1
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
2
|
Tang W, Yu Y, Xu T. The interplay between extracellular and intracellular auxin signaling in plants. J Genet Genomics 2025; 52:14-23. [PMID: 38969259 DOI: 10.1016/j.jgg.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
The phytohormone auxin exerts control over remarkable developmental processes in plants. It moves from cell to cell, resulting in the creation of both extracellular auxin and intracellular auxin, which are recognized by distinct auxin receptors. These two auxin signaling systems govern different auxin responses while working together to regulate plant development. In this review, we outline the latest research advancements in unraveling these auxin signaling pathways, encompassing auxin perception and signaling transductions. We emphasize the interaction between extracellular and intracellular auxin, which contributes to the intricate role of auxin in plant development.
Collapse
Affiliation(s)
- Wenxin Tang
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yongqiang Yu
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tongda Xu
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
3
|
Chen J, Liu L, Chen G, Wang S, Liu Y, Zhang Z, Li H, Wang L, Zhou Z, Zhao J, Zhang X. CsRAXs negatively regulate leaf size and fruiting ability through auxin glycosylation in cucumber. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1024-1037. [PMID: 38578173 DOI: 10.1111/jipb.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Leaves are the main photosynthesis organ that directly determines crop yield and biomass. Dissecting the regulatory mechanism of leaf development is crucial for food security and ecosystem turn-over. Here, we identified the novel function of R2R3-MYB transcription factors CsRAXs in regulating cucumber leaf size and fruiting ability. Csrax5 single mutant exhibited enlarged leaf size and stem diameter, and Csrax1/2/5 triple mutant displayed further enlargement phenotype. Overexpression of CsRAX1 or CsRAX5 gave rise to smaller leaf and thinner stem. The fruiting ability of Csrax1/2/5 plants was significantly enhanced, while that of CsRAX5 overexpression lines was greatly weakened. Similarly, cell number and free auxin level were elevated in mutant plants while decreased in overexpression lines. Biochemical data indicated that CsRAX1/5 directly promoted the expression of auxin glucosyltransferase gene CsUGT74E2. Therefore, our data suggested that CsRAXs function as repressors for leaf size development by promoting auxin glycosylation to decrease free auxin level and cell division in cucumber. Our findings provide new gene targets for cucumber breeding with increased leaf size and crop yield.
Collapse
Affiliation(s)
- Jiacai Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Liu Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Guangxin Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Shaoyun Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Ye Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Zeqin Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Hongfei Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Liming Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Guo H, Tan J, Jiao Y, Huang B, Ma R, Ramakrishnan M, Qi G, Zhang Z. Genome-wide identification and expression analysis of the HAK/KUP/KT gene family in Moso bamboo. FRONTIERS IN PLANT SCIENCE 2024; 15:1331710. [PMID: 38595761 PMCID: PMC11002169 DOI: 10.3389/fpls.2024.1331710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
The K+ uptake permease/high-affinity K+/K+ transporter (KUP/HAK/KT) family is the most prominent group of potassium (K+) transporters, playing a key role in K+ uptake, transport, plant growth and development, and stress tolerance. However, the presence and functions of the KUP/HAK/KT family in Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau), the fastest-growing plant, have not been studied. In this study, we identified 41 KUP/HAK/KT genes (PeHAKs) distributed across 18 chromosomal scaffolds of the Moso bamboo genome. PeHAK is a typical membrane protein with a conserved structural domain and motifs. Phylogenetic tree analysis classified PeHAKs into four distinct clusters, while collinearity analysis revealed gene duplications resulting from purifying selection, including both tandem and segmental duplications. Enrichment analysis of promoter cis-acting elements suggested their plausible role in abiotic stress response and hormone induction. Transcriptomic data and STEM analyses indicated that PeHAKs were involved in tissue and organ development, rapid growth, and responded to different abiotic stress conditions. Subcellular localization analysis demonstrated that PeHAKs are predominantly expressed at the cell membrane. In-situ PCR experiments confirmed that PeHAK was mainly expressed in the lateral root primordia. Furthermore, the involvement of PeHAKs in potassium ion transport was confirmed by studying the potassium ion transport properties of a yeast mutant. Additionally, through homology modeling, we revealed the structural properties of HAK as a transmembrane protein associated with potassium ion transport. This research provides a solid basis for understanding the classification, characterization, and functional analysis of the PeHAK family in Moso bamboo.
Collapse
Affiliation(s)
- Hui Guo
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jiaqi Tan
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yang Jiao
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Bing Huang
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Ruifang Ma
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Guoning Qi
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhijun Zhang
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Wang X, Jia C, An L, Zeng J, Ren A, Han X, Wang Y, Wu S. Genome-wide identification and expression characterization of the GH3 gene family of tea plant (Camellia sinensis). BMC Genomics 2024; 25:120. [PMID: 38280985 PMCID: PMC10822178 DOI: 10.1186/s12864-024-10004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024] Open
Abstract
To comprehensively understand the characteristics of the GH3 gene family in tea plants (Camellia sinensis), we identified 17 CsGH3 genes and analyzed their physicochemical properties, phylogenetic relationships, gene structures, promoters, and expression patterns in different tissues. The study showed that the 17 CsGH3 genes are distributed on 9 chromosomes, and based on evolutionary analysis, the CsGH3 members were divided into three subgroups. Gene duplication analysis revealed that segmental duplications have a significant impact on the amplification of CsGH3 genes. In addition, we identified and classified cis-elements in the CsGH3 gene promoters and detected elements related to plant hormone responses and non-biotic stress responses. Through expression pattern analysis, we observed tissue-specific expression of CsGH3.3 and CsGH3.10 in flower buds and roots. Moreover, based on predictive analysis of upstream regulatory transcription factors of CsGH3, we identified the potential transcriptional regulatory role of gibberellin response factor CsDELLA in CsGH3.14 and CsGH3.15. In this study, we found that CsGH3 genes are involved in a wide range of activities, such as growth and development, stress response, and transcription. This is the first report on CsGH3 genes and their potential roles in tea plants. In conclusion, these results provide a theoretical basis for elucidating the role of GH3 genes in the development of perennial woody plants and offer new insights into the synergistic effects of multiple hormones on plant growth and development in tea plants.
Collapse
Affiliation(s)
- Xinge Wang
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Chunyu Jia
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Lishuang An
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Jiangyan Zeng
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Aixia Ren
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Xin Han
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Yiqing Wang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Shuang Wu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
6
|
Zhang Y, Yu J, Xu X, Wang R, Liu Y, Huang S, Wei H, Wei Z. Molecular Mechanisms of Diverse Auxin Responses during Plant Growth and Development. Int J Mol Sci 2022; 23:12495. [PMID: 36293351 PMCID: PMC9604407 DOI: 10.3390/ijms232012495] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate numerous developmental processes throughout all stages of plant growth. Understanding how auxin regulates various physiological and developmental processes has been a hot topic and an intriguing field. Recent studies have unveiled more molecular details into how diverse auxin responses function in every aspect of plant growth and development. In this review, we systematically summarized and classified the molecular mechanisms of diverse auxin responses, and comprehensively elaborated the characteristics and multilevel regulation mechanisms of the canonical transcriptional auxin response. On this basis, we described the characteristics and differences between different auxin responses. We also presented some auxin response genes that have been genetically modified in plant species and how their changes impact various traits of interest. Finally, we summarized some important aspects and unsolved questions of auxin responses that need to be focused on or addressed in future research. This review will help to gain an overall understanding of and some insights into the diverse molecular mechanisms of auxin responses in plant growth and development that are instrumental in harnessing genetic resources in molecular breeding of extant plant species.
Collapse
Affiliation(s)
- Yang Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shan Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
7
|
Fernandez-Abascal J, Wang L, Graziano B, Johnson CK, Bianchi L. Exon-dependent transcriptional adaptation by exon-junction complex proteins Y14/RNP-4 and MAGOH/MAG-1 in Caenorhabditis elegans. PLoS Genet 2022; 18:e1010488. [PMID: 36315586 PMCID: PMC9648848 DOI: 10.1371/journal.pgen.1010488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/10/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
Transcriptional adaptation is a powerful gene regulation mechanism that can increase genetic robustness. Transcriptional adaptation occurs when a gene is mutated and is mediated by the mutant RNA, rather than by protein feedback loops. We show here that transcriptional adaptation occurs in the C. elegans clh family of Cl- channels and that it requires exon-junction complex (EJC) proteins RNP-4, MAG-1, and eiF4AIII. Depending on which exons are deleted in distinct clh-1 alleles, different clh genes are regulated in an EJC-dependent manner. Our results support the idea that different transcriptional adaptation outcomes may be directed by the differential interaction of the EJC with its target mutant RNAs.
