1
|
Dai Y, Li X, He Y, Zhu L, Bi Y, Song F, Li D. The E3 ubiquitin ligase SlATL2 suppresses tomato immunity by promoting SlCSN5a degradation during Pseudomonas syringae pv. tomato DC3000 infection. HORTICULTURE RESEARCH 2025; 12:uhaf078. [PMID: 40303438 PMCID: PMC12038897 DOI: 10.1093/hr/uhaf078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/02/2025] [Indexed: 05/02/2025]
Abstract
Plant immunity involves complex regulatory mechanisms that mediate the activation of defense responses against pathogens. Protein degradation via ubiquitination plays a crucial role in modulating these defenses, with E3 ubiquitin ligases functioning as central regulators. This study investigates the role of SlATL2, an ARABIDOPSIS TÓXICOS EN LEVADURA (ATL)-type E3 ubiquitin ligase localized in the plasma membrane, in the immune response of tomato plants against Pseudomonas syringae pv. tomato (Pst) DC3000. Our findings demonstrate that SlATL2 expression is induced upon Pst DC3000 infection and treatment with defense hormones salicylic acid and jasmonic acid. Functionally, SlATL2 negatively regulates immune responses, impairing resistance to Pst DC3000 and suppressing flg22-triggered immunity. In addition, SlATL2 limits pathogen-induced reactive oxygen species and callose accumulation by targeting the COP9 signalosome subunit 5a (SlCSN5a), a key positive regulator of tomato defense responses against Pst DC3000. This interaction, which occurs via the N-terminal residue of SlATL2, results in the ubiquitination and 26S proteasomal degradation of SlCSN5a, thereby suppressing SA-dependent expression of defense response genes associated and limiting reactive oxygen species production. This work sheds light on the molecular mechanism through which the E3 ubiquitin ligase SlATL2 attenuates tomato immune responses by targeting a COP9 signalosome subunit for degradation. These discoveries deepen our insights into the post-translational mechanisms governing plant immune responses and provide fresh opportunities to bolster crop resistance against bacterial pathogens.
Collapse
Affiliation(s)
- Yujie Dai
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaodan Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yeling He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liya Zhu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Bi
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengming Song
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dayong Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Zhao Y, Li G, Zhu Z, Hu M, Jiang D, Chen M, Wang J, Zhang K, Zheng Y, Liao Y, Chen C. Genomic selection and genetic architecture of agronomic traits during modern flowering Chinese cabbage breeding. HORTICULTURE RESEARCH 2025; 12:uhae299. [PMID: 39949876 PMCID: PMC11822411 DOI: 10.1093/hr/uhae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/11/2024] [Indexed: 02/16/2025]
Abstract
Flowering Chinese cabbage is a type of leafy vegetable that belongs to the Brassica genus. Originally native to South China, it is now widely cultivated and consumed across the globe, particularly in Asian countries. The recent cultivation and regional expansion of flowering Chinese cabbage provides a valuable opportunity to elucidate the genomic basis underlying environmental adaptation and desired traits during a short-term artificial selection process. Here, we investigate the genetic variation, population structure, and diversity of a diverse germplasm collection of 403 flowering Chinese cabbage accessions. Our investigation seeks to elucidate the genomic basis that guides the selection of adaptability, yield, and pivotal agronomic traits. We further investigated breeding improvement associated with stem development by integrating transcriptome data. Genome-wide association analysis identified 642 loci and corresponding candidate genes associated with 11 essential agronomic traits, including plant architecture and yield. Furthermore, we uncovered a significant disparity in the allele frequency distribution of nonsynonymous mutations in these candidate genes throughout the improvement stages. Our results shed light on the genetic basis of improvement and crucial agronomic traits in flowering Chinese cabbage, offering invaluable resources for upcoming genomics-assisted breeding endeavors.
Collapse
Affiliation(s)
- Yahui Zhao
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guangguang Li
- Guangzhou Institute of Agriculture Science, Guangzhou 510308, China
| | - Zhangsheng Zhu
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ming Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ding Jiang
- Guangzhou Institute of Agriculture Science, Guangzhou 510308, China
| | - Muxi Chen
- Guangdong Helinong Biological Seed Industry Co., Ltd, Shantou, Guangdong 515800, China
| | - Juantao Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Kexin Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yansong Zheng
- Guangzhou Institute of Agriculture Science, Guangzhou 510308, China
| | - Yi Liao
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Changming Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Bahk S, Ahsan N, An J, Kim SH, Ramadany Z, Hong JC, Thelen JJ, Chung WS. Identification of mitogen-activated protein kinases substrates in Arabidopsis using kinase client assay. PLANT SIGNALING & BEHAVIOR 2024; 19:2326238. [PMID: 38493505 PMCID: PMC10950278 DOI: 10.1080/15592324.2024.2326238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/25/2024] [Indexed: 03/19/2024]
Abstract
Mitogen-activated protein kinase (MPK) cascades are essential signal transduction components that control a variety of cellular responses in all eukaryotes. MPKs convert extracellular stimuli into cellular responses by the phosphorylation of downstream substrates. Although MPK cascades are predicted to be very complex, only limited numbers of MPK substrates have been identified in plants. Here, we used the kinase client (KiC) assay to identify novel substrates of MPK3 and MPK6. Recombinant MPK3 or MPK6 were tested against a large synthetic peptide library representing in vivo phosphorylation sites, and phosphorylated peptides were identified by high-resolution tandem mass spectrometry. From this screen, we identified 23 and 21 putative client peptides of MPK3 and MPK6, respectively. To verify the phosphorylation of putative client peptides, we performed in vitro kinase assay with recombinant fusion proteins of isolated client peptides. We found that 13 and 9 recombinant proteins were phosphorylated by MPK3 and MPK6. Among them, 11 proteins were proven to be the novel substrates of two MPKs. This study suggests that the KiC assay is a useful method to identify new substrates of MPKs.
Collapse
Affiliation(s)
- Sunghwa Bahk
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Nagib Ahsan
- Department of Biochemistry and Interdisciplinary Plant Group, Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Jonguk An
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun Ho Kim
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Zakiyah Ramadany
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jay J. Thelen
- Department of Biochemistry and Interdisciplinary Plant Group, Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Woo Sik Chung
- Division of Applied Life Science (BK21 Four program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
4
|
Martínez C, Iniesto E, García-León M, García-Corredera D, Fonseca S, Santiago C, Yang M, Yu R, Chen H, Altmann E, Renatus M, Deng XW, Rubio V. Hormone-mediated disassembly and inactivation of a plant E3 ubiquitin ligase complex. Cell Rep 2024; 43:114802. [PMID: 39365702 DOI: 10.1016/j.celrep.2024.114802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024] Open
Abstract
Phytohormone abscisic acid (ABA) regulates key plant development and environmental stress responses. The ubiquitin-proteasome system tightly controls ABA signaling. CULLIN4-RING (CRL4) E3 ubiquitin ligases use the substrate receptor module CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP10)-DDB1-DET1-DDA1 (CDDD) to target Arabidopsis ABA receptor PYL8, acting as negative regulators of ABA responses. Conversely, ABA treatment attenuates PYL8 receptor degradation, although the molecular mechanism remained elusive. Here, we show that ABA promotes the disruption of CRL4-CDDD complexes, leading to PYL8 stabilization. ABA-mediated CRL4-CDDD dissociation likely involves an altered association between DDA1-containing complexes and the COP9 signalosome (CSN), a master regulator of the assembly of cullin-based E3 ligases, including CRL4-CDDD. Indeed, treatment with CSN inhibitor CSN5i-3 suppresses the ABA effect on CRL4-CDDD assembly. Our findings indicate that ABA stabilizes PYL8 by altering the dynamics of the CRL4-CDDD-CSN complex association, showing a regulatory mechanism by which a plant hormone inhibits an E3 ubiquitin ligase to protect its own receptors from degradation.
Collapse
Affiliation(s)
- Cristina Martínez
- Departments of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Elisa Iniesto
- Departments of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Marta García-León
- Departments of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Daniel García-Corredera
- Departments of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Sandra Fonseca
- Departments of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - César Santiago
- Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mei Yang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Renbo Yu
- National Key Laboratory of Tropical Crop Biobreeding, Hainan University, Sanya/Haikou, Hainan 572024/571101, China
| | - Haodong Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Eva Altmann
- Global Discovery Chemistry, WSJ-386 1 14.32, 4056 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Forum 1, Novartis Campus, 4002 Basel, Switzerland
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China; State Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Vicente Rubio
- Departments of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
5
|
Cao Y, Yan H, Sheng M, Liu Y, Yu X, Li Z, Xu W, Su Z. Nuclear lamina component KAKU4 regulates chromatin states and transcriptional regulation in the Arabidopsis genome. BMC Biol 2024; 22:80. [PMID: 38609974 PMCID: PMC11015597 DOI: 10.1186/s12915-024-01882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The nuclear lamina links the nuclear membrane to chromosomes and plays a crucial role in regulating chromatin states and gene expression. However, current knowledge of nuclear lamina in plants is limited compared to animals and humans. RESULTS This study mainly focused on elucidating the mechanism through which the putative nuclear lamina component protein KAKU4 regulates chromatin states and gene expression in Arabidopsis leaves. Thus, we constructed a network using the association proteins of lamin-like proteins, revealing that KAKU4 is strongly associated with chromatin or epigenetic modifiers. Then, we conducted ChIP-seq technology to generate global epigenomic profiles of H3K4me3, H3K27me3, and H3K9me2 in Arabidopsis leaves for mutant (kaku4-2) and wild-type (WT) plants alongside RNA-seq method to generate gene expression profiles. The comprehensive chromatin state-based analyses indicate that the knockdown of KAKU4 has the strongest effect on H3K27me3, followed by H3K9me2, and the least impact on H3K4me3, leading to significant changes in chromatin states in the Arabidopsis genome. We discovered that the knockdown of the KAKU4 gene caused a transition between two types of repressive epigenetics marks, H3K9me2 and H3K27me3, in some specific PLAD regions. The combination analyses of epigenomic and transcriptomic data between the kaku4-2 mutant and WT suggested that KAKU4 may regulate key biological processes, such as programmed cell death and hormone signaling pathways, by affecting H3K27me3 modification in Arabidopsis leaves. CONCLUSIONS In summary, our results indicated that KAKU4 is directly and/or indirectly associated with chromatin/epigenetic modifiers and demonstrated the essential roles of KAKU4 in regulating chromatin states, transcriptional regulation, and diverse biological processes in Arabidopsis.
Collapse
Affiliation(s)
- Yaxin Cao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hengyu Yan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Minghao Sheng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yue Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhongqiu Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Guo X, Zhang X, Jiang S, Qiao X, Meng B, Wang X, Wang Y, Yang K, Zhang Y, Li N, Chen T, Kang Y, Yao M, Zhang X, Wang X, Zhang E, Li J, Yan D, Hu Z, Botella JR, Song CP, Li Y, Guo S. E3 ligases MAC3A and MAC3B ubiquitinate UBIQUITIN-SPECIFIC PROTEASE14 to regulate organ size in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:684-697. [PMID: 37850874 PMCID: PMC10828200 DOI: 10.1093/plphys/kiad559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
The molecular mechanisms controlling organ size during plant development ultimately influence crop yield. However, a deep understanding of these mechanisms is still lacking. UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, is an essential factor determining organ size in Arabidopsis (Arabidopsis thaliana). Here, we identified two suppressors of the da3-1 mutant phenotype, namely SUPPRESSOR OF da3-1 1 and 2 (SUD1 and SUD2), which encode the E3 ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B, respectively. The mac3a-1 and mac3b-1 mutations partially suppressed the high ploidy level and organ size phenotypes observed in the da3-1 mutant. Biochemical analysis showed that MAC3A and MAC3B physically interacted with and ubiquitinated UBP14/DA3 to modulate its stability. We previously reported that UBP14/DA3 acts upstream of the B-type cyclin-dependent kinase CDKB1;1 and maintains its stability to inhibit endoreduplication and cell growth. In this work, MAC3A and MAC3B were found to promote the degradation of CDKB1;1 by ubiquitinating UBP14/DA3. Genetic analysis suggests that MAC3A and MAC3B act in a common pathway with UBP14/DA3 to control endoreduplication and organ size. Thus, our findings define a regulatory module, MAC3A/MAC3B-UBP14-CDKB1;1, that plays a critical role in determining organ size and endoreduplication in Arabidopsis.
