1
|
Huang X, Chen X, Vergish S, Ding X, Liang X, Chen S, Koch K, Song WY. Over-expression of XA21 binding protein 3 enhances rice survival under water-deficit stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112454. [PMID: 40024611 DOI: 10.1016/j.plantsci.2025.112454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/17/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
E3 ubiquitin ligases have been positively or negatively implicated in the response to water-deficit stress. Here we demonstrate that rice XA21 binding protein 3 (XB3), the founder member of an E3 ubiquitin ligase gene family, is induced by drought stress and, when over-expressed, enhances survival of rice plants under water deficit. Down-regulation of XB3 increases rice sensitivity to drought. The E3 ubiquitin ligase is localized to both the plasma membrane and the nucleus. XB3 interacts with OsDIS1, a nuclear-localized rice ubiquitin ligase playing a negative role in responding to water-deficit stress. Co-expression of XB3 and OsDIS1 in Nicotiana benthamiana leads to a reduced accumulation of OsDIS1. Our data, together with the discoveries made by others, indicate that some members of the XB3 ubiquitin ligase family are positively involved in regulating the response to water deficit possibly through directly or indirectly destabilizing their substrates (e.g., OsDIS1) in the nucleus. Genes in this family could be used for engineering drought tolerance in major food crops.
Collapse
Affiliation(s)
- Xiaoen Huang
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Xiuhua Chen
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Satyam Vergish
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Xiaodong Ding
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Xiaofei Liang
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Sixue Chen
- Department of Biology, University of Mississippi, Ole Miss, MS 38677, USA
| | - Karen Koch
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Wen-Yuan Song
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Yan Y, Wang H, Bi Y, Song F. Rice E3 ubiquitin ligases: From key modulators of host immunity to potential breeding applications. PLANT COMMUNICATIONS 2024; 5:101128. [PMID: 39245936 PMCID: PMC11671762 DOI: 10.1016/j.xplc.2024.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/17/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
To combat pathogen attacks, plants have developed a highly advanced immune system, which requires tight regulation to initiate robust defense responses while simultaneously preventing autoimmunity. The ubiquitin-proteasome system (UPS), which is responsible for degrading excess or misfolded proteins, has vital roles in ensuring strong and effective immune responses. E3 ligases, as key UPS components, play extensively documented roles in rice immunity by modulating the ubiquitination and degradation of downstream substrates involved in various immune signaling pathways. Here, we summarize the crucial roles of rice E3 ligases in both pathogen/microbe/damage-associated molecular pattern-triggered immunity and effector-triggered immunity, highlight the molecular mechanisms by which E3 ligases function in rice immune signaling, and emphasize the functions of E3 ligases as targets of pathogen effectors for pathogenesis. We also discuss potential strategies for application of immunity-associated E3 ligases in breeding of disease-resistant rice varieties without growth penalty. This review provides a comprehensive and updated understanding of the sophisticated and interconnected regulatory functions of E3 ligases in rice immunity and in balancing immunity with growth and development.
Collapse
Affiliation(s)
- Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Soni KK, Gurjar K, Ranjan A, Sinha S, Srivastava M, Verma V. Post-translational modifications control the signal at the crossroads of plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6957-6979. [PMID: 39177255 DOI: 10.1093/jxb/erae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
The co-evolution of plants and pathogens has enabled them to 'outsmart' each other by promoting their own defence responses and suppressing those of the other. While plants are reliant on their sophisticated immune signalling pathways, pathogens make use of effector proteins to achieve the objective. This entails rapid regulation of underlying molecular mechanisms for prompt induction of associated signalling events in both plants as well as pathogens. The past decade has witnessed the emergence of post-translational modification (PTM) of proteins as a key a factor in modulating cellular responses. The ability of PTMs to expand the functional diversity of the proteome and induce rapid changes at the appropriate time enables them to play crucial roles in the regulation of plant-pathogen interactions. Therefore, this review will delve into the intricate interplay of five major PTMs involved in plant defence and pathogen countermeasures. We discuss how plants employ PTMs to fortify their immune networks, and how pathogen effectors utilize/target host modification systems to gain entry into plants and cause disease. We also emphasize the need for identification of novel PTMs and propose the use of PTM pathways as potential targets for genome editing approaches.
Collapse
Affiliation(s)
- Kamlesh Kumar Soni
- Department of Biotechnology, AKS University, Satna, Madhya Pradesh-485001, India
| | - Kishan Gurjar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Aastha Ranjan
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Shashank Sinha
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Moumita Srivastava
- Plant Biotechnology and Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Thiruvananthapuram, Kerala-695014, India
| | - Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
- Plant Biotechnology Department, Gujarat Biotechnology University, Near Gujarat International Finance Tec City, Gandhinagar, Gujarat-382355, India
| |
Collapse
|
4
|
Yan Y, Wang H, Bi Y, Wang J, Li D, Song F. A distinct protein posttranslational modifications-linked OsATL32-OsPPKL2-OsGSK2 loop modulates rice immunity against blast disease. THE NEW PHYTOLOGIST 2024; 243:2332-2350. [PMID: 39056291 DOI: 10.1111/nph.19999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Protein posttranslational modifications play crucial roles in plant immunity through modulating a complicated signaling network mediated by different hormones. We previously demonstrated that OsATL32, an ATL-type E3 ligase, negatively contributes to rice immunity against Magnaporthe oryzae. Here, we show that OsATL32 forms a loop with OsPPKL2 and OsGSK2 through distinct protein posttranslational modifications to modulate rice immunity. OsATL32 ubiquitinates OsPPKL2, a protein phosphatase with Kelch-like repeat domains that exerts positive roles in regulating rice immunity against M. oryzae and chitin-triggered immune responses, for degradation. The glycogen synthase kinase 2 (OsGSK2), which acts as a negative regulator of rice immunity against M. oryzae and chitin-triggered immune responses, phosphorylates OsATL32 to elevate its protein stability and E3 ligase activity on OsPPKL2. Moreover, OsPPKL2 directly dephosphorylates OsGSK2, affecting its kinase activity on substrates including OsATL32 for phosphorylation. Like OsGSK2 as a BR signaling repressor, OsATL32 negatively regulates BR signaling; conversely, OsPPKL2 plays a positive role in BR signaling. These findings provide a molecular mechanism in which OsATL32 serves as a node connecting BR signaling and immunity by associating with OsPPKL2 and OsGSK2, assembling into a distinct protein posttranslational modifications-linked loop that functions in rice BR signaling and immunity.
Collapse
Affiliation(s)
- Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiajing Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Birhanu C, Girma G, Mekbib F, Nida H, Tirfessa A, Lule D, Bekeko Z, Ayana G, Bejiga T, Bedada G, Tola M, Legesse T, Alemu H, Admasu S, Bekele A, Mengiste T. Exploring the genetic basis of anthracnose resistance in Ethiopian sorghum through a genome-wide association study. BMC Genomics 2024; 25:677. [PMID: 38977981 PMCID: PMC11229211 DOI: 10.1186/s12864-024-10545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Sorghum anthracnose is a major disease that hampers the productivity of the crop globally. The disease is caused by the hemibiotrophic fungal pathogen Colletotrichum sublineola. The identification of anthracnose-resistant sorghum genotypes, defining resistance loci and the underlying genes, and their introgression into adapted cultivars are crucial for enhancing productivity. In this study, we conducted field experiments on 358 diverse accessions of Ethiopian sorghum. Quantitative resistance to anthracnose was evaluated at locations characterized by a heavy natural infestation that is suitable for disease resistance screening. RESULTS The field-based screening identified 53 accessions that were resistant across locations, while 213 accessions exhibited variable resistance against local pathotypes. Genome-wide association analysis (GWAS) was performed using disease response scores on 329 accessions and 83,861 single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing (GBS). We identified 38 loci significantly associated with anthracnose resistance. Interestingly, a subset of these loci harbor genes encoding receptor-like kinases (RLK), nucleotide-binding leucine-rich repeats (NLRs), stress-induced antifungal tyrosine kinase that have been previously implicated in disease resistance. A SNP on chromosome 4 (S04_66140995) and two SNPs on chromosome 2 (S02_75784037, S02_2031925), localized with-in the coding region of genes that encode a putative stress-induced antifungal kinase, an F-Box protein, and Xa21-binding RLK that were strongly associated with anthracnose resistance. We also identified highly significant associations between anthracnose resistance and three SNPs linked to genes (Sobic.002G058400, Sobic.008G156600, Sobic.005G033400) encoding an orthologue of the widely known NLR protein (RPM1), Leucine Rich Repeat family protein, and Heavy Metal Associated domain-containing protein, respectively. Other SNPs linked to predicted immune response genes were also significantly associated with anthracnose resistance. CONCLUSIONS The sorghum germplasm collections used in the present study are genetically diverse. They harbor potentially useful, yet undiscovered, alleles for anthracnose resistance. This is supported by the identification of novel loci that are enriched for disease resistance regulators such as NLRs, LRKs, Xa21-binding LRK, and antifungal proteins. The genotypic data available for these accessions offer a valuable resource for sorghum breeders to effectively improve the crop. The genomic regions and candidate genes identified can be used to design markers for molecular breeding of sorghum diseases resistance.
Collapse
Affiliation(s)
- Chemeda Birhanu
- Oromia Agricultural Research Institute, P.O. Box 81265, Addis Ababa, Ethiopia
| | - Gezahegn Girma
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Firew Mekbib
- Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Habte Nida
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Alemu Tirfessa
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Dagnachew Lule
- Agricultural Transformation Institute, P.O. Box 708, Addis Ababa, Ethiopia
| | | | - Getachew Ayana
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Tamirat Bejiga
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Gudeta Bedada
- Oromia Agricultural Research Institute, P.O. Box 81265, Addis Ababa, Ethiopia
| | - Meseret Tola
- Oromia Agricultural Research Institute, P.O. Box 81265, Addis Ababa, Ethiopia
| | - Tokuma Legesse
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Habtamu Alemu
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Solomon Admasu
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | | | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Yan Y, Wang H, Bi Y, Wang J, Noman M, Li D, Song F. OsATL32 ubiquitinates the reactive oxygen species-producing OsRac5-OsRbohB module to suppress rice immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1459-1480. [PMID: 38629772 DOI: 10.1111/jipb.13666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/21/2024] [Indexed: 07/12/2024]
Abstract
Ubiquitination-mediated protein degradation is integral to plant immunity, with E3 ubiquitin ligases acting as key factors in this process. Here, we report the functions of OsATL32, a plasma membrane-localized Arabidopsis Tóxicos En Levadura (ATL)-type E3 ubiquitin ligase, in rice (Oryza sativa) immunity and its associated regulatory network. We found that the expression of OsATL32 is downregulated in both compatible and incompatible interactions between rice and the rice blast fungus Magnaporthe oryzae. The OsATL32 protein level declines in response to infection by a compatible M. oryzae strain or to chitin treatment. OsATL32 negatively regulates rice resistance to blast and bacterial leaf blight diseases, as well as chitin-triggered immunity. Biochemical and genetic studies revealed that OsATL32 suppresses pathogen-induced reactive oxygen species (ROS) accumulation by mediating ubiquitination and degradation of the ROS-producing OsRac5-OsRbohB module, which enhances rice immunity against M. oryzae. The protein phosphatase PHOSPHATASE AND TENSIN HOMOLOG enhances rice blast resistance by dephosphorylating OsATL32 and promoting its degradation, preventing its negative effect on rice immunity. This study provides insights into the molecular mechanism by which the E3 ligase OsATL32 targets a ROS-producing module to undermine rice immunity.