Collapse
Affiliation(s)
- Jesus Fernandez-Abascal
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Lei Wang
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Bianca Graziano
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Christina K. Johnson
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Laura Bianchi
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
8
|
Wang Y, Sun Z, Wang L, Chen L, Ma L, Lv J, Qiao K, Fan S, Ma Q. GhBOP1 as a Key Factor of Ribosomal Biogenesis: Development of Wrinkled Leaves in Upland Cotton. Int J Mol Sci 2022; 23:ijms23179942. [PMID: 36077339 PMCID: PMC9456263 DOI: 10.3390/ijms23179942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Block of proliferation 1 (BOP1) is a key protein that helps in the maturation of ribosomes and promotes the progression of the cell cycle. However, its role in the leaf morphogenesis of cotton remains unknown. Herein, we report and study the function of GhBOP1 isolated from Gossypium hirsutum. The sequence alignment revealed that BOP1 protein was highly conserved among different species. The yeast two-hybrid experiments, bimolecular fluorescence complementation, and luciferase complementation techniques revealed that GhBOP1 interact with GhPES and GhWDR12. Subcellular localization experiments revealed that GhBOP1, GhPES and GhWDR12 were localized at the nucleolus. Suppression of GhBOP1 transcripts resulted in the uneven bending of leaf margins and the presence of young wrinkled leaves by virus-induced gene silencing assay. Abnormal palisade arrangements and the presence of large upper epidermal cells were observed in the paraffin sections of the wrinkled leaves. Meanwhile, a jasmonic acid-related gene, GhOPR3, expression was increased. In addition, a negative effect was exerted on the cell cycle and the downregulation of the auxin-related genes was also observed. These results suggest that GhBOP1 plays a critical role in the development of wrinkled cotton leaves, and the process is potentially modulated through phytohormone signaling.
Collapse
Affiliation(s)
- Yanwen Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Zhimao Sun
- College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
| | - Long Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Lingling Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Lina Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Jiaoyan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
- Hainan Yazhou Bay Seed Lab, Sanya 572000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572000, China
- Correspondence: (S.F.); (Q.M.)
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
- Correspondence: (S.F.); (Q.M.)
| |
Collapse
|
9
|
Lee Y, Park R, Miller SM, Li Y. Genetic compensation of triacylglycerol biosynthesis in the green microalga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1069-1080. [PMID: 35727866 PMCID: PMC9545326 DOI: 10.1111/tpj.15874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 06/14/2023]
Abstract
Genetic compensation has been proposed to explain phenotypic differences between gene knockouts and knockdowns in several metazoan and plant model systems. With the rapid development of reverse genetic tools such as CRISPR/Cas9 and RNAi in microalgae, it is increasingly important to assess whether genetic compensation affects the phenotype of engineered algal mutants. While exploring triacylglycerol (TAG) biosynthesis pathways in the model alga Chlamydomonas reinhardtii, it was discovered that knockout of certain genes catalyzing rate-limiting steps of TAG biosynthesis, type-2 diacylglycerol acyltransferase genes (DGTTs), triggered genetic compensation under abiotic stress conditions. Genetic compensation of a DGTT1 null mutation by a related PDAT gene was observed regardless of the strain background or mutagenesis approach, for example, CRISPR/Cas 9 or insertional mutagenesis. However, no compensation was found in the PDAT knockout mutant. The effect of PDAT knockout was evaluated in a Δvtc1 mutant, in which PDAT was upregulated under stress, resulting in a 90% increase in TAG content. Knockout of PDAT in the Δvtc1 background induced a 12.8-fold upregulation of DGTT1 and a 272.3% increase in TAG content in Δvtc1/pdat1 cells, while remaining viable. These data suggest that genetic compensation contributes to the genetic robustness of microalgal TAG biosynthetic pathways, maintaining lipid and redox homeostasis in the knockout mutants under abiotic stress. This work demonstrates examples of genetic compensation in microalgae, implies the physiological relevance of genetic compensation in TAG biosynthesis under stress, and provides guidance for future genetic engineering and mutant characterization efforts.
Collapse
Affiliation(s)
- Yi‐Ying Lee
- Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental ScienceBaltimoreMD21202USA
| | - Rudolph Park
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMD21250USA
| | - Stephen M. Miller
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMD21250USA
| | - Yantao Li
- Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental ScienceBaltimoreMD21202USA
- Department of Marine BiotechnologyUniversity of Maryland, Baltimore CountyBaltimoreMD21202USA
| |
Collapse
|
10
|
The Role of SBI2/ALG12/EBS4 in the Regulation of Endoplasmic Reticulum-Associated Degradation (ERAD) Studied by a Null Allele. Int J Mol Sci 2022; 23:ijms23105811. [PMID: 35628619 PMCID: PMC9147235 DOI: 10.3390/ijms23105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Redundancy and lethality is a long-standing problem in genetics but generating minimal and lethal phenotypes in the knockouts of the same gene by different approaches drives this problem to a new high. In Asn (N)-linked glycosylation, a complex and ubiquitous cotranslational and post-translational protein modification required for the transfer of correctly folded proteins and endoplasmic reticulum-associated degradation (ERAD) of misfolded proteins, ALG12 (EBS4) is an α 1, 6-mannosyltransferase catalyzing a mannose into Glc3Man9GlcNAc2. In Arabidopsis, T-DNA knockout alg12-T is lethal while likely ebs4 null mutants isolated by forward genetics are most healthy as weak alleles, perplexing researchers and demanding further investigations. Here, we isolated a true null allele, sbi2, with the W258Stop mutation in ALG12/EBS4. sbi2 restored the sensitivity of brassinosteroid receptor mutants bri1-5, bri1-9, and bri1-235 with ER-trapped BRI1 to brassinosteroids. Furthermore, sbi2 maturated earlier than the wild-type. Moreover, concomitant with impaired and misfolded proteins accumulated in the ER, sbi2 had higher sensitivity to tunicamycin and salt than the wild-type. Our findings thus clarify the role of SBI2/ALG12/EBS4 in the regulation of the ERAD of misfolded glycoproteins, and plant growth and stress response. Further, our study advocates the necessity and importance of using multiple approaches to validate genetics study.
Collapse
|
11
|
Sun X, Guo C, Ali K, Zheng Q, Wei Q, Zhu Y, Wang L, Li G, Li W, Zheng B, Bai Q, Wu G. A Non-redundant Function of MNS5: A Class I α-1, 2 Mannosidase, in the Regulation of Endoplasmic Reticulum-Associated Degradation of Misfolded Glycoproteins. FRONTIERS IN PLANT SCIENCE 2022; 13:873688. [PMID: 35519817 PMCID: PMC9062699 DOI: 10.3389/fpls.2022.873688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 05/14/2023]
Abstract
Endoplasmic Reticulum-Associated Degradation (ERAD) is one of the major processes in maintaining protein homeostasis. Class I α-mannosidases MNS4 and MNS5 are involved in the degradation of misfolded variants of the heavily glycosylated proteins, playing an important role for glycan-dependent ERAD in planta. MNS4 and MNS5 reportedly have functional redundancy, meaning that only the loss of both MNS4 and MNS5 shows phenotypes. However, MNS4 is a membrane-associated protein while MNS5 is a soluble protein, and both can localize to the endoplasmic reticulum (ER). Furthermore, MNS4 and MNS5 differentially demannosylate the glycoprotein substrates. Importantly, we found that their gene expression patterns are complemented rather than overlapped. This raises the question of whether they indeed work redundantly, warranting a further investigation. Here, we conducted an exhaustive genetic screen for a suppressor of the bri1-5, a brassinosteroid (BR) receptor mutant with its receptor downregulated by ERAD, and isolated sbi3, a suppressor of bri1-5 mutant named after sbi1 (suppressor of bri1). After genetic mapping together with whole-genome re-sequencing, we identified a point mutation G343E in AT1G27520 (MNS5) in sbi3. Genetic complementation experiments confirmed that sbi3 was a loss-of-function allele of MNS5. In addition, sbi3 suppressed the dwarf phenotype of bri1-235 in the proteasome-independent ERAD pathway and bri1-9 in the proteasome-dependent ERAD pathway. Importantly, sbi3 could only affect BRI1/bri1 with kinase activities such that it restored BR-sensitivities of bri1-5, bri1-9, and bri1-235 but not null bri1. Furthermore, sbi3 was less tolerant to tunicamycin and salt than the wild-type plants. Thus, our study uncovers a non-redundant function of MNS5 in the regulation of ERAD as well as plant growth and ER stress response, highlighting a need of the traditional forward genetic approach to complement the T-DNA or CRISPR-Cas9 systems on gene functional study.
Collapse
|
12
|
Cui G, Zhao M, Tan H, Wang Z, Meng M, Sun F, Zhang C, Xi Y. RNA Sequencing Reveals Dynamic Carbohydrate Metabolism and Phytohormone Signaling Accompanying Post-mowing Regeneration of Forage Winter Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:664933. [PMID: 34394136 PMCID: PMC8358837 DOI: 10.3389/fpls.2021.664933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Winter wheat (Triticum aestivum L.) is used as fresh green winter forage worldwide, and its ability to regenerate after mowing determines whether it can be used for forage production; however, the molecular mechanism of regeneration is poorly understood. This study identified long-chain coding and non-coding RNAs in the wheat cultivar "XN9106," which is cultivated for forage and grain production separately in winter and summer, and analyzed their function during post-mowing regeneration. The results showed that the degradation of carbohydrate plays an important role in regeneration, as demonstrated by decreased carbohydrate content. The increased gene expression of enzymes including β-amylase, β-fructofuranosidase, sucrose synthase, sucrose-6-phosphate synthase, trehalose-6-phosphate synthase, and trehalose-6-phosphate phosphatase in mowed seedlings suggests regeneration is fueled by degraded carbohydrates that provide energy and carbon skeletons for the Krebs cycle and amino acid synthesis. The decreased auxin content relieved the inhibition of cytokinin synthesis, that controls the transition from cell division to cell expansion and stimulates cell expansion and differentiation during the cell expansion phase, and eventually accelerate post-mowing regeneration of seedlings. Additionally, differentially expressed long-chain non-coding RNAs (lncRNAs) might participate in the regulation of gene expression related to carbohydrate metabolism and hormone signal transduction. This study demonstrated the responses of key mRNAs and lncRNAs during post-mowing regeneration of winter wheat and revealed the importance of carbohydrate and hormone during regeneration, providing valuable information for genetic improvement of forage wheat.
