1
|
Yan Y, Xie Y, Gao Q, Pan Y, Tang X, Liu Y, Li W, Guo H. Distinct regulation of mRNA decay pathways by ABA enhances Nitrate Reductase 1/2-derived siRNAs production and stress adaptation. MOLECULAR PLANT 2025; 18:853-871. [PMID: 40253589 DOI: 10.1016/j.molp.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/13/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
RNA degradation systems (e.g., RNA decay and RNA interference) and the phytohormone abscisic acid (ABA) are both essential for plant growth, development, and adaptation to stress. Although the interplay between these pathways has been recognized, the molecular mechanisms governing their coordination remain poorly understood. In this study, we revealed that mutations in the 5'-3' RNA-degrading enzyme Ethylene Insensitive 5 (EIN5) result in hypersensitivity to ABA in Arabidopsis, whereas defects in the 3'-5' RNA turnover machinery (ski mutants) do not. The ABA hypersensitivity of ein5 mutants was mitigated by mutating components of the post-transcriptional gene silencing (PTGS) pathway, including DICER-LIKE 2 (DCL2)/DCL4, RNA-Dependent RNA Polymerase 1 (RDR1)/RDR6, and ARGONAUTE 1 (AGO1). ABA treatment substantially increased the abundance of coding-transcript-derived small interfering RNAs (ct-siRNAs) in ein5, predominantly from two genes, Nitrate Reductase 1 (NIA1) and NIA2. Further analysis suggested that NIA1 and NIA2 negatively regulate both the ABA biosynthesis and signaling pathways. The key transcription factor Abscisic Acid Insensitive 3 (ABI3) represses SKI3 expression by directly binding to its promoter, thereby promoting the production of NIA1/NIA2-derived ct-siRNAs, leading to the ABA hypersensitivity of ein5. Conversely, ABA enhances the accumulation of EIN5 as well as DCL4 and AGO1, pointing to distinct regulation of the mRNA decay and PTGS pathways. Collectively, these findings demonstrate the pivotal roles of NIA1 and NIA2 in plant responses to abiotic stress and provide new insights into the interplay between the ABA response and RNA degradation pathways.
Collapse
Affiliation(s)
- Yan Yan
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yinpeng Xie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qian Gao
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yajie Pan
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xianli Tang
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yuelin Liu
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Wenyang Li
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Tanaka M, Sotta N, Duncan S, Chiba Y, Onouchi H, Marée AFM, Naito S, Grieneisen VA, Fujiwara T. Ribosome stalling-induced NIP5;1 mRNA decay triggers ARGONAUTE1-dependent transcription downregulation. Nucleic Acids Res 2025; 53:gkaf159. [PMID: 40107731 PMCID: PMC11915504 DOI: 10.1093/nar/gkaf159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
In eukaryotes, messenger RNA (mRNA) accumulation is regulated through the levels of transcription, processing, and degradation. Here, we uncover the multi-level regulatory mechanism governing the expression of NIP5;1, a boron (B) diffusion facilitator in Arabidopsis. B-dependent NIP5;1 mRNA degradation is triggered by ribosome stalling at an AUGUAA sequence in its 5'-untranslated region. We showed that deletion of ATGTAA also abolishes B-dependent transcriptional downregulation, revealing a dual role of this sequence in both mRNA degradation and transcriptional control. Small RNAs (sRNAs) and ARGONAUTE1 (AGO1) are implicated in mRNA-degradation-mediated B-dependent transcriptional downregulation: a 5'-3' exonuclease mutant, xrn4, presents both elevated levels of NIP5;1 mRNA degradation intermediates and transcriptional downregulation; AGO1-associated sRNA-sequencing reveals the presence of sRNAs with sequences upstream of NIP5;1 AUGUAA; and nascent mRNA profiling by global run-on sequencing demonstrates RNA polymerase II pausing at ATGTAA, a phenomenon diminished in the ago1 mutant that lacks B-dependent transcriptional downregulation. These findings point to multi-level coordination of NIP5;1 expression with the AUGUAA sequence at its core: ribosome stalling orchestrates translational inhibition, mRNA degradation and transcriptional downregulation in response to B. The fast response resulting from this synergy suggests that similar mechanisms may exist in other eukaryotic systems for efficient and rapid regulation of gene expression.
Collapse
Affiliation(s)
- Mayuki Tanaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka 599-8531, Japan
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Susan Duncan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Yukako Chiba
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | - Satoshi Naito
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Roca Paixao JF, Déléris A. Epigenetic control of T-DNA during transgenesis and pathogenesis. PLANT PHYSIOLOGY 2024; 197:kiae583. [PMID: 39498848 DOI: 10.1093/plphys/kiae583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 11/07/2024]
Abstract
Mobile elements known as T-DNAs are transferred from pathogenic Agrobacterium to plants and reprogram the host cell to form hairy roots or tumors. Disarmed nononcogenic T-DNAs are extensively used to deliver transgenes in plant genetic engineering. Such T-DNAs were the first known targets of RNA silencing mechanisms, which detect foreign RNA in plant cells and produce small RNAs that induce transcript degradation. These T-DNAs can also be transcriptionally silenced by the deposition of epigenetic marks such as DNA methylation and the dimethylation of lysine 9 (H3K9me2) in plants. Here, we review the targeting and the roles of RNA silencing and DNA methylation on T-DNAs in transgenic plants as well as during pathogenesis. In addition, we discuss the crosstalk between T-DNAs and genome-wide changes in DNA methylation during pathogenesis. We also cover recently discovered regulatory phenomena, such as T-DNA suppression and RNA silencing-independent and epigenetic-independent mechanisms that can silence T-DNAs. Finally, we discuss the implications of findings on T-DNA silencing for the improvement of plant genetic engineering.
Collapse
Affiliation(s)
- Joaquin Felipe Roca Paixao
- Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Angélique Déléris
- Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Li J, Le B, Wang X, Xu Y, Wang S, Li H, Gao L, Mo B, Liu L, Chen X. ALTERED MERISTEM PROGRAM1 impairs RNA silencing by repressing the biogenesis of a subset of inverted repeat-derived siRNAs. THE PLANT CELL 2024; 37:koae293. [PMID: 39495672 DOI: 10.1093/plcell/koae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024]
Abstract
RNA silencing negatively regulates gene expression at the transcriptional and posttranscriptional levels through DNA methylation, histone modification, mRNA cleavage, and translational inhibition. Small interfering RNAs (siRNAs) of 21 to 24 nucleotides are processed from double-stranded RNAs by Dicer-like (DCL) enzymes and play essential roles in RNA silencing in plants. Here, we demonstrated that ALTERED MERISTEM PROGRAM1 (AMP1) and its putative paralog LIKE AMP1 (LAMP1) impair RNA silencing by repressing the biogenesis of a subset of inverted repeat (IR)-derived siRNAs in Arabidopsis (Arabidopsis thaliana). AMP1 and LAMP1 inhibit Pol II-dependent IR gene transcription by suppressing ARGONAUTE 1 (AGO1) protein levels. Genetic analysis indicates that AMP1 acts upstream of RNA polymerase IV subunit 1 (NRPD1), RNA-dependent RNA polymerase 2 (RDR2), and DCL4, which are required for IR-induced RNA silencing. We also show that AMP1 and LAMP1 inhibit siRNA-mediated silencing in a different mechanism from that of AGO4 and DCL3. Together, these results reveal two previously unknown players in siRNA biogenesis from IRs-AGO1, which promotes IR transcription, and AMP1, which inhibits IR transcription indirectly through the repression of AGO1 expression.
Collapse
Affiliation(s)
- Jing Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Brandon Le
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xufeng Wang
- Beijing Advanced Center of RNA Biology (BEACON), State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ye Xu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Suikang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hao Li
- Beijing Advanced Center of RNA Biology (BEACON), State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xuemei Chen
- Beijing Advanced Center of RNA Biology (BEACON), State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Lee J, Lee KR, Kim NS, Lee J, Lee SK, Lee S. High-Level Production of a Recombinant Protein in Nicotiana benthamiana Leaves Through Transient Expression Using a Double Terminator. Int J Mol Sci 2024; 25:11573. [PMID: 39519125 PMCID: PMC11547012 DOI: 10.3390/ijms252111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Various bio-based recombinant proteins have been produced for industrial, medical, and research purposes. Plants are potential platforms for recombinant protein production because of several advantages. Therefore, establishing a system with high target gene expression to compensate for the low protein yield of plant systems is crucial. In particular, selecting and combining strong terminators is essential because the expression of target genes can be substantially enhanced. Here, we aimed to quantify the enhancement in the fluorescence intensity of the turbo green fluorescence protein (tGFP) caused by the best double-terminator combinations compared to that of the control vector using agroinfiltration in Nicotiana benthamiana leaves. tGFP fluorescence increased by 4.1-fold in leaf samples infiltrated with a vector containing a double terminator and markedly increased by a maximum of 23.7-fold when co-infiltrated with the geminiviral vector and P19 compared to that in constructs containing an octopine synthase terminator. Polyadenylation site analysis in leaf tissues expressing single or dual terminators showed that the first terminator influenced the polyadenylation site determination of the second terminator, resulting in different polyadenylation sites compared with when the terminator is located first. The combination of the high-expression terminators and geminiviral vectors can increase the production of target proteins.
Collapse
|
6
|
Tan H, Liu Y, Guo H. The biogenesis, regulation and functions of transitive siRNA in plants. Acta Biochim Biophys Sin (Shanghai) 2024; 57:131-147. [PMID: 39376148 PMCID: PMC11802348 DOI: 10.3724/abbs.2024160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Small RNA (sRNA)-mediated RNA interference (RNAi) is a sequence-specific gene silencing mechanism that modulates gene expression in eukaryotes. As core molecules of RNAi, various sRNAs are encoded in the plant genome or derived from invading RNA molecules, and their biogenesis depends on distinct genetic pathways. Transitive small interfering RNAs (siRNAs), which are sRNAs produced from double-strand RNA (dsRNA) in a process that depends on RNA-dependent RNA polymerases (RDRs), can amplify and spread silencing signals to additional transcripts, thereby enabling a phenomenon termed "transitive RNAi". Members of this class of siRNAs function in various biological processes ranging from development to stress adaptation. In Arabidopsis thaliana, two RDRs participate in the generation of transitive siRNAs, acting cooperatively with various siRNA generation-related factors, such as the RNA-induced silencing complex (RISC) and aberrant RNAs. Transitive siRNAs are produced in diverse subcellular locations and structures under the control of various mechanisms, highlighting the intricacies of their biogenesis and functions. In this review, we discuss recent advances in understanding the molecular events of transitive siRNA biogenesis and its regulation, with a particular focus on factors involved in RDR recruitment. We aim to provide a comprehensive description of the generalized mechanism governing the biogenesis of transitive siRNAs. Additionally, we present an overview of the diverse biological functions of these siRNAs and raise some pressing questions in this area for further investigation.