Collapse
Affiliation(s)
- Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiajing Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Noman
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
7
|
Wang H, Ye X, Bi Y, Yan Y, Li D, Song F. Eukaryotic translation elongation factor OseEF1A negatively regulates rice immunity against blast disease. PLANT PHYSIOLOGY 2024; 195:1796-1801. [PMID: 38593031 DOI: 10.1093/plphys/kiae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Affiliation(s)
- Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuan Ye
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
8
|
Wang Y, Hu T, Li M, Yin X, Song L. Overexpression of the NbZFP1 encoding a C3HC4-type zinc finger protein enhances antiviral activity of Nicotiana benthamiana. Gene 2024; 908:148290. [PMID: 38367853 DOI: 10.1016/j.gene.2024.148290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Viral diseases are crucial determinants affecting tobacco cultivation, leading to a substantial annual decrease in production. Previous studies have demonstrated the regulatory function of the C3HC4 family of plant zinc finger proteins in combating bacterial diseases. However, it remains to be clarified whether this protein family also plays a role in regulating resistance against plant viruses. In this study, the successful cloning of the zinc finger protein coding gene NbZFP1 from Nicotiana benthamiana has been achieved. The full-length coding sequence of NbZFP1 is 576 bp. Further examination and analysis of this gene revealed its functional properties. The induction of NbZFP1 transcription in N. benthamiana has been observed in response to TMV, CMV, and PVY. Transgenic N. benthamiana plants over-expressing NbZFP1 demonstrated a notable augmentation in the production of chlorophyll a (P < 0.05). Moreover, NbZFP1-overexpressing tobacco exhibited significant resistance to TMV, CMV, and PVY, as evidenced by a decrease in virus copies (P < 0.05). In addition, the defense enzymes activities of PAL, POD, and CAT experienced a significant increase (P < 0.05). The up-regulated expression of genes of NbPAL, NbNPR1 and NbPR-1a, which play a crucial role in SA mediated defense, indicated that the NbZFP1 holds promise in enhancing the virus resistance of tobacco plant. Importantly, the results demonstrate that NbZFP1 can be considered as a viable candidate gene for the cultivation of crops with enhanced virus resistance.
Collapse
Affiliation(s)
- Yifan Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding(Guizhou), Guiyang 550025, Guizhou Province, China
| | - Ting Hu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Minxue Li
- Agricultural and Rural Bureau, Shuicheng District, Liupanshui City 553040, Guizhou Province, China
| | - Xiaodan Yin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding(Guizhou), Guiyang 550025, Guizhou Province, China
| | - Li Song
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Key Lab of Agro-Bioengineering, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
9
|
Vergish S, Wolf R, Song WY. Simplified Protocol to Demonstrate Gene Expression in Nicotiana benthamiana Using an Agrobacterium-Mediated Transient Assay. Bio Protoc 2024; 14:e4987. [PMID: 38798979 PMCID: PMC11116890 DOI: 10.21769/bioprotoc.4987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Agrobacterium-mediated transient gene expression in Nicotiana benthamiana is widely used to study gene function in plants. One dramatic phenotype that is frequently screened for is cell death. Here, we present a simplified protocol for Agrobacterium-mediated transient gene expression by infiltration. Compared with current methods, the novel protocol can be done without a centrifuge or spectrometer, thereby suitable for K-12 outreach programs as well as rapidly identifying genes that induce cell death. Key features • The protocol simplifies the widely used Agrobacterium-mediated transient gene expression assay [1] and can be completed within one week when plants are available. • Rice XB3 gene can induce a dramatic and easily identifiable cell death phenotype in Nicotiana benthamiana. • Allows identification of cell death-inducing genes and is suitable for teaching. • Compared to the currently used methods, our protocol omits the use of agroinfiltration buffer, pH meter, temperature-controlled growth chamber, centrifuge, and spectrophotometer. Graphical overview Agrobacterium infiltration (agroinfiltration) of Nicotiana benthamiana. The photo demonstrates the method of agroinfiltration into the abaxial side of leaves using a needleless syringe.
Collapse
Affiliation(s)
- Satyam Vergish
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Ryan Wolf
- Santa Fe High School, Alachua, FL, USA
| | - Wen-Yuan Song
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Zhong Q, Yu J, Wu Y, Yao X, Mao C, Meng X, Ming F. Rice transcription factor OsNAC2 maintains the homeostasis of immune responses to bacterial blight. PLANT PHYSIOLOGY 2024; 195:785-798. [PMID: 38159040 DOI: 10.1093/plphys/kiad683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Rice (Oryza sativa) bacterial blight, caused by Xanthomonas oryzae pv. Oryzae (Xoo), threatens plant growth and yield. However, the molecular mechanisms underlying rice immunity against Xoo remain elusive. Here, we identified a NAC (NAM-ATAF-CUC) transcription factor OsNAC2 as a negative regulator in the resistance to bacterial blight disease in rice. Constitutive overexpression of OsNAC2 inhibited the expression of salicylic acid (SA) biosynthesis-related genes (i.e. isochorismate synthase 1 (OsICS1), phenylalanine ammonia lyase 3 (OsPAL3), etc.) with adverse impacts on the pathogenesis-related proteins (PRs) responses and compromised blight resistance. Moreover, OsNAC2 interacted with APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factor OsEREBP1 and possibly threatened its protein stability, destroying the favorable interaction of OsEREBP1-Xa21-binding protein OsXb22a in the cytoplasm during Xoo-induced infection. On the contrary, downregulation of OsNAC2 resulted in enhanced resistance to bacterial blight in rice without any growth or yield penalties. Our results demonstrated that OsNAC2 inhibits SA signaling and stably interacted with OsEREBP1 to impair disease resistance. This OsNAC2-OsEREBP1-based homeostatic mechanism provided insights into the competition between rice and bacterial pathogens, and it will be useful to improve the disease resistance of important crops through breeding.
Collapse
Affiliation(s)
- Qun Zhong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jiangtao Yu
- Institute of Future Agriculture, Northwest Agriculture & Forestry University, Shaanxi 712100, China
| | - Yiding Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xuefeng Yao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chanjuan Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| |
Collapse
|
11
|
Kim D, Jeon SJ, Hong JK, Kim MG, Kim SH, Kadam US, Kim WY, Chung WS, Stacey G, Hong JC. The Auto-Regulation of ATL2 E3 Ubiquitin Ligase Plays an Important Role in the Immune Response against Alternaria brassicicola in Arabidopsis thaliana. Int J Mol Sci 2024; 25:2388. [PMID: 38397062 PMCID: PMC10889567 DOI: 10.3390/ijms25042388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The ubiquitin/26S proteasome system is a crucial regulatory mechanism that governs various cellular processes in plants, including signal transduction, transcriptional regulation, and responses to biotic and abiotic stressors. Our study shows that the RING-H2-type E3 ubiquitin ligase, Arabidopsis Tóxicos en Levadura 2 (ATL2), is involved in response to fungal pathogen infection. Under normal growth conditions, the expression of the ATL2 gene is low, but it is rapidly and significantly induced by exogenous chitin. Additionally, ATL2 protein stability is markedly increased via chitin treatment, and its degradation is prolonged when 26S proteasomal function is inhibited. We found that an atl2 null mutant exhibited higher susceptibility to Alternaria brassicicola, while plants overexpressing ATL2 displayed increased resistance. We also observed that the hyphae of A. brassicicola were strongly stained with trypan blue staining, and the expression of A. brassicicola Cutinase A (AbCutA) was dramatically increased in atl2. In contrast, the hyphae were weakly stained, and AbCutA expression was significantly reduced in ATL2-overexpressing plants. Using bioinformatics, live-cell confocal imaging, and cell fractionation analysis, we revealed that ATL2 is localized to the plasma membrane. Further, it is demonstrated that the ATL2 protein possesses E3 ubiquitin ligase activity and found that cysteine 138 residue is critical for its function. Moreover, ATL2 is necessary to successfully defend against the A. brassicicola fungal pathogen. Altogether, our data suggest that ATL2 is a plasma membrane-integrated protein with RING-H2-type E3 ubiquitin ligase activity and is essential for the defense response against fungal pathogens in Arabidopsis.
Collapse
Affiliation(s)
- Daewon Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (D.K.); (S.J.J.); (S.H.K.); (U.S.K.)
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| | - Su Jeong Jeon
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (D.K.); (S.J.J.); (S.H.K.); (U.S.K.)
| | - Jeum Kyu Hong
- Laboratory of Horticultural Crop Protection, Division of Horticultural Science, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea;
- Agri-Food Bio Convergence Institute, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea;
| | - Sang Hee Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (D.K.); (S.J.J.); (S.H.K.); (U.S.K.)
| | - Ulhas S. Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (D.K.); (S.J.J.); (S.H.K.); (U.S.K.)
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center (PBRRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Woo Sik Chung
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (D.K.); (S.J.J.); (S.H.K.); (U.S.K.)
| | - Gary Stacey
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (D.K.); (S.J.J.); (S.H.K.); (U.S.K.)
