1
|
Ramanauskas K, Jiménez‐López FJ, Sánchez‐Cabrera M, Escudero M, Ortiz PL, Arista M, Igić B. Rapid detection of RNase-based self-incompatibility in Lysimachia monelli (Primulaceae). AMERICAN JOURNAL OF BOTANY 2025; 112:e16449. [PMID: 39806558 PMCID: PMC11744440 DOI: 10.1002/ajb2.16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
PREMISE Primroses famously employ a system that simultaneously expresses distyly and filters out self-pollen. Other species in the Primulaceae family, including Lysimachia monelli (blue pimpernel), also express self-incompatibility (SI), but involving a system with distinct features and an unknown molecular genetic basis. METHODS We utilize a candidate-based transcriptome sequencing (RNA-seq) approach, relying on candidate T2/S-RNase Class III and S-linked F-box-motif-containing genes and harnessing the unusual evolutionary and genetic features of SI, to examine whether an RNase-based mechanism underlies SI in L. monelli. We term this approach "SI detection with RNA-seq" (SIDR). RESULTS The results of sequencing, crossing, population genetics, and molecular evolutionary features each support a causal association linking the recovered genotypes with SI phenotypes. The finding of RNase-based SI in Primulaceae (Ericales) all but cements the long-held view that this mechanism was present in the ancestral pentapetal eudicot, whose descendants now comprise two-thirds of angiosperms. It also significantly narrows the plausible maximum age for the heterostyly evolution within the family. CONCLUSIONS SIDR is powerful, flexible, inexpensive, and most critically enables work in often-neglected species. It may be used with or without candidate genes to close enormous gaps in understanding the genetic basis of SI and the history of breeding system evolution.
Collapse
Affiliation(s)
- Karolis Ramanauskas
- Department of Biological SciencesUniversity of Illinois at ChicagoChicago60607ILUSA
| | | | | | - Marcial Escudero
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Pedro L. Ortiz
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Boris Igić
- Department of Biological SciencesUniversity of Illinois at ChicagoChicago60607ILUSA
| |
Collapse
|
2
|
MURASE K, TAKAYAMA S, ISOGAI A. Molecular mechanisms of self-incompatibility in Brassicaceae and Solanaceae. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:264-280. [PMID: 38599847 PMCID: PMC11170026 DOI: 10.2183/pjab.100.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 04/12/2024]
Abstract
Self-incompatibility (SI) is a mechanism for preventing self-fertilization in flowering plants. SI is controlled by a single S-locus with multiple haplotypes (S-haplotypes). When the pistil and pollen share the same S-haplotype, the pollen is recognized as self and rejected by the pistil. This review introduces our research on Brassicaceae and Solanaceae SI systems to identify the S-determinants encoded at the S-locus and uncover the mechanisms of self/nonself-discrimination and pollen rejection. The recognition mechanisms of SI systems differ between these families. A self-recognition system is adopted by Brassicaceae, whereas a collaborative nonself-recognition system is used by Solanaceae. Work by our group and subsequent studies indicate that plants have evolved diverse SI systems.
Collapse
Affiliation(s)
- Kohji MURASE
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan
| | - Seiji TAKAYAMA
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akira ISOGAI
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
3
|
Goonetilleke SN, Croxford AE, March TJ, Wirthensohn MG, Hrmova M, Mather DE. Variation among S-locus haplotypes and among stylar RNases in almond. Sci Rep 2020; 10:583. [PMID: 31953457 PMCID: PMC6969032 DOI: 10.1038/s41598-020-57498-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 12/31/2019] [Indexed: 11/23/2022] Open
Abstract
In many plant species, self-incompatibility systems limit self-pollination and mating among relatives. This helps maintain genetic diversity in natural populations but imposes constraints in agriculture and plant breeding. In almond [Prunus dulcis (Mill.) D.A. Webb], the specificity of self-incompatibility is mainly determined by stylar ribonuclease (S-RNase) and S-haplotype-specific F-box (SFB) proteins, both encoded within a complex locus, S. Prior to this research, a nearly complete sequence was available for one S-locus haplotype. Here, we report complete sequences for four haplotypes and partial sequences for 11 haplotypes. Haplotypes vary in sequences of genes (particularly S-RNase and SFB), distances between genes and numbers and positions of long terminal repeat transposons. Haplotype variation outside of the S-RNase and SFB genes may help maintain functionally important associations between S-RNase and SFB alleles. Fluorescence-based assays were developed to distinguish among some S-RNase alleles. With three-dimensional modelling of five S-RNase proteins, conserved active sites were identified and variation was observed in electrostatic potential and in the numbers, characteristics and positions of secondary structural elements, loop anchoring points and glycosylation sites. A hypervariable region on the protein surface and differences in the number, location and types of glycosylation sites may contribute to determining S-RNase specificity.