Collapse
Affiliation(s)
- Huijun Tan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular DesignInstitute of Plant and Food ScienceDepartment of BiologySchool of Life SciencesSouthern University of Science and TechnologyShenzhen518055China
- Department of BiologyHong Kong Baptist UniversityHong Kong SARChina
| | - Yuelin Liu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular DesignInstitute of Plant and Food ScienceDepartment of BiologySchool of Life SciencesSouthern University of Science and TechnologyShenzhen518055China
| | - Hongwei Guo
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular DesignInstitute of Plant and Food ScienceDepartment of BiologySchool of Life SciencesSouthern University of Science and TechnologyShenzhen518055China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
| |
Collapse
|
7
|
Wang L, Li H, Lei Z, Jeong DH, Cho J. The CARBON CATABOLITE REPRESSION 4A-mediated RNA deadenylation pathway acts on the transposon RNAs that are not regulated by small RNAs. THE NEW PHYTOLOGIST 2024; 241:1636-1645. [PMID: 38009859 DOI: 10.1111/nph.19435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Transposable elements (TEs) are mobile genetic elements that can impair the host genome stability and integrity. It has been well documented that activated transposons in plants are suppressed by small interfering (si) RNAs. However, transposon repression by the cytoplasmic RNA surveillance system is unknown. Here, we show that mRNA deadenylation is critical for controlling transposons in Arabidopsis. Trimming of poly(A) tail is a rate-limiting step that precedes the RNA decay and is primarily mediated by the CARBON CATABOLITE REPRESSION 4 (CCR4)-NEGATIVE ON TATA-LESS (NOT) complex. We found that the loss of CCR4a leads to strong derepression and mobilization of TEs in Arabidopsis. Intriguingly, CCR4a regulates a largely distinct set of TEs from those controlled by RNA-dependent RNA Polymerase 6 (RDR6), a key enzyme that produces cytoplasmic siRNAs. This indicates that the cytoplasmic RNA quality control mechanism targets the TEs that are poorly recognized by the previously well-characterized RDR6-mediated pathway, and thereby augments the host genome stability. Our study suggests a hitherto unknown mechanism for transposon repression mediated by RNA deadenylation and unveils a complex nature of the host's strategy to maintain the genome integrity.
Collapse
Affiliation(s)
- Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Hui Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhen Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Dong-Hoon Jeong
- Department of Life Science, Hallym University, Chuncheon, 24252, Korea
- Multidisciplinary Genome Institute, Hallym University, Chuncheon, 24252, Korea
| | - Jungnam Cho
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
8
|
Niederau PA, Eglé P, Willig S, Parsons J, Hoernstein SNW, Decker EL, Reski R. Multifactorial analysis of terminator performance on heterologous gene expression in Physcomitrella. PLANT CELL REPORTS 2024; 43:43. [PMID: 38246952 PMCID: PMC10800305 DOI: 10.1007/s00299-023-03088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/02/2023] [Indexed: 01/23/2024]
Abstract
KEY MESSAGE Characterization of Physcomitrella 3'UTRs across different promoters yields endogenous single and double terminators for usage in molecular pharming. The production of recombinant proteins for health applications accounts for a large share of the biopharmaceutical market. While many drugs are produced in microbial and mammalian systems, plants gain more attention as expression hosts to produce eukaryotic proteins. In particular, the good manufacturing practice (GMP)-compliant moss Physcomitrella (Physcomitrium patens) has outstanding features, such as excellent genetic amenability, reproducible bioreactor cultivation, and humanized protein glycosylation patterns. In this study, we selected and characterized novel terminators for their effects on heterologous gene expression. The Physcomitrella genome contains 53,346 unique 3'UTRs (untranslated regions) of which 7964 transcripts contain at least one intron. Over 91% of 3'UTRs exhibit more than one polyadenylation site, indicating the prevalence of alternative polyadenylation in Physcomitrella. Out of all 3'UTRs, 14 terminator candidates were selected and characterized via transient Dual-Luciferase assays, yielding a collection of endogenous terminators performing equally high as established heterologous terminators CaMV35S, AtHSP90, and NOS. High performing candidates were selected for testing as double terminators which impact reporter levels, dependent on terminator identity and positioning. Testing of 3'UTRs among the different promoters NOS, CaMV35S, and PpActin5 showed an increase of more than 1000-fold between promoters PpActin5 and NOS, whereas terminators increased reporter levels by less than tenfold, demonstrating the stronger effect promoters play as compared to terminators. Among selected terminator attributes, the number of polyadenylation sites as well as polyadenylation signals were found to influence terminator performance the most. Our results improve the biotechnology platform Physcomitrella and further our understanding of how terminators influence gene expression in plants in general.
Collapse
Affiliation(s)
| | - Pauline Eglé
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sandro Willig
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centre BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Fujimoto Y, Iwakawa HO. Mechanisms that regulate the production of secondary siRNAs in plants. J Biochem 2023; 174:491-499. [PMID: 37757447 DOI: 10.1093/jb/mvad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/28/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Many organisms produce secondary small interfering RNAs (siRNAs) that are triggered by primary small RNAs to regulate various biological processes. Plants have evolved several types of secondary siRNA biogenesis pathways that play important roles in development, stress responses and defense against viruses and transposons. The critical step of these pathways is the production of double-stranded RNAs by RNA-dependent RNA polymerases. This step is normally tightly regulated, but when its control is released, secondary siRNA production is initiated. In this article, we will review the recent advances in secondary siRNA production triggered by microRNAs encoded in the genome and siRNAs derived from invasive nucleic acids. In particular, we will focus on the factors, events, and RNA/DNA elements that promote or inhibit the early steps of secondary siRNA biogenesis.
Collapse
Affiliation(s)
- Yuji Fujimoto
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Hiro-Oki Iwakawa
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
10
|
Brooks EG, Elorriaga E, Liu Y, Duduit JR, Yuan G, Tsai CJ, Tuskan GA, Ranney TG, Yang X, Liu W. Plant Promoters and Terminators for High-Precision Bioengineering. BIODESIGN RESEARCH 2023; 5:0013. [PMID: 37849460 PMCID: PMC10328392 DOI: 10.34133/bdr.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 10/19/2023] Open
Abstract
High-precision bioengineering and synthetic biology require fine-tuning gene expression at both transcriptional and posttranscriptional levels. Gene transcription is tightly regulated by promoters and terminators. Promoters determine the timing, tissues and cells, and levels of the expression of genes. Terminators mediate transcription termination of genes and affect mRNA levels posttranscriptionally, e.g., the 3'-end processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs. The promoter and terminator combination affects gene expression. In the present article, we review the function and features of plant core promoters, proximal and distal promoters, and terminators, and their effects on and benchmarking strategies for regulating gene expression.
Collapse
Affiliation(s)
- Emily G. Brooks
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Estefania Elorriaga
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James R. Duduit
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Jui Tsai
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Thomas G. Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Xiaohan Yang
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
11
|
Bazin J, Elvira-Matelot E, Blein T, Jauvion V, Bouteiller N, Cao J, Crespi MD, Vaucheret H. Synergistic action of the Arabidopsis spliceosome components PRP39a and SmD1b in promoting posttranscriptional transgene silencing. THE PLANT CELL 2023; 35:1917-1935. [PMID: 36970782 PMCID: PMC10226559 DOI: 10.1093/plcell/koad091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 05/30/2023]
Abstract
Besides regulating splicing, the conserved spliceosome component SmD1 (Small nuclear ribonucleoprotein D1)b promotes posttranscriptional silencing of sense transgenes (S-PTGS [post-transcriptional genesilencing]). Here, we show that the conserved spliceosome component PRP39 (Pre-mRNA-processing factor 39)a also plays a role in S-PTGS in Arabidopsis thaliana. However, PRP39a and SmD1b actions appear distinct in both splicing and S-PTGS. Indeed, RNAseq-based analysis of expression level and alternative splicing in prp39a and smd1b mutants identified different sets of deregulated transcripts and noncoding RNAs. Moreover, double mutant analyses involving prp39a or smd1b and RNA quality control (RQC) mutants revealed distinct genetic interactions for SmD1b and PRP39a with nuclear RQC machineries, suggesting nonredundant roles in the RQC/PTGS interplay. Supporting this hypothesis, a prp39a smd1b double mutant exhibited enhanced suppression of S-PTGS compared to the single mutants. Because the prp39a and smd1b mutants (i) showed no major changes in the expression of PTGS or RQC components or in small RNA production and (ii) do not alter PTGS triggered by inverted-repeat transgenes directly producing dsRNA (IR-PTGS), PRP39a, and SmD1b appear to synergistically promote a step specific to S-PTGS. We propose that, independently from their specific roles in splicing, PRP39a and SmD1b limit 3'-to-5' and/or 5'-to-3' degradation of transgene-derived aberrant RNAs in the nucleus, thus favoring the export of aberrant RNAs to the cytoplasm where their conversion into double-stranded RNA (dsRNA) initiates S-PTGS.
Collapse
Affiliation(s)
- Jérémie Bazin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Universités Paris-Sud, Evry, Paris-Diderot, Sorbonne Paris-Cité, Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Emilie Elvira-Matelot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Thomas Blein
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Universités Paris-Sud, Evry, Paris-Diderot, Sorbonne Paris-Cité, Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Vincent Jauvion
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Nathalie Bouteiller
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Jun Cao
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Martin D Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Universités Paris-Sud, Evry, Paris-Diderot, Sorbonne Paris-Cité, Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Hervé Vaucheret
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| |
Collapse
|
12
|
Li Y, Ma E, Yang K, Zhao B, Li Y, Wan P. Genome-wide analysis of key gene families in RNA silencing and their responses to biotic and drought stresses in adzuki bean. BMC Genomics 2023; 24:195. [PMID: 37046231 PMCID: PMC10091639 DOI: 10.1186/s12864-023-09274-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/25/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND In plants, RNA silencing is an important conserved mechanism to regulate gene expression and combat against abiotic and biotic stresses. Dicer-like (DCL) and Argonaute (AGO) proteins and RNA-dependent RNA polymerase (RDR) are the core elements involved in gene silencing and their gene families have been explored in many plants. However, these genes and their responses to stresses have not yet been well characterized in adzuki bean. RESULTS A total of 11 AGO, 7 DCL and 6 RDR proteins were identified, and phylogenetic analyses of these proteins showed that they clustered into six, four and four clades respectively. The expression patterns of these genes in susceptible or resistant adzuki bean cultivars challenged with drought, bean common mosaic virus and Podosphaera xanthii infections were further validated by quantitative RT-PCR. The different responses of these proteins under abiotic and biotic stresses indicated their specialized regulatory mechanisms. CONCLUSIONS In this study, 24 genes of the DCL, AGO and RDR gene families in adzuki bean were identified, and the sequence characterization, structure of the encoded proteins, evolutionary relationship with orthologues in other legumes and gene expression patterns under drought and biotic stresses were primarily explored, which enriched our understanding of these genes in adzuki bean. Our findings provide a foundation for the comparative genomic analyses of RNA silencing elements in legume plants and further new insights into the functional complexity of RNA silencing in the response to various stresses in adzuki bean.