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
12
|
Yang Z, Zhu Z, Guo Y, Lan J, Zhang J, Chen S, Dou S, Yang M, Li L, Liu G. OsMKK1 is a novel element that positively regulates the Xa21-mediated resistance response to Xanthomonas oryzae pv. oryzae in rice. PLANT CELL REPORTS 2024; 43:31. [PMID: 38195905 DOI: 10.1007/s00299-023-03085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/18/2023] [Indexed: 01/11/2024]
Abstract
KEY MESSAGE OsMKK1, a MAPK gene, positively regulates rice Xa21-mediated resistance response and also plays roles in normal growth and development process of rice. The mitogen-activated protein kinase (MAPK) cascade was highly conserved among eukaryotes, which played crucial roles in plant responses to pathogen infection. Bacterial blight is the most devastating bacterial disease. Xa21 confers broad-spectrum resistance to Xanthomonas oryzae pv. Oryzae (Xoo). This study identified that the transcription level of OsMKK1 was up-regulated in resistant response against Xoo, thus overexpression (OsMKK1-OX) and RNA interference (OsMKK1-RNAi) transgenic rice lines under the background of Xa21 was constructed. Compared with recipient control plants 4021, the OsMKK1-OX lines significantly enhanced disease resistance to Xoo, on the contrary, the resistance of OsMKK1-RNAi lines was weakened, demonstrated that OsMKK1 played a positive role in Xa21-mediated disease resistance pathway. A number of pathogenesis-related proteins, including PR1A, PR2 and PR10A showed enhanced expression in OsMKK1-OX lines, supported that these PR genes may be regulated by OsMKK1 to participate in the defense responses. In addition, the agronomic traits of OsMKK1 transgenic plants were affected. Overall, these results revealed the role of OsMKK1 in Xa21-mediated resistance against Xoo and in the normal growth and development process in rice.
Collapse
Affiliation(s)
- ZeXi Yang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zheng Zhu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yalu Guo
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, Guangdong, China
| | - Jinping Lan
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
- Research Center for Life Sciences, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Jianshuo Zhang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shuo Chen
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shijuan Dou
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ming Yang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Liyun Li
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Guozhen Liu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
13
|
Xie JQ, Zhou X, Jia ZC, Su CF, Zhang Y, Fernie AR, Zhang J, Du ZY, Chen MX. Alternative Splicing, An Overlooked Defense Frontier of Plants with Respect to Bacterial Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37916838 DOI: 10.1021/acs.jafc.3c04163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Disease represents a major problem in sustainable agricultural development. Plants interact closely with various microorganisms during their development and in response to the prevailing environment. In particular, pathogenic microorganisms can cause plant diseases, affecting the fertility, yield, and longevity of plants. During the long coevolution of plants and their pathogens, plants have evolved both molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) signaling networks in order to regulate host cells in response to pathogen infestation. Additionally, in the postgenomic era, alternative splicing (AS) has become uncovered as one of the major drivers of proteome diversity, and abnormal RNA splicing is closely associated with bacterial infections. Currently, the complexity of host-bacteria interactions is a much studied area of research that has shown steady progress over the past decade. Although the development of high-throughput sequencing technologies and their application in transcriptomes have revolutionized our understanding of AS, many mechanisms related to host-bacteria interactions remain still unclear. To this end, this review summarizes the changes observed in AS during host-bacteria interactions and outlines potential therapeutics for bacterial diseases based on existing studies. In doing so, we hope to provide guidelines for plant disease management in agriculture.
Collapse
Affiliation(s)
- Ji-Qin Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zi-Chang Jia
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chang-Feng Su
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Youjun Zhang
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Golm, Germany
| | - Alisdair R Fernie
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Golm, Germany
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhi-Yan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Mo-Xian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
14
|
Rodrigues M, Forestan C, Ravazzolo L, Hugueney P, Baltenweck R, Rasori A, Cardillo V, Carraro P, Malagoli M, Brizzolara S, Quaggiotti S, Porro D, Meggio F, Bonghi C, Battista F, Ruperti B. Metabolic and Molecular Rearrangements of Sauvignon Blanc ( Vitis vinifera L.) Berries in Response to Foliar Applications of Specific Dry Yeast. PLANTS (BASEL, SWITZERLAND) 2023; 12:3423. [PMID: 37836164 PMCID: PMC10574919 DOI: 10.3390/plants12193423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Dry yeast extracts (DYE) are applied to vineyards to improve aromatic and secondary metabolic compound content and wine quality; however, systematic information on the underpinning molecular mechanisms is lacking. This work aimed to unravel, through a systematic approach, the metabolic and molecular responses of Sauvignon Blanc berries to DYE treatments. To accomplish this, DYE spraying was performed in a commercial vineyard for two consecutive years. Berries were sampled at several time points after the treatment, and grapes were analyzed for sugars, acidity, free and bound aroma precursors, amino acids, and targeted and untargeted RNA-Seq transcriptional profiles. The results obtained indicated that the DYE treatment did not interfere with the technological ripening parameters of sugars and acidity. Some aroma precursors, including cys-3MH and GSH-3MH, responsible for the typical aromatic nuances of Sauvignon Blanc, were stimulated by the treatment during both vintages. The levels of amino acids and the global RNA-seq transcriptional profiles indicated that DYE spraying upregulated ROS homeostatic and thermotolerance genes, as well as ethylene and jasmonic acid biosynthetic genes, and activated abiotic and biotic stress responses. Overall, the data suggested that the DYE reduced berry oxidative stress through the regulation of specific subsets of metabolic and hormonal pathways.
Collapse
Affiliation(s)
- Marta Rodrigues
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
| | - Cristian Forestan
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy;
| | - Laura Ravazzolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
| | - Philippe Hugueney
- National Research Institute for Agriculture, Food and Environment (INRAE), SVQV UMR A1131, University of Strasbourg, 67081 Strasbourg, France; (P.H.); (R.B.)
| | - Raymonde Baltenweck
- National Research Institute for Agriculture, Food and Environment (INRAE), SVQV UMR A1131, University of Strasbourg, 67081 Strasbourg, France; (P.H.); (R.B.)
| | - Angela Rasori
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
| | - Valerio Cardillo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
| | - Pietro Carraro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
| | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
| | - Stefano Brizzolara
- Crop Science Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
| | - Duilio Porro
- Technology Transfer Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all ‘Adige, Italy;
| | - Franco Meggio
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
- Interdepartmental Research Centre for Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
- Interdepartmental Research Centre for Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | | | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Padova, Italy; (M.R.); (L.R.); (A.R.); (V.C.); (P.C.); (M.M.); (S.Q.); (F.M.); (C.B.)
- Interdepartmental Research Centre for Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| |
Collapse
|
15
|
Yao T, Zhang J, Yates TB, Shrestha HK, Engle NL, Ployet R, John C, Feng K, Bewg WP, Chen MSS, Lu H, Harding SA, Qiao Z, Jawdy SS, Shu M, Yuan W, Mozaffari K, Harman-Ware AE, Happs RM, York LM, Binder BM, Yoshinaga Y, Daum C, Tschaplinski TJ, Abraham PE, Tsai CJ, Barry K, Lipzen A, Schmutz J, Tuskan GA, Chen JG, Muchero W. Expression quantitative trait loci mapping identified PtrXB38 as a key hub gene in adventitious root development in Populus. THE NEW PHYTOLOGIST 2023; 239:2248-2264. [PMID: 37488708 DOI: 10.1111/nph.19126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/13/2023] [Indexed: 07/26/2023]
Abstract
Plant establishment requires the formation and development of an extensive root system with architecture modulated by complex genetic networks. Here, we report the identification of the PtrXB38 gene as an expression quantitative trait loci (eQTL) hotspot, mapped using 390 leaf and 444 xylem Populus trichocarpa transcriptomes. Among predicted targets of this trans-eQTL were genes involved in plant hormone responses and root development. Overexpression of PtrXB38 in Populus led to significant increases in callusing and formation of both stem-born roots and base-born adventitious roots. Omics studies revealed that genes and proteins controlling auxin transport and signaling were involved in PtrXB38-mediated adventitious root formation. Protein-protein interaction assays indicated that PtrXB38 interacts with components of endosomal sorting complexes required for transport machinery, implying that PtrXB38-regulated root development may be mediated by regulating endocytosis pathway. Taken together, this work identified a crucial root development regulator and sheds light on the discovery of other plant developmental regulators through combining eQTL mapping and omics approaches.
Collapse
Affiliation(s)
- Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Timothy B Yates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, USA
| | - Him K Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Nancy L Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Raphael Ployet
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Cai John
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, USA
| | - Kai Feng
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - William Patrick Bewg
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Margot S S Chen
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Academic Education, Central Community College - Hastings, Hastings, NE, 68902, USA
| | - Scott A Harding
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Zhenzhen Qiao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Mengjun Shu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wenya Yuan
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Khadijeh Mozaffari
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Anne E Harman-Ware
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Renee M Happs
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Larry M York
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Brad M Binder
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Yuko Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Paul E Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Chung-Jui Tsai
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
16
|
Li J, Shi X, Wang C, Li Q, Lu J, Zeng D, Xie J, Shi Y, Zhai W, Zhou Y. Genome-Wide Association Study Identifies Resistance Loci for Bacterial Blight in a Collection of Asian Temperate Japonica Rice Germplasm. Int J Mol Sci 2023; 24:ijms24108810. [PMID: 37240156 DOI: 10.3390/ijms24108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Growing resistant rice cultivars is the most effective strategy to control bacterial blight (BB), a devastating disease caused by Xanthomonas oryzae pv. oryzae (Xoo). Screening resistant germplasm and identifying resistance (R) genes are prerequisites for breeding resistant rice cultivars. We conducted a genome-wide association study (GWAS) to detect quantitative trait loci (QTL) associated with BB resistance using 359 East Asian temperate Japonica accessions inoculated with two Chinese Xoo strains (KS6-6 and GV) and one Philippine Xoo strain (PXO99A). Based on the 55K SNPs Array dataset of the 359 Japonica accessions, eight QTL were identified on rice chromosomes 1, 2, 4, 10, and 11. Four of the QTL coincided with previously reported QTL, and four were novel loci. Six R genes were localized in the qBBV-11.1, qBBV-11.2, and qBBV-11.3 loci on chromosome 11 in this Japonica collection. Haplotype analysis revealed candidate genes associated with BB resistance in each QTL. Notably, LOC_Os11g47290 in qBBV-11.3, encoding a leucine-rich repeat receptor-like kinase, was a candidate gene associated with resistance to the virulent strain GV. Knockout mutants of Nipponbare with the susceptible haplotype of LOC_Os11g47290 exhibited significantly improved BB resistance. These results will be useful for cloning BB resistance genes and breeding resistant rice cultivars.