Collapse
Affiliation(s)
- Guibin Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Mei Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Hongbin Tan
- Shaanxi Province Seed Industry Group Co., Ltd., Xi’an, China
| | - Zhulin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Min Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| |
Collapse
|
13
|
Salanga CM, Salanga MC. Genotype to Phenotype: CRISPR Gene Editing Reveals Genetic Compensation as a Mechanism for Phenotypic Disjunction of Morphants and Mutants. Int J Mol Sci 2021; 22:ijms22073472. [PMID: 33801686 PMCID: PMC8036752 DOI: 10.3390/ijms22073472] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Forward genetic screens have shown the consequences of deleterious mutations; however, they are best suited for model organisms with fast reproductive rates and large broods. Furthermore, investigators must faithfully identify changes in phenotype, even if subtle, to realize the full benefit of the screen. Reverse genetic approaches also probe genotype to phenotype relationships, except that the genetic targets are predefined. Until recently, reverse genetic approaches relied on non-genomic gene silencing or the relatively inefficient, homology-dependent gene targeting for loss-of-function generation. Fortunately, the flexibility and simplicity of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has revolutionized reverse genetics, allowing for the precise mutagenesis of virtually any gene in any organism at will. The successful integration of insertions/deletions (INDELs) and nonsense mutations that would, at face value, produce the expected loss-of-function phenotype, have been shown to have little to no effect, even if other methods of gene silencing demonstrate robust loss-of-function consequences. The disjunction between outcomes has raised important questions about our understanding of genotype to phenotype and highlights the capacity for compensation in the central dogma. This review describes recent studies in which genomic compensation appears to be at play, discusses the possible compensation mechanisms, and considers elements important for robust gene loss-of-function studies.
Collapse
Affiliation(s)
- Cristy M. Salanga
- Office of the Vice President for Research, Northern Arizona University, Flagstaff, AZ 86011, USA;
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Matthew C. Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Correspondence:
| |
Collapse
|
14
|
Gelová Z, Gallei M, Pernisová M, Brunoud G, Zhang X, Glanc M, Li L, Michalko J, Pavlovičová Z, Verstraeten I, Han H, Hajný J, Hauschild R, Čovanová M, Zwiewka M, Hoermayer L, Fendrych M, Xu T, Vernoux T, Friml J. Developmental roles of Auxin Binding Protein 1 in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110750. [PMID: 33487339 DOI: 10.1016/j.plantsci.2020.110750] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Auxin is a major plant growth regulator, but current models on auxin perception and signaling cannot explain the whole plethora of auxin effects, in particular those associated with rapid responses. A possible candidate for a component of additional auxin perception mechanisms is the AUXIN BINDING PROTEIN 1 (ABP1), whose function in planta remains unclear. Here we combined expression analysis with gain- and loss-of-function approaches to analyze the role of ABP1 in plant development. ABP1 shows a broad expression largely overlapping with, but not regulated by, transcriptional auxin response activity. Furthermore, ABP1 activity is not essential for the transcriptional auxin signaling. Genetic in planta analysis revealed that abp1 loss-of-function mutants show largely normal development with minor defects in bolting. On the other hand, ABP1 gain-of-function alleles show a broad range of growth and developmental defects, including root and hypocotyl growth and bending, lateral root and leaf development, bolting, as well as response to heat stress. At the cellular level, ABP1 gain-of-function leads to impaired auxin effect on PIN polar distribution and affects BFA-sensitive PIN intracellular aggregation. The gain-of-function analysis suggests a broad, but still mechanistically unclear involvement of ABP1 in plant development, possibly masked in abp1 loss-of-function mutants by a functional redundancy.
Collapse
Affiliation(s)
- Zuzana Gelová
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Michelle Gallei
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Markéta Pernisová
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France; Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Géraldine Brunoud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Xixi Zhang
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Matouš Glanc
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| | - Lanxin Li
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jaroslav Michalko
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Zlata Pavlovičová
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Huibin Han
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jakub Hajný
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria; Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Robert Hauschild
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Milada Čovanová
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lukas Hoermayer
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Matyáš Fendrych
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Tongda Xu
- FAFU-Joint Centre, Horticulture and Metabolic Biology Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, People's Republic of China
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Jiří Friml
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
15
|
Randall RS. The plant AlcR-pAlcA ethanol-inducible system displays gross growth artefacts independently of downstream pAlcA-regulated inducible constructs. Sci Rep 2021; 11:2142. [PMID: 33495493 PMCID: PMC7835360 DOI: 10.1038/s41598-020-80903-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022] Open
Abstract
The AlcR fungal protein responds to ethanol and binds to the fungal pAlcA promoter in its presence. This system was transferred to plants over twenty years ago and was claimed to function in the same manner in plants. However, never has the control experiment with plants containing the AlcR gene alone, with no downstream inducible construct, been made. In this paper, I conduct several experiments with this control, growing p35:AlcR plants in the presence or absence of ethanol. I found that when these plants were grown in the presence of ethanol, growth in several tissues and several stages of growth was retarded. This demonstrates that this system is not suitable for use in the plant sciences, and casts doubt on the conclusions of papers that have published phenotypes using this system.
Collapse
Affiliation(s)
- Ricardo S Randall
- Department of Plant Developmental Genetics, IPMB, The University of Zürich, Zürich, Switzerland.
| |
Collapse
|
16
|
Liu J, Shi M, Wang J, Zhang B, Li Y, Wang J, El-Sappah AH, Liang Y. Comparative Transcriptomic Analysis of the Development of Sepal Morphology in Tomato ( Solanum Lycopersicum L.). Int J Mol Sci 2020; 21:ijms21165914. [PMID: 32824631 PMCID: PMC7460612 DOI: 10.3390/ijms21165914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Sepal is an important component of the tomato flower and fruit that typically protects the flower in bud and functions as a support for petals and fruits. Moreover, sepal appearance influences the commercial property of tomato nowadays. However, the phenotype information and development mechanism of the natural variation of sepal morphology in the tomato is still largely unexplored. To study the developmental mechanism and to determine key genes related to downward sepal in the tomato, we compared the transcriptomes of sepals between downward sepal (dsp) mutation and the wild-type by RNA sequencing and found that the differentially expressed genes were dominantly related to cell expansion, auxin, gibberellins and cytokinin. dsp mutation affected cell size and auxin, and gibberellins and cytokinin contents in sepals. The results showed that cell enlargement or abnormal cell expansion in the adaxial part of sepals in dsp. As reported, auxin, gibberellins and cytokinin were important factors for cell expansion. Hence, dsp mutation regulated cell expansion to control sepal morphology, and auxin, gibberellins and cytokinin may mediate this process. One ARF gene and nine SAUR genes were dramatically upregulated in the sepal of the dsp mutant, whereas seven AUX/IAA genes were significantly downregulated in the sepal of dsp mutant. Further bioinformatic analyses implied that seven AUX/IAA genes might function as negative regulators, while one ARF gene and nine SAUR genes might serve as positive regulators of auxin signal transduction, thereby contributing to cell expansion in dsp sepal. Thus, our data suggest that 17 auxin-responsive genes are involved in downward sepal formation in the tomato. This study provides valuable information for dissecting the molecular mechanism of sepal morphology control in the tomato.
Collapse
Affiliation(s)
- Jingyi Liu
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Meijing Shi
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Jing Wang
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Bo Zhang
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Yushun Li
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Jin Wang
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Ahmed. H. El-Sappah
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Shaanxi 712100, China; (J.L.); (M.S.); (J.W.); (B.Z.); (Y.L.); (J.W.); (A.H.E.-S.)
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
- Correspondence: ; Tel.: +86-29-8708-2179
| |
Collapse
|
17
|
Sztal TE, Stainier DYR. Transcriptional adaptation: a mechanism underlying genetic robustness. Development 2020; 147:147/15/dev186452. [PMID: 32816903 DOI: 10.1242/dev.186452] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations play a crucial role in evolution as they provide the genetic variation that allows evolutionary change. Although some mutations in regulatory elements or coding regions can be beneficial, a large number of them disrupt gene function and reduce fitness. Organisms utilize several mechanisms to compensate for the damaging consequences of genetic perturbations. One such mechanism is the recently identified process of transcriptional adaptation (TA): during this event, mutations that cause mutant mRNA degradation trigger the transcriptional modulation of so-called adapting genes. In some cases, for example when one (or more) of the upregulated genes is functionally redundant with the mutated gene, this process compensates for the loss of the mutated gene's product. Notably, unlike other mechanisms underlying genetic robustness, TA is not triggered by the loss of protein function, an observation that has prompted studies into the machinery of TA and the contexts in which it functions. Here, we review the discovery and current understanding of TA, and discuss how its main features appear to be conserved across species. In light of these findings, we also speculate on the importance of TA in the context of human disease, and provide some recommendations for genome-editing strategies that should be more effective.