Collapse
Affiliation(s)
- Yongqiang Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture Rural Affairs, College of Biological Science and Resources Environment, Beijing University of Agriculture, HuilongguanBeinonglu 7, Changping District, Beijing, 102206, China.
| | - Enze Ma
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, HuilongguanBeinonglu 7, Changping District, Beijing, 102206, China
| | - Kai Yang
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, HuilongguanBeinonglu 7, Changping District, Beijing, 102206, China
| | - Bo Zhao
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, HuilongguanBeinonglu 7, Changping District, Beijing, 102206, China
| | - Yisong Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture Rural Affairs, College of Biological Science and Resources Environment, Beijing University of Agriculture, HuilongguanBeinonglu 7, Changping District, Beijing, 102206, China
| | - Ping Wan
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, HuilongguanBeinonglu 7, Changping District, Beijing, 102206, China.
| |
Collapse
|
13
|
de Felippes FF, Waterhouse PM. Plant terminators: the unsung heroes of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2239-2250. [PMID: 36477559 PMCID: PMC10082929 DOI: 10.1093/jxb/erac467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/25/2022] [Indexed: 06/06/2023]
Abstract
To be properly expressed, genes need to be accompanied by a terminator, a region downstream of the coding sequence that contains the information necessary for the maturation of the mRNA 3' end. The main event in this process is the addition of a poly(A) tail at the 3' end of the new transcript, a critical step in mRNA biology that has important consequences for the expression of genes. Here, we review the mechanism leading to cleavage and polyadenylation of newly transcribed mRNAs and how this process can affect the final levels of gene expression. We give special attention to an aspect often overlooked, the effect that different terminators can have on the expression of genes. We also discuss some exciting findings connecting the choice of terminator to the biogenesis of small RNAs, which are a central part of one of the most important mechanisms of regulation of gene expression in plants.
Collapse
Affiliation(s)
| | - Peter M Waterhouse
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, QUT, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Chamness JC, Kumar J, Cruz AJ, Rhuby E, Holum MJ, Cody JP, Tibebu R, Gamo ME, Starker CG, Zhang F, Voytas DF. An extensible vector toolkit and parts library for advanced engineering of plant genomes. THE PLANT GENOME 2023:e20312. [PMID: 36896468 DOI: 10.1002/tpg2.20312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Plant biotechnology is rife with new advances in transformation and genome engineering techniques. A common requirement for delivery and coordinated expression in plant cells, however, places the design and assembly of transformation constructs at a crucial juncture as desired reagent suites grow more complex. Modular cloning principles have simplified some aspects of vector design, yet many important components remain unavailable or poorly adapted for rapid implementation in biotechnology research. Here, we describe a universal Golden Gate cloning toolkit for vector construction. The toolkit chassis is compatible with the widely accepted Phytobrick standard for genetic parts, and supports assembly of arbitrarily complex T-DNAs through improved capacity, positional flexibility, and extensibility in comparison to extant kits. We also provision a substantial library of newly adapted Phytobricks, including regulatory elements for monocot and dicot gene expression, and coding sequences for genes of interest such as reporters, developmental regulators, and site-specific recombinases. Finally, we use a series of dual-luciferase assays to measure contributions to expression from promoters, terminators, and from cross-cassette interactions attributable to enhancer elements in certain promoters. Taken together, these publicly available cloning resources can greatly accelerate the testing and deployment of new tools for plant engineering.
Collapse
Affiliation(s)
- James C Chamness
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jitesh Kumar
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Anna J Cruz
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
| | - Elissa Rhuby
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
| | - Mason J Holum
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
| | - Jon P Cody
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Redeat Tibebu
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Maria Elena Gamo
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Colby G Starker
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Feng Zhang
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Gossart N, Berhin A, Sergeant K, Alam I, André C, Hausman JF, Boutry M, Hachez C. Engineering Nicotiana tabacum trichomes for triterpenic acid production. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111573. [PMID: 36563941 DOI: 10.1016/j.plantsci.2022.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
In this work, we aimed at implementing the biosynthesis of triterpenic acids in Nicotiana tabacum glandular trichomes. Although endogenous genes coding for enzymes involved in such biosynthetic pathway are found in the Nicotiana tabacum genome, implementing such pathway specifically in glandular trichomes required to boost endogenous enzymatic activities. Five transgenes coding for a farnesyl-diphosphate synthase, a squalene synthase, a squalene epoxidase, a beta-amyrin synthase and a beta-amyrin 28-monooxygenase were introduced in N.tabacum, their expression being driven by pMALD1, a trichome-specific transcriptional promoter. This study aimed at testing whether sinking isoprenoid precursors localized in plastids, by exploiting potential cross-talks allowing the exchange of terpenoid pools from the chloroplast to the cytosol, could be a way to improve overall yield. By analyzing metabolites extracted from entire leaves, a low amount of ursolic acid was detected in plants expressing the five transgenes. Our study shows that the terpene biosynthetic pathway could be, in part, redirected in N.tabacum glandular trichomes with no deleterious phenotype at the whole plant level (chlorosis, dwarfism,…). In light of our results, possible ways to improve the final yield are discussed.
Collapse
Affiliation(s)
- Nicola Gossart
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Alice Berhin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Kjell Sergeant
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Iftekhar Alam
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium; Plant Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Christelle André
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg; The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, New Zealand
| | - Jean-François Hausman
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Marc Boutry
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Charles Hachez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
16
|
Shao Z, Huang L, Zhang Y, Qiang S, Song X. Transgene Was Silenced in Hybrids between Transgenic Herbicide-Resistant Crops and Their Wild Relatives Utilizing Alien Chromosomes. PLANTS (BASEL, SWITZERLAND) 2022; 11:3187. [PMID: 36501227 PMCID: PMC9741405 DOI: 10.3390/plants11233187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The commercialization of transgenic herbicide-resistant (HR) crops may cause gene flow risk. If a transgene in progenies of transgenic crops and wild relatives is silencing, these progenies should be killed by the target herbicide, thus, the gene flow risk could be decreased. We obtained the progenies of backcross generations between wild Brassca juncea (AABB, 2n = 36) and glufosinate-resistant transgenic Brassica napus (AACC, 2n = 38, PAT gene located on the C-chromosome). They carried the HR gene but did not express it normally, i.e., gene silencing occurred. Meanwhile, six to nine methylation sites were found on the promoter of PAT in transgene-silencing progenies, while no methylation sites occurred on that in transgene-expressing progenies. In addition, transgene expressing and silencing backcross progenies showed similar fitness with wild Brassica juncea. In conclusion, we elaborate on the occurrence of transgene-silencing event in backcross progenies between transgenic crop utilizing alien chromosomes and their wild relatives, and the DNA methylation of the transgene promoter was an important factor leading to gene silencing. The insertion site of the transgene could be considered a strategy to reduce the ecological risk of transgenic crops, and applied to cultivate lower gene flow HR crops in the future.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoling Song
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (L.H.); (Y.Z.); (S.Q.)
| |
Collapse
|
17
|
Feng Z, Li X, Fan B, Zhu C, Chen Z. Maximizing the Production of Recombinant Proteins in Plants: From Transcription to Protein Stability. Int J Mol Sci 2022; 23:13516. [PMID: 36362299 PMCID: PMC9659199 DOI: 10.3390/ijms232113516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2023] Open
Abstract
The production of therapeutic and industrial recombinant proteins in plants has advantages over established bacterial and mammalian systems in terms of cost, scalability, growth conditions, and product safety. In order to compete with these conventional expression systems, however, plant expression platforms must have additional economic advantages by demonstrating a high protein production yield with consistent quality. Over the past decades, important progress has been made in developing strategies to increase the yield of recombinant proteins in plants by enhancing their expression and reducing their degradation. Unlike bacterial and animal systems, plant expression systems can utilize not only cell cultures but also whole plants for the production of recombinant proteins. The development of viral vectors and chloroplast transformation has opened new strategies to drastically increase the yield of recombinant proteins from plants. The identification of promoters for strong, constitutive, and inducible promoters or the tissue-specific expression of transgenes allows for the production of recombinant proteins at high levels and for special purposes. Advances in the understanding of RNAi have led to effective strategies for reducing gene silencing and increasing recombinant protein production. An increased understanding of protein translation, quality control, trafficking, and degradation has also helped with the development of approaches to enhance the synthesis and stability of recombinant proteins in plants. In this review, we discuss the progress in understanding the processes that control the synthesis and degradation of gene transcripts and proteins, which underlie a variety of developed strategies aimed at maximizing recombinant protein production in plants.
Collapse
Affiliation(s)
- Ziru Feng
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xifeng Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
18
|
Molesini B, Pennisi F, Cressoni C, Vitulo N, Dusi V, Speghini A, Pandolfini T. Nanovector-mediated exogenous delivery of dsRNA induces silencing of target genes in very young tomato flower buds. NANOSCALE ADVANCES 2022; 4:4542-4553. [PMID: 36341284 PMCID: PMC9595187 DOI: 10.1039/d2na00478j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/13/2022] [Indexed: 06/12/2023]
Abstract
RNA interference (RNAi) is a post-translational regulatory mechanism that controls gene expression in plants. This process can be artificially induced by double-stranded RNA (dsRNA) molecules with sequence homology to target mRNAs. Exogenously applied dsRNA on leaves has been shown to silence virulence genes of fungi and viruses, conferring protection to plants. Coupling dsRNA to nanoparticles has been demonstrated to prolong the silencing effect. The ability of exogenous dsRNA to silence endogenous genes in plants is currently under debate, mainly due to the difficulty in delivering dsRNA into plant tissues and organs. Our study aims to develop a method based on the exogenous application of dsRNA on tomato flowers for silencing endogenous genes controlling ovary growth. Two methods of dsRNA delivery into tomato flower buds (i.e., pedicel soaking and injection) were compared to test their efficacy in silencing the tomato Aux/IAA9 (SlIAA9) gene, which encodes for a known repressor of ovary growth. We examined the silencing effect of dsRNA alone and coupled to layered double hydroxide (LDHs) nanoparticles. We found that injection into the pedicel led to the silencing of SlIAA9 and the efficacy of the method was confirmed by choosing a different ovary growth repressor gene (SlAGAMOUS-like 6; SlAGL6). The coupling of dsRNA to LDHs increased the silencing effect in the case of SlIAA9. Silencing of the two repressors caused an increase in ovary size only when flower buds were treated with dsRNA coupled to LDHs. RNA-Seq of small RNAs showed that induction of RNAi was caused by the processing of injected dsRNA. In this work, we demonstrate for the first time that exogenous dsRNA coupled to LDHs can induce post-transcriptional gene silencing in the young tomato ovary by injection into the flower pedicel. This method represents a silencing tool for the study of the molecular changes occurring during the early stages of ovary/fruit growth as a consequence of downregulation of target genes, without the need to produce transgenic plants stably expressing RNAi constructs.