Collapse
Affiliation(s)
- Jianmin Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xiaorong Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chunchao Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Quanlin Li
- Institute of Genetics and Developmental Biological, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Jialing Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Zeng
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junping Xie
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biological, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yongli Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
17
|
Zou T, Li G, Liu M, Liu R, Yang S, Wang K, Lu L, Ye Q, Liu J, Liang J, Deng Q, Wang S, Zhu J, Liang Y, Liu H, Yu X, Sun C, Li P, Li S. A ubiquitin-specific protease functions in regulating cell death and immune responses in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1312-1326. [PMID: 36624579 DOI: 10.1111/pce.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Ubiquitin-specific proteases (UBPs) process deubiquitination in eukaryotic organisms and are widely involved in plant development and responses to environmental stress. However, their role in cell death and plant immunity remains largely unknown. Here, we identified a rice lesion mimic mutant (LMM) and cloned its causative gene, LMM22. Both dysfunction and overexpression of LMM22 gave rise to the hypersensitive response-like cell death, reactive oxygen species bursts, and activated defence responses. LMM22 encodes an active UBP that is localised to the endoplasmic reticulum (ER) and displays a constitutive expression pattern in rice. LMM22 interacts with SPOTTED LEAF 35 (SPL35), a coupling of ubiquitin conjugation to ER degradation domain-containing protein that is known to participate in ubiquitination and the regulation of cell death and disease response in rice. Additional analyses suggest that LMM22 can positively regulate and stabilise the abundance of SPL35 protein likely through its deubiquitination activity. These data therefore improve our understanding of the function of UBP in rice innate immune responses by demonstrating that LMM22 functions as a critical regulator of SPL35 in cell death and disease resistance.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gongwen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Miaomiao Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Rui Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shangyu Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liuhui Lu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiuyu Ye
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiaxu Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huainian Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Changhui Sun
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Bi Y, Wang H, Yuan X, Yan Y, Li D, Song F. The NAC transcription factor ONAC083 negatively regulates rice immunity against Magnaporthe oryzae by directly activating transcription of the RING-H2 gene OsRFPH2-6. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:854-875. [PMID: 36308720 DOI: 10.1111/jipb.13399] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
NAC transcription factors (TFs) play critical roles in plant immunity by modulating the expression of downstream genes via binding to specific cis-elements in promoters. Here, we report the function and regulatory network of a pathogen- and defense phytohormone-inducible NAC TF gene, ONAC083, in rice (Oryza sativa) immunity. ONAC083 localizes to the nucleus and exhibits transcriptional activation activity that depends on its C-terminal region. Knockout of ONAC083 enhances rice immunity against Magnaporthe oryzae, strengthening pathogen-induced defense responses, and boosting chitin-induced pattern-triggered immunity (PTI), whereas ONAC083 overexpression has opposite effects. We identified ONAC083-binding sites in the promoters of 82 genes, and showed that ONAC083 specifically binds to a conserved element with the core sequence ACGCAA. ONAC083 activated the transcription of the genes OsRFPH2-6, OsTrx1, and OsPUP4 by directly binding to the ACGCAA element. OsRFPH2-6, encoding a RING-H2 protein with an N-terminal transmembrane region and a C-terminal typical RING domain, negatively regulated rice immunity against M. oryzae and chitin-triggered PTI. These data demonstrate that ONAC083 negatively contributes to rice immunity against M. oryzae by directly activating the transcription of OsRFPH2-6 through the ACGCAA element in its promoter. Overall, our study provides new insight into the molecular regulatory network of NAC TFs in rice immunity.
Collapse
Affiliation(s)
- Yan Bi
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hui Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xi Yuan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
19
|
Wang T, Su N, Lu J, Zhang R, Sun X, Weining S. Genome-wide association studies of peduncle length in wheat under rain-fed and irrigating field conditions. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153854. [PMID: 36413900 DOI: 10.1016/j.jplph.2022.153854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Drought is one of the most destructive environmental factors limiting wheat production and food security globally. Peduncle length (PLE) is an important morphological trait to determine plant architecture, photosynthate transport, and yield formation, which is also considered a useful index for drought tolerance in wheat. However, the genetic basis of wheat PLE is not well studied at present. Here, a large-scale genome-wide association study (GWAS) of PLE was performed using a panel of 282 wheat accessions with the Wheat 660K SNP array genotyping under rain-fed and irrigating field conditions. Totally, 1,301 significant marker-trait associations (MTAs) were identified using the threshold of p-value < 4.16 × 10-4, five of which were high-confidence. Furthermore, combining GWAS intervals, previously reported QTLs, expression levels, homologous genes, and selected sweep analysis, a total of 5 candidate genes were detected to associate with drought stress. Moreover, the expression levels of TraesCS2A02G082100 were significantly up-regulated under drought conditions and co-localized in the selected sweep region, suggesting it is a drought-responsive gene. Our results shed light on the genetic basis underlying wheat drought tolerance, which accelerates the marker-assistant selection and genetic improvement through genomic breeding in wheat.
Collapse
Affiliation(s)
- Tingting Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, China.
| | - Ning Su
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, China.
| | - Jianan Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, China.
| | - Ruipu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, China.
| | - Xuming Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, China.
| | - Song Weining
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, China.
| |
Collapse
|
20
|
Lim CW, Lee SC. Genome-wide identification and expression analysis of Raf-like kinase gene family in pepper ( Capsicum annuum L.). PLANT SIGNALING & BEHAVIOR 2022; 17:2064647. [PMID: 35435138 PMCID: PMC9037509 DOI: 10.1080/15592324.2022.2064647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
As highly conserved signaling pathway modules, mitogen-activated protein kinase (MAPK) cascades play vital roles in a diverse range of stress and hormonal responses in plants. Among the established components of MAPK cascades, Raf-like MAPK kinase kinases (MAPKKKs) are associated with abscisic acid (ABA) signaling and osmotic stress responses. However, despite the availability of a pepper reference genome, few of the Raf-like kinases in pepper plants have been functionally characterized. In this study, we isolated 47 putative Raf-like kinase genes from the pepper genome based on in silico analysis, which were classified into two major categories, namely, groups B and C (further sub-grouped into B1-B4 and C1-C7, respectively) and named sequentially as CaRaf1 to CaRaf47. Subcellular localization prediction analysis revealed that most of the group B CaRaf-like kinases are probably nuclear-localized, whereas a majority of group C members targeted into the cytoplasm. Transcriptional regulation of the 47 CaRaf genes in response to treatment with ABA, drought, NaCl, and mannitol was quantitatively analyzed by reverse-transcription PCR analysis. This revealed a significant induction of subgroup B3, C2, C3, and C5 members, indicating that these genes may be functionally associated with the response to osmotic stress, mediated via both ABA-dependent and -independent pathways. The findings of this study can accordingly serve as a basis for the identification of CaRaf genes associated with the regulation of ABA signaling and osmotic stress response and thus contribute to enhancing our understanding of the biological functions of CaRaf kinases in the responses of plants to different abiotic stresses.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, South Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, South Korea
| |
Collapse
|
21
|
Cheng W, Wang Z, Xu F, Lu G, Su Y, Wu Q, Wang T, Que Y, Xu L. Screening of Candidate Genes Associated with Brown Stripe Resistance in Sugarcane via BSR-seq Analysis. Int J Mol Sci 2022; 23:15500. [PMID: 36555141 PMCID: PMC9778799 DOI: 10.3390/ijms232415500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Sugarcane brown stripe (SBS), caused by the fungal pathogen Helminthosporium stenospilum, is one of the most serious threats to sugarcane production. However, its outbreaks and epidemics require suitable climatic conditions, resulting in the inefficient improvement of the SBS resistance by phenotype selection. The sugarcane F1 population of SBS-resistant YT93-159 × SBS-susceptible ROC22 was used for constructing the bulks. Bulked segregant RNA-seq (BSR-seq) was then performed on the parents YT93-159 (T01) and ROC22 (T02), and the opposite bulks of 30 SBS-susceptible individuals mixed bulk (T03) and 30 SBS-resistant individuals mixed bulk (T04) collected from 287 F1 individuals. A total of 170.00 Gb of clean data containing 297,921 SNPs and 70,426 genes were obtained. Differentially expressed genes (DEGs) analysis suggested that 7787 and 5911 DEGs were identified in the parents (T01 vs. T02) and two mixed bulks (T03 vs. T04), respectively. In addition, 25,363 high-quality and credible SNPs were obtained using the genome analysis toolkit GATK for SNP calling. Subsequently, six candidate regions with a total length of 8.72 Mb, which were located in the chromosomes 4B and 7C of sugarcane wild species Saccharum spontaneum, were identified, and 279 genes associated with SBS-resistance were annotated by ED algorithm and ΔSNP-index. Furthermore, the expression profiles of candidate genes were verified by quantitative real-time PCR (qRT-PCR) analysis, and the results showed that eight genes (LRR-RLK, DHAR1, WRKY7, RLK1, BLH4, AK3, CRK34, and NDA2) and seven genes (WRKY31, CIPK2, CKA1, CDPK6, PFK4, CBL2, and PR2) of the 20 tested genes were significantly up-regulated in YT93-159 and ROC22, respectively. Finally, a potential molecular mechanism of sugarcane response to H. stenospilum infection is illustrate that the activations of ROS signaling, MAPK cascade signaling, Ca2+ signaling, ABA signaling, and the ASA-GSH cycle jointly promote the SBS resistance in sugarcane. This study provides abundant gene resources for the SBS resistance breeding in sugarcane.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Youxiong Que
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
22
|
Wang N, Yin Z, Zhao Y, Wang J, Pei Y, Ji P, Daly P, Li Z, Dou D, Wei L. An F-box protein attenuates fungal xylanase-triggered immunity by destabilizing LRR-RLP NbEIX2 in a SOBIR1-dependent manner. THE NEW PHYTOLOGIST 2022; 236:2202-2215. [PMID: 36151918 DOI: 10.1111/nph.18509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Receptor-like proteins (RLPs) lacking the cytoplasmic kinase domain play crucial roles in plant growth, development and immunity. However, what remains largely elusive is whether RLP protein levels are fine-tuned by E3 ubiquitin ligases, which are employed by receptor-like kinases for signaling attenuation. Nicotiana benthamiana NbEIX2 is a leucine-rich repeat RLP (LRR-RLP) that mediates fungal xylanase-triggered immunity. Here we show that NbEIX2 associates with an F-box protein NbPFB1, which promotes NbEIX2 degradation likely by forming an SCF E3 ubiquitin ligase complex, and negatively regulates NbEIX2-mediated immune responses. NbEIX2 undergoes ubiquitination and proteasomal degradation in planta. Interestingly, NbEIX2 without its cytoplasmic tail is still associated with and destabilized by NbPFB1. In addition, NbPFB1 also associates with and destabilizes NbSOBIR1, a co-receptor of LRR-RLPs, and fails to promote NbEIX2 degradation in the sobir1 mutant. Our findings reveal a distinct model of NbEIX2 degradation, in which an F-box protein destabilizes NbEIX2 indirectly in a SOBIR1-dependent manner.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhiyuan Yin
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yaning Zhao
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jinghao Wang
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Yong Pei
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peiyun Ji
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Paul Daly
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhengpeng Li
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, 223300, Huaian, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| |
Collapse
|
23
|
Zhang Y, Gao H, Fang J, Wang H, Chen J, Li J, Dong L. Up-regulation of bZIP88 transcription factor is involved in resistance to three different herbicides in both Echinochloa crus-galli and E. glabrescens. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6916-6930. [PMID: 35867472 DOI: 10.1093/jxb/erac319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The resistance of weeds to herbicides poses a major threat to agricultural production, and non-target-site resistance (NTSR) is often a serious problem as its mechanisms can in some cases confer resistance to herbicides with different modes of action. In this study, we hypothesized that bZIP transcription factors (TFs), which regulate abiotic stress responses in many plants, play a regulatory role in NTSR. Whole-plant assays indicated that the wild grasses Echinochloa crus-galli and E. glabrescens are resistant to the herbicides penoxsulam, cyhalofop-butyl, and quintrione. Transcriptome sequencing then identified 101 and 49 bZIP TFs with differential expression following penoxsulam treatment in E. crus-galli and E. glabrescens, respectively. Twelve of these genes had >60% homology with rice genes. The expression of bZIP88 was considerably up-regulated 6 h after treatment with the three different herbicides, and it was similar between resistant and susceptible populations; however, the relative expression levels before herbicide treatment and 24 h after were the same. We used rice (Oryza sativa ssp. japonica cv Nipponbare) as a model system for functional validation and found that CRISPR-Cas9-knockout of the rice bZIP88 ortholog increased the sensitivity to herbicide, whereas overexpression reduced it. The OsbZIP88 protein was localized to the nucleus. Using ChIP coupled with high-throughput sequencing, OsbZIP88 was found to form a network regulatory center with other TFs such as bZIP20/52/59 to regulate OsKS1, OsCOE1, and OsIM1, which are related to auxin, abscisic acid, brassinosteroids, and gibberellic acid. Based on these results, we have established a database of bZIP TFs corresponding to herbicide stress, and resolved the mechanisms of the positive regulation of herbicide resistance by bZIP88, thereby providing new insights for NTSR.