Collapse
Affiliation(s)
- Shashi N Goonetilleke
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Adam E Croxford
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Timothy J March
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Michelle G Wirthensohn
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Maria Hrmova
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia.,School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Diane E Mather
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
4
|
Li J, Zhang Y, Song Y, Zhang H, Fan J, Li Q, Zhang D, Xue Y. Electrostatic potentials of the S-locus F-box proteins contribute to the pollen S specificity in self-incompatibility in Petunia hybrida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:45-57. [PMID: 27569591 DOI: 10.1111/tpj.13318] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/04/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Self-incompatibility (SI) is a self/non-self discrimination system found widely in angiosperms and, in many species, is controlled by a single polymorphic S-locus. In the Solanaceae, Rosaceae and Plantaginaceae, the S-locus encodes a single S-RNase and a cluster of S-locus F-box (SLF) proteins to control the pistil and pollen expression of SI, respectively. Previous studies have shown that their cytosolic interactions determine their recognition specificity, but the physical force between their interactions remains unclear. In this study, we show that the electrostatic potentials of SLF contribute to the pollen S specificity through a physical mechanism of 'like charges repel and unlike charges attract' between SLFs and S-RNases in Petunia hybrida. Strikingly, the alteration of a single C-terminal amino acid of SLF reversed its surface electrostatic potentials and subsequently the pollen S specificity. Collectively, our results reveal that the electrostatic potentials act as a major physical force between cytosolic SLFs and S-RNases, providing a mechanistic insight into the self/non-self discrimination between cytosolic proteins in angiosperms.
Collapse
Affiliation(s)
- Junhui Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanzhai Song
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiangbo Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Qun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
| | - Dongfen Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
| | - Yongbiao Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200433, China
| |
Collapse
|
5
|
Fujii S, Kubo KI, Takayama S. Non-self- and self-recognition models in plant self-incompatibility. NATURE PLANTS 2016; 2:16130. [PMID: 27595657 DOI: 10.1038/nplants.2016.130] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/22/2016] [Indexed: 05/25/2023]
Abstract
The mechanisms by which flowering plants choose their mating partners have interested researchers for a long time. Recent findings on the molecular mechanisms of non-self-recognition in some plant species have provided new insights into self-incompatibility (SI), the trait used by a wide range of plant species to avoid self-fertilization and promote outcrossing. In this Review, we compare the known SI systems, which can be largely classified into non-self- or self-recognition systems with respect to their molecular mechanisms, their evolutionary histories and their modes of evolution. We review previous controversies on haplotype evolution in the gametophytic SI system of Solanaceae species in light of a recently elucidated non-self-recognition model. In non-self-recognition SI systems, the transition from self-compatibility (SC) to SI may be more common than previously thought. Reversible transition between SI and SC in plants may have contributed to their adaptation to diverse and fluctuating environments.
Collapse
Affiliation(s)
- Sota Fujii
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ken-Ichi Kubo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| |
Collapse
|
6
|
Akagi T, Henry IM, Morimoto T, Tao R. Insights into the Prunus-Specific S-RNase-Based Self-Incompatibility System from a Genome-Wide Analysis of the Evolutionary Radiation of S Locus-Related F-box Genes. PLANT & CELL PHYSIOLOGY 2016; 57:1281-1294. [PMID: 27081098 DOI: 10.1093/pcp/pcw077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
Self-incompatibility (SI) is an important plant reproduction mechanism that facilitates the maintenance of genetic diversity within species. Three plant families, the Solanaceae, Rosaceae and Plantaginaceae, share an S-RNase-based gametophytic SI (GSI) system that involves a single S-RNase as the pistil S determinant and several F-box genes as pollen S determinants that act via non-self-recognition. Previous evidence has suggested a specific self-recognition mechanism in Prunus (Rosaceae), raising questions about the generality of the S-RNase-based GSI system. We investigated the evolution of the pollen S determinant by comparing the sequences of the Prunus S haplotype-specific F-box gene (SFB) with those of its orthologs in other angiosperm genomes. Our results indicate that the Prunus SFB does not cluster with the pollen S of other plants and diverged early after the establishment of the Eudicots. Our results further indicate multiple F-box gene duplication events, specifically in the Rosaceae family, and suggest that the Prunus SFB gene originated in a recent Prunus-specific gene duplication event. Transcriptomic and evolutionary analyses of the Prunus S paralogs are consistent with the establishment of a Prunus-specific SI system, and the possibility of subfunctionalization differentiating the newly generated SFB from the original pollen S determinant.