Collapse
Affiliation(s)
- B Molesini
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - F Pennisi
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - C Cressoni
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - N Vitulo
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - V Dusi
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - A Speghini
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - T Pandolfini
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| |
Collapse
|
19
|
Kumar M, Tripathi PK, Ayzenshtat D, Marko A, Forotan Z, Bocobza SE. Increased rates of gene-editing events using a simplified RNAi configuration designed to reduce gene silencing. PLANT CELL REPORTS 2022; 41:1987-2003. [PMID: 35849200 DOI: 10.1007/s00299-022-02903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
An optimal RNAi configuration that could restrict gene expression most efficiently was determined. This approach was also used to target PTGS and yielded higher rates of gene-editing events. Although it was characterized long ago, transgene silencing still strongly impairs transgene overexpression, and thus is a major barrier to plant crop gene-editing. The development of strategies that could prevent transgene silencing is therefore essential to the success of gene editing assays. Transgene silencing occurs via the RNA silencing process, which regulates the expression of essential genes and protects the plant from viral infections. The RNA silencing machinery thereby controls central biological processes such as growth, development, genome integrity, and stress resistance. RNA silencing is typically induced by aberrant RNA, that may lack 5' or 3' processing, or may consist in double-stranded or hairpin RNA, and involves DICER and ARGONAUTE family proteins. In this study, RNAi inducing constructs were designed in eleven different configurations and were evaluated for their capacity to induce silencing in Nicotiana spp. using transient and stable transformation assays. Using reporter genes, it was found that the overexpression of a hairpin consisting of a forward tandem inverted repeat that started with an ATG and that was not followed downstream by a transcription terminator, could downregulate gene expression most potently. Furthermore, using this method, the downregulation of the NtSGS3 gene caused a significant increase in transgene expression both in transient and stable transformation assays. This SGS3 silencing approach was also employed in gene-editing assays and caused higher rates of gene-editing events. Taken together, these findings suggested the optimal genetic configuration to cause RNA silencing and showed that this strategy may be used to restrict PTGS during gene-editing experiments.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Pankaj Kumar Tripathi
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Dana Ayzenshtat
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Adar Marko
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Zohar Forotan
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Samuel E Bocobza
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel.
| |
Collapse
|
20
|
Pinneh EC, van Dolleweerd CJ, Göritzer K, Drake PMW, Ma JK, Teh AY. Multiple gene expression in plants using MIDAS-P, a versatile type II restriction-based modular expression vector. Biotechnol Bioeng 2022; 119:1660-1672. [PMID: 35238400 PMCID: PMC9313558 DOI: 10.1002/bit.28073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
MIDAS-P is a plant expression vector with blue/white screening for iterative cloning of multiple, tandemly arranged transcription units (TUs). We have used the MIDAS-P system to investigate the expression of up to five genes encoding three anti-HIV proteins and the reporter gene DsRed in Nicotiana benthamiana plants. The anti-HIV cocktail was made up of a broadly neutralizing monoclonal antibody (VRC01), a lectin (Griffithsin), and a single-chain camelid nanobody (J3-VHH). Constructs containing different combinations of 3, 4, or 5 TUs encoding different components of the anti-HIV cocktail were assembled. Messenger RNA (mRNA) levels of the genes of interest decreased beyond two TUs. Coexpression of the RNA silencing suppressor P19 dramatically increased the overall mRNA and protein expression levels of each component. The position of individual TUs in 3 TU constructs did not affect mRNA or protein expression levels. However, their expression dropped to non-detectable levels in constructs with four or more TUs each containing the same promoter and terminator elements, with the exception of DsRed at the first or last position in 5 TU constructs. This drop was alleviated by co-expression of P19. In short, the MIDAS-P system is suitable for the simultaneous expression of multiple proteins in one construct.
Collapse
Affiliation(s)
- Elizabeth C. Pinneh
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Craig J. van Dolleweerd
- Protein Science & Engineering, Callaghan Innovation, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Kathrin Göritzer
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Pascal M. W. Drake
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Julian K‐C. Ma
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Audrey Y‐H. Teh
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| |
Collapse
|
21
|
de Felippes FF, Shand K, Waterhouse PM. Identification of a Transferrable Terminator Element That Inhibits Small RNA Production and Improves Transgene Expression Levels. FRONTIERS IN PLANT SCIENCE 2022; 13:877793. [PMID: 35651775 PMCID: PMC9149433 DOI: 10.3389/fpls.2022.877793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/27/2022] [Indexed: 06/06/2023]
Abstract
The role of terminators is more commonly associated with the polyadenylation and 3' end formation of new transcripts. Recent evidence, however, suggests that this regulatory region can have a dramatic impact on gene expression. Nonetheless, little is known about the molecular mechanisms leading to the improvements associated with terminator usage in plants and the different elements in a plant terminator. Here, we identified an element in the Arabidopsis HSP18.2 terminator (tHSP) to be essential for the high level of expression seen for transgenes under the regulation of this terminator. Our molecular analyses suggest that this newly identified sequence acts to improve transcription termination, leading to fewer read-through events and decreased amounts of small RNAs originating from the transgene. Besides protecting against silencing, the tHSP-derived sequence positively impacts splicing efficiency, helping to promote gene expression. Moreover, we show that this sequence can be used to generate chimeric terminators with enhanced efficiency, resulting in stronger transgene expression and significantly expanding the availability of efficient terminators that can be part of good expression systems. Thus, our data make an important contribution toward a better understanding of plant terminators, with the identification of a new element that has a direct impact on gene expression, and at the same time, creates new possibilities to modulate gene expression via the manipulation of 3' regulatory regions.
Collapse
Affiliation(s)
- Felipe Fenselau de Felippes
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council (ARC) Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kylie Shand
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter M. Waterhouse
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council (ARC) Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Lange H, Gagliardi D. Catalytic activities, molecular connections, and biological functions of plant RNA exosome complexes. THE PLANT CELL 2022; 34:967-988. [PMID: 34954803 PMCID: PMC8894942 DOI: 10.1093/plcell/koab310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 05/08/2023]
Abstract
RNA exosome complexes provide the main 3'-5'-exoribonuclease activities in eukaryotic cells and contribute to the maturation and degradation of virtually all types of RNA. RNA exosomes consist of a conserved core complex that associates with exoribonucleases and with multimeric cofactors that recruit the enzyme to its RNA targets. Despite an overall high level of structural and functional conservation, the enzymatic activities and compositions of exosome complexes and their cofactor modules differ among eukaryotes. This review highlights unique features of plant exosome complexes, such as the phosphorolytic activity of the core complex, and discusses the exosome cofactors that operate in plants and are dedicated to the maturation of ribosomal RNA, the elimination of spurious, misprocessed, and superfluous transcripts, or the removal of mRNAs cleaved by the RNA-induced silencing complex and other mRNAs prone to undergo silencing.
Collapse
Affiliation(s)
- Heike Lange
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Author for correspondence:
| | - Dominique Gagliardi
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
23
|
Uslu VV, Dalakouras A, Steffens VA, Krczal G, Wassenegger M. High-pressure sprayed siRNAs influence the efficiency but not the profile of transitive silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1199-1212. [PMID: 34882879 DOI: 10.1111/tpj.15625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
In plants, small interfering RNAs (siRNAs) are a quintessential class of RNA interference (RNAi)-inducing molecules produced by the endonucleolytic cleavage of double-stranded RNAs (dsRNAs). In order to ensure robust RNAi, siRNAs are amplified through a positive feedback mechanism called transitivity. Transitivity relies on RNA-DIRECTED RNA POLYMERASE 6 (RDR6)-mediated dsRNA synthesis using siRNA-targeted RNA. The newly synthesized dsRNA is subsequently cleaved into secondary siRNAs by DICER-LIKE (DCL) endonucleases. Just like primary siRNAs, secondary siRNAs are also loaded into ARGONAUTE proteins (AGOs) to form an RNA-induced silencing complex reinforcing the cleavage of the target RNA. Although the molecular players underlying transitivity are well established, the mode of action of transitivity remains elusive. In this study, we investigated the influence of primary target sites on transgene silencing and transitivity using the green fluorescent protein (GFP)-expressing Nicotiana benthamiana 16C line, high-pressure spraying protocol, and synthetic 22-nucleotide (nt) long siRNAs. We found that the 22-nt siRNA targeting the 3' of the GFP transgene was less efficient in inducing silencing when compared with the siRNAs targeting the 5' and middle region of the GFP. Moreover, sRNA sequencing of locally silenced leaves showed that the amount but not the profile of secondary RNAs is shaped by the occupancy of the primary siRNA triggers on the target RNA. Our findings suggest that RDR6-mediated dsRNA synthesis is not primed by primary siRNAs and that dsRNA synthesis appears to be generally initiated at the 3'-end of the target RNA.
Collapse
Affiliation(s)
- Veli Vural Uslu
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, Neustadt an der Weinstraße, Germany
| | - Athanasios Dalakouras
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization ELGO-DEMETER, Larissa, Greece
| | - Victor A Steffens
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, Neustadt an der Weinstraße, Germany
| | - Gabi Krczal
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, Neustadt an der Weinstraße, Germany
| | - Michael Wassenegger
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, Neustadt an der Weinstraße, Germany
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Krzyszton M, Kufel J. Analysis of mRNA-derived siRNAs in mutants of mRNA maturation and surveillance pathways in Arabidopsis thaliana. Sci Rep 2022; 12:1474. [PMID: 35087200 PMCID: PMC8795450 DOI: 10.1038/s41598-022-05574-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
Defects in RNA maturation and RNA decay factors may generate substrates for the RNA interference machinery. This phenomenon was observed in plants where mutations in some RNA-related factors lead to the production of RNA-quality control small interfering RNAs and several mutants show enhanced silencing of reporter transgenes. To assess the potential of RNAi activation on endogenous transcripts, we sequenced small RNAs from a set of Arabidopsis thaliana mutants with defects in various RNA metabolism pathways. We observed a global production of siRNAs caused by inefficient pre-mRNA cleavage and polyadenylation leading to read-through transcription into downstream antisense genes. In addition, in the lsm1a lsm1b double mutant, we identified NIA1, SMXL5, and several miRNA-targeted mRNAs as producing siRNAs, a group of transcripts suggested being especially sensitive to deficiencies in RNA metabolism. However, in most cases, RNA metabolism perturbations do not lead to the widespread production of siRNA derived from mRNA molecules. This observation is contrary to multiple studies based on reporter transgenes and suggests that only a very high accumulation of defective mRNA species caused by specific mutations or substantial RNA processing defects trigger RNAi pathways.