Collapse
Affiliation(s)
- Yuhua Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Haitao Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Jiapeng Fang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Hao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Jinyi Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Jun Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| | - Liyao Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China
| |
Collapse
|
24
|
Choi C, Im JH, Lee J, Kwon SI, Kim WY, Park SR, Hwang DJ. OsDWD1 E3 ligase-mediated OsNPR1 degradation suppresses basal defense in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:966-981. [PMID: 36168109 DOI: 10.1111/tpj.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Many ubiquitin E3 ligases function in plant immunity. Here, we show that Oryza sativa (rice) DDB1 binding WD (OsDWD1) suppresses immune responses by targeting O. sativa non-expresser of pathogenesis-related gene 1 (OsNPR1) for degradation. Knock-down and overexpression experiments in rice plants showed that OsDWD1 is a negative regulator of the immune response and that OsNPR1 is a substrate of OsDWD1 and a substrate receptor of OsCRL4. After constructing the loss-of-function mutant OsDWD1R239A , we showed that the downregulation of OsNPR1 seen in rice lines overexpressing wild-type (WT) OsDWD1 (OsDWD1WT -ox) was compromised in OsDWD1R239A -ox lines, and that OsNPR1 upregulation enhanced resistance to pathogen infection, confirming that OsCRL4OsDWD1 regulates OsNPR1 protein levels. The enhanced disease resistance seen in OsDWD1 knock-down (OsDWD1-kd) lines contrasted with the reduced disease resistance in double knock-down (OsDWD1/OsNPR1-kd) lines, indicating that the enhanced disease resistance of OsDWD1-kd resulted from the accumulation of OsNPR1. Moreover, an in vivo heterologous protein degradation assay in Arabidopsis thaliana ddb1 mutants confirmed that the CUL4-based E3 ligase system can also influence OsNPR1 protein levels in Arabidopsis. Although OsNPR1 was degraded by the OsCRL4OsDWD1 -mediated ubiquitination system, the phosphodegron-motif-mutated NPR1 was partially degraded in the DWD1-ox protoplasts. This suggests that there might be another degradation process for OsNPR1. Taken together, these results indicate that OsDWD1 regulates OsNPR1 protein levels in rice to suppress the untimely activation of immune responses.
Collapse
Affiliation(s)
- Changhyun Choi
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jong Hee Im
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jinjeong Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Soon Il Kwon
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Sciences, Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52825, Republic of Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Duk-Ju Hwang
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
25
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
26
|
Xie P, Liu J, Lu R, Zhang Y, Sun X. Molecular evolution of the Pi-d2 gene conferring resistance to rice blast in Oryza. Front Genet 2022; 13:991900. [PMID: 36147495 PMCID: PMC9486079 DOI: 10.3389/fgene.2022.991900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
The exploitation of plant disease resistance (R) genes in breeding programs is an effective strategy for coping with pathogens. An understanding of R gene variation is the basis for this strategy. Rice blast disease, caused by the Magnaporthe oryzae fungus, is a destructive disease of rice. The rice blast resistance gene Pi-d2 represents a new class of plant R gene because of its novel extracellular domain. We investigated the nucleotide polymorphism, phylogenetic topology and evolution patterns of the Pi-d2 gene among 67 cultivated and wild rice relatives. The Pi-d2 gene originated early in the basal Poales and has remained as a single gene without expansion. The striking finding is that susceptible Pi-d2 alleles might be derived from a single nucleotide substitution of the resistant alleles after the split of Oryza subspecies. Functional pleiotropy and linkage effects are proposed for the evolution and retention of the disease-susceptible alleles in rice populations. One set of DNA primers was developed from the polymorphic position to detect the functional nucleotide polymorphism for disease resistance of the Pi-d2 gene based on conventional Polymerase Chain Reaction. The nucleotide diversity level varied between different domains of the Pi-d2 gene, which might be related to distinct functions of each domain in the disease defense response. Directional (or purifying) selection appears dominant in the molecular evolution of the Pi-d2 gene and has shaped its conserved variation pattern.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoqin Sun
- *Correspondence: Yanmei Zhang, ; Xiaoqin Sun,
| |
Collapse
|
27
|
Zhu Z, Wang T, Lan J, Ma J, Xu H, Yang Z, Guo Y, Chen Y, Zhang J, Dou S, Yang M, Li L, Liu G. Rice MPK17 Plays a Negative Role in the Xa21-Mediated Resistance Against Xanthomonas oryzae pv. oryzae. RICE (NEW YORK, N.Y.) 2022; 15:41. [PMID: 35920921 PMCID: PMC9349333 DOI: 10.1186/s12284-022-00590-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most serious diseases affecting rice production worldwide. Xa21 was the first disease resistance gene cloned in rice, which encodes a receptor kinase and confers broad resistance against Xoo stains. Dozens of components in the Xa21-mediated pathway have been identified in the past decades, however, the involvement of mitogen-activated protein kinase (MAPK) genes in the pathway has not been well described. To identify MAPK involved in Xa21-mediated resistance, the level of MAPK proteins was profiled using Western blot analysis. The abundance of OsMPK17 (MPK17) was found decreased during the rice-Xoo interaction in the background of Xa21. To investigate the function of MPK17, MPK17-RNAi and over-expression (OX) transgenic lines were generated. The RNAi lines showed an enhanced resistance, while OX lines had impaired resistance against Xoo, indicating that MPK17 plays negative role in Xa21-mediated resistance. Furthermore, the abundance of transcription factor WRKY62 and pathogenesis-related proteins PR1A were changed in the MPK17 transgenic lines when inoculated with Xoo. We also observed that the MPK17-RNAi and -OX rice plants showed altered agronomic traits, indicating that MPK17 also plays roles in the growth and development. On the basis of the current study and published results, we propose a "Xa21-MPK17-WRKY62-PR1A" signaling that functions in the Xa21-mediated disease resistance pathway. The identification of MPK17 advances our understanding of the mechanism underlying Xa21-mediated immunity, specifically in the mid- and late-stages.
Collapse
Affiliation(s)
- Zheng Zhu
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Tianxingzi Wang
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Jinping Lan
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Research Center for Life Sciences, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Jinjiao Ma
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Haiqing Xu
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Zexi Yang
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Yalu Guo
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, Guangdong, China
| | - Yue Chen
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Jianshuo Zhang
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Shijuan Dou
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Ming Yang
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Liyun Li
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China.
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China.
| | - Guozhen Liu
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China.
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China.
| |
Collapse
|
28
|
Yang Y, Zhou Y, Sun J, Liang W, Chen X, Wang X, Zhou J, Yu C, Wang J, Wu S, Yao X, Zhou Y, Zhu J, Yan C, Zheng B, Chen J. Research Progress on Cloning and Function of Xa Genes Against Rice Bacterial Blight. FRONTIERS IN PLANT SCIENCE 2022; 13:847199. [PMID: 35386667 PMCID: PMC8978965 DOI: 10.3389/fpls.2022.847199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 05/27/2023]
Abstract
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious bacterial diseases that hinder the normal growth and production of rice, which greatly reduces the quality and yield of rice. The effect of traditional methods such as chemical control is often not ideal. A series of production practices have shown that among the numerous methods for BB controlling, breeding and using resistant varieties are the most economical, effective, and environmentally friendly, and the important basis for BB resistance breeding is the exploration of resistance genes and their functional research. So far, 44 rice BB resistance genes have been identified and confirmed by international registration or reported in journals, of which 15 have been successfully cloned and characterized. In this paper, research progress in recent years is reviewed mainly on the identification, map-based cloning, molecular resistance mechanism, and application in rice breeding of these BB resistance genes, and the future influence and direction of the remained research for rice BB resistance breeding are also prospected.
Collapse
Affiliation(s)
- Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yuhang Zhou
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Jia Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Fujian A & F University, Fuzhou, China
| | - Weifang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xinyu Chen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Chulang Yu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Junmin Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Shilu Wu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xiaoming Yao
- Zhejiang Plant Protection, Quarantine and Pesticide Management Station, Hangzhou, China
| | - Yujie Zhou
- Zhuji Agricultural Technology Extension Center, Zhuji, China
| | - Jie Zhu
- Plant Protection and Soil Fertilizer Management Station of Wenzhou, Wenzhou, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Science, Ningbo, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
29
|
Ubiquitination of Receptorsomes, Frontline of Plant Immunity. Int J Mol Sci 2022; 23:ijms23062937. [PMID: 35328358 PMCID: PMC8948693 DOI: 10.3390/ijms23062937] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Sessile plants are constantly exposed to myriads of unfavorable invading organisms with different lifestyles. To survive, plants have evolved plasma membrane-resident pattern recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs) to initiate sophisticated downstream immune responses. Ubiquitination serves as one of the most important and prevalent posttranslational modifications (PTMs) to fine-tune plant immune responses. Over the last decade, remarkable progress has been made in delineating the critical roles of ubiquitination in plant immunity. In this review, we highlight recent advances in the understanding of ubiquitination in the modulation of plant immunity, with a particular focus on ubiquitination in the regulation of receptorsomes, and discuss how ubiquitination and other PTMs act in concert to ensure rapid, proper, and robust immune responses.