Collapse
Affiliation(s)
- Takashi Akagi
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Takuya Morimoto
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
7
|
Ashkani J, Rees DJG. A Comprehensive Study of Molecular Evolution at the Self-Incompatibility Locus of Rosaceae. J Mol Evol 2015; 82:128-45. [PMID: 26714486 DOI: 10.1007/s00239-015-9726-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
The family Rosaceae includes a range of important fruit trees, most of which have the S-RNase-based self-incompatibility (SI). Several models have been developed to explain how pollen (SLF) and pistil (S-RNase) components of the S-locus interact. It was discovered in 2010 that additional SLF proteins are involved in pollen specificity, and a Collaborative Non-Self Recognition model has been proposed for SI in Solanaceae; however, the validity of such model remains to be elucidated for other species. The results of this study support the divergent evolution of the S-locus genes from two Rosaceae subfamilies, Prunoideae/Amygdaloideae and Maloideae, The difference identified in the selective pressures between the two lineages provides evidence for positive selection at specific sites in both the S-RNase and the SLF proteins. The evolutionary findings of this study support the role of multiple SLF proteins leading to a Collaborative Non-Self Recognition model for SI in the Maloideae. Furthermore, the identification of the sites responsible for SI specificity determination and the mapping of these sites onto the modelled tertiary structure of ancestor proteins provide useful information for rational functional redesign and protein engineering for the future engineering of new functional alleles providing increased diversity in the SI system in the Maloideae.
Collapse
Affiliation(s)
- Jahanshah Ashkani
- Biotechnology Department, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa. .,Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa.
| | - D J G Rees
- Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa
| |
Collapse
|
8
|
Kubo KI, Paape T, Hatakeyama M, Entani T, Takara A, Kajihara K, Tsukahara M, Shimizu-Inatsugi R, Shimizu KK, Takayama S. Gene duplication and genetic exchange drive the evolution of S-RNase-based self-incompatibility in Petunia. NATURE PLANTS 2015; 1:14005. [PMID: 27246052 DOI: 10.1038/nplants.2014.5] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/17/2014] [Indexed: 05/22/2023]
Abstract
Self-incompatibility (SI) systems in flowering plants distinguish self- and non-self pollen to prevent inbreeding. While other SI systems rely on the self-recognition between specific male- and female-determinants, the Solanaceae family has a non-self recognition system resulting in the detoxification of female-determinants of S-ribonucleases (S-RNases), expressed in pistils, by multiple male-determinants of S-locus F-box proteins (SLFs), expressed in pollen. It is not known how many SLF components of this non-self recognition system there are in Solanaceae species, or how they evolved. We identified 16-20 SLFs in each S-haplotype in SI Petunia, from a total of 168 SLF sequences using large-scale next-generation sequencing and genomic polymerase chain reaction (PCR) techniques. We predicted the target S-RNases of SLFs by assuming that a particular S-allele must not have a conserved SLF that recognizes its own S-RNase, and validated these predictions by transformation experiments. A simple mathematical model confirmed that 16-20 SLF sequences would be adequate to recognize the vast majority of target S-RNases. We found evidence of gene conversion events, which we suggest are essential to the constitution of a non-self recognition system and also contribute to self-compatible mutations.