Collapse
Affiliation(s)
- Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Joanna Kufel
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
25
|
Asanuma T, Inagaki S, Kakutani T, Aburatani H, Murakami Y. Tandemly repeated genes promote RNAi-mediated heterochromatin formation via an antisilencing factor, Epe1, in fission yeast. Genes Dev 2022; 36:1145-1159. [PMID: 36617881 PMCID: PMC9851402 DOI: 10.1101/gad.350129.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
In most eukaryotes, constitutive heterochromatin, defined by histone H3 lysine 9 methylation (H3K9me), is enriched on repetitive DNA, such as pericentromeric repeats and transposons. Furthermore, repetitive transgenes also induce heterochromatin formation in diverse model organisms. However, the mechanisms that promote heterochromatin formation at repetitive DNA elements are still not clear. Here, using fission yeast, we show that tandemly repeated mRNA genes promote RNA interference (RNAi)-mediated heterochromatin formation in cooperation with an antisilencing factor, Epe1. Although the presence of tandemly repeated genes itself does not cause heterochromatin formation, once complementary small RNAs are artificially supplied in trans, the RNAi machinery assembled on the repeated genes starts producing cognate small RNAs in cis to autonomously maintain heterochromatin at these sites. This "repeat-induced RNAi" depends on the copy number of repeated genes and Epe1, which is known to remove H3K9me and derepress the transcription of genes underlying heterochromatin. Analogous to repeated genes, the DNA sequence underlying constitutive heterochromatin encodes widespread transcription start sites (TSSs), from which Epe1 activates ncRNA transcription to promote RNAi-mediated heterochromatin formation. Our results suggest that when repetitive transcription units underlie heterochromatin, Epe1 generates sufficient transcripts for the activation of RNAi without disruption of heterochromatin.
Collapse
Affiliation(s)
- Takahiro Asanuma
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Soichi Inagaki
- Department of Biological Sciences, Faculty of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Faculty of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
26
|
Oberlin S, Rajeswaran R, Trasser M, Barragán-Borrero V, Schon MA, Plotnikova A, Loncsek L, Nodine MD, Marí-Ordóñez A, Voinnet O. Innate, translation-dependent silencing of an invasive transposon in Arabidopsis. EMBO Rep 2021; 23:e53400. [PMID: 34931432 PMCID: PMC8892269 DOI: 10.15252/embr.202153400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
Co‐evolution between hosts’ and parasites’ genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive plant TEs, by contrast, involves an innate antiviral‐like silencing response. To investigate this response’s activation, we studied the single‐copy element EVADÉ (EVD), one of few representatives of the large Ty1/Copia family able to proliferate in Arabidopsis when epigenetically reactivated. In Ty1/Copia elements, a short subgenomic mRNA (shGAG) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full‐length genomic flGAG‐POL. We show here that the predominant cytosolic distribution of shGAG strongly favors its translation over mostly nuclear flGAG‐POL. During this process, an unusually intense ribosomal stalling event coincides with mRNA breakage yielding unconventional 5’OH RNA fragments that evade RNA quality control. The starting point of sRNA production by RNA‐DEPENDENT‐RNA‐POLYMERASE‐6 (RDR6), exclusively on shGAG, occurs precisely at this breakage point. This hitherto‐unrecognized “translation‐dependent silencing” (TdS) is independent of codon usage or GC content and is not observed on TE remnants populating the Arabidopsis genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against EVD de novo invasions that underlies its associated sRNA pattern.
Collapse
Affiliation(s)
- Stefan Oberlin
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Rajendran Rajeswaran
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Marieke Trasser
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Verónica Barragán-Borrero
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, Austria
| | - Michael A Schon
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexandra Plotnikova
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, Austria
| | - Lukas Loncsek
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, Austria
| | - Michael D Nodine
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, Austria.,Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Arturo Marí-Ordóñez
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, Austria
| | - Olivier Voinnet
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| |
Collapse
|
27
|
Smirnov A, Battulin N. Concatenation of Transgenic DNA: Random or Orchestrated? Genes (Basel) 2021; 12:genes12121969. [PMID: 34946918 PMCID: PMC8701086 DOI: 10.3390/genes12121969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022] Open
Abstract
Generation of transgenic organisms by pronuclear microinjection has become a routine procedure. However, while the process of DNA integration in the genome is well understood, we still do not know much about the recombination between transgene molecules that happens in the first moments after DNA injection. Most of the time, injected molecules are joined together in head-to-tail tandem repeats-the so-called concatemers. In this review, we focused on the possible concatenation mechanisms and how they could be studied with genetic reporters tracking individual copies in concatemers. We also discuss various features of concatemers, including palindromic junctions and repeat-induced gene silencing (RIGS). Finally, we speculate how cooperation of DNA repair pathways creates a multicopy concatenated insert.
Collapse
Affiliation(s)
- Alexander Smirnov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
| | - Nariman Battulin
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Institute of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
28
|
Sakurai Y, Baeg K, Lam AYW, Shoji K, Tomari Y, Iwakawa HO. Cell-free reconstitution reveals the molecular mechanisms for the initiation of secondary siRNA biogenesis in plants. Proc Natl Acad Sci U S A 2021; 118:e2102889118. [PMID: 34330830 PMCID: PMC8346886 DOI: 10.1073/pnas.2102889118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Secondary small interfering RNA (siRNA) production, triggered by primary small RNA targeting, is critical for proper development and antiviral defense in many organisms. RNA-dependent RNA polymerase (RDR) is a key factor in this pathway. However, how RDR specifically converts the targets of primary small RNAs into double-stranded RNA (dsRNA) intermediates remains unclear. Here, we develop an in vitro system that allows for dissection of the molecular mechanisms underlying the production of trans-acting siRNAs, a class of plant secondary siRNAs that play roles in organ development and stress responses. We find that a combination of the dsRNA-binding protein, SUPPRESSOR OF GENE SILENCING3; the putative nuclear RNA export factor, SILENCING DEFECTIVE5, primary small RNA, and Argonaute is required for physical recruitment of RDR6 to target RNAs. dsRNA synthesis by RDR6 is greatly enhanced by the removal of the poly(A) tail, which can be achieved by the cleavage at a second small RNA-binding site bearing appropriate mismatches. Importantly, when the complementarity of the base pairing at the second target site is too strong, the small RNA-Argonaute complex remains at the cleavage site, thereby blocking the initiation of dsRNA synthesis by RDR6. Our data highlight the light and dark sides of double small RNA targeting in the secondary siRNA biogenesis.
Collapse
Affiliation(s)
- Yuriki Sakurai
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kyungmin Baeg
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Andy Y W Lam
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Keisuke Shoji
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukihide Tomari
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan;
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiro-Oki Iwakawa
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan;
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
29
|
Matsui T, Takita E, Oiwa S, Yokoyama A, Kato K, Sawada K. Lettuce-based production of an oral vaccine against porcine edema disease for the seed lot system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:239-246. [PMID: 34393602 PMCID: PMC8329267 DOI: 10.5511/plantbiotechnology.21.0414a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/14/2021] [Indexed: 05/16/2023]
Abstract
Plant-made oral vaccines can be a cost-effective method to control infectious diseases of humans and farm animals. Pig edema is a bacterial disease caused by enterohemorrhagic Escherichia coli producing the toxin Shiga toxin 2e (Stx2e). In our previous report, we chose the non-toxic B subunit of Stx2e (Stx2eB) as a vaccine antigen, and Stx2eB was expressed in lettuce (Lactuca sativa L., cv. Green wave). We found that a double repeated Stx2eB (2×Stx2eB) accumulates to higher levels than a single Stx2eB. In this study, we analyzed progeny plants introduced with 2×Stx2eB in which the gene was expressed under the control of conventional cauliflower mosaic virus 35S RNA (CaMV 35S) promoter, and found that the lettuce underwent transgene silencing and bore few seeds. We resolved these problems by using a transgene cassette which harbored a transcriptional promoter derived from the lettuce ubiquitin gene and a longer version of HSPT. The lettuce harboring this expression construct will be valuable in establishing the seed lot system on the basis that thousands of seeds can be obtained from one plant body and the resulting progeny plants accumulate 2×Stx2eB at high levels without the transgene silencing.
Collapse
Affiliation(s)
- Takeshi Matsui
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
| | - Eiji Takita
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
| | - Seika Oiwa
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
| | - Asuka Yokoyama
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
| | - Ko Kato
- Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kazutoshi Sawada
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
- E-mail: Tel: +81-438-75-6019, Fax: +81-438-75-3733
| |
Collapse
|
30
|
Hung YH, Slotkin RK. The initiation of RNA interference (RNAi) in plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102014. [PMID: 33657510 DOI: 10.1016/j.pbi.2021.102014] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 05/15/2023]
Abstract
When an mRNA enters into the RNA degradation pathway called RNA interference (RNAi), it is cleaved into small interfering RNAs (siRNAs) that then target complementary mRNAs for destruction. The consequence of entry into RNAi is mRNA degradation, post-transcriptional silencing and in some cases transcriptional silencing. RNAi functions as a defense against transposable element and virus activity, and in plants, RNAi additionally plays a role in development by regulating some genes. However, it is unknown how specific transcripts are selected for RNAi, and how most genic mRNAs steer clear. This Current Opinion article explores the key question of how RNAs are selected for entry into RNAi, and proposes models that enable the cell to distinguish between transcripts to translate versus destroy.
Collapse
Affiliation(s)
- Yu-Hung Hung
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA; Division of Biological Sciences, University of Missouri-Columbia, 65211, USA.
| |
Collapse
|
31
|
Del Castello F, Foresi N, Nejamkin A, Lindermayr C, Buegger F, Lamattina L, Correa-Aragunde N. Cyanobacterial NOS expression improves nitrogen use efficiency, nitrogen-deficiency tolerance and yield in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110860. [PMID: 33902845 DOI: 10.1016/j.plantsci.2021.110860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Developing strategies to improve nitrogen (N) use efficiency (NUE) in plants is a challenge to reduce environmental problems linked to over-fertilization. The nitric oxide synthase (NOS) enzyme from the cyanobacteria Synechococcus PCC 7335 (SyNOS) has been recently identified and characterized. SyNOS catalyzes the conversion of arginine to citrulline and nitric oxide (NO), and then approximately 75 % of the produced NO is rapidly oxidized to nitrate by an unusual globin domain in the N-terminus of the enzyme. In this study, we assessed whether SyNOS expression in plants affects N metabolism, NUE and yield. Our results showed that SyNOS-expressing transgenic Arabidopsis plants have greater primary shoot length and shoot branching when grown under N-deficient conditions and higher seed production both under N-sufficient and N-deficient conditions. Moreover, transgenic plants showed significantly increased NUE in both N conditions. Although the uptake of N was not modified in the SyNOS lines, they showed an increase in the assimilation/remobilization of N under conditions of low N availability. In addition, SyNOS lines have greater N-deficiency tolerance compared to control plants. Our results support that SyNOS expression generates a positive effect on N metabolism and seed production in Arabidopsis, and it might be envisaged as a strategy to improve productivity in crops under adverse N environments.
Collapse
Affiliation(s)
- Fiorella Del Castello
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes 3350, CC 1245, 7600 Mar del Plata, Argentina.
| | - Noelia Foresi
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes 3350, CC 1245, 7600 Mar del Plata, Argentina.
| | - Andrés Nejamkin
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes 3350, CC 1245, 7600 Mar del Plata, Argentina.
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg/Munich, Germany.
| | - Franz Buegger
- Institute of Soil Ecology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg/Munich, Germany.