Collapse
|
30
|
Chen R, Deng Y, Ding Y, Guo J, Qiu J, Wang B, Wang C, Xie Y, Zhang Z, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D, Liu Y, Li J. Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2022. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
Affiliation(s)
- Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changsheng Wang
- National Center for Gene Research, Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihua Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
31
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
32
|
Liu X, Song L, Zhang H, Lin Y, Shen X, Guo J, Su M, Shi G, Wang Z, Lu G. Rice ubiquitin-conjugating enzyme OsUBC26 is essential for immunity to the blast fungus Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2021; 22:1613-1623. [PMID: 34459564 PMCID: PMC8578843 DOI: 10.1111/mpp.13132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The functions of ubiquitin-conjugating enzymes (E2) in plant immunity are not well understood. In this study, OsUBC26, a rice ubiquitin-conjugating enzyme, was characterized in the defence against Magnaporthe oryzae. The expression of OsUBC26 was induced by M. oryzae inoculation and methyl jasmonate treatment. Both RNA interference lines and CRISPR/Cas9 null mutants of OsUBC26 reduced rice resistance to M. oryzae. WRKY45 was down-regulated in OsUBC26 null mutants. In vitro E2 activity assay indicated that OsUBC26 is an active ubiquitin-conjugating enzyme. Yeast two-hybrid assays using OsUBC26 as bait identified the RING-type E3 ligase UCIP2 as an interacting protein. Coimmunoprecipitation assays confirmed the interaction between OsUBC26 and UCIP2. The CRISPR/Cas9 mutants of UCIP2 also showed compromised resistance to M. oryzae. Yeast two-hybrid screening using UCIP2 as bait revealed that APIP6 is a binding partner of UCIP2. Moreover, OsUBC26 working with APIP6 ubiquitinateds AvrPiz-t, an avirulence effector of M. oryzae, and OsUBC26 null mutation impaired the proteasome degradation of AvrPiz-t in rice cells. In summary, OsUBC26 plays important roles in rice disease resistance by regulating WRKY45 expression and working with E3 ligases such as APIP6 to counteract the effector protein AvrPiz-t from M. oryzae.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Linlin Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Heng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yijuan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaolei Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiayuan Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Meiling Su
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Gaosheng Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Guo‐Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
33
|
Deb S, Madhavan VN, Gokulan CG, Patel HK, Sonti RV. Arms and ammunitions: effectors at the interface of rice and it's pathogens and pests. RICE (NEW YORK, N.Y.) 2021; 14:94. [PMID: 34792681 PMCID: PMC8602583 DOI: 10.1186/s12284-021-00534-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has evolved to resist attack by pathogens and pests. However, successful phytopathogens deliver effector proteins into plant cells where they hijack the host cellular machinery to suppress the plant immune responses and promote infection. This manipulation of the host cellular pathways is done by the pathogen using various enzymatic activities, protein- DNA or protein- protein interactions. Rice is one the major economically important crops and its yield is affected by several pathogens and pests. In this review, we summarize the various effectors at the plant- pathogen/ pest interface for the major pathogens and pests of rice, specifically, on the mode of action and target genes of the effector proteins. We then compare this across the major rice pathogens and pests in a bid to understand probable conserved pathways which are under attack from pathogens and pests in rice. This analysis highlights conserved patterns of effector action, as well as unique host pathways targeted by the pathogens and pests.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | | - C. G. Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Hitendra K. Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507 India
| |
Collapse
|
34
|
Kong L, Rodrigues B, Kim JH, He P, Shan L. More than an on-and-off switch: Post-translational modifications of plant pattern recognition receptor complexes. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102051. [PMID: 34022608 DOI: 10.1016/j.pbi.2021.102051] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Sensing microbe-associated molecular patterns (MAMPs) by cell surface-resident pattern recognition receptors (PRRs) constitutes a core process in launching a successful immune response. Over the last decade, remarkable progress has been made in delineating the mechanisms of PRR-mediated plant immunity. As the frontline of defense, the homeostasis, activities, and subcellular dynamics of PRR and associated regulators are subjected to tight regulations. The layered protein post-translational modifications, particularly the intertwined phosphorylation and ubiquitylation of PRR complexes, play a central role in regulating PRR signaling outputs and plant immune responses. This review provides an update about the PRR complex regulation by various post-translational modifications and discusses how protein phosphorylation and ubiquitylation act in concert to ensure a rapid, proper, and robust immune response.
Collapse
Affiliation(s)
- Liang Kong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Barbara Rodrigues
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Jun Hyeok Kim
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
35
|
Evolutionary and Characteristic Analysis of RING-DUF1117 E3 Ubiquitin Ligase Genes in Gossypium Discerning the Role of GhRDUF4D in Verticillium dahliae Resistance. Biomolecules 2021; 11:biom11081145. [PMID: 34439811 PMCID: PMC8392396 DOI: 10.3390/biom11081145] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022] Open
Abstract
Verticillium wilt, primarily induced by the soil-borne fungus Verticillium dahliae, is a serious threat to cotton fiber production. There are a large number of really interesting new gene (RING) domain-containing E3 ubiquitin ligases in Arabidopsis, of which three (At2g39720 (AtRHC2A), At3g46620 (AtRDUF1), and At5g59550 (AtRDUF2)) have a domain of unknown function (DUF) 1117 domain in their C-terminal regions. This study aimed to detect and characterize the RDUF members in cotton, to gain an insight into their roles in cotton’s adaptation to environmental stressors. In this study, a total of 6, 7, 14, and 14 RDUF (RING-DUF1117) genes were detected in Gossypium arboretum, G. raimondii, G. hirsutum, and G. barbadense, respectively. These RDUF genes were classified into three groups. The genes in each group were highly conserved based on gene structure and domain analysis. Gene duplication analysis revealed that segmental duplication occurred during cotton evolution. Expression analysis revealed that the GhRDUF genes were widely expressed during cotton growth and under abiotic stresses. Many cis-elements related to hormone response and environment stressors were identified in GhRDUF promoters. The predicted target miRNAs and transcription factors implied that GhRDUFs might be regulated by gra-miR482c, as well as by transcription factors, including MYB, C2H2, and Dof. The GhRDUF genes responded to cold, drought, and salt stress and were sensitive to jasmonic acid, salicylic acid, and ethylene signals. Meanwhile, GhRDUF4D expression levels were enhanced after V. dahliae infection. Subsequently, GhRDUF4D was verified by overexpression in Arabidopsis and virus-induced gene silencing treatment in upland cotton. We observed that V. dahliae resistance was significantly enhanced in transgenic Arabidopsis, and weakened in GhRDUF4D silenced plants. This study conducted a comprehensive analysis of the RDUF genes in Gossypium, hereby providing basic information for further functional studies.
Collapse
|
36
|
Gough C, Sadanandom A. Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance. Biomolecules 2021; 11:1122. [PMID: 34439788 PMCID: PMC8392720 DOI: 10.3390/biom11081122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Plants are constantly threatened by pathogens, so have evolved complex defence signalling networks to overcome pathogen attacks. Post-translational modifications (PTMs) are fundamental to plant immunity, allowing rapid and dynamic responses at the appropriate time. PTM regulation is essential; pathogen effectors often disrupt PTMs in an attempt to evade immune responses. Here, we cover the mechanisms of disease resistance to pathogens, and how growth is balanced with defence, with a focus on the essential roles of PTMs. Alteration of defence-related PTMs has the potential to fine-tune molecular interactions to produce disease-resistant crops, without trade-offs in growth and fitness.
Collapse
Affiliation(s)
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK;
| |
Collapse
|
37
|
Karre S, Kim S, Samira R, Balint‐Kurti P. The maize ZmMIEL1 E3 ligase and ZmMYB83 transcription factor proteins interact and regulate the hypersensitive defence response. MOLECULAR PLANT PATHOLOGY 2021; 22:694-709. [PMID: 33825303 PMCID: PMC8126188 DOI: 10.1111/mpp.13057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
The plant hypersensitive response (HR), a rapid cell death at the point of pathogenesis, is mediated by nucleotide-binding site, leucine-rich repeat (NLR) resistance proteins (R-proteins) that recognize the presence of specific pathogen-derived proteins. Rp1-D21 is an autoactive maize NLR R-protein that triggers HR spontaneously. We previously mapped loci associated with variation in the strength of HR induced by Rp1-D21. Here we identify the E3 ligase ZmMIEL1 as the causal gene at a chromosome 10 modifier locus. Transient ZmMIEL1 expression in Nicotiana benthamiana reduced HR induced by Rp1-D21, while suppression of ZmMIEL1 expression in maize carrying Rp1-D21 increased HR. ZmMIEL1 also suppressed HR induced by another autoactive NLR, the Arabidopsis R-protein RPM1D505V, in N. benthamiana. We demonstrated that ZmMIEL1 is a functional E3 ligase and that the effect of ZmMIEL1 was dependent on the proteasome but also that levels of Rp1-D21 and RPM1D505V were not reduced when coexpressed with ZmMIEL1 in the N. benthamiana system. By comparison to a similar system in Arabidopsis, we identify ZmMYB83 as a potential target of ZmMIEL1. Suppression of ZmMYB83 expression in maize lines carrying Rp1-D21 suppressed HR. Suppression of ZmMIEL1 expression caused an increase in ZmMYB83 transcript and protein levels in N. benthamiana and maize. Using coimmunoprecipitation and bimolecular fluorescence complementation assays, we demonstrated that ZmMIEL1 and ZmMYB83 physically interacted. Additionally, ZmMYB83 and ZmMIEL1 regulated the expression of a set of maize very long chain fatty acid (VLCFA) biosynthetic genes that may be involved in regulating HR.