Collapse
Affiliation(s)
- Tamar E Sztal
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany
| |
Collapse
|
18
|
Kushwaha NK, Mansi, Sahu PP, Prasad M, Chakrabroty S. Chilli leaf curl virus infection downregulates the expression of the genes encoding chloroplast proteins and stress-related proteins. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1185-1196. [PMID: 31564781 PMCID: PMC6745583 DOI: 10.1007/s12298-019-00693-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 05/05/2023]
Abstract
Virus infection alters the expression of several host genes involved in various cellular and biological processes in plants. Most of the studies performed till now have mainly focused on genes which are up-regulated and later projected them as probable stress tolerant/susceptible genes. Nevertheless, genes which are down-regulated during plant-virus interaction could also play a critical role on disease development as well as in combating the virus infection. Hence, to identify such down-regulated genes and pathway, we performed reverse suppression subtractive hybridization in Capsicum annuum var. Punjab Lal following Chilli leaf curl virus (ChiLCV) infection. The screening and further processing suggested that majority of the genes (approximately 35% ESTs) showed homology with the genes encoding chloroplast proteins and 16% genes involved in the biotic and abiotic stress response. Additionally, we identified several genes, functionally known to be involved in metabolic processes, protein synthesis and degradation, ribosomal proteins, energy production, DNA replication and transcription, and transporters. We also found 3% transcripts which did not show homology with any known genes. The redundancy analysis revealed the maximum percentage of chlorophyll a-b binding protein (15/96) and auxin-binding proteins (13/96). We developed a protein interactome network to characterise the relationships between proteins and pathway involved during the ChiLCV infection. We identified that the most of the interaction occurs either among the chloroplast proteins (Arabidopsis proteins interactive map) or biotic and abiotic stress responsive proteins (Solanum lycopersicum interactome). Taken together, our study provides the first transcriptome and protein interactome of the down-regulated genes during C. annuum-ChiLCV interaction. These resources could be exploited in deciphering the steps involved in the process of virus infection.
Collapse
Affiliation(s)
- Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Mansi
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Pranav Pankaj Sahu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Supriya Chakrabroty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
19
|
Kim YA, Moon H, Park CJ. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. RICE (NEW YORK, N.Y.) 2019; 12:67. [PMID: 31446506 PMCID: PMC6708514 DOI: 10.1186/s12284-019-0325-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/13/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Genome editing tools are important for functional genomics research and biotechnology applications. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) system for gene knockout has emerged as the most effective genome-editing tool. It has previously been reported that, in rice plants, knockdown of the Os8N3 gene resulted in enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo), while displaying abnormal pollen development. RESULTS The CRISPR/Cas9 system was employed to knockout rice Os8N3, in order to confer enhanced resistance to Xoo. Analysis of the genotypes and edited Os8N3 in T0, T1, T2, and T3 transgenic rice plants showed that the mutations were transmitted to subsequent generations, and homozygous mutants displayed significantly enhanced resistance to Xoo. Stable transmission of CRISPR/Cas9-mediated Os8N3 gene editing without the transferred DNA (T-DNA) was confirmed by segregation in the T1 generation. With respect to many investigated agronomic traits including pollen development, there was no significant difference between homozygous mutants and non-transgenic control plants under greenhouse growth conditions. CONCLUSION Data from this study indicate that the CRISPR/Cas9-mediated Os8N3 edition can be successfully employed for non-transgenic crop improvements.
Collapse
Affiliation(s)
- Young-Ah Kim
- Department of Plant Biotechnology, Sejong University, Seoul, 05006 South Korea
| | - Hyeran Moon
- Department of Molecular Biology, Sejong University, Seoul, 05006 South Korea
| | - Chang-Jin Park
- Department of Plant Biotechnology, Sejong University, Seoul, 05006 South Korea
- Department of Molecular Biology, Sejong University, Seoul, 05006 South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 05006 South Korea
| |
Collapse
|
20
|
Yu J, Fan N, Li R, Zhuang L, Xu Q, Huang B. Proteomic Profiling for Metabolic Pathways Involved in Interactive Effects of Elevated Carbon Dioxide and Nitrogen on Leaf Growth in a Perennial Grass Species. J Proteome Res 2019; 18:2446-2457. [PMID: 31081640 DOI: 10.1021/acs.jproteome.8b00951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elevated atmospheric CO2 and nitrogen are major environmental factors affecting shoot growth. The objectives of this study are to determine the interactive effects of elevated CO2 and nitrogen on leaf growth in tall fescue ( Festuca arundinacea) and to identify major proteins and associated metabolic pathways underlying CO2-regulation of leaf growth under insufficient and sufficient nitrate conditions using proteomic analysis. Plants of tall fescue treated with low nitrate level (0.25 mM, LN), moderate nitrate level (4 mM, MN) and high nitrate level (32 mM, HN) were exposed to ambient (400 μmol mol-1) and elevated (800 μmol mol-1) CO2 concentrations in environment-controlled growth chambers. Increased atmospheric CO2 concentration increased leaf length and shoot biomass, which corresponded to increased content of indo-acetic acid, gibberellic acid, cytokinins and reduced content of abscisic acid under sufficient nitrate conditions (MN and HN conditions). Low nitrate supply limited shoot growth and hormonal responses to elevated CO2. Proteomic analysis of plants exposed to elevated CO2 under LN and MN conditions demonstrated the increases in the abundance of many proteins due to elevated CO2 under MN condition involved with cell cycle and proliferation, transcription and translation, photosynthesis (ribosomal and chlorophyll a/b-binding proteins), amino acids synthesis, sucrose and starch metabolism, as well as ABA signaling pathways (ABA-induced proteins). Our results revealed major proteins and associated metabolic pathways associated with the interactive effects of elevated CO2 and nitrate regulating leaf growth in a perennial grass species.
Collapse
Affiliation(s)
- Jingjin Yu
- College of Agro-grassland Science , Nanjing Agricultural University , Nanjing 210095 , PR China
| | - Ningli Fan
- College of Agro-grassland Science , Nanjing Agricultural University , Nanjing 210095 , PR China
| | - Ran Li
- College of Agro-grassland Science , Nanjing Agricultural University , Nanjing 210095 , PR China
| | - Lili Zhuang
- College of Agro-grassland Science , Nanjing Agricultural University , Nanjing 210095 , PR China
| | - Qian Xu
- College of Agro-grassland Science , Nanjing Agricultural University , Nanjing 210095 , PR China
| | - Bingru Huang
- Department of Plant Biology and Pathology , Rutgers, the State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
21
|
E Y, Meng J, Hu H, Cheng D, Zhu C, Chen W. Effects of organic molecules from biochar-extracted liquor on the growth of rice seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:338-345. [PMID: 30544094 DOI: 10.1016/j.ecoenv.2018.11.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 05/04/2023]
Abstract
There are many reports indicating that biochar can promote growth; however, its mechanism of action remains unclear. The aim of this study was to show that organic molecules from biochar-extracted liquor affect the growth of rice seedlings. In this study, rice seedlings were cultured under water. Agronomic traits and growth-related genes and proteins were used as markers to describe more precisely the effects of biochar on specific growth parameters of rice seedlings. Our results demonstrated that the 3% biochar-extracted liquor amendment clearly promoted growth. The growth-related gene auxin binding protein 1 and its encoded protein were up-regulated. Molecular simulations revealed that 2-acetyl-5-methylfuran from biochar-extracted liquor could interact with auxin binding protein 1 in a similar way to indoleacetic acid binding. The growth of rice seedlings was therefore affected by biochar-extracted liquor, which acted on the ABP1 signalling pathway.
Collapse
Affiliation(s)
- Yang E
- Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jun Meng
- Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Haijun Hu
- Zunyi Normal College, Zunyi 863002, PR China
| | - Dengmiao Cheng
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, PR China
| | - Changfu Zhu
- Ultrasonography Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Wenfu Chen
- Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
22
|
Zhang Y, Wang B, Qi S, Dong M, Wang Z, Li Y, Chen S, Li B, Zhang J. Ploidy and hybridity effects on leaf size, cell size and related genes expression in triploids, diploids and their parents in Populus. PLANTA 2019; 249:635-646. [PMID: 30327883 DOI: 10.1007/s00425-018-3029-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/05/2018] [Indexed: 05/23/2023]
Abstract
Cell-size enlargement plays a pivotal role in increasing the leaf size of triploid poplar, and polyploidization could change leaf shape. ABP1 was highly expressed in triploid plants and positively related to cell size. In the plant kingdom, the leaf is the most important energy production organ, and polyploidy often exhibits a "Gigas" effect on leaf size, which benefits agriculture and forestry. However, little is known regarding the cellular and molecular mechanisms underlying the leaf size superiority of polyploid woody plants. In the present study, the leaf area and abaxial epidermal cells of diploid and triploid full-sib groups and their parents were measured at three different positions. We measured the expression of several genes related to cell division and cell expansion. The results showed that the leaf area of triploids was significantly larger than that of diploids, and the triploid group showed transgressive variation compared to their full-sib diploid group. Cell size but not cell number was the main reason for leaf size variation. Cell expansion was in accordance with leaf enlargement. In addition, the leaf shape changes in triploids primarily resulted from a significant decrease in the leaf ratio of length to -width. Auxin-binding protein 1 (ABP1) was highly expressed in triploids and positively related to leaf size. These results enhanced the current understanding that giant leaf is affected by polyploidy vigor. However, significant heterosis is not exhibited in diploid offspring. Overall, polyploid breeding is an effective strategy to enhance leaf size, and Populus, as an ideal material, plays an important role in studying the leaf morphological variations of polyploid woody plants.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Beibei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuaizheng Qi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mingliang Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zewei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yixuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Siyuan Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Bailian Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jinfeng Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
23
|
Li W, Xu G, Alli A, Yu L. Plant HAK/KUP/KT K+ transporters: Function and regulation. Semin Cell Dev Biol 2018; 74:133-141. [DOI: 10.1016/j.semcdb.2017.07.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
|
24
|
Paponov IA, Dindas J, Król E, Friz T, Budnyk V, Teale W, Paponov M, Hedrich R, Palme K. Auxin-Induced Plasma Membrane Depolarization Is Regulated by Auxin Transport and Not by AUXIN BINDING PROTEIN1. FRONTIERS IN PLANT SCIENCE 2018; 9:1953. [PMID: 30705682 PMCID: PMC6344447 DOI: 10.3389/fpls.2018.01953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/14/2018] [Indexed: 05/20/2023]
Abstract
Auxin is a molecule, which controls many aspects of plant development through both transcriptional and non-transcriptional signaling responses. AUXIN BINDING PROTEIN1 (ABP1) is a putative receptor for rapid non-transcriptional auxin-induced changes in plasma membrane depolarization and endocytosis rates. However, the mechanism of ABP1-mediated signaling is poorly understood. Here we show that membrane depolarization and endocytosis inhibition are ABP1-independent responses and that auxin-induced plasma membrane depolarization is instead dependent on the auxin influx carrier AUX1. AUX1 was itself not involved in the regulation of endocytosis. Auxin-dependent depolarization of the plasma membrane was also modulated by the auxin efflux carrier PIN2. These data establish a new connection between auxin transport and non-transcriptional auxin signaling.