Collapse
Affiliation(s)
- Ken-Ichi Kubo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Timothy Paape
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Masaomi Hatakeyama
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
- Functional Genomics Center Zurich, CH-8057 Zurich, Switzerland
| | - Tetsuyuki Entani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Akie Takara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kie Kajihara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Mai Tsukahara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Rie Shimizu-Inatsugi
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Kentaro K Shimizu
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| |
Collapse
|
9
|
Aguiar B, Vieira J, Cunha AE, Fonseca NA, Reboiro-Jato D, Reboiro-Jato M, Fdez-Riverola F, Raspé O, Vieira CP. Patterns of evolution at the gametophytic self-incompatibility Sorbus aucuparia (Pyrinae) S pollen genes support the non-self recognition by multiple factors model. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2423-34. [PMID: 23606363 PMCID: PMC3654429 DOI: 10.1093/jxb/ert098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
S-RNase-based gametophytic self-incompatibility evolved once before the split of the Asteridae and Rosidae. In Prunus (tribe Amygdaloideae of Rosaceae), the self-incompatibility S-pollen is a single F-box gene that presents the expected evolutionary signatures. In Malus and Pyrus (subtribe Pyrinae of Rosaceae), however, clusters of F-box genes (called SFBBs) have been described that are expressed in pollen only and are linked to the S-RNase gene. Although polymorphic, SFBB genes present levels of diversity lower than those of the S-RNase gene. They have been suggested as putative S-pollen genes, in a system of non-self recognition by multiple factors. Subsets of allelic products of the different SFBB genes interact with non-self S-RNases, marking them for degradation, and allowing compatible pollinations. This study performed a detailed characterization of SFBB genes in Sorbus aucuparia (Pyrinae) to address three predictions of the non-self recognition by multiple factors model. As predicted, the number of SFBB genes was large to account for the many S-RNase specificities. Secondly, like the S-RNase gene, the SFBB genes were old. Thirdly, amino acids under positive selection-those that could be involved in specificity determination-were identified when intra-haplotype SFBB genes were analysed using codon models. Overall, the findings reported here support the non-self recognition by multiple factors model.
Collapse
Affiliation(s)
- Bruno Aguiar
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
| | - Ana E. Cunha
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
| | - Nuno A. Fonseca
- CRACS-INESC Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal
| | - David Reboiro-Jato
- Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, University of Vigo, 32004 Ourense, Spain
| | - Miguel Reboiro-Jato
- Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, University of Vigo, 32004 Ourense, Spain
| | - Florentino Fdez-Riverola
- Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, University of Vigo, 32004 Ourense, Spain
| | - Olivier Raspé
- National Botanic Garden of Belgium, Domein van Bouchout, B-1860 Meise, Belgium
| | - Cristina P. Vieira
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Rua do Campo Alegre 823, 4150–180 Porto, Portugal
| |
Collapse
|
10
|
Matsumoto D, Yamane H, Abe K, Tao R. Identification of a Skp1-like protein interacting with SFB, the pollen S determinant of the gametophytic self-incompatibility in Prunus. PLANT PHYSIOLOGY 2012; 159:1252-62. [PMID: 22548785 PMCID: PMC3387707 DOI: 10.1104/pp.112.197343] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/26/2012] [Indexed: 05/23/2023]
Abstract
Many species in Rosaceae, Solanaceae, and Plantaginaceae exhibit S-RNase-based self-incompatibility (SI). In this system, the pistil and pollen specificities are determined by S-RNase and the S locus F-box protein, respectively. The pollen S determinant F-box protein in Prunus (Rosaceae) is referred to by two different terms, SFB (for S-haplotype-specific F-box protein) and SLF (for S locus F box), whereas it is called SLF in Solanaceae and Plantaginaceae. Prunus SFB is thought to be a molecule indispensable for its cognate S-RNase to exert cytotoxicity and to arrest pollen tube growth in incompatible reactions. Although recent studies have demonstrated the molecular function of SCF(SLF) in the SI reaction of Solanaceae and Plantaginaceae, how SFB participates in the Prunus SI mechanism remains to be elucidated. Here we report the identification of sweet cherry (Prunus avium) SFB (PavSFB)-interacting Skp1-like1 (PavSSK1) using a yeast (Saccharomyces cerevisiae) two-hybrid screening against the pollen cDNA library. Phylogenetic analysis showed that PavSSK1 belongs to the same clade as Antirrhinum hispanicum SLF-interacting Skp1-like1 and Petunia hybrida SLF-interacting Skp1-like1 (PhSSK1). In yeast, PavSSK1 interacted not only with PavSFBs from different S haplotypes and Cullin1-likes (PavCul1s), but also with S-locus F-box-likes. A pull-down assay confirmed the interactions between PavSSK1 and PavSFB and between PavSSK1 and PavCul1s. These results collectively indicate that PavSSK1 could be a functional component of the SCF complex and that PavSFB may function as a component of the SCF complex. We discuss the molecular function of PavSFB in self-/nonself-recognition in the gametophytic SI of Prunus.