Collapse
Affiliation(s)
- Shailesh Karre
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Saet‐Byul Kim
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Rozalynne Samira
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Fiber and Biopolymer Research InstituteDepartment of Plant and Soil ScienceTexas Tech UniversityLubbockTexasUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Plant Science Research Unit USDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
38
|
Yu TY, Sun MK, Liang LK. Receptors in the Induction of the Plant Innate Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:587-601. [PMID: 33512246 DOI: 10.1094/mpmi-07-20-0173-cr] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants adjust amplitude and duration of immune responses via different strategies to maintain growth, development, and resistance to pathogens. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) play vital roles. Pattern recognition receptors, comprising a large number of receptor-like protein kinases and receptor-like proteins, recognize related ligands and trigger immunity. PTI is the first layer of the innate immune system, and it recognizes PAMPs at the plasma membrane to prevent infection. However, pathogens exploit effector proteins to bypass or directly inhibit the PTI immune pathway. Consistently, plants have evolved intracellular nucleotide-binding domain and leucine-rich repeat-containing proteins to detect pathogenic effectors and trigger a hypersensitive response to activate ETI. PTI and ETI work together to protect plants from infection by viruses and other pathogens. Diverse receptors and the corresponding ligands, especially several pairs of well-studied receptors and ligands in PTI immunity, are reviewed to illustrate the dynamic process of PTI response here.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Tian-Ying Yu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Meng-Kun Sun
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Li-Kun Liang
- College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
39
|
Peng Z, Chen H, Tan L, Shu H, Varshney RK, Zhou Z, Zhao Z, Luo Z, Chitikineni A, Wang L, Maku J, López Y, Gallo M, Zhou H, Wang J. Natural polymorphisms in a pair of NSP2 homoeologs can cause loss of nodulation in peanut. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1104-1118. [PMID: 33130897 DOI: 10.1093/jxb/eraa505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Microbial symbiosis in legumes is achieved through nitrogen-fixing root nodules, and these are important for sustainable agriculture. The molecular mechanisms underlying development of root nodules in polyploid legume crops are largely understudied. Through map-based cloning and QTL-seq approaches, we identified a pair of homoeologous GRAS transcription factor genes, Nodulation Signaling Pathway 2 (AhNSP2-B07 or Nb) and AhNSP2-A08 (Na), controlling nodulation in cultivated peanut (Arachis hypogaea L.), an allotetraploid legume crop, which exhibited non-Mendelian and Mendelian inheritance, respectively. The segregation of nodulation in the progeny of Nananbnb genotypes followed a 3:1 Mendelian ratio, in contrast to the 5:3~1:1 non-Mendelian ratio for nanaNbnb genotypes. Additionally, a much higher frequency of the nb allele (13%) than the na allele (4%) exists in the peanut germplasm collection, suggesting that Nb is less essential than Na in nodule organogenesis. Our findings reveal the genetic basis of naturally occurred non-nodulating peanut plants, which can be potentially used for nitrogen fixation improvement in peanut. Furthermore, the results have implications for and provide insights into the evolution of homoeologous genes in allopolyploid species.
Collapse
Affiliation(s)
- Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Huiqiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Lubin Tan
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Hongmei Shu
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Zhekai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zifan Zhao
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Ziliang Luo
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Liping Wang
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - James Maku
- Sciences and Mathematics Department, Glenville State College, Glenville, WV, USA
| | - Yolanda López
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Maria Gallo
- Delaware Valley University, Doylestown, PA, USA
| | - Hai Zhou
- Agronomy Department, University of Florida, Gainesville, FL, USA
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, USA
- Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| |
Collapse
|
40
|
Protein complex formation in methionine chain-elongation and leucine biosynthesis. Sci Rep 2021; 11:3524. [PMID: 33568694 PMCID: PMC7876033 DOI: 10.1038/s41598-021-82790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/26/2021] [Indexed: 11/08/2022] Open
Abstract
During the past two decades, glucosinolate (GLS) metabolic pathways have been under extensive studies because of the importance of the specialized metabolites in plant defense against herbivores and pathogens. The studies have led to a nearly complete characterization of biosynthetic genes in the reference plant Arabidopsis thaliana. Before methionine incorporation into the core structure of aliphatic GLS, it undergoes chain-elongation through an iterative three-step process recruited from leucine biosynthesis. Although enzymes catalyzing each step of the reaction have been characterized, the regulatory mode is largely unknown. In this study, using three independent approaches, yeast two-hybrid (Y2H), coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC), we uncovered the presence of protein complexes consisting of isopropylmalate isomerase (IPMI) and isopropylmalate dehydrogenase (IPMDH). In addition, simultaneous decreases in both IPMI and IPMDH activities in a leuc:ipmdh1 double mutants resulted in aggregated changes of GLS profiles compared to either leuc or ipmdh1 single mutants. Although the biological importance of the formation of IPMI and IPMDH protein complexes has not been documented in any organisms, these complexes may represent a new regulatory mechanism of substrate channeling in GLS and/or leucine biosynthesis. Since genes encoding the two enzymes are widely distributed in eukaryotic and prokaryotic genomes, such complexes may have universal significance in the regulation of leucine biosynthesis.
Collapse
|
41
|
Karki SJ, Reilly A, Zhou B, Mascarello M, Burke J, Doohan F, Douchkov D, Schweizer P, Feechan A. A small secreted protein from Zymoseptoria tritici interacts with a wheat E3 ubiquitin ligase to promote disease. JOURNAL OF EXPERIMENTAL BOTANY 2021. [PMID: 33095257 DOI: 10.5061/dryad.9w0vt4bcx] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Septoria tritici blotch (STB), caused by the ascomycete fungus Zymoseptoria tritici, is a major threat to wheat production worldwide. The Z. tritici genome encodes many small secreted proteins (ZtSSPs) that are likely to play a key role in the successful colonization of host tissues. However, few of these ZtSSPs have been functionally characterized for their role during infection. In this study, we identified and characterized a small, conserved cysteine-rich secreted effector from Z. tritici which has homologues in other plant pathogens in the Dothideomycetes. ZtSSP2 was expressed throughout Z. tritici infection in wheat, with the highest levels observed early during infection. A yeast two-hybrid assay revealed an interaction between ZtSSP2 and wheat E3 ubiquitin ligase (TaE3UBQ) in yeast, and this was further confirmed in planta using bimolecular fluorescence complementation and co-immunoprecipitation. Down-regulation of this wheat E3 ligase using virus-induced gene silencing increased the susceptibility of wheat to STB. Together, these results suggest that TaE3UBQ is likely to play a role in plant immunity to defend against Z. tritici.
Collapse
Affiliation(s)
- Sujit Jung Karki
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling Reilly
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Binbin Zhou
- School of Biology and Environmental Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maurizio Mascarello
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Ecology, Evolution and Biodiversity Conservation, Charles Deberiotstraat 8 32, 3000 Leuven, Belgium
| | - James Burke
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fiona Doohan
- School of Biology and Environmental Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dimitar Douchkov
- Institute of Plant Genetics and Crop Plant Research (IPK), Cytogenetics, Gatersleben, Germany
| | - Patrick Schweizer
- Institute of Plant Genetics and Crop Plant Research (IPK), Cytogenetics, Gatersleben, Germany
| | - Angela Feechan
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
42
|
Karki SJ, Reilly A, Zhou B, Mascarello M, Burke J, Doohan F, Douchkov D, Schweizer P, Feechan A. A small secreted protein from Zymoseptoria tritici interacts with a wheat E3 ubiquitin ligase to promote disease. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:733-746. [PMID: 33095257 PMCID: PMC7853600 DOI: 10.1093/jxb/eraa489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/15/2020] [Indexed: 05/05/2023]
Abstract
Septoria tritici blotch (STB), caused by the ascomycete fungus Zymoseptoria tritici, is a major threat to wheat production worldwide. The Z. tritici genome encodes many small secreted proteins (ZtSSPs) that are likely to play a key role in the successful colonization of host tissues. However, few of these ZtSSPs have been functionally characterized for their role during infection. In this study, we identified and characterized a small, conserved cysteine-rich secreted effector from Z. tritici which has homologues in other plant pathogens in the Dothideomycetes. ZtSSP2 was expressed throughout Z. tritici infection in wheat, with the highest levels observed early during infection. A yeast two-hybrid assay revealed an interaction between ZtSSP2 and wheat E3 ubiquitin ligase (TaE3UBQ) in yeast, and this was further confirmed in planta using bimolecular fluorescence complementation and co-immunoprecipitation. Down-regulation of this wheat E3 ligase using virus-induced gene silencing increased the susceptibility of wheat to STB. Together, these results suggest that TaE3UBQ is likely to play a role in plant immunity to defend against Z. tritici.
Collapse
Affiliation(s)
- Sujit Jung Karki
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling Reilly
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Binbin Zhou
- School of Biology and Environmental Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maurizio Mascarello
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Ecology, Evolution and Biodiversity Conservation, Charles Deberiotstraat 8 32, 3000 Leuven, Belgium
| | - James Burke
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fiona Doohan
- School of Biology and Environmental Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dimitar Douchkov
- Institute of Plant Genetics and Crop Plant Research (IPK), Cytogenetics, Gatersleben, Germany
| | - Patrick Schweizer
- Institute of Plant Genetics and Crop Plant Research (IPK), Cytogenetics, Gatersleben, Germany
| | - Angela Feechan
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence:
| |
Collapse
|
43
|
Genome-Wide Association Study of Natural Variation in Arabidopsis Exposed to Acid Mine Drainage Toxicity and Validation of Associated Genes with Reverse Genetics. PLANTS 2021; 10:plants10020191. [PMID: 33498421 PMCID: PMC7909446 DOI: 10.3390/plants10020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022]
Abstract
Acid mine drainage (AMD) is a huge environmental problem in mountain-top mining regions worldwide, including the Appalachian Mountains in the United States. This study applied a genome-wide association study (GWAS) to uncover genomic loci in Arabidopsis associated with tolerance to AMD toxicity. We characterized five major root phenotypes—cumulative root length, average root diameter, root surface area, root volume, and primary root length—in 180 Arabidopsis accessions in response to AMD-supplemented growth medium. GWAS of natural variation in the panel revealed genes associated with tolerance to an acidic environment. Most of these genes were transcription factors, anion/cation transporters, metal transporters, and unknown proteins. Two T-DNA insertion mutants, At1g63005 (miR399b) and At2g05635 (DEAD helicase RAD3), showed enhanced acidity tolerance. Our GWAS and the reverse genetic approach revealed genes involved in conferring tolerance to coal AMD. Our results indicated that proton resistance in hydroponic conditions could be an important index to improve plant growth in acidic soil, at least in acid-sensitive plant species.