Collapse
Affiliation(s)
- Ivan A. Paponov
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Norwegian Institute of Bioeconomy Research, Klepp, Norway
- *Correspondence: Ivan A. Paponov,
| | - Julian Dindas
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Elżbieta Król
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Tatyana Friz
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Vadym Budnyk
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Centre of Biological Systems Analysis and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - William Teale
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Martina Paponov
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Klaus Palme
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Renal Division, Department of Medicine, University Freiburg Medical Center, Freiburg, Germany
- Klaus Palme,
| |
Collapse
|
25
|
Abstract
Auxin triggers diverse responses in plants, and this is reflected in quantitative and qualitative diversity in the auxin signaling machinery.
Collapse
Affiliation(s)
- Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| |
Collapse
|
26
|
Gu A, Meng C, Chen Y, Wei L, Dong H, Lu Y, Wang Y, Chen X, Zhao J, Shen S. Coupling Seq-BSA and RNA-Seq Analyses Reveal the Molecular Pathway and Genes Associated with Heading Type in Chinese Cabbage. Front Genet 2017; 8:176. [PMID: 29312432 PMCID: PMC5733010 DOI: 10.3389/fgene.2017.00176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 02/04/2023] Open
Abstract
In Chinese cabbage, heading type is a key agricultural trait of significant economic importance. Using a natural microspore-derived doubled haploid plant, we generated self-crossed progeny with overlapping or outward curling head morphotypes. Sequencing-based bulked segregant analysis (Seq-BSA) revealed a candidate region of 0.52 Mb (A06: 1,824,886~2,347,097 bp) containing genes enriched for plant hormone signal transduction. RNA Sequencing (RNA-Seq) analysis supported the hormone pathway enrichment leading to the identification of two key candidate genes, BrGH3.12 and BrABF1. The regulated homologous genes and the relationship between genes in this pathway were also revealed. Expression of BrGH3.12 varied significantly in the apical portion of the leaf, consistent with the morphological differences between overlapping and outward curling leaves. Transcript levels of BrABF1 in the top, middle and basal segments of the leaf were significantly different between the two types. The two morphotypes contained different concentrations of IAA in the apical portion of their leaves while levels of ABA differed significantly between plant types in the top, middle, and basal leaf segments. Results from Seq-BSA, RNA-Seq and metabolite analyses all support a role for IAA and ABA in heading type formation. These findings increase our understanding of the molecular basis for pattern formation of the leafy head in Chinese cabbage and will contribute to future work developing more desirable leafy head patterns.
Collapse
Affiliation(s)
- AiXia Gu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Chuan Meng
- Economic Crop Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - YueQi Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Lai Wei
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Hui Dong
- Shijiazhuang Pomology Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yin Lu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - YanHua Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - XuePing Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - JianJun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - ShuXing Shen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
27
|
Li N, Huang B, Tang N, Jian W, Zou J, Chen J, Cao H, Habib S, Dong X, Wei W, Gao Y, Li Z. The MADS-Box Gene SlMBP21 Regulates Sepal Size Mediated by Ethylene and Auxin in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:2241-2256. [PMID: 29069449 DOI: 10.1093/pcp/pcx158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/14/2017] [Indexed: 05/21/2023]
Abstract
Normal organ size is achieved by successful co-ordination of cell proliferation and cell expansion, which are modulated by multiple factors such as ethylene and auxin. In our work, SlMBP21-RNAi (RNA interference) tomato exhibited longer sepals and improved fruit set. Histological analysis indicated that longer sepals were attributed to cell expansion. To explore how SlMBP21 regulates sepal size, we compared the transcriptomes of sepals between SlMBP21-RNAi and the wild type by RNA sequencing and found that the differentially expressed genes were dominantly related to cell expansion, ethylene and auxin, and photosynthesis. Down-regulation of SlMBP21 affected ethylene production and the free IAA and IAA-Val intensity in sepals. Hormone treatment further indicated that SlMBP21 was involved in the ethylene and auxin pathways. As reported, ethylene and auxin were important factors for cell expansion. Hence, SlMBP21 negatively regulated cell expansion to control sepal size, and ethylene and auxin may mediate this process. Additionally, the contents of Chl and the activity of ribulose-1, 5-bisphosphate carboxylase/oxygenase, the key photosynthetic enzyme, were both increased in SlMBP21-RNAi sepals, which indicated that photosynthesis might be enhanced in transgenic longer sepals. Therefore, the longer sepal, with better protection and enhanced photosynthesis, may contribute to improve fruit set. Altogether, these results suggested that SlMBP21 was a novel factor involved in organ size control. Moreover, our study provided potential application value for improving fruit set.
Collapse
Affiliation(s)
- Ning Li
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Baowen Huang
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Ning Tang
- Collaborative Innovation Center of Special Plant Industry in Chongqing; Institute of Special Plants, Chongqing University of Arts and Sciences; Yongchuan 402160, Chongqing, China
| | - Wei Jian
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Jian Zou
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Jing Chen
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Haohao Cao
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Sidra Habib
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Xuekui Dong
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Wen Wei
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Yanqiang Gao
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| |
Collapse
|
28
|
Dahlke RI, Fraas S, Ullrich KK, Heinemann K, Romeiks M, Rickmeyer T, Klebe G, Palme K, Lüthen H, Steffens B. Protoplast Swelling and Hypocotyl Growth Depend on Different Auxin Signaling Pathways. PLANT PHYSIOLOGY 2017; 175:982-994. [PMID: 28860155 PMCID: PMC5619902 DOI: 10.1104/pp.17.00733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/29/2017] [Indexed: 05/10/2023]
Abstract
Members of the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX PROTEIN (TIR1/AFB) family are known auxin receptors. To analyze the possible receptor function of AUXIN BINDING PROTEIN1 (ABP1), an auxin receptor currently under debate, we performed different approaches. We performed a pharmacological approach using α-(2,4-dimethylphenylethyl-2-oxo)-indole-3-acetic acid (auxinole), α-(phenylethyl-2-oxo)-indole-3-acetic acid (PEO-IAA), and 5-fluoroindole-3-acetic acid (5-F-IAA) to discriminate between ABP1- and TIR1/AFB-mediated processes in Arabidopsis (Arabidopsis thaliana). We used a peptide of the carboxyl-terminal region of AtABP1 as a tool. We performed mutant analysis with the null alleles of ABP1, abp1-c1 and abp1-TD1, and the TILLING mutant abp1-5 We employed Coimbra, an accession that exhibits an amino acid exchange in the auxin-binding domain of ABP1. We measured either volume changes of single hypocotyl protoplasts or hypocotyl growth, both at high temporal resolution. 5-F-IAA selectively activated the TIR1/AFB pathway but did not induce protoplast swelling; instead, it showed auxin activity in the hypocotyl growth test. In contrast, PEO-IAA induced an auxin-like swelling response but no hypocotyl growth. The carboxyl-terminal peptide of AtABP1 induced an auxin-like swelling response. In the ABP1-related mutants and Coimbra, no auxin-induced protoplast swelling occurred. ABP1 seems to be involved in mediating rapid auxin-induced protoplast swelling, but it is not involved in the control of rapid auxin-induced growth.
Collapse
Affiliation(s)
- Renate I Dahlke
- Plant Physiology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany
| | - Simon Fraas
- Molecular Plant Physiology, Department of Biology, University of Hamburg, 22609 Hamburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Philipps University, Faculty of Biology, University of Marburg, 35043 Marburg, Germany
| | - Kirka Heinemann
- Molecular Plant Physiology, Department of Biology, University of Hamburg, 22609 Hamburg, Germany
| | - Maren Romeiks
- Molecular Plant Physiology, Department of Biology, University of Hamburg, 22609 Hamburg, Germany
| | - Thomas Rickmeyer
- Pharmaceutical Chemistry, University of Marburg, 35032 Marburg, Germany
| | - Gerhard Klebe
- Pharmaceutical Chemistry, University of Marburg, 35032 Marburg, Germany
| | - Klaus Palme
- Institute of Biology II, BIOSS Centre for Biological Signaling Studies, Institute for Advanced Sciences and Centre for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany
| | - Hartwig Lüthen
- Molecular Plant Physiology, Department of Biology, University of Hamburg, 22609 Hamburg, Germany
| | - Bianka Steffens
- Plant Physiology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
29
|
Abstract
Several recent studies in a number of model systems including zebrafish, Arabidopsis, and mouse have revealed phenotypic differences between knockouts (i.e., mutants) and knockdowns (e.g., antisense-treated animals). These differences have been attributed to a number of reasons including off-target effects of the antisense reagents. An alternative explanation was recently proposed based on a zebrafish study reporting that genetic compensation was observed in egfl7 mutant but not knockdown animals. Dosage compensation was first reported in Drosophila in 1932, and genetic compensation in response to a gene knockout was first reported in yeast in 1969. Since then, genetic compensation has been documented many times in a number of model organisms; however, our understanding of the underlying molecular mechanisms remains limited. In this review, we revisit studies reporting genetic compensation in higher eukaryotes and outline possible molecular mechanisms, which may include both transcriptional and posttranscriptional processes.