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes 3350, CC 1245, 7600 Mar del Plata, Argentina.
| | - Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes 3350, CC 1245, 7600 Mar del Plata, Argentina.
| |
Collapse
|
32
|
Butel N, Yu A, Le Masson I, Borges F, Elmayan T, Taochy C, Gursanscky NR, Cao J, Bi S, Sawyer A, Carroll BJ, Vaucheret H. Contrasting epigenetic control of transgenes and endogenous genes promotes post-transcriptional transgene silencing in Arabidopsis. Nat Commun 2021; 12:2787. [PMID: 33986281 PMCID: PMC8119426 DOI: 10.1038/s41467-021-22995-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/06/2021] [Indexed: 11/20/2022] Open
Abstract
Transgenes that are stably expressed in plant genomes over many generations could be assumed to behave epigenetically the same as endogenous genes. Here, we report that whereas the histone H3K9me2 demethylase IBM1, but not the histone H3K4me3 demethylase JMJ14, counteracts DNA methylation of Arabidopsis endogenous genes, JMJ14, but not IBM1, counteracts DNA methylation of expressed transgenes. Additionally, JMJ14-mediated specific attenuation of transgene DNA methylation enhances the production of aberrant RNAs that readily induce systemic post-transcriptional transgene silencing (PTGS). Thus, the JMJ14 chromatin modifying complex maintains expressed transgenes in a probationary state of susceptibility to PTGS, suggesting that the host plant genome does not immediately accept expressed transgenes as being epigenetically the same as endogenous genes. Accumulating evidences point to a discrepancy in the epigenetic behaviour of transgenes and endogenous genes. Here, via characterization of mutants impaired in histone demethylases JMJ14 and IBM1, the authors show that transgenes and endogenous genes are regulated by different epigenetic mechanisms in Arabidopsis.
Collapse
Affiliation(s)
- Nicolas Butel
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France.,Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Agnès Yu
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Ivan Le Masson
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Filipe Borges
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Taline Elmayan
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Christelle Taochy
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nial R Gursanscky
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jiangling Cao
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shengnan Bi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Anne Sawyer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France.
| |
Collapse
|
33
|
Flavell RB. Perspective: 50 years of plant chromosome biology. PLANT PHYSIOLOGY 2021; 185:731-753. [PMID: 33604616 PMCID: PMC8133586 DOI: 10.1093/plphys/kiaa108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The past 50 years has been the greatest era of plant science discovery, and most of the discoveries have emerged from or been facilitated by our knowledge of plant chromosomes. At last we have descriptive and mechanistic outlines of the information in chromosomes that programs plant life. We had almost no such information 50 years ago when few had isolated DNA from any plant species. The important features of genes have been revealed through whole genome comparative genomics and testing of variants using transgenesis. Progress has been enabled by the development of technologies that had to be invented and then become widely available. Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have played extraordinary roles as model species. Unexpected evolutionary dramas were uncovered when learning that chromosomes have to manage constantly the vast numbers of potentially mutagenic families of transposons and other repeated sequences. The chromatin-based transcriptional and epigenetic mechanisms that co-evolved to manage the evolutionary drama as well as gene expression and 3-D nuclear architecture have been elucidated these past 20 years. This perspective traces some of the major developments with which I have become particularly familiar while seeking ways to improve crop plants. I draw some conclusions from this look-back over 50 years during which the scientific community has (i) exposed how chromosomes guard, readout, control, recombine, and transmit information that programs plant species, large and small, weed and crop, and (ii) modified the information in chromosomes for the purposes of genetic, physiological, and developmental analyses and plant improvement.
Collapse
Affiliation(s)
- Richard B Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| |
Collapse
|
34
|
Yuan S, Kawasaki S, Abdellatif IMY, Nishida K, Kondo A, Ariizumi T, Ezura H, Miura K. Efficient base editing in tomato using a highly expressed transient system. PLANT CELL REPORTS 2021; 40:667-676. [PMID: 33550455 DOI: 10.1007/s00299-021-02662-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Base editing in tomatoes was achieved by transient expression. The Solanaceae plants, particularly the tomato (Solanum lycopersicum), is of huge economic value worldwide. The tomato is a unique model plant for studying the functions of genes related to fruit ripening. Deeper understanding of tomatoes is of great importance for both plant research and the economy. Genome editing technology, such as CRISPR/Cas9, has been used for functional genetic research. However, some challenges, such as low transformation efficiency, remain with this technology. Moreover, the foreign Cas9 and gRNA expression cassettes must be removed to obtain null-segregants In this study, we used a high-level transient expression system to improve the base editing technology. A high-level transient expression system has been established previously using geminiviral replication and a double terminator. The pBYR2HS vector was used for this transient expression system. nCas9-CDA and sgRNA-SlHWS were introduced into this vector, and the protein and RNA were then transiently expressed in tomato tissues by agroinfiltration. The homozygous mutant produced by base editing was obtained in the next generation with an efficiency of about 18%. nCas9-free next-generation plants were 71%. All the homozygous base-edited plants in next generation are nCas9-free. These findings show that the high-level transient expression system is useful for base editing in tomatoes.
Collapse
Affiliation(s)
- Shaoze Yuan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Shunsuke Kawasaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Islam M Y Abdellatif
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Keiji Nishida
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan.
| |
Collapse
|
35
|
Zhou L, Lu Y, Huang J, Sha Z, Mo W, Xue J, Ma S, Shi W, Yang Z, Gao J, Bian M. Arabidopsis CIB3 regulates photoperiodic flowering in an FKF1-dependent way. Biosci Biotechnol Biochem 2021; 85:765-774. [PMID: 33686404 DOI: 10.1093/bbb/zbaa120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 01/29/2023]
Abstract
Arabidopsis cryptochrome 2 (CRY2) and FLAVIN-BINDING, KELCH REPEAT, and F-BOX 1 (FKF1) are blue light receptors mediating light regulation of growth and development, such as photoperiodic flowering. CRY2 interacts with a basic helix-loop-helix transcription factor CIB1 in response to blue light to activate the transcription of the flowering integrator gene FLOWERING LOCUS T (FT). CIB1, CIB2, CIB4, and CIB5 function redundantly to promote flowering in a CRY2-dependent way and form various heterodimers to bind to the noncanonical E-box sequence in the FT promoter. However, the function of CIB3 has not been described. We discovered that CIB3 promotes photoperiodic flowering independently of CRY2. Moreover, CIB3 does not interact with CRY2 but interacts with CIB1 and functions synergistically with CIB1 to promote the transcription of the GI gene. FKF1 is required for CIB3 to promote flowering and enhances the CIB1-CIB3 interaction in response to blue light.
Collapse
Affiliation(s)
- Lianxia Zhou
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Yi Lu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Jie Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Zhiwei Sha
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Weiliang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Jiayi Xue
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China.,Humen Foreign Language School, Dongguan, China
| | - Shuodan Ma
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Wuliang Shi
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Zhenming Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Jie Gao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Mingdi Bian
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
36
|
Marenkova TV, Kuznetsov VV, Deineko EV. Features of Expression of Foreign Genes in Complex Insertions in Transgenic Tobacco Plants with a Mosaic Pattern of nptII Gene Expression. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421030108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Kim EY, Wang L, Lei Z, Li H, Fan W, Cho J. Ribosome stalling and SGS3 phase separation prime the epigenetic silencing of transposons. NATURE PLANTS 2021; 7:303-309. [PMID: 33649597 DOI: 10.1038/s41477-021-00867-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/01/2021] [Indexed: 05/20/2023]
Abstract
Transposable elements (TEs, transposons) are mobile DNAs that can cause fatal mutations1. To suppress their activity, host genomes deploy small interfering RNAs (siRNAs) that trigger and maintain their epigenetic silencing2,3. Whereas 24-nucleotide (nt) siRNAs mediate RNA-directed DNA methylation (RdDM) to reinforce the silent state of TEs3, activated or naive TEs give rise to 21- or 22-nt siRNAs by the RNA-DEPENDENT RNA POLYMERASE 6 (RDR6)-mediated pathway, triggering both RNAi and de novo DNA methylation4,5. This process, which is called RDR6-RdDM, is critical for the initiation of epigenetic silencing of active TEs; however, their specific recognition and the selective processing of siRNAs remain elusive. Here, we suggest that plant transposon RNAs undergo frequent ribosome stalling caused by their unfavourable codon usage. Ribosome stalling subsequently induces RNA truncation and localization to cytoplasmic siRNA bodies, both of which are essential prerequisites for RDR6 targeting6,7. In addition, SUPPRESSOR OF GENE SILENCING 3 (SGS3), the RDR6-interacting protein7, exhibits phase separation both in vitro and in vivo through its prion-like domains, implicating the role of liquid-liquid phase separation in siRNA body formation. Our study provides insight into the host recognition of active TEs, which is important for the maintenance of genome integrity.
Collapse
Affiliation(s)
- Eun Yu Kim
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Zhen Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Wenwen Fan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Shanghai, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
38
|
Physiological Conditions and dsRNA Application Approaches for Exogenously induced RNA Interference in Arabidopsis thaliana. PLANTS 2021; 10:plants10020264. [PMID: 33573142 PMCID: PMC7911504 DOI: 10.3390/plants10020264] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/16/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Recent studies have revealed that foliar application of double-stranded RNAs (dsRNAs) or small-interfering RNAs (siRNAs) encoding specific genes of plant pathogens triggered RNA interference (RNAi)-mediated silencing of the gene targets. However, a limited number of reports documented silencing of plant endogenes or transgenes after direct foliar RNA application. This study analyzed the importance of physiological conditions (plant age, time of day, soil moisture, high salinity, heat, and cold stresses) and different dsRNA application means (brush spreading, spraying, infiltration, inoculation, needle injection, and pipetting) for suppression of neomycin phosphotransferase II (NPTII) transgene in Arabidopsis thaliana, as transgenes are more prone to silencing. We observed a higher NPTII suppression when dsRNA was applied at late day period, being most efficient at night, which revealed a diurnal variation in dsRNA treatment efficacy. Exogenous NPTII-dsRNA considerably reduced NPTII expression in 4-week-old plants and only limited it in 2- and 6-week-old plants. In addition, a more discernible NPTII downregulation was detected under low soil moisture conditions. Treatment of adaxial and abaxial leaf surfaces by brushes, spraying, and pipetting showed a higher NPTII suppression, while infiltration and inoculation were less efficient. Thus, appropriate plant age, late time of day, low soil moisture, and optimal dsRNA application modes are important for exogenously induced gene silencing.
