. [PMID: 36566672 DOI: 10.1016/j.jplph.2022.153904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Blue light can regulate the photomorphogenesis of plants through blue light receptors to influence seedling growth and development. The COP9 signaling complex (CSN), a vital regulator of photomorphogenesis, is a highly conserved protein complex. CSN1 is the largest and most critical subunit in the CSN with a complex N-terminal function that supports most of the functions of CSN1 and is mainly involved in plant growth and development processes. The CSN is also required in the blue light-mediated photomorphogenesis response of seedlings. In this study, the OsCSN1 subunit of Oryza sativa subsp. japonica (rice) was edited and screened, and OsCSN1 deletion mutant, OsCSN1 weak expression mutant and OsCSN1 overexpression mutant were constructed. The mechanism of OsCSN1 and its N-terminal effects on rice seedling growth and development under blue light conditions were investigated. The addition of exogenous hormone gibberellin (GA3) and gibberellin synthesis inhibitor paclobutrazol (PAC) caused aboveground phenotypic and protein (such as CUL4 and SLR1) changes. Blue light regulates the degradation of SLR1 through OsCSN1, which regulates the growth and development of rice seedling height, the first incomplete leaf, and the coleoptile. It is hypothesized that rice affects CRY-COP1 interactions after sensing blue light signals through the cryptochrome, and the nuclear localization of COP1 is regulated by the CSN complex. OsCSN1 is a negative regulator in response to blue light. The core structural domain of action that inhibits the growth of the aboveground part of rice seedlings is located at the N-terminal of OsCSN1. OsCSN1 regulates the nuclear localization of COP1 through the COP9 signaling complex and degrades SLR1 through CUL4-based E3 ligase. Ultimately, it affects the synthesis of the endogenous hormone GA, thereby inhibiting the aboveground growth and development of rice seedlings.
Collapse
Affiliation(s)
- Shining Han
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yanxi Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Anar Bao
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Hua Zeng
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Guohui Huang
- School of Life Sciences, Northeast Normal University, Changchun, 130024, PR China
| | - Min Geng
- College of Food and Biotechnology, Changchun Polytechnic, Changchun, 130033, PR China
| | - Chunyu Zhang
- College of Food and Biotechnology, Changchun Polytechnic, Changchun, 130033, PR China
| | - Qi Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Jingmei Lu
- School of Life Sciences, Northeast Normal University, Changchun, 130024, PR China
| | - Ming Wu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China.
| | - Liquan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China.
| |
Collapse
|
40
|
Huang B, Fan Y, Cui L, Li C, Guo C. Cold Stress Response Mechanisms in Anther Development. Int J Mol Sci 2022; 24:ijms24010030. [PMID: 36613473 PMCID: PMC9820542 DOI: 10.3390/ijms24010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Unlike animals that can escape threats, plants must endure and adapt to biotic and abiotic stresses in their surroundings. One such condition, cold stress, impairs the normal growth and development of plants, in which most phases of reproductive development are particularly susceptible to external low temperature. Exposed to uncomfortably low temperature at the reproductive stage, meiosis, tapetal programmed cell death (PCD), pollen viability, and fertilization are disrupted, resulting in plant sterility. Of them, cold-induced tapetal dysfunction is the main cause of pollen sterility by blocking nutrition supplements for microspore development and altering their timely PCD. Further evidence has indicated that the homeostatic imbalances of hormones, including abscisic acid (ABA) and gibberellic acid (GA), and sugars have occurred in the cold-treated anthers. Among them, cold stress gives rise to the accumulation of ABA and the decrease of active GA in anthers to affect tapetal development and represses the transport of sugar to microspores. Therefore, plants have evolved lots of mechanisms to alleviate the damage of external cold stress to reproductive development by mainly regulating phytohormone levels and sugar metabolism. Herein, we discuss the physiological and metabolic effects of low temperature on male reproductive development and the underlying mechanisms from the perspective of molecular biology. A deep understanding of cold stress response mechanisms in anther development will provide noteworthy references for cold-tolerant crop breeding and crop production under cold stress.