Collapse
Affiliation(s)
- Xiaopeng Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Shan Jiang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Qiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Bolun Meng
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xiaohang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Yanan Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Kaihuan Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Yilan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Tianyan Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yiyang Kang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Mengyi Yao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xuan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xinru Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Erling Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Junhua Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - José Ramón Botella
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| |
Collapse
|
7
|
Isaioglou I, Podia V, Velentzas AD, Kapolas G, Beris D, Karampelias M, Plitsi PK, Chatzopoulos D, Samakovli D, Roussis A, Merzaban J, Milioni D, Stravopodis DJ, Haralampidis K. APRF1 Interactome Reveals HSP90 as a New Player in the Complex That Epigenetically Regulates Flowering Time in Arabidopsis thaliana. Int J Mol Sci 2024; 25:1313. [PMID: 38279311 PMCID: PMC10816710 DOI: 10.3390/ijms25021313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
WD40 repeat proteins (WDRs) are present in all eukaryotes and include members that are implicated in numerous cellular activities. They act as scaffold proteins and thus as molecular "hubs" for protein-protein interactions, which mediate the assembly of multifunctional complexes that regulate key developmental processes in Arabidopsis thaliana, such as flowering time, hormonal signaling, and stress responses. Despite their importance, many aspects of their putative functions have not been elucidated yet. Here, we show that the late-flowering phenotype of the anthesis promoting factor 1 (aprf1) mutants is temperature-dependent and can be suppressed when plants are grown under mild heat stress conditions. To gain further insight into the mechanism of APRF1 function, we employed a co-immunoprecipitation (Co-IP) approach to identify its interaction partners. We provide the first interactome of APRF1, which includes proteins that are localized in several subcellular compartments and are implicated in diverse cellular functions. The dual nucleocytoplasmic localization of ARRF1, which was validated through the interaction of APRF1 with HEAT SHOCK PROTEIN 1 (HSP90.1) in the nucleus and with HSP90.2 in the cytoplasm, indicates a dynamic and versatile involvement of APRF1 in multiple biological processes. The specific interaction of APRF1 with the chaperon HSP90.1 in the nucleus expands our knowledge regarding the epigenetic regulation of flowering time in A. thaliana and further suggests the existence of a delicate thermoregulated mechanism during anthesis.
Collapse
Affiliation(s)
- Ioannis Isaioglou
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.K.); (J.M.)
| | - Varvara Podia
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Athanassios D. Velentzas
- Section of Cell Biology & Biophysics, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.D.V.); (D.C.); (D.J.S.)
| | - Georgios Kapolas
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Despoina Beris
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Michael Karampelias
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.K.); (J.M.)
| | - Panagiota Konstantinia Plitsi
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece (D.M.)
| | - Dimitris Chatzopoulos
- Section of Cell Biology & Biophysics, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.D.V.); (D.C.); (D.J.S.)
| | - Despina Samakovli
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece (D.M.)
| | - Andreas Roussis
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Jasmeen Merzaban
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.K.); (J.M.)
| | - Dimitra Milioni
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece (D.M.)
| | - Dimitrios J. Stravopodis
- Section of Cell Biology & Biophysics, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.D.V.); (D.C.); (D.J.S.)
| | - Kosmas Haralampidis
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| |
Collapse
|
8
|
Yan X, Chen X, Li Y, Li Y, Wang F, Zhang J, Ning G, Bao M. The Abundant and Unique Transcripts and Alternative Splicing of the Artificially Autododecaploid London Plane ( Platanus × acerifolia). Int J Mol Sci 2023; 24:14486. [PMID: 37833935 PMCID: PMC10572260 DOI: 10.3390/ijms241914486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
Transcription and alternative splicing (AS) are now appreciated in plants, but few studies have examined the effects of changing ploidy on transcription and AS. In this study, we showed that artificially autododecaploid plants of London plane (Platanus × acerifolia (Aiton) Willd) had few flowers relative to their hexaploid progenitors. Transcriptome analysis based on full-length Oxford Nanopore Technologies (ONTs) and next-generation sequencing (NGS) revealed that the increased ploidy level in P. × acerifolia led to more transcribed isoforms, accompanied by an increase in the number of isoforms per gene. The functional enrichment of genes indicated that novel genes transcribed specifically in the dodecaploids may have been highly correlated with the ability to maintain genome stability. The dodecaploids showed a higher number of genes with upregulated differentially expressed genes (DEGs) compared with the hexaploid counterpart. The genome duplication of P. × acerifolia resulted mainly in the DEGs involved in basic biological pathways. It was noted that there was a greater abundance of alternative splicing (AS) events and AS genes in the dodecaploids compared with the hexaploids in P. × acerifolia. In addition, a significant difference between the structure and expression of AS events between the hexaploids and dodecaploids of Platanus was found. Of note, some DEGs and differentially spliced genes (DSGs) related to floral transition and flower development were consistent with the few flower traits in the dodecaploids of P. × acerifolia. Collectively, our findings explored the difference in transcription and AS regulation between the hexaploids and dodecaploids of P. × acerifolia and gained new insight into the molecular mechanisms underlying the few-flower phenotype of P. × acerifolia. These results contribute to uncovering the regulatory role of transcription and AS in polyploids and breeding few-flower germplasms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (J.Z.)
| |
Collapse
|
9
|
Rahman MM, Balachandran RS, Stevenson JB, Kim Y, Proenca RB, Hedgecock EM, Kipreos ET. The Caenorhabditis elegans cullin-RING ubiquitin ligase CRL4DCAF-1 is required for proper germline nucleolus morphology and male development. Genetics 2023; 225:iyad126. [PMID: 37433110 PMCID: PMC10686702 DOI: 10.1093/genetics/iyad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/08/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023] Open
Abstract
Cullin-RING ubiquitin ligases (CRLs) are the largest class of ubiquitin ligases with diverse functions encompassing hundreds of cellular processes. Inactivation of core components of the CRL4 ubiquitin ligase produces a germ cell defect in Caenorhabditis elegans that is marked by abnormal globular morphology of the nucleolus and fewer germ cells. We identified DDB1 Cullin4 associated factor (DCAF)-1 as the CRL4 substrate receptor that ensures proper germ cell nucleolus morphology. We demonstrate that the dcaf-1 gene is the ncl-2 (abnormal nucleoli) gene, whose molecular identity was not previously known. We also observed that CRL4DCAF-1 is required for male tail development. Additionally, the inactivation of CRL4DCAF-1 results in a male-specific lethality in which a percentage of male progeny arrest as embryos or larvae. Analysis of the germ cell nucleolus defect using transmission electron microscopy revealed that dcaf-1 mutant germ cells possess significantly fewer ribosomes, suggesting a defect in ribosome biogenesis. We discovered that inactivation of the sperm-fate specification gene fog-1 (feminization of the germ line-1) or its protein-interacting partner, fog-3, rescues the dcaf-1 nucleolus morphology defect. Epitope-tagged versions of both FOG-1 and FOG-3 proteins are aberrantly present in adult dcaf-1(RNAi) animals, suggesting that DCAF-1 negatively regulates FOG-1 and FOG-3 expression. Murine CRL4DCAF-1 targets the degradation of the ribosome assembly factor periodic trptophan protein 1 (PWP1). We observed that the inactivation of Caenorhabditis elegansDCAF-1 increases the nucleolar levels of PWP1 in the germ line, intestine, and hypodermis. Reducing the level of PWP-1 rescues the dcaf-1 mutant defects of fewer germ cell numbers and abnormal nucleolus morphology, suggesting that the increase in PWP-1 levels contributes to the dcaf-1 germline defect. Our results suggest that CRL4DCAF-1 has an evolutionarily ancient role in regulating ribosome biogenesis including a conserved target in PWP1.
Collapse
Affiliation(s)
- Mohammad M Rahman
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Riju S Balachandran
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | - Youngjo Kim
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Rui B Proenca
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Edward M Hedgecock
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Edward T Kipreos
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Wu Z, Zhang T, Li J, Chen S, Grin IR, Zharkov DO, Yu B, Li H. Genome-wide analysis of WD40 protein family and functional characterization of BvWD40-82 in sugar beet. FRONTIERS IN PLANT SCIENCE 2023; 14:1185440. [PMID: 37332716 PMCID: PMC10272600 DOI: 10.3389/fpls.2023.1185440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Sugar beet is one of the most important sugar crops in the world. It contributes greatly to the global sugar production, but salt stress negatively affects the crop yield. WD40 proteins play important roles in plant growth and response to abiotic stresses through their involvement in a variety of biological processes, such as signal transduction, histone modification, ubiquitination, and RNA processing. The WD40 protein family has been well-studied in Arabidopsis thaliana, rice and other plants, but the systematic analysis of the sugar beet WD40 proteins has not been reported. In this study, a total of 177 BvWD40 proteins were identified from the sugar beet genome, and their evolutionary characteristics, protein structure, gene structure, protein interaction network and gene ontology were systematically analyzed to understand their evolution and function. Meanwhile, the expression patterns of BvWD40s under salt stress were characterized, and a BvWD40-82 gene was hypothesized as a salt-tolerant candidate gene. Its function was further characterized using molecular and genetic methods. The result showed that BvWD40-82 enhanced salt stress tolerance in transgenic Arabidopsis seedlings by increasing the contents of osmolytes and antioxidant enzyme activities, maintaining intracellular ion homeostasis and increasing the expression of genes related to SOS and ABA pathways. The result has laid a foundation for further mechanistic study of the BvWD40 genes in sugar beet tolerance to salt stress, and it may inform biotechnological applications in improving crop stress resilience.
Collapse
Affiliation(s)
- Zhirui Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Tingyue Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jinna Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS, United States
| | - Inga R. Grin
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
11
|
Guo Y, Chen Y, Wang Y, Wu X, Zhang X, Mao W, Yu H, Guo K, Xu J, Ma L, Guo W, Hu Z, Xin M, Yao Y, Ni Z, Sun Q, Peng H. The translational landscape of bread wheat during grain development. THE PLANT CELL 2023; 35:1848-1867. [PMID: 36905284 PMCID: PMC10226598 DOI: 10.1093/plcell/koad075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 05/30/2023]
Abstract
The dynamics of gene expression in crop grains has typically been investigated at the transcriptional level. However, this approach neglects translational regulation, a widespread mechanism that rapidly modulates gene expression to increase the plasticity of organisms. Here, we performed ribosome profiling and polysome profiling to obtain a comprehensive translatome data set of developing bread wheat (Triticum aestivum) grains. We further investigated the genome-wide translational dynamics during grain development, revealing that the translation of many functional genes is modulated in a stage-specific manner. The unbalanced translation between subgenomes is pervasive, which increases the expression flexibility of allohexaploid wheat. In addition, we uncovered widespread previously unannotated translation events, including upstream open reading frames (uORFs), downstream open reading frames (dORFs), and open reading frames (ORFs) in long noncoding RNAs, and characterized the temporal expression dynamics of small ORFs. We demonstrated that uORFs act as cis-regulatory elements that can repress or even enhance the translation of mRNAs. Gene translation may be combinatorially modulated by uORFs, dORFs, and microRNAs. In summary, our study presents a translatomic resource that provides a comprehensive and detailed overview of the translational regulation in developing bread wheat grains. This resource will facilitate future crop improvements for optimal yield and quality.