Collapse
Affiliation(s)
- Mohamed A. El-Brolosy
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail:
| |
Collapse
|
30
|
Sandalio LM, Rodríguez-Serrano M, Romero-Puertas MC. Leaf epinasty and auxin: A biochemical and molecular overview. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:187-193. [PMID: 27968987 DOI: 10.1016/j.plantsci.2016.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 05/16/2023]
Abstract
Leaf epinasty involves the downward bending of leaves as a result of disturbances in their growth, with a greater expansion in adaxial cells as compared to abaxial surface cells. The co-ordinated anisotropy of growth in epidermal, palisade mesophyll and vascular tissues contributes to epinasty. This phenotype, which is regulated by auxin (indole-3-acetic acid, IAA), controls plant cell division and elongation by regulating the expression of a vast number of genes. Other plant hormones, such as ethylene, abscisic acid and brassinosteroids, also regulate epinasty and hyponasty. Reactive oxygen species (ROS) accumulation induced by auxins and 2,4-dichlorophenoxyacetic acid (2,4-D) triggers epinasty. The role of ROS and nitric oxide (NO) in the regulation of epinasty has recently been established. Thus, treatment with synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) induces disturbances in the actin cytoskeleton through ROS and NO-dependent post-translational modifications in actin by carbonylation and S-nitrosylation, which cause a reduction in the actin filament. Reorientation of microtubules has become a major feature of the response to auxin. The cytoskeleton is therefore a key player in epinastic development.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.
| | - María Rodríguez-Serrano
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
31
|
Strader LC, Zhao Y. Auxin perception and downstream events. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:8-14. [PMID: 27131035 PMCID: PMC5050066 DOI: 10.1016/j.pbi.2016.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 05/18/2023]
Abstract
Auxin responses have been arbitrarily divided into two categories: genomic and non-genomic effects. Genomic effects are largely mediated by SCFTIR1/AFB-Aux/IAA auxin receptor complexes whereas it has been postulated that AUXIN BINDING PROTEIN 1 (ABP1) controls the non-genomic effects. However, the roles of ABP1 in auxin signaling and plant development were recently called into question. In this paper, we present recent progress in understanding the SCFTIR1/AFB-Aux/IAA pathway. In more detail, we discuss the current understanding of ABP1 research and provide an updated view of ABP1-related genetic materials. Further, we propose a model in which auxin efflux carriers may play a role in auxin perception and we briefly describe recent insight on processes downstream of auxin perception.
Collapse
Affiliation(s)
- Lucia C Strader
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
32
|
Ahn CS, Cho HK, Lee DH, Sim HJ, Kim SG, Pai HS. Functional characterization of the ribosome biogenesis factors PES, BOP1, and WDR12 (PeBoW), and mechanisms of defective cell growth and proliferation caused by PeBoW deficiency in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5217-32. [PMID: 27440937 PMCID: PMC5014167 DOI: 10.1093/jxb/erw288] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The nucleolar protein pescadillo (PES) controls biogenesis of the 60S ribosomal subunit through functional interactions with Block of Proliferation 1 (BOP1) and WD Repeat Domain 12 (WDR12) in plants. In this study, we determined protein characteristics and in planta functions of BOP1 and WDR12, and characterized defects in plant cell growth and proliferation caused by a deficiency of PeBoW (PES-BOP1-WDR12) proteins. Dexamethasone-inducible RNAi of BOP1 and WDR12 caused developmental arrest and premature senescence in Arabidopsis, similar to the phenotype of PES RNAi. Both the N-terminal domain and WD40 repeats of BOP1 and WDR12 were critical for specific associations with 60S/80S ribosomes. In response to nucleolar stress or DNA damage, PeBoW proteins moved from the nucleolus to the nucleoplasm. Kinematic analyses of leaf growth revealed that depletion of PeBoW proteins led to dramatically suppressed cell proliferation, cell expansion, and epidermal pavement cell differentiation. A deficiency in PeBoW proteins resulted in reduced cyclin-dependent kinase Type A activity, causing reduced phosphorylation of histone H1 and retinoblastoma-related (RBR) protein. PeBoW silencing caused rapid transcriptional modulation of cell-cycle genes, including reduction of E2Fa and Cyclin D family genes, and induction of several KRP genes, accompanied by down-regulation of auxin-related genes and up-regulation of jasmonic acid-related genes. Taken together, these results suggest that the PeBoW proteins involved in ribosome biogenesis play a critical role in plant cell growth and survival, and their depletion leads to inhibition of cell-cycle progression, possibly modulated by phytohormone signaling.
Collapse
Affiliation(s)
- Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hui Kyung Cho
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Du-Hwa Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 305-811, Korea
| | - Sang-Gyu Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 305-811, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
33
|
Abstract
Auxin is arguably the most important signaling molecule in plants, and the last few decades have seen remarkable breakthroughs in understanding its production, transport, and perception. Recent investigations have focused on transcriptional responses to auxin, providing novel insight into the functions of the domains of key transcription regulators in responses to the hormonal cue and prominently implicating chromatin regulation in these responses. In addition, studies are beginning to identify direct targets of the auxin-responsive transcription factors that underlie auxin modulation of development. Mechanisms to tune the response to different auxin levels are emerging, as are first insights into how this single hormone can trigger diverse responses. Key unanswered questions center on the mechanism for auxin-directed transcriptional repression and the identity of additional determinants of auxin response specificity. Much of what has been learned in model plants holds true in other species, including the earliest land plants.
Collapse
Affiliation(s)
- Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
34
|
Yang BJ, Han XX, Yin LL, Xing MQ, Xu ZH, Xue HW. Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling. Nat Commun 2016; 7:11388. [PMID: 27109828 PMCID: PMC4848511 DOI: 10.1038/ncomms11388] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/21/2016] [Indexed: 01/14/2023] Open
Abstract
The plant hormone auxin is perceived by the nuclear F-box protein TIR1 receptor family and regulates gene expression through degradation of Aux/IAA transcriptional repressors. Several studies have revealed the importance of the proteasome in auxin signalling, but details on how the proteolytic machinery is regulated and how this relates to degradation of Aux/IAA proteins remains unclear. Here we show that an Arabidopsis homologue of the proteasome inhibitor PI31, which we name PROTEASOME REGULATOR1 (PTRE1), is a positive regulator of the 26S proteasome. Loss-of-function ptre1 mutants are insensitive to auxin-mediated suppression of proteasome activity, show diminished auxin-induced degradation of Aux/IAA proteins and display auxin-related phenotypes. We found that auxin alters the subcellular localization of PTRE1, suggesting this may be part of the mechanism by which it reduces proteasome activity. Based on these results, we propose that auxin regulates proteasome activity via PTRE1 to fine-tune the homoeostasis of Aux/IAA repressor proteins thus modifying auxin activity. Plant responses to auxin require proteasome-mediated degradation of Aux/IAA transcriptional repressor proteins. Here, Yang et al. show that auxin suppresses proteasome activity in a manner dependent on the proteasome regulator PTRE1 and propose a mechanism for fine tuning Aux/IAA homoeostasis.
Collapse
Affiliation(s)
- Bao-Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xin-Xin Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai 200032, People's Republic of China
| | - Lin-Lin Yin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai 200032, People's Republic of China
| | - Mei-Qing Xing
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai 200032, People's Republic of China
| | - Zhi-Hong Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai 200032, People's Republic of China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
35
|
Michalko J, Glanc M, Perrot-Rechenmann C, Friml J. Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein. F1000Res 2016; 5:86. [PMID: 26925228 PMCID: PMC4748827 DOI: 10.12688/f1000research.7654.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 01/07/2023] Open
Abstract
The Auxin Binding Protein 1 (ABP1) is one of the most studied proteins in plants. Since decades ago, it has been the prime receptor candidate for the plant hormone auxin with a plethora of described functions in auxin signaling and development. The developmental importance of ABP1 has recently been questioned by identification of Arabidopsis thaliana abp1 knock-out alleles that show no obvious phenotypes under normal growth conditions. In this study, we examined the contradiction between the normal growth and development of the abp1 knock-outs and the strong morphological defects observed in three different ethanol-inducible abp1 knock-down mutants ( abp1-AS, SS12K, SS12S). By analyzing segregating populations of abp1 knock-out vs. abp1 knock-down crosses we show that the strong morphological defects that were believed to be the result of conditional down-regulation of ABP1 can be reproduced also in the absence of the functional ABP1 protein. This data suggests that the phenotypes in abp1 knock-down lines are due to the off-target effects and asks for further reflections on the biological function of ABP1 or alternative explanations for the missing phenotypic defects in the abp1 loss-of-function alleles.