Collapse
|
11
|
De Franceschi P, Dondini L, Sanzol J. Molecular bases and evolutionary dynamics of self-incompatibility in the Pyrinae (Rosaceae). JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4015-32. [PMID: 22563122 DOI: 10.1093/jxb/ers108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The molecular bases of the gametophytic self-incompatibility (GSI) system of species of the subtribe Pyrinae (Rosaceae), such as apple and pear, have been widely studied in the last two decades. The characterization of S-locus genes and of the mechanisms underlying pollen acceptance or rejection have been topics of major interest. Besides the single pistil-side S determinant, the S-RNase, multiple related S-locus F-box genes seem to be involved in the determination of pollen S specificity. Here, we collect and review the state of the art of GSI in the Pyrinae. We emphasize recent genomic data that have contributed to unveiling the S-locus structure of the Pyrinae, and discuss their consistency with the models of self-recognition that have been proposed for Prunus and the Solanaceae. Experimental data suggest that the mechanism controlling pollen-pistil recognition specificity of the Pyrinae might fit well with the collaborative 'non-self' recognition system proposed for Petunia (Solanaceae), whereas it presents relevant differences with the mechanism exhibited by the species of the closely related genus Prunus, which uses a single evolutionarily divergent F-box gene as the pollen S determinant. The possible involvement of multiple pollen S genes in the GSI system of Pyrinae, still awaiting experimental confirmation, opens up new perspectives to our understanding of the evolution of S haplotypes, and of the evolution of S-RNase-based GSI within the Rosaceae family. Whereas S-locus genes encode the players determining self-recognition, pollen rejection in the Pyrinae seems to involve a complex cascade of downstream cellular events with significant similarities to programmed cell death.
Collapse
Affiliation(s)
- Paolo De Franceschi
- Dipartimento di Colture Arboree (DCA), Università degli Studi di Bologna, Via Giuseppe Fanin 46, 40127 Bologna, Italy.
| | | | | |
Collapse
|
12
|
Iwano M, Takayama S. Self/non-self discrimination in angiosperm self-incompatibility. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:78-83. [PMID: 21968124 DOI: 10.1016/j.pbi.2011.09.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/11/2011] [Accepted: 09/13/2011] [Indexed: 05/22/2023]
Abstract
Self-incompatibility (SI) in angiosperms prevents inbreeding and promotes outcrossing to generate genetic diversity. In many angiosperms, self/non-self recognition in SI is accomplished by male-specificity and female-specificity determinants (S-determinants), encoded at the S-locus. Recent studies using genetic, molecular biological and biochemical approaches have revealed that angiosperms utilize diverse self/non-self discrimination systems, which can be classified into two fundamentally different systems, self-recognition and non-self recognition systems. The self-recognition system, adopted by Brassicaceae and Papaveraceae, depends on a specific interaction between male and female S-determinants derived from the same S-haplotype. The non-self recognition system, found in Solanaceae, depends on non-self (different S-haplotype)-specific interaction between male and female S-determinants, and the male S-determinant genes are duplicated to recognize diverse non-self female S-determinants.