Collapse
|
39
|
RNA Interference (RNAi) in Tomato Crop Research. Methods Mol Biol 2020. [PMID: 33263909 DOI: 10.1007/978-1-0716-1201-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
RNA interference (RNAi) is a posttranscriptional gene silencing phenomenon induced by double-stranded RNA. It has been widely used as a knockdown technology to analyze gene function in many organisms. In tomato, RNAi technology has widely been used as a reverse genetic tool for functional genomics study. Generally, RNAi is often achieved through transgenes producing hairpin RNA molecules. RNAi lines have the advantage with respect to more modern CRISPR/Cas9 mutants of different levels of downregulation of target gene, and allow the characterization of life-essential genes that cannot be knocked out without killing the organism. Also, RNAi allows to suppress gene expression in multigene families in a regulated manner. In this chapter, an efficient approach to create RNAi stable knockdown-transformed tomato lines is reported. In order, it describes the choice of the target silencing fragment, a highly efficient cloning strategy for the hairpin RNA construct production, a relatively easy procedure to transform and regenerate tomato plants using Agrobacterium tumefaciens and a methodology to test the goodness of the transformation procedure.
Collapse
|
40
|
Chen J, Zhu H, Huang J, Huang W. A new method for functional analysis of plastid EMBRYO-DEFECTIVE PPR genes by efficiently constructing cosuppression lines in Arabidopsis. PLANT METHODS 2020; 16:154. [PMID: 33292320 PMCID: PMC7673100 DOI: 10.1186/s13007-020-00696-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/09/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Pentatricopeptide-repeat proteins (PPRs) characterized by tandem arrays of a degenerate 35-amino-acid repeat (PPR motif) can bind a single strand RNA and regulate organelle gene expression at the post-transcriptional level, including RNA cleavage, splicing, editing and stability etc. PPRs are conserved in all eukaryotes and extremely expanded in higher plants. Many knockout mutants of PPR genes are embryonically lethal. These genes are named EMB PPRs and functional analysis of them is hindered by the difficulty in obtaining their knockout mutants. RESULTS Here, we report a new method for functional analysis of plastid EMB PPRs by efficiently constructing their cosuppression lines in Arabidopsis. When we overexpressed a mutated full length or truncated coding sequence (CDS) of EMB PPRs, such as EMB2279, EMB2654 and EMB976 (all belong to the P family PPRs) in the wild-type (WT) background, a large portion of T1 plants displayed chlorosis phenotypes, which are similar to those of the weak allele mutants, knockdown lines or partially complementary lines. RT-PCR analysis showed that overexpression of the truncated EMB PPRs led to significant and specific downregulation of their corresponding endogenous mRNAs. However, when these EMB PPRs were overexpressed in the Post transcriptional Gene Silencing (PTGS) deficient mutant, RNA-dependent RNA polymerase 6 (rdr6), none of the T1 plants displayed chlorosis phenotypes. These results indicate that the chlorosis phenotype results from post transcriptional silencing of the corresponding endogenous gene (also known as sense cosuppression). CONCLUSIONS Overexpression of an appropriately truncated EMB PPR CDS in WT leads to gene silencing in a RDR6-dependent manner, and this method can be employed to study the unknown function of EMB PPR genes. By this method, we showed that EMB976 is required for splicing of chloroplast clpP1 intron 2 and ycf3 intron 1.
Collapse
Affiliation(s)
- Jingli Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Haojie Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Weihua Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
41
|
Čermák V, Tyč D, Přibylová A, Fischer L. Unexpected variations in posttranscriptional gene silencing induced by differentially produced dsRNAs in tobacco cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194647. [PMID: 33127485 DOI: 10.1016/j.bbagrm.2020.194647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022]
Abstract
In plants, posttranscriptional gene silencing (PTGS) is induced by small RNAs (sRNAs) generated from various dsRNA precursors. To assess the impact of dsRNA origin, we compared downregulation of GFP expression triggered by inverted repeat (IR), antisense (AS) and unterminated sense (UT) transcripts transiently expressed from the estradiol-inducible promoter. The use of homogeneously responding tobacco BY-2 cell lines allowed monitoring the onset of silencing and its reversibility. In this system, IR induced the strongest and fastest silencing accompanied by dense DNA methylation. At low induction, silencing in individual cells was binary (either strong or missing), suggesting that a certain threshold sRNA level had to be exceeded. The AS variant specifically showed a deviated sRNA-strand ratio shifted in favor of antisense orientation. In AS lines and weakly induced IR lines, only the silencer DNA was methylated, but the same target GFP sequence was not, showing that DNA methylation accompanying PTGS was influenced both by the level and origin of sRNAs, and possibly also by the epigenetic state of the locus. UT silencing appeared to be the least effective and resembled classical sense PTGS. The best responding UT lines behaved relatively heterogeneously possibly due to complexly arranged T-DNA insertions. Unlike IR and AS variants that fully restored GFP expression upon removal of the inducer, only partial reactivation was observed in some UT lines. Our results pointed out several not yet described phenomena and differences between the long-known silencer variants that may direct further research and affect selection of proper silencer variants for specific applications.
Collapse
Affiliation(s)
- Vojtěch Čermák
- Charles University, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, Prague 2 128 44, Czech Republic
| | - Dimitrij Tyč
- Charles University, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, Prague 2 128 44, Czech Republic
| | - Adéla Přibylová
- Charles University, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, Prague 2 128 44, Czech Republic
| | - Lukáš Fischer
- Charles University, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, Prague 2 128 44, Czech Republic.
| |
Collapse
|
42
|
Cao Y, Xu X, Jiang L. Integrative analysis of the RNA interference toolbox in two Salicaceae willow species, and their roles in stress response in poplar (Populus trichocarpa Torr. & Gray). Int J Biol Macromol 2020; 162:1127-1139. [DOI: 10.1016/j.ijbiomac.2020.06.235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/31/2020] [Accepted: 06/24/2020] [Indexed: 10/24/2022]
|
43
|
F de Felippes F, McHale M, Doran RL, Roden S, Eamens AL, Finnegan EJ, Waterhouse PM. The key role of terminators on the expression and post-transcriptional gene silencing of transgenes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:96-112. [PMID: 32603508 DOI: 10.1111/tpj.14907] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/08/2020] [Accepted: 06/17/2020] [Indexed: 05/18/2023]
Abstract
Transgenes have become essential to modern biology, being an important tool in functional genomic studies and also in the development of biotechnological products. One of the major challenges in the generation of transgenic lines concerns the expression of transgenes, which, compared to endogenes, are particularly susceptible to silencing mediated by small RNAs (sRNAs). Several reasons have been put forward to explain why transgenes often trigger the production of sRNAs, such as the high level of expression induced by commonly used strong constitutive promoters, the lack of introns, and features resembling viral and other exogenous sequences. However, the relative contributions of the different genomic elements with respect to protecting genes from the silencing machinery and their molecular mechanisms remain unclear. Here, we present the results of a mutagenesis screen conceived to identify features involved in the protection of endogenes against becoming a template for the production of sRNAs. Interestingly, all of the recovered mutants had alterations in genes with proposed function in transcription termination, suggesting a central role of terminators in this process. Indeed, using a GFP reporter system, we show that, among different genetic elements tested, the terminator sequence had the greatest effect on transgene-derived sRNA accumulation and that a well-defined poly(A) site might be especially important. Finally, we describe an unexpected mechanism, where transgenes containing certain intron/terminator combinations lead to an increase in the production of sRNAs, which appears to interfere with splicing.
Collapse
Affiliation(s)
- Felipe F de Felippes
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Marcus McHale
- Plant Systems Biology Laboratory, Áras de Brún, National University of Ireland Galway (NUIG), Research Road, Galway, H91TK33, Ireland
| | - Rachel L Doran
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Sally Roden
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Andrew L Eamens
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - E Jean Finnegan
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Peter M Waterhouse
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
44
|
Arpaia S, Christiaens O, Giddings K, Jones H, Mezzetti B, Moronta-Barrios F, Perry JN, Sweet JB, Taning CNT, Smagghe G, Dietz-Pfeilstetter A. Biosafety of GM Crop Plants Expressing dsRNA: Data Requirements and EU Regulatory Considerations. FRONTIERS IN PLANT SCIENCE 2020; 11:940. [PMID: 32670333 PMCID: PMC7327110 DOI: 10.3389/fpls.2020.00940] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/09/2020] [Indexed: 05/16/2023]
Abstract
The use of RNA interference (RNAi) enables the silencing of target genes in plants or plant-dwelling organisms, through the production of double stranded RNA (dsRNA) resulting in altered plant characteristics. Expression of properly synthesized dsRNAs in plants can lead to improved crop quality characteristics or exploit new mechanisms with activity against plant pests and pathogens. Genetically modified (GM) crops exhibiting resistance to viruses or insects via expression of dsRNA have received authorization for cultivation outside Europe. Some products derived from RNAi plants have received a favourable opinion from the European Food Safety Authority (EFSA) for import and processing in the European Union (EU). The authorization process in the EU requires applicants to produce a risk assessment considering food/feed and environmental safety aspects of living organisms or their derived food and feed products. The present paper discusses the main aspects of the safety assessment (comparative assessment, molecular characterization, toxicological assessment, nutritional assessment, gene transfer, interaction with target and non-target organisms) for GM plants expressing dsRNA, according to the guidelines of EFSA. Food/feed safety assessment of products from RNAi plants is expected to be simplified, in the light of the consideration that no novel proteins are produced. Therefore, some of the data requirements for risk assessment do not apply to these cases, and the comparative compositional analysis becomes the main source of evidence for food/feed safety of RNAi plants. During environmental risk assessment, the analysis of dsRNA expression levels of the GM trait, and the data concerning the observable effects on non-target organisms (NTO) will provide the necessary evidence for ensuring safety of species exposed to RNAi plants. Bioinformatics may provide support to risk assessment by selecting target gene sequences with low similarity to the genome of NTOs possibly exposed to dsRNA. The analysis of these topics in risk assessment indicates that the science-based regulatory process in Europe is considered to be applicable to GM RNAi plants, therefore the evaluation of their safety can be effectively conducted without further modifications. Outcomes from the present paper offer suggestions for consideration in future updates of the EFSA Guidance documents on risk assessment of GM organisms.
Collapse
Affiliation(s)
- Salvatore Arpaia
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rotondella, Italy
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kara Giddings
- Bayer, Crop Science R&D Regulatory Science, Chesterfield, MO, United States
| | - Huw Jones
- Translational Genomics for Plant Breeding, Aberystwyth University, Wales, United Kingdom
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Antje Dietz-Pfeilstetter
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| |
Collapse
|
45
|
Ruiz Y, Ramos PL, Soto J, Rodríguez M, Carlos N, Reyes A, Callard D, Sánchez Y, Pujol M, Fuentes A. The M4 insulator, the TM2 matrix attachment region, and the double copy of the heavy chain gene contribute to the enhanced accumulation of the PHB-01 antibody in tobacco plants. Transgenic Res 2020; 29:171-186. [PMID: 31919795 DOI: 10.1007/s11248-019-00187-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/31/2019] [Indexed: 11/24/2022]
Abstract
The expression of recombinant proteins in plants is a valuable alternative to bioreactors using mammalian cell systems. Ease of scaling, and their inability to host human pathogens, enhance the use of plants to generate complex therapeutic products such as monoclonal antibodies. However, stably transformed plants expressing antibodies normally have a poor accumulation of these proteins that probably arise from the negative positional effects of their flanking chromatin. The induction of boundaries between the transgenes and the surrounding DNA using matrix attachment regions (MAR) and insulator elements may minimize these effects. With the PHB-01 antibody as a model, we demonstrated that the insertion of DNA elements, the TM2 (MAR) and M4 insulator, flanking the transcriptional cassettes that encode the light and heavy chains of the PHB-01 antibody, increased the protein accumulation that remained stable in the first plant progeny. The M4 insulator had a stronger effect than the TM2, with over a twofold increase compared to the standard construction. This effect was probably associated with an enhancer-promoter interference. Moreover, transgenic plants harboring two transcriptional units encoding for the PHB-01 heavy chain combined with both TM2 and M4 elements enhanced the accumulation of the antibody. In summary, the M4 combined with a double transcriptional unit of the heavy chain may be a suitable strategy for potentiating PHB-01 production in tobacco plants.