Collapse
|
41
|
Hauvermale AL, Cárdenas JJ, Bednarek SY, Steber CM. GA signaling expands: The plant UBX domain-containing protein 1 is a binding partner for the GA receptor. PLANT PHYSIOLOGY 2022; 190:2651-2670. [PMID: 36149293 PMCID: PMC9706445 DOI: 10.1093/plphys/kiac406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/19/2022] [Indexed: 06/07/2023]
Abstract
The plant Ubiquitin Regulatory X (UBX) domain-containing protein 1 (PUX1) functions as a negative regulator of gibberellin (GA) signaling. GAs are plant hormones that stimulate seed germination, the transition to flowering, and cell elongation and division. Loss of Arabidopsis (Arabidopsis thaliana) PUX1 resulted in a "GA-overdose" phenotype including early flowering, increased stem and root elongation, and partial resistance to the GA-biosynthesis inhibitor paclobutrazol during seed germination and root elongation. Furthermore, GA application failed to stimulate further stem elongation or flowering onset suggesting that elongation and flowering response to GA had reached its maximum. GA hormone partially repressed PUX1 protein accumulation, and PUX1 showed a GA-independent interaction with the GA receptor GA-INSENSITIVE DWARF-1 (GID1). This suggests that PUX1 is GA regulated and/or regulates elements of the GA signaling pathway. Consistent with PUX1 function as a negative regulator of GA signaling, the pux1 mutant caused increased GID1 expression and decreased accumulation of the DELLA REPRESSOR OF GA1-3, RGA. PUX1 is a negative regulator of the hexameric AAA+ ATPase CDC48, a protein that functions in diverse cellular processes including unfolding proteins in preparation for proteasomal degradation, cell division, and expansion. PUX1 binding to GID1 required the UBX domain, a binding motif necessary for CDC48 interaction. Moreover, PUX1 overexpression in cell culture not only stimulated the disassembly of CDC48 hexamer but also resulted in co-fractionation of GID1, PUX1, and CDC48 subunits in velocity sedimentation assays. Based on our results, we propose that PUX1 and CDC48 are additional factors that need to be incorporated into our understanding of GA signaling.
Collapse
Affiliation(s)
- Amber L Hauvermale
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
- Molecular Plant Sciences, Washington State University, Pullman, Washington, USA
| | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
42
|
Best NB, Dilkes BP. Transcriptional responses to gibberellin in the maize tassel and control by DELLA domain proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:493-517. [PMID: 36050832 PMCID: PMC9826531 DOI: 10.1111/tpj.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The plant hormone gibberellin (GA) impacts plant growth and development differently depending on the developmental context. In the maize (Zea mays) tassel, application of GA alters floral development, resulting in the persistence of pistils. GA signaling is achieved by the GA-dependent turnover of DELLA domain transcription factors, encoded by dwarf8 (d8) and dwarf9 (d9) in maize. The D8-Mpl and D9-1 alleles disrupt GA signaling, resulting in short plants and normal tassel floret development in the presence of excess GA. However, D9-1 mutants are unable to block GA-induced pistil development. Gene expression in developing tassels of D8-Mpl and D9-1 mutants and their wild-type siblings was determined upon excess GA3 and mock treatments. Using GA-sensitive transcripts as reporters of GA signaling, we identified a weak loss of repression under mock conditions in both mutants, with the effect in D9-1 being greater. D9-1 was also less able to repress GA signaling in the presence of excess GA3 . We treated a diverse set of maize inbred lines with excess GA3 and measured the phenotypic consequences on multiple aspects of development (e.g., height and pistil persistence in tassel florets). Genotype affected all GA-regulated phenotypes but there was no correlation between any of the GA-affected phenotypes, indicating that the complexity of the relationship between GA and development extends beyond the two-gene epistasis previously demonstrated for GA and brassinosteroid biosynthetic mutants.