Collapse
Affiliation(s)
- Jaroslav Michalko
- Institute of Science and Technology Austria, Klosterneuberg, Austria
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | - Matouš Glanc
- Institute of Science and Technology Austria, Klosterneuberg, Austria
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | | | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuberg, Austria
| |
Collapse
|
36
|
Pan X, Chen J, Yang Z. Auxin regulation of cell polarity in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:144-53. [PMID: 26599954 PMCID: PMC7513928 DOI: 10.1016/j.pbi.2015.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/04/2023]
Abstract
Auxin is well known to control pattern formation and directional growth at the organ/tissue levels via the nuclear TIR1/AFB receptor-mediated transcriptional responses. Recent studies have expanded the arena of auxin actions as a trigger or key regulator of cell polarization and morphogenesis. These actions require non-transcriptional responses such as changes in the cytoskeleton and vesicular trafficking, which are commonly regulated by ROP/Rac GTPase-dependent pathways. These findings beg for the question about the nature of auxin receptors that regulate these responses and renew the interest in ABP1 as a cell surface auxin receptor, including the work showing auxin-binding protein 1 (ABP1) interacts with the extracellular domain of the transmembrane kinase (TMK) receptor-like kinases in an auxin-dependent manner, as well as the debate on this auxin binding protein discovered about 40 years ago. This review highlights recent work on the non-transcriptional auxin signaling mechanisms underscoring cell polarity and shape formation in plants.
Collapse
Affiliation(s)
- Xue Pan
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Center for Plant Cell Biology, Institute of Integrated Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Jisheng Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
37
|
Michalko J, Dravecká M, Bollenbach T, Friml J. Embryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM gene. F1000Res 2015; 4:1104. [PMID: 26629335 PMCID: PMC4642851 DOI: 10.12688/f1000research.7143.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 11/20/2022] Open
Abstract
The Auxin Binding Protein1 (ABP1) has been identified based on its ability to bind auxin with high affinity and studied for a long time as a prime candidate for the extracellular auxin receptor responsible for mediating in particular the fast non-transcriptional auxin responses. However, the contradiction between the embryo-lethal phenotypes of the originally described Arabidopsis T-DNA insertional knock-out alleles ( abp1-1 and abp1-1s) and the wild type-like phenotypes of other recently described loss-of-function alleles ( abp1-c1 and abp1-TD1) questions the biological importance of ABP1 and relevance of the previous genetic studies. Here we show that there is no hidden copy of the ABP1 gene in the Arabidopsis genome but the embryo-lethal phenotypes of abp1-1 and abp1-1s alleles are very similar to the knock-out phenotypes of the neighboring gene, BELAYA SMERT ( BSM). Furthermore, the allelic complementation test between bsm and abp1 alleles shows that the embryo-lethality in the abp1-1 and abp1-1s alleles is caused by the off-target disruption of the BSM locus by the T-DNA insertions. This clarifies the controversy of different phenotypes among published abp1 knock-out alleles and asks for reflections on the developmental role of ABP1.
Collapse
Affiliation(s)
- Jaroslav Michalko
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, 3400, Austria ; Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, 95007, Slovakia
| | - Marta Dravecká
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, 3400, Austria
| | - Tobias Bollenbach
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, 3400, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, 3400, Austria
| |
Collapse
|
38
|
Feng M, Kim JY. Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1. Mol Cells 2015; 38:829-35. [PMID: 26467289 PMCID: PMC4625063 DOI: 10.14348/molcells.2015.0205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 02/04/2023] Open
Abstract
It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) (SCF(TIR1/AFB)) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional SCF(TIR1/AFB) auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research.
Collapse
Affiliation(s)
- Mingxiao Feng
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| |
Collapse
|
39
|
Grones P, Chen X, Simon S, Kaufmann WA, De Rycke R, Nodzyński T, Zažímalová E, Friml J. Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5055-65. [PMID: 25922490 DOI: 10.1093/jxb/erv177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The plant hormone auxin is a key regulator of plant growth and development. Auxin levels are sensed and interpreted by distinct receptor systems that activate a broad range of cellular responses. The Auxin-Binding Protein1 (ABP1) that has been identified based on its ability to bind auxin with high affinity is a prime candidate for the extracellular receptor responsible for mediating a range of auxin effects, in particular, the fast non-transcriptional ones. Contradictory genetic studies suggested prominent or no importance of ABP1 in many developmental processes. However, how crucial the role of auxin binding to ABP1 is for its functions has not been addressed. Here, we show that the auxin-binding pocket of ABP1 is essential for its gain-of-function cellular and developmental roles. In total, 16 different abp1 mutants were prepared that possessed substitutions in the metal core or in the hydrophobic amino acids of the auxin-binding pocket as well as neutral mutations. Their analysis revealed that an intact auxin-binding pocket is a prerequisite for ABP1 to activate downstream components of the ABP1 signalling pathway, such as Rho of Plants (ROPs) and to mediate the clathrin association with membranes for endocytosis regulation. In planta analyses demonstrated the importance of the auxin binding pocket for all known ABP1-mediated postembryonic developmental processes, including morphology of leaf epidermal cells, root growth and root meristem activity, and vascular tissue differentiation. Taken together, these findings suggest that auxin binding to ABP1 is central to its function, supporting the role of ABP1 as auxin receptor.
Collapse
Affiliation(s)
- Peter Grones
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Bioinformatics, Ghent University, BE-9052 Gent, Belgium
| | - Xu Chen
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Bioinformatics, Ghent University, BE-9052 Gent, Belgium
| | - Sibu Simon
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Bioinformatics, Ghent University, BE-9052 Gent, Belgium
| | - Walter A Kaufmann
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Riet De Rycke
- VIB Department for Molecular Biomedical Research, VIB, 9052 Gent, Belgium
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Masaryk University, CEITEC MU, CZ-625 00 Brno, Czech Republic
| | - Eva Zažímalová
- Institute of Experimental Botany of the Academy of Sciences of the Czech Republic, 165 02 Prague, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
40
|
Zwiewka M, Nodzyński T, Robert S, Vanneste S, Friml J. Osmotic Stress Modulates the Balance between Exocytosis and Clathrin-Mediated Endocytosis in Arabidopsis thaliana. MOLECULAR PLANT 2015; 8:1175-87. [PMID: 25795554 DOI: 10.1016/j.molp.2015.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 05/18/2023]
Abstract
The sessile life style of plants creates the need to deal with an often adverse environment, in which water availability can change on a daily basis, challenging the cellular physiology and integrity. Changes in osmotic conditions disrupt the equilibrium of the plasma membrane: hypoosmotic conditions increase and hyperosmotic environment decrease the cell volume. Here, we show that short-term extracellular osmotic treatments are closely followed by a shift in the balance between endocytosis and exocytosis in root meristem cells. Acute hyperosmotic treatments (ionic and nonionic) enhance clathrin-mediated endocytosis simultaneously attenuating exocytosis, whereas hypoosmotic treatments have the opposite effects. In addition to clathrin recruitment to the plasma membrane, components of early endocytic trafficking are essential during hyperosmotic stress responses. Consequently, growth of seedlings defective in elements of clathrin or early endocytic machinery is more sensitive to hyperosmotic treatments. We also found that the endocytotic response to a change of osmotic status in the environment is dominant over the presumably evolutionary more recent regulatory effect of plant hormones, such as auxin. These results imply that osmotic perturbation influences the balance between endocytosis and exocytosis acting through clathrin-mediated endocytosis. We propose that tension on the plasma membrane determines the addition or removal of membranes at the cell surface, thus preserving cell integrity.
Collapse
Affiliation(s)
- Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Stéphanie Robert
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Jiří Friml
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium; Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
41
|
Habets MEJ, Offringa R. Auxin Binding Protein 1: A Red Herring After All? MOLECULAR PLANT 2015; 8:1131-4. [PMID: 25917757 DOI: 10.1016/j.molp.2015.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 03/13/2015] [Accepted: 04/21/2015] [Indexed: 05/10/2023]
Affiliation(s)
- Myckel E J Habets
- Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Remko Offringa
- Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
42
|
Chen J, Wang F, Zheng S, Xu T, Yang Z. Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4957-70. [PMID: 26047974 PMCID: PMC4598803 DOI: 10.1093/jxb/erv266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Auxin (indole acetic acid) is a multifunctional phytohormone controlling various developmental patterns, morphogenetic processes, and growth behaviours in plants. The transcription-based pathway activated by the nuclear TRANSPORT INHIBITOR RESISTANT 1/auxin-related F-box auxin receptors is well established, but the long-sought molecular mechanisms of non-transcriptional auxin signalling remained enigmatic until very recently. Along with the establishment of the Arabidopsis leaf epidermal pavement cell (PC) as an exciting and amenable model system in the past decade, we began to gain insight into non-transcriptional auxin signalling. The puzzle-piece shape of PCs forms from intercalated or interdigitated cell growth, requiring local intra- and inter-cellular coordination of lobe and indent formation. Precise coordination of this interdigitated pattern requires auxin and an extracellular auxin sensing system that activates plasma membrane-associated Rho GTPases from plants and subsequent downstream events regulating cytoskeletal reorganization and PIN polarization. Apart from auxin, mechanical stress and cytokinin have been shown to affect PC interdigitation, possibly by interacting with auxin signals. This review focuses upon signalling mechanisms for cell polarity formation in PCs, with an emphasis on non-transcriptional auxin signalling in polarized cell expansion and pattern formation and how different auxin pathways interplay with each other and with other signals.