Collapse
Affiliation(s)
- Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan.
| | | |
Collapse
|
13
|
Kakui H, Kato M, Ushijima K, Kitaguchi M, Kato S, Sassa H. Sequence divergence and loss-of-function phenotypes of S locus F-box brothers genes are consistent with non-self recognition by multiple pollen determinants in self-incompatibility of Japanese pear (Pyrus pyrifolia). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:1028-1038. [PMID: 21851432 DOI: 10.1111/j.1365-313x.2011.04752.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The S-RNase-based gametophytic self-incompatibility (SI) of Rosaceae, Solanaceae, and Plantaginaceae is controlled by at least two tightly linked genes located at the complex S locus; the highly polymorphic S-RNase for pistil specificity and the F-box gene (SFB/SLF) for pollen. Self-incompatibility in Prunus (Rosaceae) is considered to represent a 'self recognition by a single factor' system, because loss-of-function of SFB is associated with self-compatibility, and allelic divergence of SFB is high and comparable to that of S-RNase. In contrast, Petunia (Solanaceae) exhibits 'non-self recognition by multiple factors'. However, the distribution of 'self recognition' and 'non-self recognition' SI systems in different taxa is not clear. In addition, in 'non-self recognition' systems, a loss-of-function phenotype of pollen S is unknown. Here we analyze the divergence of SFBB genes, the multiple pollen S candidates, of a rosaceous plant Japanese pear (Pyrus pyrifolia) and show that intrahaplotypic divergence is high and comparable to the allelic diversity of S-RNase while interhaplotypic divergence is very low. Next, we analyzed loss-of-function of the SFBB1 type gene. Genetic analysis showed that pollen with the mutant haplotype S(4sm) lacking SFBB1-S(4) is rejected by pistils with an otherwise compatible S(1) while it is accepted by other non-self pistils. We found that the S(5) haplotype encodes a truncated SFBB1 protein, even though S(5) pollen is accepted normally by pistils with S(1) and other non-self haplotypes. These findings suggest that Japanese pear has a 'non-self recognition by multiple factors' SI system, although it is a species of Rosaceae to which Prunus also belongs.
Collapse
Affiliation(s)
- Hiroyuki Kakui
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Wang N, Kao TH. Self-incompatibility in Petunia: a self/nonself-recognition mechanism employing S-locus F-box proteins and S-RNase to prevent inbreeding. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:267-75. [PMID: 23801440 DOI: 10.1002/wdev.10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many flowering plants producing bisexual flowers have adopted self-incompatibility (SI), a reproductive strategy which allows pistils to distinguish between self and nonself pollen, and to only permit nonself pollen to effect fertilization. To date, three different SI mechanisms have been identified, and this article focuses on the S-RNase-based mechanism using Petunia (Solanaceae) as a model. The genetic basis of this type of SI was established nearly a century ago; the polymorphic S-locus specifies the genetic identity of pollen and the pistil. Molecular genetic studies carried out since the late 1980s have led to the identification of the polymorphic genes at the S-locus that control self/nonself-recognition between pollen and the pistil. The S-RNase gene, which controls pistil specificity, was identified first, and subsequent sequencing of the S-locus region containing S-RNase led to the identification of the S-locus F-box (SLF) gene (now named SLF1). A transgenic approach was used to show that S2-SLF1 (SLF1 of S2-halotype) of Petunia inflata controls pollen specificity. The S-locus contains additional pollen-expressed F-box genes that show sequence similarity with SLF1, and initially they were thought not to be involved in pollen specificity. However, further studies of SLF1 suggested that it is not the only pollen specificity gene. Indeed, it has recently been shown that two previously identified SLF-like genes in P. inflata (now named SLF2 and SLF3) and a yet unknown number of additional SLF-like genes (named SLF4, SLF5, etc.) collaboratively function to control pollen specificity. The significance and implications of this new finding are discussed.
Collapse
Affiliation(s)
- Ning Wang
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, USA
| | | |
Collapse
|
15
|
Stoeckel S, Klein EK, Oddou-Muratorio S, Musch B, Mariette S. Microevolution of S-allele frequencies in wild cherry populations: respective impacts of negative frequency dependent selection and genetic drift. Evolution 2011; 66:486-504. [PMID: 22276543 DOI: 10.1111/j.1558-5646.2011.01457.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Negative frequency dependent selection (NFDS) is supposed to be the main force controlling allele evolution at the gametophytic self-incompatibility locus (S-locus) in strictly outcrossing species. Genetic drift also influences S-allele evolution. In perennial sessile organisms, evolution of allelic frequencies over two generations is mainly shaped by individual fecundities and spatial processes. Using wild cherry populations between two successive generations, we tested whether S-alleles evolved following NFDS qualitative and quantitative predictions. We showed that allelic variation was negatively correlated with parental allelic frequency as expected under NFDS. However, NFDS predictions in finite population failed to predict more than half S-allele quantitative evolution. We developed a spatially explicit mating model that included the S-locus. We studied the effects of self-incompatibility and local drift within populations due to pollen dispersal in spatially distributed individuals, and variation in male fecundity on male mating success and allelic frequency evolution. Male mating success was negatively related to male allelic frequency as expected under NFDS. Spatial genetic structure combined with self-incompatibility resulted in higher effective pollen dispersal. Limited pollen dispersal in structured distributions of individuals and genotypes and unequal pollen production significantly contributed to S-allele frequency evolution by creating local drift effects strong enough to counteract the NFDS effect on some alleles.