Collapse
Affiliation(s)
- Yiwen Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongfa Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaojia Wu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weiwei Mao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Hongjian Yu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Kai Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jin Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Liang Ma
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Zhan Q, Shen J, Nie K, Zheng Y. MIW1 participates in ABA signaling through the regulation of MYB30 in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111717. [PMID: 37105379 DOI: 10.1016/j.plantsci.2023.111717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023]
Abstract
Seed germination and seedling establishment are critical biological processes, and their underlying molecular mechanisms have practical implications. The ABA signaling during seed germination and early seedling development is negatively regulated by transcription factor MYB30, but its interaction partners and downstream targets are not fully understood. In this study, we identified MIW1 (MYB30-interacting WD40 protein 1), a WD40 protein that could interact with MYB30 and promote its degradation. In the miw1 mutant, the MYB30 protein became more stable. MIW1 enhanced the ABA-mediated inhibition of postgerminative development. The miw1 mutants became hyposensitive to exogenous ABA, and this effect was suppressed by mutations in MYB30. Furthermore, we found that MYB30 negatively regulated the expression of the ABA receptor genes PYR1/PYL/RCARs. The changes in PYLs expression during early seedling development or under ABA treatment became more pronounced in the myb30 mutant. ChIP-qPCR analyses showed MYB30 could directly bind to the promoters of PYL11 and PYL12. Our study reveals that the WD40 protein MIW1 promotes the expression of PYLs by destabilizing MYB30, thus positively regulating the ABA signaling during postgermination in Arabidopsis.
Collapse
Affiliation(s)
- Qidi Zhan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; Sanya Institute of Henan University, Sanya, China
| | - Jialu Shen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; Sanya Institute of Henan University, Sanya, China
| | - Kaili Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; Sanya Institute of Henan University, Sanya, China
| | - Yuan Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; Sanya Institute of Henan University, Sanya, China.
| |
Collapse
|
13
|
Albuquerque-Martins R, Szakonyi D, Rowe J, Jones AM, Duque P. ABA signaling prevents phosphodegradation of the SR45 splicing factor to alleviate inhibition of early seedling development in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100495. [PMID: 36419364 PMCID: PMC10030365 DOI: 10.1016/j.xplc.2022.100495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 05/04/2023]
Abstract
Serine/arginine-rich (SR) proteins are conserved splicing regulators that play important roles in plant stress responses, namely those mediated by the abscisic acid (ABA) hormone. The Arabidopsis thaliana SR-like protein SR45 is a described negative regulator of the ABA pathway during early seedling development. How the inhibition of growth by ABA signaling is counteracted to maintain plant development under stress conditions remains largely unknown. Here, we show that SR45 overexpression reduces Arabidopsis sensitivity to ABA during early seedling development. Biochemical and confocal microscopy analyses of transgenic plants expressing fluorescently tagged SR45 revealed that exposure to ABA dephosphorylates the protein at multiple amino acid residues and leads to its accumulation, due to SR45 stabilization via reduced ubiquitination and proteasomal degradation. Using phosphomutant and phosphomimetic transgenic Arabidopsis lines, we demonstrate the functional relevance of ABA-mediated dephosphorylation of a single SR45 residue, T264, in antagonizing SR45 ubiquitination and degradation to promote its function as a repressor of seedling ABA sensitivity. Our results reveal a mechanism that negatively autoregulates ABA signaling and allows early plant growth under stress via posttranslational control of the SR45 splicing factor.
Collapse
Affiliation(s)
- Rui Albuquerque-Martins
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; Sainsbury Laboratory, University of Cambridge, Cambridge B2 1LR, UK
| | - Dóra Szakonyi
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - James Rowe
- Sainsbury Laboratory, University of Cambridge, Cambridge B2 1LR, UK
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge B2 1LR, UK.
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
14
|
Wang Y, Fan Y, Fan D, Zhou X, Jiao Y, Deng XW, Zhu D. The noncoding RNA HIDDEN TREASURE 1 promotes phytochrome B-dependent seed germination by repressing abscisic acid biosynthesis. THE PLANT CELL 2023; 35:700-716. [PMID: 36423345 PMCID: PMC9940872 DOI: 10.1093/plcell/koac334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Light is a major environmental factor for seed germination. Red light-activated phytochrome B (phyB) promotes seed germination by modulating the dynamic balance of two phytohormones, gibberellic acid (GA) and abscisic acid (ABA). How phyB modulates ABA biosynthesis after perceiving a light signal is not yet well understood. Here, we identified the noncoding RNA HIDDEN TREASURE 1 (HID1) as a repressor of ABA biosynthesis acting downstream of phyB during Arabidopsis thaliana seed germination. Loss of HID1 function led to delayed phyB-dependent seed germination. Photoactivated phyB promoted the accumulation of HID1 in the radicle within 48 h of imbibition. Our transcriptomics analysis showed that HID1 and phyB co-regulate the transcription of a common set of genes involved in ABA and GA metabolism. Through a forward genetic screen, we identified three ABA biosynthesis genes, ABA DEFICIENT 1 (ABA1), ABA2, and ABA3, as suppressors of HID1. We further demonstrated that HID1 directly inhibits the transcription of 9-CIS-EPOXYCAROTENOID DIOXYGENASE (NCED9), a gene encoding a key rate-limiting enzyme of ABA biosynthesis. HID1 interacts with ARABIDOPSIS TRITHORAX-RELATED7 (ATXR7), an H3K4me3 methyltransferase, inhibiting its occupancy and H3K4me3 modification at the NCED9 locus. Our study reveals a nuclear mechanism of phyB signaling transmitted through HID1 to control the internal homeostasis of ABA and GA, which gradually optimizes the transcriptional network during seed germination.
Collapse
Affiliation(s)
- Yuqiu Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yangyang Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - De Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Xiaoli Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuntong Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Baer M, Taramino G, Multani D, Sakai H, Jiao S, Fengler K, Hochholdinger F. Maize lateral rootless 1 encodes a homolog of the DCAF protein subunit of the CUL4-based E3 ubiquitin ligase complex. THE NEW PHYTOLOGIST 2023; 237:1204-1214. [PMID: 36345913 DOI: 10.1111/nph.18599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
In maize (Zea mays L.), lateral roots are formed in the differentiation zone of all root types in a multi-step process. The maize mutant lateral rootless 1 (lrt1) is defective in lateral root formation in primary and seminal roots but not in shoot-borne roots. We cloned the lrt1 gene by mapping in combination with BSA-seq and subsequent validation via CRISPR/Cas9. The lrt1 gene encodes a 209 kDa homolog of the DDB1-CUL4-ASSOCIATED FACTOR (DCAF) subunit of the CUL4-based E3 ubiquitin ligase (CRL4) complex localized in the nucleus. DDB1-CUL4-ASSOCIATED FACTOR proteins are encoded by an evolutionary old gene family already present in nonseed plants. They are adaptors that bind substrate proteins and promote their ubiquitylation, thus typically marking them for subsequent degradation in the 26S proteasome. Gene expression studies demonstrated that lrt1 transcripts are expressed preferentially in the meristematic zone of all root types of maize. Downregulation of the rum1 gene in lrt1 mutants suggests that lrt1 acts upstream of the lateral root regulator rum1. Our results demonstrate that DCAF proteins play a key role in root-type-specific lateral root formation in maize. Together with its role in nitrogen acquisition in nitrogen-poor soil, lrt1 could be a promising target for maize improvement.
Collapse
Affiliation(s)
- Marcel Baer
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | | | | | | | | | | | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| |
Collapse
|
16
|
Chen C, Yang Y, Pan L, Xia W, Xu L, Hua B, Zhang Z, Miao M. Genome-Wide Identification of WD40 Proteins in Cucurbita maxima Reveals Its Potential Functions in Fruit Development. Genes (Basel) 2023; 14:genes14010220. [PMID: 36672961 PMCID: PMC9859561 DOI: 10.3390/genes14010220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
WD40 proteins, a super gene family in eukaryotes, are involved in multiple biological processes. Members of this family have been identified in several plants and shown to play key roles in various development processes, including acting as scaffolding molecules with other proteins. However, WD40 proteins have not yet been systematically analyzed and identified in Cucurbita maxima. In this study, 231 WD40 proteins (CmWD40s) were identified in C. maxima and classified into five clusters. Eleven subfamilies were identified based on different conserved motifs and gene structures. The CmWD40 genes were distributed in 20 chromosomes; 5 and 33 pairs of CmWD40s were distinguished as tandem and segmental duplications, respectively. Overall, 58 pairs of orthologous WD40 genes in C. maxima and Arabidopsis thaliana, and 56 pairs of orthologous WD40 genes in C. maxima and Cucumis sativus were matched. Numerous CmWD40s had diverse expression patterns in fruits, leaf, stem, and root. Several genes were involved in responses to NaCl. The expression pattern of CmWD40s suggested their key role in fruit development and abiotic stress response. Finally, we identified 14 genes which might be involved in fruit development. Our results provide valuable basis for further functional verification of CmWD40s in C. maxima.
Collapse
Affiliation(s)
- Chen Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yating Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Liu Pan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wenhao Xia
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lanruoyan Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Bing Hua
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhiping Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Minmin Miao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
17
|
Choi C, Im JH, Lee J, Kwon SI, Kim WY, Park SR, Hwang DJ. OsDWD1 E3 ligase-mediated OsNPR1 degradation suppresses basal defense in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:966-981. [PMID: 36168109 DOI: 10.1111/tpj.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Many ubiquitin E3 ligases function in plant immunity. Here, we show that Oryza sativa (rice) DDB1 binding WD (OsDWD1) suppresses immune responses by targeting O. sativa non-expresser of pathogenesis-related gene 1 (OsNPR1) for degradation. Knock-down and overexpression experiments in rice plants showed that OsDWD1 is a negative regulator of the immune response and that OsNPR1 is a substrate of OsDWD1 and a substrate receptor of OsCRL4. After constructing the loss-of-function mutant OsDWD1R239A , we showed that the downregulation of OsNPR1 seen in rice lines overexpressing wild-type (WT) OsDWD1 (OsDWD1WT -ox) was compromised in OsDWD1R239A -ox lines, and that OsNPR1 upregulation enhanced resistance to pathogen infection, confirming that OsCRL4OsDWD1 regulates OsNPR1 protein levels. The enhanced disease resistance seen in OsDWD1 knock-down (OsDWD1-kd) lines contrasted with the reduced disease resistance in double knock-down (OsDWD1/OsNPR1-kd) lines, indicating that the enhanced disease resistance of OsDWD1-kd resulted from the accumulation of OsNPR1. Moreover, an in vivo heterologous protein degradation assay in Arabidopsis thaliana ddb1 mutants confirmed that the CUL4-based E3 ligase system can also influence OsNPR1 protein levels in Arabidopsis. Although OsNPR1 was degraded by the OsCRL4OsDWD1 -mediated ubiquitination system, the phosphodegron-motif-mutated NPR1 was partially degraded in the DWD1-ox protoplasts. This suggests that there might be another degradation process for OsNPR1. Taken together, these results indicate that OsDWD1 regulates OsNPR1 protein levels in rice to suppress the untimely activation of immune responses.