Collapse
Affiliation(s)
- Yoslaine Ruiz
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba.
| | - Pedro Luis Ramos
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
- Department of Phytopathology and Plant Biochemistry, Instituto Biologico, São Paulo, Brazil
| | - Jeny Soto
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
- Comparative Pathology Department, University of Miami, Miami, USA
| | - Meilyn Rodríguez
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Natacha Carlos
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Aneisi Reyes
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Danay Callard
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Yadira Sánchez
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Merardo Pujol
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Alejandro Fuentes
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba.
| |
Collapse
|
46
|
Diamos AG, Hunter JGL, Pardhe MD, Rosenthal SH, Sun H, Foster BC, DiPalma MP, Chen Q, Mason HS. High Level Production of Monoclonal Antibodies Using an Optimized Plant Expression System. Front Bioeng Biotechnol 2020; 7:472. [PMID: 32010680 PMCID: PMC6978629 DOI: 10.3389/fbioe.2019.00472] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 12/04/2022] Open
Abstract
Biopharmaceuticals are a large and fast-growing sector of the total pharmaceutical market with antibody-based therapeutics accounting for over 100 billion USD in sales yearly. Mammalian cells are traditionally used for monoclonal antibody production, however plant-based expression systems have significant advantages. In this work, we showcase recent advances made in plant transient expression systems using optimized geminiviral vectors that can efficiently produce heteromultimeric proteins. Two, three, or four fluorescent proteins were coexpressed simultaneously, reaching high yields of 3–5 g/kg leaf fresh weight or ~50% total soluble protein. As a proof-of-concept for this system, various antibodies were produced using the optimized vectors with special focus given to the creation and production of a chimeric broadly neutralizing anti-flavivirus antibody. The variable regions of this murine antibody, 2A10G6, were codon optimized and fused to a human IgG1. Analysis of the chimeric antibody showed that it was efficiently expressed in plants at 1.5 g of antibody/kilogram of leaf tissue, can be purified to near homogeneity by a simple one-step purification process, retains its ability to recognize the Zika virus envelope protein, and potently neutralizes Zika virus. Two other monoclonal antibodies were produced at similar levels (1.2–1.4 g/kg). This technology will be a versatile tool for the production of a wide spectrum of pharmaceutical multi-protein complexes in a fast, powerful, and cost-effective way.
Collapse
Affiliation(s)
- Andrew G Diamos
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Joseph G L Hunter
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Mary D Pardhe
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Sun H Rosenthal
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Haiyan Sun
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Bonnie C Foster
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Michelle P DiPalma
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Qiang Chen
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Hugh S Mason
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
47
|
Dalakouras A, Wassenegger M, Dadami E, Ganopoulos I, Pappas ML, Papadopoulou K. Genetically Modified Organism-Free RNA Interference: Exogenous Application of RNA Molecules in Plants. PLANT PHYSIOLOGY 2020; 182:38-50. [PMID: 31285292 PMCID: PMC6945881 DOI: 10.1104/pp.19.00570] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/28/2019] [Indexed: 05/08/2023]
Abstract
The latest advances in the field exogenous application of RNA molecules in plants help to protect and modify them through RNA interference (RNAi).
Collapse
Affiliation(s)
- Athanasios Dalakouras
- University of Thessaly, Department of Biochemistry and Biotechnology, 41500 Larissa, Greece
- Institute of Plant Breeding and Genetic Resources Hellenic Agricultural Organization (ELGO)-DEMETER, 57001 Thessaloniki, Greece
| | - Michael Wassenegger
- RLP AgroScience, Alplanta Institute for Plant Research, 67435 Neustadt an der Weinstrasse, Germany
| | - Elena Dadami
- University of Thessaly, Department of Biochemistry and Biotechnology, 41500 Larissa, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources Hellenic Agricultural Organization (ELGO)-DEMETER, 57001 Thessaloniki, Greece
| | - Maria L Pappas
- Democritus University of Thrace, Department of Agricultural Development, 68200 Orestiada, Greece
| | - Kalliope Papadopoulou
- University of Thessaly, Department of Biochemistry and Biotechnology, 41500 Larissa, Greece
| |
Collapse
|
48
|
Wang PH, Kumar S, Zeng J, McEwan R, Wright TR, Gupta M. Transcription Terminator-Mediated Enhancement in Transgene Expression in Maize: Preponderance of the AUGAAU Motif Overlapping With Poly(A) Signals. FRONTIERS IN PLANT SCIENCE 2020; 11:570778. [PMID: 33178242 PMCID: PMC7591816 DOI: 10.3389/fpls.2020.570778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/11/2020] [Indexed: 05/08/2023]
Abstract
The selection of transcription terminators (TTs) for pairing with high expressing constitutive promoters in chimeric constructs is crucial to deliver optimal transgene expression in plants. In this study, the use of the native combinations of four polyubiquitin gene promoters and corresponding TTs resulted in up to >3-fold increase in transgene expression in maize. Of the eight polyubiquitin promoter and TT regulatory elements utilized, seven were novel and identified from the polyubiquitin genes of Brachypodium distachyon, Setaria italica, and Zea mays. Furthermore, gene expression driven by the Cassava mosaic virus promoter was studied by pairing the promoter with distinct TTs derived from the high expressing genes of Arabidopsis. Of the three TTs studied, the polyubiquitin10 gene TT produced the highest transgene expression in maize. Polyadenylation patterns and mRNA abundance from eight distinct TTs were analyzed using 3'-RACE and next-generation sequencing. The results exhibited one to three unique polyadenylation sites in the TTs. The poly(A) site patterns for the StPinII TT were consistent when the same TT was deployed in chimeric constructs irrespective of the reporter gene and promoter used. Distal to the poly(A) sites, putative polyadenylation signals were identified in the near-upstream regions of the TTs based on previously reported mutagenesis and bioinformatics studies in rice and Arabidopsis. The putative polyadenylation signals were 9 to 11 nucleotides in length. Six of the eight TTs contained the putative polyadenylation signals that were overlaps of either canonical AAUAAA or AAUAAA-like polyadenylation signals and AUGAAU, a top-ranking-hexamer of rice and Arabidopsis gene near-upstream regions. Three of the polyubiquitin gene TTs contained the identical 9-nucleotide overlap, AUGAAUAAG, underscoring the functional significance of such overlaps in mRNA 3' end processing. In addition to identifying new combinations of regulatory elements for high constitutive trait gene expression in maize, this study demonstrated the importance of TTs for optimizing gene expression in plants. Learning from this study could be applied to other dicotyledonous and monocotyledonous plant species for transgene expression. Research on TTs is not limited to transgene expression but could be extended to the introduction of appropriate mutations into TTs via genome editing, paving the way for expression modulation of endogenous genes.
Collapse
Affiliation(s)
- Po-Hao Wang
- Applied Science & Technology, Corteva Agriscience, Johnston, IA, United States
| | - Sandeep Kumar
- Applied Science & Technology, Corteva Agriscience, Johnston, IA, United States
- *Correspondence: Sandeep Kumar,
| | - Jia Zeng
- Data Science & Informatics, Corteva Agriscience, Indianapolis, IN, United States
| | - Robert McEwan
- Applied Science & Technology, Corteva Agriscience, Johnston, IA, United States
| | - Terry R. Wright
- Trait Discovery, Corteva Agriscience, Indianapolis, IN, United States
| | - Manju Gupta
- Trait Product Development, Dow Agrosciences, Indianapolis, IN, United States
| |
Collapse
|
49
|
Bernardes WS, Menossi M. Plant 3' Regulatory Regions From mRNA-Encoding Genes and Their Uses to Modulate Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:1252. [PMID: 32922424 PMCID: PMC7457121 DOI: 10.3389/fpls.2020.01252] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 05/08/2023]
Abstract
Molecular biotechnology has made it possible to explore the potential of plants for different purposes. The 3' regulatory regions have a great diversity of cis-regulatory elements directly involved in polyadenylation, stability, transport and mRNA translation, essential to achieve the desired levels of gene expression. A complex interaction between the cleavage and polyadenylation molecular complex and cis-elements determine the polyadenylation site, which may result in the choice of non-canonical sites, resulting in alternative polyadenylation events, involved in the regulation of more than 80% of the genes expressed in plants. In addition, after transcription, a wide array of RNA-binding proteins interacts with cis-acting elements located mainly in the 3' untranslated region, determining the fate of mRNAs in eukaryotic cells. Although a small number of 3' regulatory regions have been identified and validated so far, many studies have shown that plant 3' regulatory regions have a higher potential to regulate gene expression in plants compared to widely used 3' regulatory regions, such as NOS and OCS from Agrobacterium tumefaciens and 35S from cauliflower mosaic virus. In this review, we discuss the role of 3' regulatory regions in gene expression, and the superior potential that plant 3' regulatory regions have compared to NOS, OCS and 35S 3' regulatory regions.
Collapse
|
50
|
de Felippes FF, Waterhouse PM. The Whys and Wherefores of Transitivity in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:579376. [PMID: 32983223 PMCID: PMC7488869 DOI: 10.3389/fpls.2020.579376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/14/2020] [Indexed: 05/05/2023]
Abstract
Transitivity in plants is a mechanism that produces secondary small interfering RNAs (siRNAs) from a transcript targeted by primary small RNAs (sRNAs). It expands the silencing signal to additional sequences of the transcript. The process requires RNA-dependent RNA polymerases (RDRs), which convert single-stranded RNA targets into a double-stranded (ds) RNA, the precursor of siRNAs and is critical for effective and amplified responses to virus infection. It is also important for the production of endogenous secondary siRNAs, such as phased siRNAs (phasiRNAs), which regulate several genes involved in development and adaptation. Transitivity on endogenous transcripts is very specific, utilizing special primary sRNAs, such as miRNAs with unique features, and particular ARGONAUTEs. In contrast, transitivity on transgene and virus (exogenous) transcripts is more generic. This dichotomy of responses implies the existence of a mechanism that differentiates self from non-self targets. In this work, we examine the possible mechanistic process behind the dichotomy and the intriguing counter-intuitive directionality of transitive sequence-spread in plants.
Collapse
|