Collapse
Affiliation(s)
- Norman B. Best
- USDAAgriculture Research Service, Plant Genetics Research UnitColumbiaMissouri65211USA
| | - Brian P. Dilkes
- Department of BiochemistryPurdue University; West LafayetteIndiana47907USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndiana47907USA
| |
Collapse
|
43
|
Liu Q, Wu Y, Zhang X, Song M, Peng X. Cloning and Functional Identification of Gibberellin Receptor SvGID1s Gene of Salix viminalis. Mol Biotechnol 2022; 65:715-725. [PMID: 36163605 DOI: 10.1007/s12033-022-00573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
Gibberellins (GAs) play a key role in the transition from vegetative growth to flowering and the GA receptor GID1 (GIBBERELLIN INSENSITIVE DWARF1) is the central part of GA-signaling. The differential expression of SvGID1 was found in the transcriptome sequencing in our previous study, which was further verified at different stages of flowering of Salix viminalis. In order to reveal the function GID1 of S. viminalis, two genes of SvGID1b and SvGID1c were cloned and transformed into Arabidopsis thaliana, respectively. The results showed that the full ORF length of SvGID1b and SvGID1c genes were both 1035 bp, encoding 344 amino acids, which were typical globular proteins. The peptide chain contained more α-helix structure, and had 99% similarity with GID1b and GID1c amino acid sequences of Salix suchowensis. Phylogenetic analysis showed that SvGID1s had close genetic relationship with woody plants such as Populus alba and Populus tomentosa, and had far genetic relationship with rice. After overexpression in A. thaliana, the total gibberellin, active gibberellin content and the expression level of GA3ox1, the key gene for GA4 synthesis, were not significantly different from those in the wild-type, while the expression levels of FUL, SOC1 and FT, the key genes for flowering in plants, were increased, and the expression levels of FLC and GAI were decreased. The ectopic expression of SvGID1s increased the sensitivity of plants to gibberellin and enhanced gibberellin effect, caused early bolting, budding and flowering, led to higher plant, longer hypocotyl and other phenomena. The results provide a theoretical basis for clarifying the regulation of gibberellin on flower bud differentiation of flowering plants.
Collapse
Affiliation(s)
- Qingwei Liu
- College of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - YaRu Wu
- College of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Xin Zhang
- College of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Min Song
- College of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Xiangyong Peng
- College of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China.
| |
Collapse
|
44
|
Shaw DS, Honeychurch KC. Nanosensor Applications in Plant Science. BIOSENSORS 2022; 12:675. [PMID: 36140060 PMCID: PMC9496508 DOI: 10.3390/bios12090675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 12/28/2022]
Abstract
Plant science is a major research topic addressing some of the most important global challenges we face today, including energy and food security. Plant science has a role in the production of staple foods and materials, as well as roles in genetics research, environmental management, and the synthesis of high-value compounds such as pharmaceuticals or raw materials for energy production. Nanosensors-selective transducers with a characteristic dimension that is nanometre in scale-have emerged as important tools for monitoring biological processes such as plant signalling pathways and metabolism in ways that are non-destructive, minimally invasive, and capable of real-time analysis. A variety of nanosensors have been used to study different biological processes; for example, optical nanosensors based on Förster resonance energy transfer (FRET) have been used to study protein interactions, cell contents, and biophysical parameters, and electrochemical nanosensors have been used to detect redox reactions in plants. Nanosensor applications in plants include nutrient determination, disease assessment, and the detection of proteins, hormones, and other biological substances. The combination of nanosensor technology and plant sciences has the potential to be a powerful alliance and could support the successful delivery of the 2030 Sustainable Development Goals. However, a lack of knowledge regarding the health effects of nanomaterials and the high costs of some of the raw materials required has lessened their commercial impact.
Collapse
Affiliation(s)
- Daniel S. Shaw
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Kevin C. Honeychurch
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
45
|
Qin T, Sun C, Kazim A, Cui S, Wang Y, Richard D, Yao P, Bi Z, Liu Y, Bai J. Comparative Transcriptome Analysis of Deep-Rooting and Shallow-Rooting Potato ( Solanum tuberosum L.) Genotypes under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:2024. [PMID: 35956505 PMCID: PMC9370241 DOI: 10.3390/plants11152024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The selection and breeding of deep rooting and drought-tolerant varieties has become a promising approach for improving the yield and adaptability of potato (Solanum tuberosum L.) in arid and semiarid areas. Therefore, the discovery of root-development-related genes and drought tolerance signaling pathways in potato is important. In this study, we used deep-rooting (C119) and shallow-rooting (C16) potato genotypes, with different levels of drought tolerance, to achieve this objective. Both genotypes were treated with 150 mM mannitol for 0 h (T0), 2 h (T2), 6 h (T6), 12 h (T12), and 24 h (T24), and their root tissues were subjected to comparative transcriptome analysis. A total of 531, 1571, 1247, and 3540 differentially expressed genes (DEGs) in C16 and 1531, 1108, 674, and 4850 DEGs in C119 were identified in T2 vs. T0, T6 vs. T2, T12 vs. T6, and T24 vs. T12 comparisons, respectively. Gene expression analysis indicated that a delay in the onset of drought-induced transcriptional changes in C16 compared with C119. Functional enrichment analysis revealed genotype-specific biological processes involved in drought stress tolerance. The metabolic pathways of plant hormone transduction and MAPK signaling were heavily involved in the resistance of C16 and C119 to drought, while abscisic acid (ABA), ethylene, and salicylic acid signal transduction pathways likely played more important roles in C119 stress responses. Furthermore, genes involved in root cell elongation and division showed differential expression between the two genotypes under drought stress. Overall, this study provides important information for the marker-assisted selection and breeding of drought-tolerant potato genotypes.