Collapse
Affiliation(s)
- Jisheng Chen
- Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fei Wang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Shiqin Zheng
- Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tongda Xu
- Center for Plant Stress Biology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
43
|
Kasprzewska A, Carter R, Swarup R, Bennett M, Monk N, Hobbs JK, Fleming A. Auxin influx importers modulate serration along the leaf margin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:705-18. [PMID: 26111009 PMCID: PMC4949643 DOI: 10.1111/tpj.12921] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/15/2015] [Indexed: 05/06/2023]
Abstract
Leaf shape in Arabidopsis is modulated by patterning events in the margin that utilize a PIN-based auxin exporter/CUC2 transcription factor system to define regions of promotion and retardation of growth, leading to morphogenesis. In addition to auxin exporters, leaves also express auxin importers, notably members of the AUX1/LAX family. In contrast to their established roles in embryogenesis, lateral root and leaf initiation, the function of these transporters in leaf development is poorly understood. We report that three of these genes (AUX1, LAX1 and LAX2) show specific and dynamic patterns of expression during early leaf development in Arabidopsis, and that loss of expression of all three genes is required for observation of a phenotype in which morphogenesis (serration) is decreased. We used these expression patterns and mutant phenotypes to develop a margin-patterning model that incorporates an AUX1/LAX1/LAX2 auxin import module that influences the extent of leaf serration. Testing of this model by margin-localized expression of axr3-1 (AXR17) provides further insight into the role of auxin in leaf morphogenesis.
Collapse
Affiliation(s)
- Ania Kasprzewska
- Department of Animal and Plant Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Ross Carter
- Department of Animal and Plant Science, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Physics & Astronomy, University of Sheffield, Sheffield, S10 2TN, UK
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Malcolm Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Nick Monk
- School of Mathematics and Statistics, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jamie K Hobbs
- Department of Physics & Astronomy, University of Sheffield, Sheffield, S10 2TN, UK
| | - Andrew Fleming
- Department of Animal and Plant Science, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
44
|
Li SW, Shi RF, Leng Y. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq. PLoS One 2015; 10:e0132969. [PMID: 26177103 PMCID: PMC4503682 DOI: 10.1371/journal.pone.0132969] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/19/2015] [Indexed: 12/24/2022] Open
Abstract
Adventitious rooting is the most important mechanism underlying vegetative propagation and an important strategy for plant propagation under environmental stress. The present study was conducted to obtain transcriptomic data and examine gene expression using RNA-Seq and bioinformatics analysis, thereby providing a foundation for understanding the molecular mechanisms controlling adventitious rooting. Three cDNA libraries constructed from mRNA samples from mung bean hypocotyls during adventitious rooting were sequenced. These three samples generated a total of 73 million, 60 million, and 59 million 100-bp reads, respectively. These reads were assembled into 78,697 unigenes with an average length of 832 bp, totaling 65 Mb. The unigenes were aligned against six public protein databases, and 29,029 unigenes (36.77%) were annotated using BLASTx. Among them, 28,225 (35.75%) and 28,119 (35.62%) unigenes had homologs in the TrEMBL and NCBI non-redundant (Nr) databases, respectively. Of these unigenes, 21,140 were assigned to gene ontology classes, and a total of 11,990 unigenes were classified into 25 KOG functional categories. A total of 7,357 unigenes were annotated to 4,524 KOs, and 4,651 unigenes were mapped onto 342 KEGG pathways using BLAST comparison against the KEGG database. A total of 11,717 unigenes were differentially expressed (fold change>2) during the root induction stage, with 8,772 unigenes down-regulated and 2,945 unigenes up-regulated. A total of 12,737 unigenes were differentially expressed during the root initiation stage, with 9,303 unigenes down-regulated and 3,434 unigenes up-regulated. A total of 5,334 unigenes were differentially expressed between the root induction and initiation stage, with 2,167 unigenes down-regulated and 3,167 unigenes up-regulated. qRT-PCR validation of the 39 genes with known functions indicated a strong correlation (92.3%) with the RNA-Seq data. The GO enrichment, pathway mapping, and gene expression profiles reveal molecular traits for root induction and initiation. This study provides a platform for functional genomic research with this species.
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Chemical and Biological Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China
| | - Rui-Fang Shi
- School of Chemical and Biological Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China
| | - Yan Leng
- School of Chemical and Biological Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China
| |
Collapse
|
45
|
Abstract
The plant hormone auxin is a key regulator of plant growth and development. Differences in auxin distribution within tissues are mediated by the polar auxin transport machinery, and cellular auxin responses occur depending on changes in cellular auxin levels. Multiple receptor systems at the cell surface and in the interior operate to sense and interpret fluctuations in auxin distribution that occur during plant development. Until now, three proteins or protein complexes that can bind auxin have been identified. SCF(TIR1) [a SKP1-cullin-1-F-box complex that contains transport inhibitor response 1 (TIR1) as the F-box protein] and S-phase-kinase-associated protein 2 (SKP2) localize to the nucleus, whereas auxin-binding protein 1 (ABP1), predominantly associates with the endoplasmic reticulum and cell surface. In this Cell Science at a Glance article, we summarize recent discoveries in the field of auxin transport and signaling that have led to the identification of new components of these pathways, as well as their mutual interaction.
Collapse
Affiliation(s)
- Peter Grones
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Bioinformatics, Ghent University, BE-9052 Gent, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Bioinformatics, Ghent University, BE-9052 Gent, Belgium Mendel Centre for Plant Genomics and Proteomics, Masaryk University, CEITEC MU, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
46
|
Enders TA, Oh S, Yang Z, Montgomery BL, Strader LC. Genome Sequencing of Arabidopsis abp1-5 Reveals Second-Site Mutations That May Affect Phenotypes. THE PLANT CELL 2015; 27:1820-6. [PMID: 26106149 PMCID: PMC4531353 DOI: 10.1105/tpc.15.00214] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/18/2015] [Accepted: 06/04/2015] [Indexed: 05/19/2023]
Abstract
Auxin regulates numerous aspects of plant growth and development. For many years, investigating roles for AUXIN BINDING PROTEIN1 (ABP1) in auxin response was impeded by the reported embryo lethality of mutants defective in ABP1. However, identification of a viable Arabidopsis thaliana TILLING mutant defective in the ABP1 auxin binding pocket (abp1-5) allowed inroads into understanding ABP1 function. During our own studies with abp1-5, we observed growth phenotypes segregating independently of the ABP1 lesion, leading us to sequence the genome of the abp1-5 line described previously. We found that the abp1-5 line we sequenced contains over 8000 single nucleotide polymorphisms in addition to the ABP1 mutation and that at least some of these mutations may originate from the Arabidopsis Wassilewskija accession. Furthermore, a phyB null allele in the abp1-5 background is likely causative for the long hypocotyl phenotype previously attributed to disrupted ABP1 function. Our findings complicate the interpretation of abp1-5 phenotypes for which no complementation test was conducted. Our findings on abp1-5 also provide a cautionary tale illustrating the need to use multiple alleles or complementation lines when attributing roles to a gene product.
Collapse
Affiliation(s)
- Tara A Enders
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Sookyung Oh
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Beronda L Montgomery
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Lucia C Strader
- Department of Biology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
47
|
Grones P, Friml J. ABP1: finally docking. MOLECULAR PLANT 2015; 8:356-358. [PMID: 25702522 DOI: 10.1016/j.molp.2014.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/04/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Affiliation(s)
- Peter Grones
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; Mendel Centre for Plant Genomics and Proteomics, Masaryk University (CEITEC MU), 625 00 Brno, Czech Republic.
| |
Collapse
|
48
|
Liu CM. Auxin Binding Protein 1 (ABP1): a matter of fact. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:234-235. [PMID: 25664934 DOI: 10.1111/jipb.12339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
49
|
Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci U S A 2015; 112:2275-80. [PMID: 25646447 PMCID: PMC4343106 DOI: 10.1073/pnas.1500365112] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Auxin binding protein 1 (ABP1) has been studied for decades. It has been suggested that ABP1 functions as an auxin receptor and has an essential role in many developmental processes. Here we present our unexpected findings that ABP1 is neither required for auxin signaling nor necessary for plant development under normal growth conditions. We used our ribozyme-based CRISPR technology to generate an Arabidopsis abp1 mutant that contains a 5-bp deletion in the first exon of ABP1, which resulted in a frameshift and introduction of early stop codons. We also identified a T-DNA insertion abp1 allele that harbors a T-DNA insertion located 27 bp downstream of the ATG start codon in the first exon. We show that the two new abp1 mutants are null alleles. Surprisingly, our new abp1 mutant plants do not display any obvious developmental defects. In fact, the mutant plants are indistinguishable from wild-type plants at every developmental stage analyzed. Furthermore, the abp1 plants are not resistant to exogenous auxin. At the molecular level, we find that the induction of known auxin-regulated genes is similar in both wild-type and abp1 plants in response to auxin treatments. We conclude that ABP1 is not a key component in auxin signaling or Arabidopsis development.
Collapse
Affiliation(s)
- Yangbin Gao
- Section of Cell and Developmental Biology and
| | - Yi Zhang
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0116; and
| | - Da Zhang
- Section of Cell and Developmental Biology and College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinhua Dai
- Section of Cell and Developmental Biology and
| | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0116; and
| | - Yunde Zhao
- Section of Cell and Developmental Biology and
| |
Collapse
|
50
|
Azizi P, Rafii M, Maziah M, Abdullah S, Hanafi M, Latif M, Rashid A, Sahebi M. Understanding the shoot apical meristem regulation: A study of the phytohormones, auxin and cytokinin, in rice. Mech Dev 2015; 135:1-15. [DOI: 10.1016/j.mod.2014.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
|