Collapse
Affiliation(s)
- Changhyun Choi
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jong Hee Im
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jinjeong Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Soon Il Kwon
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Sciences, Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52825, Republic of Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Duk-Ju Hwang
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
18
|
A single helix repression domain is functional across diverse eukaryotes. Proc Natl Acad Sci U S A 2022; 119:e2206986119. [PMID: 36191192 PMCID: PMC9564828 DOI: 10.1073/pnas.2206986119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The corepressor TOPLESS (TPL) and its paralogs coordinately regulate a large number of genes critical to plant development and immunity. As in many members of the larger pan-eukaryotic Tup1/TLE/Groucho corepressor family, TPL contains a Lis1 Homology domain (LisH), whose function is not well understood. We have previously found that the LisH in TPL-and specifically the N-terminal 18 amino acid alpha-helical region (TPL-H1)-can act as an autonomous repression domain. We hypothesized that homologous domains across diverse LisH-containing proteins could share the same function. To test that hypothesis, we built a library of H1s that broadly sampled the sequence and evolutionary space of LisH domains, and tested their activity in a synthetic transcriptional repression assay in Saccharomyces cerevisiae. Using this approach, we found that repression activity was highly conserved and likely the ancestral function of this motif. We also identified key residues that contribute to repressive function. We leveraged this new knowledge for two applications. First, we tested the role of mutations found in somatic cancers on repression function in two human LisH-containing proteins. Second, we validated function of many of our repression domains in plants, confirming that these sequences should be of use to synthetic biology applications across many eukaryotes.
Collapse
|
19
|
A Comparative Transcriptome Analysis Reveals the Molecular Mechanisms That Underlie Somatic Embryogenesis in Peaonia ostii ‘Fengdan’. Int J Mol Sci 2022; 23:ijms231810595. [PMID: 36142512 PMCID: PMC9505998 DOI: 10.3390/ijms231810595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Low propagation rate is the primary problem that limits industry development of tree peony. In this study, a highly efficient regeneration system for tree peony using somatic embryogenesis (SE) was established. The transcriptomes of zygotic embryo explants (S0), non-embryonic callus (S1), embryonic callus (S2), somatic embryos (S3), and regenerated shoots (S4) were analyzed to determine the regulatory mechanisms that underlie SE in tree peony. The differentially expressed genes (DEGs) were identified in the pairwise comparisons of S1-vs-S2 and S1-vs-S3, respectively. The enriched DEGs were primarily involved in hormone signal transduction, stress response and the nucleus (epigenetic modifications). The results indicated that cell division, particularly asymmetric cell division, was enhanced in S3. Moreover, the genes implicated in cell fate determination played central roles in S3. Hormone signal pathways work in concert with epigenetic modifications and stress responses to regulate SE. SERK, WOX9, BBM, FUS3, CUC, and WUS were characterized as the molecular markers for tree peony SE. To our knowledge, this is the first study of the SE of tree peony using transcriptome sequencing. These results will improve our understanding of the molecular mechanisms that underly SE in tree peony and will benefit the propagation and genetic engineering of this plant.
Collapse
|
20
|
Chen X, Guo HY, Zhang QY, Wang L, Guo R, Zhan YX, Lv P, Xu YP, Guo MB, Zhang Y, Zhang K, Liu YH, Yang M. Whole-genome resequencing of wild and cultivated cannabis reveals the genetic structure and adaptive selection of important traits. BMC PLANT BIOLOGY 2022; 22:371. [PMID: 35883045 PMCID: PMC9327241 DOI: 10.1186/s12870-022-03744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cannabis is an important industrial crop species whose fibre, seeds, flowers and leaves are widely used by humans. The study of cannabinoids extracted from plants has been popular research topic in recent years. China is one of the origins of cannabis and one of the few countries with wild cannabis plants. However, the genetic structure of Chinese cannabis and the degree of adaptive selection remain unclear. RESULTS The main morphological characteristics of wild cannabis in China were assessed. Based on whole-genome resequencing SNPs, Chinese cannabis could be divided into five groups in terms of geographical source and ecotype: wild accessions growing in the northwestern region; wild accessions growing in the northeastern region; cultivated accessions grown for fibre in the northeastern region; cultivated accessions grown for seed in northwestern region, and cultivated accessions in southwestern region. We further identified genes related to flowering time, seed germination, seed size, embryogenesis, growth, and stress responses selected during the process of cannabis domestication. The expression of flowering-related genes under long-day (LD) and short-day (SD) conditions showed that Chinese cultivated cannabis is adapted to different photoperiods through the regulation of Flowering locus T-like (FT-like) expression. CONCLUSION This study clarifies the genetic structure of Chinese cannabis and offers valuable genomic resources for cannabis breeding.
Collapse
Affiliation(s)
- Xuan Chen
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Hong-Yan Guo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Qing-Ying Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Lu Wang
- State Key Laboratory for Conservation, School of Life Sciences, Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500 China
| | - Rong Guo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yi-Xun Zhan
- State Key Laboratory for Conservation, School of Life Sciences, Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500 China
| | - Pin Lv
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yan-Ping Xu
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Meng-Bi Guo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yuan Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Kun Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Ming Yang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| |
Collapse
|
21
|
Smalley S, Hellmann H. Review: Exploring possible approaches using ubiquitylation and sumoylation pathways in modifying plant stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111275. [PMID: 35487671 DOI: 10.1016/j.plantsci.2022.111275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin and similar proteins, such as SUMO, are utilized by plants to modify target proteins to rapidly change their stability and activity in cells. This review will provide an overview of these crucial protein interactions with a focus on ubiquitylation and sumoylation in plants and how they contribute to stress tolerance. The work will also explore possibilities to use these highly conserved pathways for novel approaches to generate more robust crop plants better fit to cope with abiotic and biotic stress situations.
Collapse
Affiliation(s)
- Samuel Smalley
- Washington State University, Pullman, WA 99164, United States
| | - Hanjo Hellmann
- Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|
22
|
Zheng P, Cao L, Zhang C, Pan W, Wang W, Yu X, Li Y, Fan T, Miao M, Tang X, Liu Y, Cao S. MYB43 as a novel substrate for CRL4 PRL1 E3 ligases negatively regulates cadmium tolerance through transcriptional inhibition of HMAs in Arabidopsis. THE NEW PHYTOLOGIST 2022; 234:884-901. [PMID: 35129221 DOI: 10.1111/nph.18020] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Controlled stability of proteins is a highly efficient mechanism to direct diverse processes in plants. A key regulatory system for protein stability is given by the CULLIN-RING E3 ligases (CRLs). In this work, MYB43 is identified as a novel target of a CUL4-DDB1-PRL1 (PLEIOTROPIC REGULATORY LOCUS 1)-RING E3 ligase (CRL4PRL1 E3 ligase). Its stability depends on the presence of PRL1, a WD40-containing protein functioning as a substrate receptor of the CRL4 E3 ligases. Genetic studies have indicated that MYB43 is a negative regulator of cadmium (Cd) tolerance in Arabidopsis by transcriptional inhibition of important Cd transporters (HMA2, HMA3 and HMA4), while PRL1 and CUL4 positively regulate Cd tolerance. Expression of CUL4 and PRL1 was enhanced in response to Cd stress, and PRL1 can interact with and target MYB43 for degradation depending on assembly of CRL4PRL1 E3 ligase, and consequently increase the expression of HMA2, HMA3 and HMA4 through attenuating the transcriptional inhibition. HMA2 and HMA4 are shown to transport cadmium ion (Cd2+ ) from the roots of plants to the shoots through the xylem, ultimately increasing the plants' tolerance to Cd stress.
Collapse
Affiliation(s)
- Pengpeng Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Lei Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Cheng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Weicheng Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Wei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Xin Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yaping Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Tingting Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Min Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Xiaofeng Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| |
Collapse
|
23
|
Niu J, Yang J, Feng J, Feng Z, Wang X, Yu B, Wang G. Ubiquitin-proteasome pathway plays an essential regulatory role during spermatangium formation in Neopyropia yezoensis. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Wang P, Xuan X, Su Z, Wang W, Abdelrahman M, Jiu S, Zhang X, Liu Z, Wang X, Wang C, Fang J. Identification of miRNAs-mediated seed and stone-hardening regulatory networks and their signal pathway of GA-induced seedless berries in grapevine (V. vinifera L.). BMC PLANT BIOLOGY 2021; 21:442. [PMID: 34587914 PMCID: PMC8480016 DOI: 10.1186/s12870-021-03188-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Stone-hardening stage is crucial to the development of grape seed and berry quality. A significant body of evidence supports the important roles of MicroRNAs in grape-berry development, but their specific molecular functions during grape stone-hardening stage remain unclear. RESULTS Here, a total of 161 conserved and 85 species-specific miRNAs/miRNAs* (precursor) were identified in grape berries at stone-hardening stage using Solexa sequencing. Amongst them, 30 VvmiRNAs were stone-hardening stage-specific, whereas 52 exhibited differential expression profiles during berry development, potentially participating in the modulation of berry development as verified by their expression patterns. GO and KEGG pathway analysis showed that 13 VvmiRNAs might be involved in the regulation of embryo development, another 11 in lignin and cellulose biosynthesis, and also 28 in the modulation of hormone signaling, sugar, and proline metabolism. Furthermore, the target genes for 4 novel VvmiRNAs related to berry development were validated using RNA Ligase-Mediated (RLM)-RACE and Poly(A) Polymerase-Mediated (PPM)-RACE methods, and their cleavage mainly occurred at the 9th-11th sites from the 5' ends of miRNAs at their binding regions. In view of the regulatory roles of GA in seed embryo development and stone-hardening in grape, we investigated the expression modes of VvmiRNAs and their target genes during GA-induced grape seedless-berry development, and we validated that GA induced the expression of VvmiR31-3p and VvmiR8-5p to negatively regulate the expression levels of CAFFEOYL COENZYME A-3-O-METHYLTRANSFERASE (VvCCoAOMT), and DDB1-CUL4 ASSOCIATED FACTOR1 (VvDCAF1). The series of changes might repress grape stone hardening and embryo development, which might be a potential key molecular mechanism in GA-induced grape seedless-berry development. Finally, a schematic model of miRNA-mediated grape seed and stone-hardening development was proposed. CONCLUSION This work identified 30 stone-hardening stage-specific VvmiRNAs and 52 significant differential expression ones, and preliminary interpreted the potential molecular mechanism of GA-induced grape parthenocarpy. GA negatively manipulate the expression of VvCCoAOMT and VvDCAF1 by up-regulation the expression of VvmiR31-3p and VvmiR8-5p, thereby repressing seed stone and embryo development to produce grape seedless berries.
Collapse
Affiliation(s)
- Peipei Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuxian Xuan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziwen Su
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wenran Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mostafa Abdelrahman
- Department of Botany, Faculty of Sciences, Aswan University, Aswan, 81528, Egypt
- Arid Land Research Center, Tottori University, Tottori, 680-001, Japan
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xicheng Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
25
|
Jiang A, Guo Z, Pan J, Yang Y, Zhuang Y, Zuo D, Hao C, Gao Z, Xin P, Chu J, Zhong S, Li L. The PIF1-miR408-PLANTACYANIN repression cascade regulates light-dependent seed germination. THE PLANT CELL 2021; 33:1506-1529. [PMID: 33616669 PMCID: PMC8254493 DOI: 10.1093/plcell/koab060] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/11/2021] [Indexed: 05/15/2023]
Abstract
Light-dependent seed germination is a vital process for many seed plants. A decisive event in light-induced germination is degradation of the central repressor PHYTOCHROME INTERACTING FACTOR 1 (PIF1). The balance between gibberellic acid (GA) and abscisic acid (ABA) helps to control germination. However, the cellular mechanisms linking PIF1 turnover to hormonal balancing remain elusive. Here, employing far-red light-induced Arabidopsis thaliana seed germination as the experimental system, we identified PLANTACYANIN (PCY) as an inhibitor of germination. It is a blue copper protein associated with the vacuole that is both highly expressed in mature seeds and rapidly silenced during germination. Molecular analyses showed that PIF1 binds to the miR408 promoter and represses miR408 accumulation. This in turn posttranscriptionally modulates PCY abundance, forming the PIF1-miR408-PCY repression cascade for translating PIF1 turnover to PCY turnover during early germination. Genetic analysis, RNA-sequencing, and hormone quantification revealed that PCY is necessary and sufficient to maintain the PIF1-mediated seed transcriptome and the low-GA-high-ABA state. Furthermore, we found that PCY domain organization and regulation by miR408 are conserved features in seed plants. These results revealed a cellular mechanism whereby PIF1-relayed external light signals are converted through PCY turnover to internal hormonal profiles for controlling seed germination.