Collapse
Affiliation(s)
- Tianyuan Qin
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Chao Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Ali Kazim
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan;
| | - Song Cui
- School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
| | - Yihao Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Dormatey Richard
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Panfeng Yao
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Zhenzhen Bi
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| | - Jiangping Bai
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (C.S.); (Y.W.); (D.R.); (P.Y.); (Z.B.); (Y.L.)
| |
Collapse
|
46
|
Jiang Y, Chen J, Zheng X, Tan B, Ye X, Wang W, Zhang L, Li J, Li Z, Cheng J, Feng J. Multiple indeterminate domain (IDD)-DELLA1 complexes participate in gibberellin feedback regulation in peach. PLANT MOLECULAR BIOLOGY 2022; 109:147-157. [PMID: 35362935 DOI: 10.1007/s11103-022-01263-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Peach encodes 14 INDETERMINATE DOMAIN (IDD) transcription factors. PpIDD4, -12 and -13 mediated PpDELLA1 binding to the PpGA20ox1 promoter. Each of these three PpIDD-DELLA1 complexes activated transcription of PpGA20ox1. PpTPR1 and -4 interrupted the interaction of PpIDDs with PpDELLA1. The plant growth regulator gibberellin (GA) plays an important role in the rapid growth of annual shoots in peach. Our previous study showed that the peach cultivar 'FenHuaShouXingTao' (FHSXT), a gibberellic acid receptor (gid1) mutant, accumulates active GAs in annual shoot tips. This mutant enhances GA feedback regulation in peach. The results of this study suggested that the PpIDD-DELLA1 complex is the underlying mechanism of GA feedback regulation in peach. Fourteen IDD genes were identified in peach, and three PpIDDs (PpIDD4, -12 and -13, all from group IV) interacted with PpDELLA1, an important component in GA signaling pathway. Truncation, segmentation and site mutation of the promoter of PpGA20ox1 (a GA biosynthesis gene) showed that all three PpIDD proteins recognized the core motif TTGTC. PpIDD4 and -13 mainly bind to site 3, while PpIDD12 binds to site 5 of the PpGA20ox1 promoter. All three PpIDD-DELLA1 complexes activated the PpGA20ox1 promoter-LUC fusion. These data suggested that PpIDDs bridge PpDELLA1 and the promoter of PpGA20ox1, which then activated the transcription of PpGA20ox1. In addition, PpTPR1 and -4 disrupted the interaction of PpIDDs with PpDELLA1. Our research will be helpful for understanding and possibly modifying the regulation of annual shoot growth and GA biosynthesis.
Collapse
Affiliation(s)
- Yajun Jiang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Jiajia Chen
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Langlang Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Jidong Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Zhiqian Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China.
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China.