Collapse
|
44
|
Ge D, Jiang J, An X, Wang L, Pan T, Liu K, Sun J, Hong D. Genomics, expression, and function analyses of XB3 family genes in cotton. Genomics 2020; 113:245-256. [PMID: 33340692 DOI: 10.1016/j.ygeno.2020.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/29/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
XANTHOMONAS RESISTANCE 21-binding protein3 (XB3) is the first characterized XA21 interacting protein required for plant immunity. We isolated GhXB32A that is similar to XBAT32 and was induced during inoculation of Verticillium dahliae in cotton. 32 putative XB3 family genes were identified in G. hirsutum, G. arboreum, and G. raimondii. Cis-Acting elements related to growth, stresses, and phytohormone were detected in the promoter regions. GhXB3s were ubiquitously expressed in different cotton tissues with different patterns. Most GhXB3s were down-regulated by cold stress, but up-regulated by heat, salt, PEG, V. dahliae, ethylene, and some were up-regulated by SA or MeJA. Silencing GhXB32A and GhXB32D greatly improved resistance to Verticillium wilt, while silencing GhXB35A(D) or GhXB37A(D) made them more susceptible to V. dahliae. The interacting proteins of GhXB32A and GhXB32D were functionally enriched in response to abiotic and/or biotic stresses, and photosynthesis. XB3 family genes are potential stress resistance genes for cotton improvement.
Collapse
Affiliation(s)
- Dongdong Ge
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiuhua Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui An
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Longjie Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Pan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, China.
| | - Jing Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Delin Hong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
45
|
Zhao JY, Lu ZW, Sun Y, Fang ZW, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Min DH. The Ankyrin-Repeat Gene GmANK114 Confers Drought and Salt Tolerance in Arabidopsis and Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:584167. [PMID: 33193533 PMCID: PMC7658197 DOI: 10.3389/fpls.2020.584167] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/06/2020] [Indexed: 05/20/2023]
Abstract
Ankyrin repeat (ANK) proteins are essential in cell growth, development, and response to hormones and environmental stresses. In the present study, 226 ANK genes were identified and classified into nine subfamilies according to conserved domains in the soybean genome (Glycine max L.). Among them, the GmANK114 was highly induced by drought, salt, and abscisic acid. The GmANK114 encodes a protein that belongs to the ANK-RF subfamily containing a RING finger (RF) domain in addition to the ankyrin repeats. Heterologous overexpression of GmANK114 in transgenic Arabidopsis improved the germination rate under drought and salt treatments compared to wild-type. Homologous overexpression of GmANK114 improved the survival rate under drought and salt stresses in transgenic soybean hairy roots. In response to drought or salt stress, GmANK114 overexpression in soybean hairy root showed higher proline and lower malondialdehyde contents, and lower H2O2 and O2- contents compared control plants. Besides, GmANK114 activated transcription of several abiotic stress-related genes, including WRKY13, NAC11, DREB2, MYB84, and bZIP44 under drought and salt stresses in soybean. These results provide new insights for functional analysis of soybean ANK proteins and will be helpful for further understanding how ANK proteins in plants adapt to abiotic stress.
Collapse
Affiliation(s)
- Juan-Ying Zhao
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhi-Wei Lu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yue Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Zheng-Wu Fang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Dong-Hong Min
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| |
Collapse
|
46
|
Rice immune sensor XA21 differentially enhances plant growth and survival under distinct levels of drought. Sci Rep 2020; 10:16938. [PMID: 33037245 PMCID: PMC7547014 DOI: 10.1038/s41598-020-73128-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/04/2020] [Indexed: 11/08/2022] Open
Abstract
Drought is a complex stress that limits plant growth and crop production worldwide. The mechanisms by which plants coordinately respond to distinct levels of water deficits (e.g., mild, moderate or severe drought) remain elusive. Here we demonstrate that the rice immune sensor XA21 promotes survival of rice seedlings during dehydration stress. XA21 expression increases deposition of lignin and cellulose in the xylem vessels and their surrounding cells. Inhibition of aquaporin water channels by mercuric chloride eliminates XA21-mediated dehydration survival, suggesting that XA21 enables plant survival during drought, probably by protecting xylem functionality. In contrast to prevailing observations of stress tolerance genes, XA21 is also capable of enhancing rice growth during moderate drought. Thus, XA21 acts as a mediator for stress protection and plant growth under water-limiting conditions.
Collapse
|
47
|
Shan W, Kuang JF, Wei W, Fan ZQ, Deng W, Li ZG, Bouzayen M, Pirrello J, Lu WJ, Chen JY. MaXB3 Modulates MaNAC2, MaACS1, and MaACO1 Stability to Repress Ethylene Biosynthesis during Banana Fruit Ripening. PLANT PHYSIOLOGY 2020; 184:1153-1171. [PMID: 32694134 PMCID: PMC7536691 DOI: 10.1104/pp.20.00313] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/09/2020] [Indexed: 05/19/2023]
Abstract
Ethylene plays a critical regulatory role in climacteric fruit ripening, and its biosynthesis is fine-tuned at the transcriptional and posttranslational levels. Nevertheless, the mechanistic link between transcriptional and posttranslational regulation of ethylene biosynthesis during fruit ripening is largely unknown. This study uncovers a coordinated transcriptional and posttranslational mechanism of controlling ethylene biosynthesis during banana (Musa acuminata) fruit ripening. NAC (NAM, ATAF, and CUC) proteins MaNAC1 and MaNAC2 repress the expression of MaERF11, a protein previously known to negatively regulate ethylene biosynthesis genes MaACS1 and MaACO1 A RING E3 ligase MaXB3 interacts with MaNAC2 to promote its ubiquitination and degradation, leading to the inhibition of MaNAC2-mediated transcriptional repression. In addition, MaXB3 also targets MaACS1 and MaACO1 for proteasome degradation. Further evidence supporting the role of MaXB3 is provided by its transient and ectopic overexpression in banana fruit and tomato (Solanum lycopersicum), respectively, which delays fruit ripening via repressing ethylene biosynthesis and thus ethylene response. Strikingly, MaNAC1 and MaNAC2 directly repress MaXB3 expression, suggesting a feedback regulatory mechanism that maintains a balance of MaNAC2, MaACS1, and MaACO1 levels. Collectively, our findings establish a multilayered regulatory cascade involving MaXB3, MaNACs, MaERF11, and MaACS1/MaACO1 that controls ethylene biosynthesis during climacteric ripening.
Collapse
Affiliation(s)
- Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhong-Qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Deng
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Zheng-Guo Li
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Mondher Bouzayen
- Génomique et Biotechnologie des Fruits, Université de Toulouse, INRA, Castanet-Tolosan 31320, France
| | - Julien Pirrello
- Génomique et Biotechnologie des Fruits, Université de Toulouse, INRA, Castanet-Tolosan 31320, France
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
48
|
Hartman S. MaXB3 Limits Ethylene Production and Ripening of Banana Fruits. PLANT PHYSIOLOGY 2020; 184:568-569. [PMID: 33020325 PMCID: PMC7536662 DOI: 10.1104/pp.20.01140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Sjon Hartman
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
49
|
Zhang Y, Zeng L. Crosstalk between Ubiquitination and Other Post-translational Protein Modifications in Plant Immunity. PLANT COMMUNICATIONS 2020; 1:100041. [PMID: 33367245 PMCID: PMC7748009 DOI: 10.1016/j.xplc.2020.100041] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/05/2023]
Abstract
Post-translational modifications (PTMs) are central to the modulation of protein activity, stability, subcellular localization, and interaction with partners. They greatly expand the diversity and functionality of the proteome and have taken the center stage as key players in regulating numerous cellular and physiological processes. Increasing evidence indicates that in addition to a single regulatory PTM, many proteins are modified by multiple different types of PTMs in an orchestrated manner to collectively modulate the biological outcome. Such PTM crosstalk creates a combinatorial explosion in the number of proteoforms in a cell and greatly improves the ability of plants to rapidly mount and fine-tune responses to different external and internal cues. While PTM crosstalk has been investigated in depth in humans, animals, and yeast, the study of interplay between different PTMs in plants is still at its infant stage. In the past decade, investigations showed that PTMs are widely involved and play critical roles in the regulation of interactions between plants and pathogens. In particular, ubiquitination has emerged as a key regulator of plant immunity. This review discusses recent studies of the crosstalk between ubiquitination and six other PTMs, i.e., phosphorylation, SUMOylation, poly(ADP-ribosyl)ation, acetylation, redox modification, and glycosylation, in the regulation of plant immunity. The two basic ways by which PTMs communicate as well as the underlying mechanisms and diverse outcomes of the PTM crosstalk in plant immunity are highlighted.
Collapse
|
50
|
Su C, Liu H, Wafula EK, Honaas L, de Pamphilis CW, Timko MP. SHR4z, a novel decoy effector from the haustorium of the parasitic weed Striga gesnerioides, suppresses host plant immunity. THE NEW PHYTOLOGIST 2020; 226:891-908. [PMID: 31788811 PMCID: PMC7187149 DOI: 10.1111/nph.16351] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/22/2019] [Indexed: 05/18/2023]
Abstract
Cowpea (Vigna unguiculata) cultivar B301 is resistant to races SG4 and SG3 of the root parasitic weed Striga gesnerioides, developing a hypersensitive response (HR) at the site of parasite attachment. By contrast, race SG4z overcomes B301 resistance and successfully parasitises the plant. Comparative transcriptomics and in silico analysis identified a small secreted effector protein dubbed Suppressor of Host Resistance 4z (SHR4z) in the SG4z haustorium that upon transfer to the host roots causes a loss of host immunity (i.e. decreased HR and increased parasite growth). SHR4z has significant homology to the short leucine-rich repeat (LRR) domain of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) family proteins and functions by binding to VuPOB1, a host BTB-BACK domain-containing ubiquitin E3 ligase homologue, leading to its rapid turnover. VuPOB1 is shown to be a positive regulator of HR since silencing of VuPOB1 expression in transgenic B301 roots lowers the frequency of HR and increases the levels of successful SG4 parasitism and overexpression decreases parasitism by SG4z. These findings provide new insights into how parasitic weeds overcome host defences and could potentially contribute to the development of novel strategies for controlling Striga and other parasitic weeds thereby enhancing crop productivity and food security globally.
Collapse
Affiliation(s)
- Chun Su
- Department of BiologyUniversity of VirginiaCharlottesvilleVA22904USA
| | - Hai Liu
- Department of BiologyUniversity of VirginiaCharlottesvilleVA22904USA
| | - Eric K. Wafula
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Loren Honaas
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | | | - Michael P. Timko
- Department of BiologyUniversity of VirginiaCharlottesvilleVA22904USA
| |
Collapse
|