Collapse
Affiliation(s)
- Anlong Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jiawei Pan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yan Zhuang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Daqing Zuo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Peiyong Xin
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Author for correspondence:
| |
Collapse
|
26
|
Podolec R, Demarsy E, Ulm R. Perception and Signaling of Ultraviolet-B Radiation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:793-822. [PMID: 33636992 DOI: 10.1146/annurev-arplant-050718-095946] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ultraviolet-B (UV-B) radiation is an intrinsic fraction of sunlight that plants perceive through the UVR8 photoreceptor. UVR8 is a homodimer in its ground state that monomerizes upon UV-B photon absorption via distinct tryptophan residues. Monomeric UVR8 competitively binds to the substrate binding site of COP1, thus inhibiting its E3 ubiquitin ligase activity against target proteins, which include transcriptional regulators such as HY5. The UVR8-COP1 interaction also leads to the destabilization of PIF bHLH factor family members. Additionally, UVR8 directly interacts with and inhibits the DNA binding of a different set of transcription factors. Each of these UVR8 signaling mechanisms initiates nuclear gene expression changes leading to UV-B-induced photomorphogenesis and acclimation. The two WD40-repeat proteins RUP1 and RUP2 provide negative feedback regulation and inactivate UVR8 by facilitating redimerization. Here, we review the molecular mechanisms of the UVR8 pathway from UV-B perception and signal transduction to gene expression changes and physiological UV-B responses.
Collapse
Affiliation(s)
- Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Emilie Demarsy
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
27
|
You C, Zhang Y, Yang S, Wang X, Yao W, Jin W, Wang W, Hu X, Yang H. Proteomic Analysis of Generative and Vegetative Nuclei Reveals Molecular Characteristics of Pollen Cell Differentiation in Lily. FRONTIERS IN PLANT SCIENCE 2021; 12:641517. [PMID: 34163497 PMCID: PMC8215658 DOI: 10.3389/fpls.2021.641517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/01/2021] [Indexed: 06/13/2023]
Abstract
In plants, the cell fates of a vegetative cell (VC) and generative cell (GC) are determined after the asymmetric division of the haploid microspore. The VC exits the cell cycle and grows a pollen tube, while the GC undergoes further mitosis to produce two sperm cells for double fertilization. However, our understanding of the mechanisms underlying their fate differentiation remains limited. One major advantage of the nuclear proteome analysis is that it is the only method currently able to uncover the systemic differences between VC and GC due to GC being engulfed within the cytoplasm of VC, limiting the use of transcriptome. Here, we obtained pure preparations of the vegetative cell nuclei (VNs) and generative cell nuclei (GNs) from germinating lily pollens. Utilizing these high-purity VNs and GNs, we compared the differential nucleoproteins between them using state-of-the-art quantitative proteomic techniques. We identified 720 different amount proteins (DAPs) and grouped the results in 11 fate differentiation categories. Among them, we identified 29 transcription factors (TFs) and 10 cell fate determinants. Significant differences were found in the molecular activities of vegetative and reproductive nuclei. The TFs in VN mainly participate in pollen tube development. In comparison, the TFs in GN are mainly involved in cell differentiation and male gametogenesis. The identified novel TFs may play an important role in cell fate differentiation. Our data also indicate differences in nuclear pore complexes and epigenetic modifications: more nucleoporins synthesized in VN; more histone variants and chaperones; and structural maintenance of chromosome (SMC) proteins, chromatin remodelers, and DNA methylation-related proteins expressed in GN. The VC has active macromolecular metabolism and mRNA processing, while GC has active nucleic acid metabolism and translation. Moreover, the members of unfolded protein response (UPR) and programmed cell death accumulate in VN, and DNA damage repair is active in GN. Differences in the stress response of DAPs in VN vs. GN were also found. This study provides a further understanding of pollen cell differentiation mechanisms and also a sound basis for future studies of the molecular mechanisms behind cell fate differentiation.
Collapse
Affiliation(s)
- Chen You
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- College of Life Science, Henan Normal University, Xinxiang, China
| | - YuPing Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - ShaoYu Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xu Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wen Yao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - WeiHuan Jin
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - XiuLi Hu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hao Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
The Roles of Cullins E3 Ubiquitin Ligases in the Lipid Biosynthesis of the Green Microalgae Chlamydomonas reinhardtii. Int J Mol Sci 2021; 22:ijms22094695. [PMID: 33946721 PMCID: PMC8125325 DOI: 10.3390/ijms22094695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022] Open
Abstract
Microalgae-based biodiesel production has many advantages over crude oil extraction and refinement, thus attracting more and more concern. Protein ubiquitination is a crucial mechanism in eukaryotes to regulate physiological responses and cell development, which is highly related to algal biodiesel production. Cullins as the molecular base of cullin-RING E3 ubiquitin ligases (CRLs), which are the largest known class of ubiquitin ligases, control the life activities of eukaryotic cells. Here, three cullins (CrCULs) in the green microalgae Chlamydomonas reinhardtii were identified and characterized. To investigate the roles of CrCULs in lipid metabolism, the gene expression profiles of CrCULs under nutrition starvation were examined. Except for down-regulation under nitrogen starvation, the CrCUL3 gene was induced by sulfur and iron starvation. CrCUL2 seemed insensitive to nitrogen and sulfur starvation because it only had changes after treatment for eight days. CrCUL4 exhibited an expression peak after nitrogen starvation for two days but this declined with time. All CrCULs expressions significantly increased under iron deficiency at two and four days but decreased thereafter. The silencing of CrCUL2 and CrCUL4 expression using RNAi (RNA interference) resulted in biomass decline and lipids increase but an increase of 20% and 28% in lipid content after growth for 10 days, respectively. In CrCUL2 and CrCUL4 RNAi lines, the content of fatty acids, especially C16:0 and C18:0, notably increased as well. However, the lipid content and fatty acids of the CrCUL3 RNAi strain slightly changed. Moreover, the subcellular localization of CrCUL4 showed a nuclear distribution pattern. These results suggest CrCUL2 and CrCUL4 are regulators for lipid accumulation in C. reinhardtii. This study may offer an important complement of lipid biosynthesis in microalgae.
Collapse
|
29
|
Choi J, Lee W, An G, Kim SR. OsCBE1, a Substrate Receptor of Cullin4-Based E3 Ubiquitin Ligase, Functions as a Regulator of Abiotic Stress Response and Productivity in Rice. Int J Mol Sci 2021; 22:ijms22052487. [PMID: 33801226 PMCID: PMC7957871 DOI: 10.3390/ijms22052487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/03/2023] Open
Abstract
Ubiquitination is an important environmental stress response, and E3 ubiquitin ligases play a major role in the process. T-DNA insertion mutants of rice, Oscbe1-1, and Oscbe1-2, were identified through the screening of cold stress tolerance at seedling stage. Oscbe1 mutants showed a significantly higher cold stress tolerance in the fresh weight, chlorophyll content, and photosynthetic efficiency than wild type. Molecular prediction showed that OsCBE1 (Oryza sativa Cullin4-Based E3 ubiquitin ligase1) encoded a novel substrate receptor of Cullin4-based E3 ubiquitin ligase complex (C4E3). Whereas Oscbe1 mutants had fewer panicles and grains than wild type in the paddy field, the overexpression lines of OsCBE1 had more panicles and grains, suggesting that OsCBE1 is involved in the regulation of both abiotic stress response and development. Oscbe1 mutants also showed ABA hypersensitivity during seed germination, suggesting OsCBE1 function for the stress response via ABA signaling. In silico analysis of OsCBE1 activity predicted a CCCH-type transcription factor, OsC3H32, as a putative substrate. Co-IP (Co-immunoprecipitation) study showed that OsCBE1 interacts with OsDDB1, an expected binding component of OsCBE1 and OsC3H32. Additionally, expression of OsOLE16, OsOLE18, and OsBURP5 were negatively related with expression of OsCBE1. These results suggest that OsCBE1 functions as a regulator of the abiotic stress response via CCCH as a member of the C4E3.
Collapse
Affiliation(s)
- Juyoung Choi
- Department of Life Science, Sogang University, Seoul 04107, Korea; (J.C.); (W.L.)
| | - Wonkyung Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea; (J.C.); (W.L.)
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Seong-Ryong Kim
- Department of Life Science, Sogang University, Seoul 04107, Korea; (J.C.); (W.L.)
- Correspondence:
| |
Collapse
|
30
|
Huang W, Hou J, Hu Q, An J, Zhang Y, Han Q, Li X, Wu Y, Zhang D, Wang J, Xu R, Li L, Sun L. Pedigree-based genetic dissection of quantitative loci for seed quality and yield characters in improved soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:14. [PMID: 37309478 PMCID: PMC10236076 DOI: 10.1007/s11032-021-01211-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/26/2021] [Indexed: 06/14/2023]
Abstract
As soybean plays an indispensable role in the supply of vegetable oil and protein, balancing the relationship between seed quality and yield traits according to human demand has become an important breeding goal for soybean improvement. Here, 256 intraspecific recombinant inbred lines (RILs), derived from a cross between Qi Huang No.34 (QH34) and Ji Dou No.17 (JD17), were used for quantitative trait loci (QTLs) mapping with remarkable four chemical and physical properties with a purpose for exploring the distribution of excellent alleles in germplasm resources in China. A total of 25 QTLs were detected, of which 10 QTLs inherited the alleles from the parent QH34. Pedigree research on favorable alleles on these QTLs showed the process of excellent alleles pyramided into QH34. Meta-analysis of the 25 QTLs by comparing with existed QTLs in previous study identified 17 novel QTLs. QTLs with pleiotropic effects have been detected. Furthermore, three representative elite recombinant inbred lines in different locations that have great potential in soybean breeding were selected, and finally, four seed weight-related candidate genes were identified. The discovery of these QTLs provides a new guidance for combining the diversity and rarity of germplasm resources, which can effectively increase population genetic diversity and broaden genetic basis of varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01211-6.
Collapse
Affiliation(s)
- Wenxuan Huang
- State Key Laboratory of Agrobiotechnology, and College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Jingjing Hou
- State Key Laboratory of Agrobiotechnology, and College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Quan Hu
- State Key Laboratory of Agrobiotechnology, and College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Jie An
- State Key Laboratory of Agrobiotechnology, and College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Yanwei Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 Shandong China
| | - Qi Han
- State Key Laboratory of Agrobiotechnology, and College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Xuhui Li
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, 510316 China
| | - Yueying Wu
- State Key Laboratory of Agrobiotechnology, and College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Dajian Zhang
- College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Jianhua Wang
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 Shandong China
| | - Li Li
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Lianjun Sun
- State Key Laboratory of Agrobiotechnology, and College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
31
|
Rutley N, Miller G, Wang F, Harper JF, Miller G, Lieberman-Lazarovich M. Enhanced Reproductive Thermotolerance of the Tomato high pigment 2 Mutant Is Associated With Increased Accumulation of Flavonols in Pollen. FRONTIERS IN PLANT SCIENCE 2021; 12:672368. [PMID: 34093629 PMCID: PMC8171326 DOI: 10.3389/fpls.2021.672368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/07/2021] [Indexed: 05/05/2023]
Abstract
Climate change has created an environment where heat stress conditions are becoming more frequent as temperatures continue to raise in crop production areas around the world. This situation leads to decreased crop production due to plant sensitivity to heat stress. Reproductive success is critically dependent on plants' ability to produce functional pollen grains, which are the most thermo-sensitive tissue. Flavonols are plant secondary metabolites known for their potent antioxidative activity, essential for male fertility in several species including tomato, and implicated in heat stress tolerance. Since flavonols are highly abundant in fruits of the tomato high pigment 2 (hp2) mutant, we tested the level of flavonols in pollen of this mutant, under the hypothesis that increased accumulation of flavonols would render pollen more tolerant to heat stress. Indeed, pollen from two alleles of the hp2 mutant was found to have flavonols levels increased by 18 and 280% compared with wild-type (WT) under moderate chronic heat stress (MCHS) conditions. This mutant produced on average 7.8-fold higher levels of viable pollen and displayed better germination competence under heat stress conditions. The percentage of fully seeded fruits and the number of seeds per fruit were maintained in the mutant under heat stress conditions while decreased in wild-type plants. Our results strongly suggest that increased concentrations of pollen flavonols enhance pollen thermotolerance and reproductive success under heat stress conditions. Thus, the high flavonols trait may help frame the model for improving crop resilience to heat stress.