| |
Collapse
|
47
|
14-3-3 gene of Zostera japonica ZjGRF1 participates in gibberellin signaling pathway. Mol Biol Rep 2022; 49:4795-4803. [DOI: 10.1007/s11033-022-07330-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/07/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
|
48
|
Xu X, Wang Q, Li W, Hu T, Wang Q, Yin Y, Liu X, He S, Zhang M, Liang Y, Zhu J, Zhan X. Overexpression of SlBBX17 affects plant growth and enhances heat tolerance in tomato. Int J Biol Macromol 2022; 206:799-811. [PMID: 35307463 DOI: 10.1016/j.ijbiomac.2022.03.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/11/2022]
Abstract
Heat stress is one of the major limiting factors that affect plant growth and production. In this study, we identified SlBBX17, which encodes a B-Box (BBX) protein and functions as a negative regulator of plant growth and a positive regulator of heat tolerance in tomato (Solanum lycopersicum). The expression of SlBBX17 is induced by hormones and heat stress. Overexpression of SlBBX17 (SlBBX17-OE) in tomato led to less chlorophyll content and lower net photosynthetic rate relative to the wild type. The growth retardation in the SlBBX17-OE plants may be attributed to the change of endogenous gibberellin (GA) metabolism and the decrease of photosynthetic capacity. SlBBX17-OE plants exhibited increased tolerance to heat stress, as reflected by the better membrane stability, higher antioxidant enzyme activities, and less reactive oxygen species (ROS) accumulation. Transcriptome analysis revealed that overexpression of SlBBX17 affected the expression of genes involved in GA biosynthetic process, photosynthesis, heat stress, ROS, and other cellular processes. The qRT-PCR analysis indicated that many SlHsf and SlHSP genes are up-regulated by SlBBX17 under heat stress. These results demonstrate that SlBBX17 plays important roles in regulating tomato growth and resistance to heat stress.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, No.3, Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Qi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, No.3, Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Wenqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, No.3, Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Tixu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, No.3, Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Qiqi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, No.3, Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Yue Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, No.3, Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Xiaohui Liu
- Xian Highness Agricultural Science & Technology Co. Ltd., Xian, Shaanxi 710086, China.
| | - Shen He
- Xian Highness Agricultural Science & Technology Co. Ltd., Xian, Shaanxi 710086, China.
| | - Mingke Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, No.3, Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Yan Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, No.3, Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, No.3, Taicheng Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
49
|
Interactions of Gibberellins with Phytohormones and Their Role in Stress Responses. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Gibberellins are amongst the main plant growth regulators. Discovered over a century ago, the interest in gibberellins research is growing due to their current and potential applications in crop production and their role in the responses to environmental stresses. In the present review, the current knowledge on gibberellins’ homeostasis and modes of action is outlined. Besides this, the complex interrelations between gibberellins and other plant growth regulators are also described, providing an intricate network of interactions that ultimately drives towards precise and specific gene expression. Thus, genes and proteins identified as being involved in gibberellin responses in model and non-model species are highlighted. Furthermore, the molecular mechanisms governing the gibberellins’ relation to stress responses are also depicted. This review aims to provide a comprehensive picture of the state-of-the-art of the current perceptions of the interactions of gibberellins with other phytohormones, and their responses to plant stresses, thus allowing for the identification of the specific mechanisms involved. This knowledge will help us to improve our understanding of gibberellins’ biology, and might help increase the biotechnological toolbox needed to refine plant resilience, particularly under a climate change scenario.
Collapse
|
50
|
Wang S, Luo C, Sun L, Ning K, Chen Z, Yang J, Wang Y, Wang Q. LsRGL1 controls the bolting and flowering times of lettuce by modulating the gibberellin pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111175. [PMID: 35151458 DOI: 10.1016/j.plantsci.2021.111175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Bolting, which is a serious problem during lettuce (Lactuca sativa L.) production, is responsible for substantial annual yield and quality losses. Gibberellin plays a critical role in the regulation of lettuce bolting. Additionally, DELLA proteins negatively regulate the gibberellin signaling pathway. However, it is unclear if DELLA proteins are involved in the regulation of lettuce bolting. Therefore, in this study, we identified four DELLA-encoding genes in lettuce, including LsRGL1, which was highly expressed in the stem and negatively correlated with bolting. Knocking down this gene in lettuce promoted bolting, whereas its overexpression inhibited bolting and the biosynthesis of gibberellin and auxin. A transcriptome analysis revealed that genes involved in gibberellin and auxin biosynthesis and flowering were affected in the LsRGL1-overexpressing lines. The yeast two-hybrid and yeast one-hybrid assay results indicated that LsRGL1 can interact with LsGA3ox and the LsYUC4 promoter region. Considered together, the results of this study suggest LsRGL1 negatively regulates lettuce bolting. Furthermore, its function may depend on modifications to gibberellin and auxin levels mediated at the transcript and protein levels.
Collapse
Affiliation(s)
- Shenglin Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chen Luo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Liang Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kang Ning
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zijing Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jingjing Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yixin Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qian Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|