Collapse
Affiliation(s)
- Nicholas Rutley
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Golan Miller
- Institute of Plant Sciences, Agricultural Research Organization – Volcani Center, Rishon LeZion, Israel
| | - Fengde Wang
- Institute of Plant Sciences, Agricultural Research Organization – Volcani Center, Rishon LeZion, Israel
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization – Volcani Center, Rishon LeZion, Israel
- *Correspondence: Michal Lieberman-Lazarovich,
| |
Collapse
|
32
|
Han XR, Sasaki N, Jackson SC, Wang P, Li Z, Smith MD, Xie L, Chen X, Zhang Y, Marzluff WF, Xiong Y. CRL4 DCAF1/VprBP E3 ubiquitin ligase controls ribosome biogenesis, cell proliferation, and development. SCIENCE ADVANCES 2020; 6:eabd6078. [PMID: 33355139 PMCID: PMC11206221 DOI: 10.1126/sciadv.abd6078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Evolutionarily conserved DCAF1 is a major substrate receptor for the DDB1-CUL4-ROC1 E3 ubiquitin ligase (CRL4) and controls cell proliferation and development. The molecular basis for these functions is unclear. We show here that DCAF1 loss in multiple tissues and organs selectively eliminates proliferating cells and causes perinatal lethality, thymic atrophy, and bone marrow defect. Inducible DCAF1 loss eliminates proliferating, but not quiescent, T cells and MEFs. We identify the ribosome assembly factor PWP1 as a substrate of the CRL4DCAF1 ligase. DCAF1 loss results in PWP1 accumulation, impairing rRNA processing and ribosome biogenesis. Knockdown or overexpression of PWP1 can rescue defects or cause similar defects as DCAF1 loss, respectively, in ribosome biogenesis. DCAF1 loss increases free RPL11, resulting in L11-MDM2 association and p53 activation. Cumulatively, these results reveal a critical function for DCAF1 in ribosome biogenesis and define a molecular basis of DCAF1 function in cell proliferation and development.
Collapse
Affiliation(s)
- Xiao-Ran Han
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Naoya Sasaki
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah C Jackson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pu Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhijun Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew D Smith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ling Xie
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xian Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yanping Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William F Marzluff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Liu J, Sun L, Chen Y, Wei L, Hao Y, Yu Z, Wang Z, Zhang H, Zhang X, Li M, Wang H, Xiao J, Wang X. The Regulatory Network of CMPG1-V in Wheat- Blumeria graminis f. sp. tritici Interaction Revealed by Temporal Profiling Using RNA-Seq. Int J Mol Sci 2020; 21:ijms21175967. [PMID: 32825128 PMCID: PMC7504233 DOI: 10.3390/ijms21175967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Wheat powdery mildew (Pm), caused by Blumeria graminis f. sp. tritici (Bgt), is a prevalent fungal disease. The diploid wheat relative Haynaldia villosa (H. villosa) showed broad-spectrum resistance (BSR) to Pm. A previous study reported an E3 ligase gene, CMPG1-V from H. villosa, showing BSR to Pm. To elucidate the regulatory network mediated by CMPG1-V, in this study, gene expression profiling of CMPG1-V transgenic plant (CMPG1-VOE) and its receptor Yangmai 158 was analyzed and compared after Bgt inoculation at four infection stages. GO and KEGG analysis revealed obvious reprogramming of SA and ABA signaling, starch/sucrose metabolism, and photosynthesis in CMPG1-VOE, compared with those in Yangmai 158. Transcripts of SA synthesis genes SARD1 and UGT, signaling factors TGA and PRs, and SnRKs in ABA signaling were specifically upregulated in CMPG1-VOE rather than Yangmai 158. Transcripts of LHCII in photosynthesis, GLUC and TPP in starch/sucrose metabolism were also induced distinctly in CMPG1-VOE. WGCNA analysis showed crucial regulatory candidates of CMPG1-V, involving serine/threonine-protein kinase in phosphorylation, glucosyltransferase in flavonoid biosynthesis, defense factor WRKYs, and peroxidase in oxidative stress. Our results facilitate the deciphering of the resistant regulatory network of CMPG1-V and the identification of key candidates which might be employed in breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Xiue Wang
- Correspondence: ; Tel.: +86-25-8439-5308
| |
Collapse
|
34
|
Weber M, Beyene B, Nagler N, Herfert J, Schempp S, Klecker M, Clemens S. A mutation in the essential and widely conserved DAMAGED DNA BINDING1-Cullin4 ASSOCIATED FACTOR gene OZS3 causes hypersensitivity to zinc excess, cold and UV stress in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:995-1009. [PMID: 32314481 DOI: 10.1111/tpj.14779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 02/18/2020] [Accepted: 04/01/2020] [Indexed: 05/28/2023]
Abstract
The overly zinc sensitive Arabidopsis thaliana mutant ozs3 shows reduced growth of the primary root, which is exacerbated by an excess specifically of Zn ions. In addition, ozs3 plants display various subtle developmental phenotypes, such as longer petioles and early flowering. Also, ozs3 seedlings are completely but reversibly growth-arrested when shifted to 4°C. The causal mutation was mapped to a gene encoding a putative substrate-recognition receptor of cullin4 E3 ligases. OZS3 orthologous genes can be found in almost all eukaryotic genomes. Most species from Schizosaccharomyces pombe to Homo sapiens, and including A. thaliana, possess one ortholog. No functional data are available for these genes in any of the multicellular model systems. CRISPR-Cas9-mediated knockout demonstrated that a complete loss of OZS3 function is embryo-lethal, indicating essentiality of OZS3 and its orthologs. The OZS3 protein interacts with the adaptor protein DAMAGED DNA BINDING1 (DDB1) in the nucleus. Thus, it is indeed a member of the large yet poorly characterized family of DDB1-cullin4 associated factors in plants. Mutant phenotypes of ozs3 plants are apparently caused by the weakened DDB1-OZS3 interaction as a result of the exchange of a conserved amino acid near the conserved WDxR motif.
Collapse
Affiliation(s)
- Michael Weber
- Department of Plant Physiology, University of Bayreuth, Bayreuth, 95440, Germany
| | - Blen Beyene
- Department of Plant Physiology, University of Bayreuth, Bayreuth, 95440, Germany
| | - Nicole Nagler
- Department of Plant Physiology, University of Bayreuth, Bayreuth, 95440, Germany
| | - Jörn Herfert
- Department of Plant Physiology, University of Bayreuth, Bayreuth, 95440, Germany
| | - Stefanie Schempp
- Department of Plant Physiology, University of Bayreuth, Bayreuth, 95440, Germany
| | - Maria Klecker
- Department of Plant Physiology, University of Bayreuth, Bayreuth, 95440, Germany
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, Bayreuth, 95440, Germany
| |
Collapse
|
35
|
Park YC, Jang CS. Molecular dissection of two homoeologous wheat genes encoding RING H2-type E3 ligases: TaSIRFP-3A and TaSIRFP-3B. PLANTA 2020; 252:26. [PMID: 32696139 DOI: 10.1007/s00425-020-03431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Two homoeologous wheat genes, TaSIRFP-3A and TaSIRFP-3B, encode the RING-HC-type E3 ligases that play an inhibitory role in sucrose metabolism in response to cold stress. In higher plants, the attachment of ubiquitin (Ub) and the subsequent recognition and degradation by the 26S proteasome affects a variety of cellular functions that are essential for survival. Here, we characterized the two homoeologous wheat genes encoding the really interesting new gene (RING) HC-type E3 ligases: TaSIRFP-3A and TaSIRFP-3B (Triticum aestivum SINA domain including RING finger protein 1 and 2), which regulate target proteins via the Ub/26S proteasome system. The TaSIRFP-3A gene was highly expressed under cold stress. In contrast, its homoeologous gene, TaSIRFP-3B, showed only a slight increase in expression levels in shoots. Despite these differences, both the proteins exhibited E3 ligase activity with the cytosol- and nucleus-targeted localization, demonstrating their conserved molecular function. Heterogeneous overexpression of TaSIRFP-3A or TaSIRFP-3B in Arabidopsis showed delayed plant growth causing a reduction in sucrose synthase enzymatic activity and photosynthetic sucrose synthesis, by regulating sucrose synthase proteins. TaSIRFP-3A- or TaSIRFP-3B-overexpressing plants showed higher hypersensitivity under cold stress than WT plants with an accumulation of reactive oxygen species (ROS). These results suggest that the negative regulation of TaSIRFP-3A and TaSIRFP-3B in response to cold stress is involved in sucrose metabolism.
Collapse
Affiliation(s)
- Yong Chan Park
- Plant Genomics Lab, Department of Bio-Resources Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Lab, Department of Bio-Resources Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
36
|
Schabla NM, Mondal K, Swanson PC. DCAF1 (VprBP): emerging physiological roles for a unique dual-service E3 ubiquitin ligase substrate receptor. J Mol Cell Biol 2020; 11:725-735. [PMID: 30590706 PMCID: PMC6821201 DOI: 10.1093/jmcb/mjy085] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/01/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Cullin-RING ligases (CRLs) comprise a large group of modular eukaryotic E3 ubiquitin ligases. Within this family, the CRL4 ligase (consisting of the Cullin4 [CUL4] scaffold protein, the Rbx1 RING finger domain protein, the DNA damage-binding protein 1 [DDB1], and one of many DDB1-associated substrate receptor proteins) has been intensively studied in recent years due to its involvement in regulating various cellular processes, its role in cancer development and progression, and its subversion by viral accessory proteins. Initially discovered as a target for hijacking by the human immunodeficiency virus accessory protein r, the normal targets and function of the CRL4 substrate receptor protein DDB1–Cul4-associated factor 1 (DCAF1; also known as VprBP) had remained elusive, but newer studies have begun to shed light on these questions. Here, we review recent progress in understanding the diverse physiological roles of this DCAF1 in supporting various general and cell type-specific cellular processes in its context with the CRL4 E3 ligase, as well as another HECT-type E3 ligase with which DCAF1 also associates, called EDD/UBR5. We also discuss emerging questions and areas of future study to uncover the dynamic roles of DCAF1 in normal physiology.
Collapse
Affiliation(s)
- N Max Schabla
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Koushik Mondal
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, USA
| |
Collapse
|
37
|
Mining for Candidate Genes Controlling Secondary Growth of the Carrot Storage Root. Int J Mol Sci 2020; 21:ijms21124263. [PMID: 32549408 PMCID: PMC7352697 DOI: 10.3390/ijms21124263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Diverse groups of carrot cultivars have been developed to meet consumer demands and industry needs. Varietal groups of the cultivated carrot are defined based on the shape of roots. However, little is known about the genetic basis of root shape determination. Methods: Here, we used 307 carrot plants from 103 open-pollinated cultivars for a genome wide association study to identify genomic regions associated with the storage root morphology. Results: A 180 kb-long region on carrot chromosome 1 explained 10% of the total observed phenotypic variance in the shoulder diameter. Within that region, DcDCAF1 and DcBTAF1 genes were proposed as candidates controlling secondary growth of the carrot storage root. Their expression profiles differed between the cultivated and the wild carrots, likely indicating that their elevated expression was required for the development of edible roots. They also showed higher expression at the secondary root growth stage in cultivars producing thick roots, as compared to those developing thin roots. Conclusions: We provided evidence for a likely involvement of DcDCAF1 and/or DcBTAF1 in the development of the carrot storage root and developed a genotyping assay facilitating the identification of variants in the region on carrot chromosome 1 associated with secondary growth of the carrot root.
Collapse
|
38
|
Abstract
Cullin-RING ligase 4 (CRL4), a member of the cullin-RING ligase family, orchestrates a variety of critical cellular processes and pathophysiological events. Recent results from mouse genetics, clinical analyses, and biochemical studies have revealed the impact of CRL4 in development and cancer etiology and elucidated its in-depth mechanism on catalysis of ubiquitination as a ubiquitin E3 ligase. Here, we summarize the versatile roles of the CRL4 E3 ligase complexes in tumorigenesis dependent on the evidence obtained from knockout and transgenic mouse models as well as biochemical and pathological studies.
Collapse
|
39
|
Xu X, Wan W, Jiang G, Xi Y, Huang H, Cai J, Chang Y, Duan CG, Mangrauthia SK, Peng X, Zhu JK, Zhu G. Nucleocytoplasmic Trafficking of the Arabidopsis WD40 Repeat Protein XIW1 Regulates ABI5 Stability and Abscisic Acid Responses. MOLECULAR PLANT 2019; 12:1598-1611. [PMID: 31295628 DOI: 10.1016/j.molp.2019.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/08/2019] [Accepted: 07/01/2019] [Indexed: 05/24/2023]
Abstract
WD40 repeat-containing proteins (WD40 proteins) serve as versatile scaffolds for protein-protein interactions, modulating a variety of cellular processes such as plant stress and hormone responses. Here we report the identification of a WD40 protein, XIW1 (for XPO1-interacting WD40 protein 1), which positively regulates the abscisic acid (ABA) response in Arabidopsis. XIW1 is located in the cytoplasm and nucleus. We found that it interacts with the nuclear transport receptor XPO1 and is exported by XPO1 from the nucleus. Mutation of XIW1 reduces the induction of ABA-responsive genes and the accumulation of ABA Insensitive 5 (ABI5), causing mutant plants with ABA-insensitive phenotypes during seed germination and seedling growth, and decreased drought stress resistance. ABA treatment upregulates the expression of XIW1, and both ABA and abiotic stresses promote XIW1 accumulation in the nucleus, where it interacts with ABI5. Loss of XIW1 function results in rapid proteasomal degradation of ABI5. Taken together, these findings suggest that XIW1 is a nucleocytoplasmic shuttling protein and plays a positive role in ABA responses by interacting with and maintaining the stability of ABI5 in the nucleus.
Collapse
Affiliation(s)
- Xuezhong Xu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wang Wan
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guobin Jiang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yue Xi
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Haijian Huang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiajia Cai
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yanan Chang
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | | | - Xinxiang Peng
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| | - Guohui Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
40
|
Cao P, Liang X, Zhao H, Feng B, Xu E, Wang L, Hu Y. Identification of the quantitative trait loci controlling spike-related traits in hexaploid wheat (Triticum aestivum L.). PLANTA 2019; 250:1967-1981. [PMID: 31529397 DOI: 10.1007/s00425-019-03278-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/08/2019] [Indexed: 05/25/2023]
Abstract
Totally, 48 loci responsible for six spike-related traits were identified in wheat, and a major locus QGl-4A for grain length was mapped and validated for marker-assisted selection in breeding. Wheat yield is determined by the number of spikes, number of grains per spike (GN), and one-thousand kernel weight (TKW), among which GN and TKW are greatly related to the spike development and thus the spike-related traits, including spike length (SL), number of spikelet per spike (SN), grain length (GL) and grain width (GW). To identify the key loci governing the spike-related traits (SL, SN, GN, TKW, GL and GW), we conducted the quantitative trait loci (QTL) analysis combined with wheat 660K SNP chip and Kompetitive allele-specific PCR (KASP) assay, using the F2 and F2:3 populations derived from Luohan6 (LH6) with big spike and grain and Zhengmai366 with small spike and grain, and identified a total of 48 QTLs on 18 chromosomes. Moreover, a major stable QTL for GL on chromosome 4A, designated as QGl-4A, was mapped into a 0.37 cM interval between KASP markers Xib4A-10 and Xib4A-12, corresponding to 20 Mb physical region in the Chinese Spring genome. This QTL explained 17.30% and 5.12% of the phenotypic variation for GL in the F2 and F2:3 populations. Further association analysis of flanking markers Xib4A-10 and Xib4A-12 in 192 wheat varieties showed that these two markers could be used for marker-assisted selection in breeding. These results provide valuable information for map-based cloning of the target genes involved in the regulation of spike-related traits in common wheat.
Collapse
Affiliation(s)
- Pei Cao
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaona Liang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Zhao
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Enjun Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Liming Wang
- Henan Science and Technology University, Luoyang, 471023, Henan, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- National Center for Plant Gene Research, Beijing, 100093, China.
| |
Collapse
|
41
|
Sánchez-Vicente I, Albertos P, Lorenzo O. Protein Shuttle between Nucleus and Cytoplasm: New Paradigms in the ABI5-dependent ABA Responses. MOLECULAR PLANT 2019; 12:1425-1427. [PMID: 31541737 DOI: 10.1016/j.molp.2019.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/19/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Inmaculada Sánchez-Vicente
- Dpto. de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Pablo Albertos
- Dpto. de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Dpto. de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain.
| |
Collapse
|
42
|
Two E3 ligases antagonistically regulate the UV-B response in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:4722-4731. [PMID: 30787186 DOI: 10.1073/pnas.1816268116] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Photomorphogenesis is a pivotal developmental strategy used by plants to respond to environmental light levels. During emergence from the soil and the establishment of photomorphogenesis, seedlings encounter increasing levels of UV-B irradiation and develop adaptive responses accordingly. However, the molecular mechanisms that orchestrate UV-B signaling cascades remain elusive. Here, we provide biochemical and genetic evidence that the prolonged signaling circuits of UV-B-induced photomorphogenesis involve two sets of E3 ligases and a transcription factor in Arabidopsis thaliana The UV-B-inducible protein RUP1/RUP2 associates with the CUL4-DDB1 scaffold to form an E3 ligase, which represses photomorphogenesis by mediating the degradation of HY5, the hub transcription factor in the light signaling pathway. Conversely, COP1 directly targets RUP1/RUP2 for ubiquitination and degradation, leading to balanced RUP1/RUP2 accumulation, alleviation of the COP1-HY5 interaction, and stabilization of HY5 protein. Therefore, our study reveals that these two E3-substrate modules, CUL4-DDB1-RUP1/RUP2-HY5 and COP1-RUP1/RUP2, constitute the repression and derepression machinery by which plants respond to prolonged UV-B irradiation in photomorphogenic development.
Collapse
|
43
|
Dissecting Heterosis During the Ear Inflorescence Development Stage in Maize via a Metabolomics-based Analysis. Sci Rep 2019; 9:212. [PMID: 30659214 PMCID: PMC6338801 DOI: 10.1038/s41598-018-36446-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/13/2018] [Indexed: 11/08/2022] Open
Abstract
Heterosis can increase the yield of many crops and has been extensively applied in agriculture. In maize, female inflorescence architecture directly determines grain yield. Thus, exploring the relationship between early maize ear inflorescence development and heterosis regarding yield-related traits may be helpful for characterizing the molecular mechanisms underlying heterotic performance. In this study, we fine mapped the overdominant heterotic locus (hlEW2b), associated with ear width, in an approximately 1.98-Mb region based on analyses of chromosome segment substitution lines and the corresponding testcross population. Maize ear inflorescences at the floral meristem stage were collected from two inbred lines, one chromosome segment substitution line that carried hlEW2b (sub-CSSL16), the receptor parent lx9801, and the Zheng58 × sub-CSSL16 and Zheng58 × lx9801 hybrid lines. A total of 256 metabolites were identified, including 31 and 24 metabolites that were differentially accumulated between the two hybrid lines and between the two inbred lines, respectively. Most of these metabolites are involved in complex regulatory mechanisms important for maize ear development. For example, nucleotides are basic metabolites affecting cell composition and carbohydrate synthesis. Additionally, nicotinate and nicotinamide metabolism is important for photosynthesis, plant stress responses, and cell expansion. Moreover, flavonoid and phenolic metabolites regulate auxin transport and cell apoptosis. Meanwhile, phytohormone biosynthesis and distribution influence the cell cycle and cell proliferation. Our results revealed that changes in metabolite contents may affect the heterotic performance related to ear width and yield in maize hybrid lines. This study provides new clues in heterosis at the metabolomics level and implies that differentially accumulated metabolites made distinct contributions to the heterosis at an early stage of ear inflorescences development.
Collapse
|
44
|
Pham VN, Kathare PK, Huq E. Dynamic regulation of PIF5 by COP1-SPA complex to optimize photomorphogenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:260-273. [PMID: 30144338 PMCID: PMC6177295 DOI: 10.1111/tpj.14074] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 05/19/2023]
Abstract
Light signal provides the spatial and temporal information for plants to adapt to the prevailing environmental conditions. Alterations in light quality and quantity can trigger robust changes in global gene expression. In Arabidopsis thaliana, two groups of key factors regulating those changes in gene expression are CONSTITUTIVE PHOTOMORPHOGENESIS/DEETIOLATED/FUSCA (COP/DET/FUS) and a subset of basic helix-loop-helix transcription factors called PHYTOCHROME-INTERACTING FACTORS (PIFs). Recently, rapid progress has been made in characterizing the E3 ubiquitin ligases for the light-induced degradation of PIF1, PIF3 and PIF4; however, the E3 ligase(s) for PIF5 remains unknown. Here, we show that the CUL4COP1-SPA complex is necessary for the red light-induced degradation of PIF5. Furthermore, COP1 and SPA proteins stabilize PIF5 in the dark, but promote the ubiquitination and degradation of PIF5 in response to red light through the 26S proteasome pathway. Genetic analysis illustrates that overexpression of PIF5 can partially suppress both cop1-4 and spaQ seedling de-etiolation phenotypes under dark and red-light conditions. In addition, the PIF5 protein level cycles under both diurnal and constant light conditions, which is also defective in the cop1-4 and spaQ backgrounds. Both cop1-4 and spaQ show defects in diurnal growth pattern. Overexpression of PIF5 partially restores growth defects in cop1-4 and spaQ under diurnal conditions, suggesting that the COP1-SPA complex plays an essential role in photoperiodic hypocotyl growth, partly through regulating the PIF5 level. Taken together, our data illustrate how the CUL4COP1-SPA E3 ligase dynamically controls the PIF5 level to regulate plant development.
Collapse
Affiliation(s)
- Vinh Ngoc Pham
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Praveen Kumar Kathare
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
45
|
Miricescu A, Goslin K, Graciet E. Ubiquitylation in plants: signaling hub for the integration of environmental signals. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4511-4527. [PMID: 29726957 DOI: 10.1093/jxb/ery165] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/27/2018] [Indexed: 05/20/2023]
Abstract
A fundamental question in biology is how organisms integrate the plethora of environmental cues that they perceive to trigger a co-ordinated response. The regulation of protein stability, which is largely mediated by the ubiquitin-proteasome system in eukaryotes, plays a pivotal role in these processes. Due to their sessile lifestyle and the need to respond rapidly to a multitude of environmental factors, plants are thought to be especially dependent on proteolysis to regulate cellular processes. In this review, we present the complexity of the ubiquitin system in plants, and discuss the relevance of the proteolytic and non-proteolytic roles of this system in the regulation and co-ordination of plant responses to environmental signals. We also discuss the role of the ubiquitin system as a key regulator of plant signaling pathways. We focus more specifically on the functions of E3 ligases as regulators of the jasmonic acid (JA), salicylic acid (SA), and ethylene hormone signaling pathways that play important roles to mount a co-ordinated response to multiple environmental stresses. We also provide examples of new players in this field that appear to integrate different cues and signaling pathways.
Collapse
Affiliation(s)
- Alexandra Miricescu
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Kevin Goslin
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | | |
Collapse
|
46
|
Machaj G, Bostan H, Macko-Podgórni A, Iorizzo M, Grzebelus D. Comparative Transcriptomics of Root Development in Wild and Cultivated Carrots. Genes (Basel) 2018; 9:genes9090431. [PMID: 30149572 PMCID: PMC6162504 DOI: 10.3390/genes9090431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022] Open
Abstract
The carrot is the most popular root vegetable worldwide. The genetic makeup underlying the development of the edible storage root are fragmentary. Here, we report the first comparative transcriptome analysis between wild and cultivated carrot roots at multiple developmental stages. Overall, 3285, 4637, and 570 genes were differentially expressed in the cultivated carrot in comparisons made for young plants versus developing roots, young plants versus mature roots, and developing roots versus mature roots, respectively. Of those, 1916, 2645, and 475, respectively, were retained after filtering out genes showing similar profiles of expression in the wild carrot. They were assumed to be of special interest with respect to the development of the storage root. Among them, transcription factors and genes encoding proteins involved in post-translational modifications (signal transduction and ubiquitination) were mostly upregulated, while those involved in redox signaling were mostly downregulated. Also, genes encoding proteins regulating cell cycle, involved in cell divisions, development of vascular tissue, water transport, and sugar metabolism were enriched in the upregulated clusters. Genes encoding components of photosystem I and II, together with genes involved in carotenoid biosynthesis, were upregulated in the cultivated roots, as opposed to the wild roots; however, they were largely downregulated in the mature storage root, as compared with the young and developing root. The experiment produced robust resources for future investigations on the regulation of storage root formation in carrot and Apiaceae.
Collapse
Affiliation(s)
- Gabriela Machaj
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31425 Krakow, Poland.
| | - Hamed Bostan
- Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, Kannapolis, NC 28081, USA.
| | - Alicja Macko-Podgórni
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31425 Krakow, Poland.
| | - Massimo Iorizzo
- Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, Kannapolis, NC 28081, USA.
| | - Dariusz Grzebelus
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31425 Krakow, Poland.
| |
Collapse
|
47
|
Kim SH, Woo OG, Jang H, Lee JH. Characterization and comparative expression analysis of CUL1 genes in rice. Genes Genomics 2018; 40:233-241. [PMID: 29892794 DOI: 10.1007/s13258-017-0622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/15/2017] [Indexed: 11/28/2022]
Abstract
Cullin-RING E3 ubiquitin ligase (CRL) complex is known as the largest family of E3 ligases. The most widely characterized CRL, SCF complex (CRL1), utilizes CUL1 as a scaffold protein to assemble the complex components. To better understand CRL1-mediated cellular processes in rice, three CUL1 genes (OsCUL1s) were isolated in Oryza sativa. Although all OsCUL1 proteins exhibited high levels of amino acid similarities with each other, OsCUL1-3 had a somewhat distinct structure from OsCUL1-1 and OsCUL1-2. Basal expression levels of OsCUL1-3 were much lower than those of OsCUL1-1 and OsCUL1-2 in all selected samples, showing that OsCUL1-1 and OsCUL1-2 play predominant roles relative to OsCUL1-3 in rice. OsCUL1-1 and OsCUL1-2 genes were commonly upregulated in dry seeds and by ABA and salt/drought stresses, implying their involvement in ABA-mediated processes. These genes also showed similar expression patterns in response to various hormones and abiotic stresses, alluding to their functional redundancy. Expression of the OsCUL1-3 gene was also induced in dry seeds and by ABA-related salt and drought stresses, implying their participation in ABA responses. However, its expression pattern in response to hormones and abiotic stresses was somehow different from those of the OsCUL1-1 and OsCUL1-2 genes. Taken together, these findings suggest that the biological role and function of OsCUL1-3 may be distinct from those of OsCUL1-1 and OsCUL1-2. The results of expression analysis of OsCUL1 genes in this study will serve as a useful platform to better understand overlapping and distinct roles of OsCUL1 proteins and CRL1-mediated cellular processes in rice plants.
Collapse
Affiliation(s)
- Sang-Hoon Kim
- Department of Biology Education, Pusan National University, Busan, 46241, Republic of Korea
| | - Og-Geum Woo
- Department of Biology Education, Pusan National University, Busan, 46241, Republic of Korea.,Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunsoo Jang
- Department of Biology Education, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
48
|
Li H, Li Y, Deng H, Sun X, Wang A, Tang X, Gao Y, Zhang N, Wang L, Yang S, Liu Y, Wang S. Tomato UV-B receptor SlUVR8 mediates plant acclimation to UV-B radiation and enhances fruit chloroplast development via regulating SlGLK2. Sci Rep 2018. [PMID: 29666396 DOI: 10.1016/s41598-018-24309-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Plants utilize energy from sunlight to perform photosynthesis in chloroplast, an organelle that could be damaged by solar UV radiation. The ultraviolet-B (UV-B) photoreceptor UVR8 is required for UV-B perception and signal transduction. However, little is known about how UVR8 influence chloroplast development under UV-B radiation. Here, we characterized tomato UVR8 gene (SlUVR8) and our results indicated that SlUVR8 facilitate plant acclimation to UV-B stress by orchestrating expression of the UVB-responsive genes (HY5 and CHS) and accumulating UV-absorptive compounds. In addition, we also discovered that SlUVR8 promotes fruit chloroplast development through enhancing accumulation of transcription factor GOLDEN2-LIKE2 (SlGLK2) which determines chloroplast and chlorophyll levels. Furthermore, UV-B radiation could increase expression of SlGLK2 and its target genes in fruits and leaves. SlUVR8 is required for UVB-induced SlGLK2 expression. Together, our work not only identified the conserved functions of SlUVR8 gene in response to UV-B stress, but also uncovered a novel role that SlUVR8 could boost chloroplast development by accumulating SlGLK2 proteins.
Collapse
Affiliation(s)
- Huirong Li
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuxiang Li
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Heng Deng
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiaochun Sun
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
- Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Sheng, China
| | - Anquan Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yongfeng Gao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Ning Zhang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Lihuan Wang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Shuzhang Yang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Songhu Wang
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
49
|
Li H, Li Y, Deng H, Sun X, Wang A, Tang X, Gao Y, Zhang N, Wang L, Yang S, Liu Y, Wang S. Tomato UV-B receptor SlUVR8 mediates plant acclimation to UV-B radiation and enhances fruit chloroplast development via regulating SlGLK2. Sci Rep 2018; 8:6097. [PMID: 29666396 PMCID: PMC5904186 DOI: 10.1038/s41598-018-24309-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Plants utilize energy from sunlight to perform photosynthesis in chloroplast, an organelle that could be damaged by solar UV radiation. The ultraviolet-B (UV-B) photoreceptor UVR8 is required for UV-B perception and signal transduction. However, little is known about how UVR8 influence chloroplast development under UV-B radiation. Here, we characterized tomato UVR8 gene (SlUVR8) and our results indicated that SlUVR8 facilitate plant acclimation to UV-B stress by orchestrating expression of the UVB-responsive genes (HY5 and CHS) and accumulating UV-absorptive compounds. In addition, we also discovered that SlUVR8 promotes fruit chloroplast development through enhancing accumulation of transcription factor GOLDEN2-LIKE2 (SlGLK2) which determines chloroplast and chlorophyll levels. Furthermore, UV-B radiation could increase expression of SlGLK2 and its target genes in fruits and leaves. SlUVR8 is required for UVB-induced SlGLK2 expression. Together, our work not only identified the conserved functions of SlUVR8 gene in response to UV-B stress, but also uncovered a novel role that SlUVR8 could boost chloroplast development by accumulating SlGLK2 proteins.
Collapse
Affiliation(s)
- Huirong Li
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.,CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuxiang Li
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Heng Deng
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiaochun Sun
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.,Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Sheng, China
| | - Anquan Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yongfeng Gao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Ning Zhang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Lihuan Wang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Shuzhang Yang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China. .,School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Songhu Wang
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
50
|
Woo OG, Kim SH, Cho SK, Kim SH, Lee HN, Chung T, Yang SW, Lee JH. BPH1, a novel substrate receptor of CRL3, plays a repressive role in ABA signal transduction. PLANT MOLECULAR BIOLOGY 2018; 96:593-606. [PMID: 29560577 DOI: 10.1007/s11103-018-0717-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
BPH1 acts as a substrate receptor of CRL3 complex and negatively regulates ABA-mediated cellular responses. The study on its function provides information that helps further understand the relationship between ABA signaling and UPS. Abscisic acid (ABA) plays a crucial role in a variety of cellular processes, including seed dormancy, inhibition of seedling growth, and drought resistance in plants. Cullin3-RING E3 ligase (CRL3) complex is a type of multi-subunit E3 ligase, and BTB/POZ protein, a component of CRL3 complex, functions as a receptor to determine a specific substrate. To elucidate the CRL3 complex that participates in ABA-mediated cellular processes, we first investigated ABA-inducible BTB/POZ genes based on data from the AtGenExpress Visualization Tool (AVT). We then isolated an ABA-inducible gene encoding a potential CRL3 substrate receptor in Arabidopsis, BPH1 (BTB/POZ protein hypersensitive to ABA 1). The isolate gene has a BTB/POZ domain and a NPH3 domain within its N-terminal and C-terminal region, respectively. Yeast two-hybrid and co-immunoprecipitation assays showed that BPH1 physically interacted with cullin3a, a scaffold protein of CRL3, suggesting that it functions as an Arabidopsis CRL3 substrate receptor. The functional mutation of BPH1 caused delayed seed germination in response to ABA and enhanced sensitivity by NaCl and mannitol treatments as ABA-related stresses. Moreover, bph1 mutants exhibited enhanced stomatal closure under ABA application and reduced water loss when compared with wild-type, implying their enhanced tolerance to drought stress. Based on the information from microarray/AVT data and expression analysis of various ABA-inducible genes between wild-type and bph1 plants following ABA treatments, we concluded loss of BPH1 resulted in hyper-induction of a large portion of ABA-inducible genes in response to ABA. Taken together, these results show that BPH1 is negatively involved in ABA-mediated cellular events.
Collapse
Affiliation(s)
- Og-Geum Woo
- Department of Biology Education, Pusan National University, Busan, 46241, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, South Korea
| | - Soon-Hee Kim
- Department of Biology Education, Pusan National University, Busan, 46241, South Korea
| | - Seok Keun Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Sang-Hoon Kim
- Department of Biology Education, Pusan National University, Busan, 46241, South Korea
| | - Han Nim Lee
- Department of Biological Sciences, Pusan National University, Busan, 46241, South Korea
| | - Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan, 46241, South Korea
| | - Seong Wook Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
- Section of Plant Biochemistry, Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|