Collapse
Affiliation(s)
- Solenn Stoeckel
- Cemagref, Unité de Recherches Ecosystèmes Forestiers, Domaine des Barres, 45290 Nogent-sur-Vernisson, France.
| | | | | | | | | |
Collapse
|
16
|
Paape T, Miyake T, Takebayashi N, Wolf D, Kohn JR. Evolutionary genetics of an S-like polymorphism in Papaveraceae with putative function in self-incompatibility. PLoS One 2011; 6:e23635. [PMID: 21912602 PMCID: PMC3166141 DOI: 10.1371/journal.pone.0023635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 07/21/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Papaver rhoeas possesses a gametophytic self-incompatibility (SI) system not homologous to any other SI mechanism characterized at the molecular level. Four previously published full length stigmatic S-alleles from the genus Papaver exhibited remarkable sequence divergence, but these studies failed to amplify additional S-alleles despite crossing evidence for more than 60 S-alleles in Papaver rhoeas alone. METHODOLOGY/PRINCIPAL FINDINGS Using RT-PCR we identified 87 unique putative stigmatic S-allele sequences from the Papaveraceae Argemone munita, Papaver mcconnellii, P. nudicuale, Platystemon californicus and Romneya coulteri. Hand pollinations among two full-sib families of both A. munita and P. californicus indicate a strong correlation between the putative S-genotype and observed incompatibility phenotype. However, we also found more than two S-like sequences in some individuals of A. munita and P. californicus, with two products co-segregating in both full-sib families of P. californicus. Pairwise sequence divergence estimates within and among taxa show Papaver stigmatic S-alleles to be the most variable with lower divergence among putative S-alleles from other Papaveraceae. Genealogical analysis indicates little shared ancestral polymorphism among S-like sequences from different genera. Lack of shared ancestral polymorphism could be due to long divergence times among genera studied, reduced levels of balancing selection if some or all S-like sequences do not function in incompatibility, population bottlenecks, or different levels of recombination among taxa. Preliminary estimates of positive selection find many sites under selective constraint with a few undergoing positive selection, suggesting that self-recognition may depend on amino acid substitutions at only a few sites. CONCLUSIONS/SIGNIFICANCE Because of the strong correlation between genotype and SI phenotype, sequences reported here represent either functional stylar S-alleles, tightly linked paralogs of the S-locus or a combination of both. The considerable complexity revealed in this study shows we have much to learn about the evolutionary dynamics of self-incompatibility systems.
Collapse
Affiliation(s)
- Timothy Paape
- College of Biological Sciences, University of Minnesota, St. Paul, Minnesota, United States of America.
| | | | | | | | | |
Collapse
|
17
|
Okada K, Tonaka N, Taguchi T, Ichikawa T, Sawamura Y, Nakanishi T, Takasaki-Yasuda T. Related polymorphic F-box protein genes between haplotypes clustering in the BAC contig sequences around the S-RNase of Japanese pear. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1887-902. [PMID: 21172811 PMCID: PMC3060677 DOI: 10.1093/jxb/erq381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Most fruit trees in the Rosaceae exhibit self-incompatibility, which is controlled by the pistil S gene, encoding a ribonuclease (S-RNase), and the pollen S gene at the S-locus. The pollen S in Prunus is an F-box protein gene (SLF/SFB) located near the S-RNase, but it has not been identified in Pyrus and Malus. In the Japanese pear, various F-box protein genes (PpSFBB(-α-γ)) linked to the S-RNase are proposed as the pollen S candidate. Two bacterial artificial chromosome (BAC) contigs around the S-RNase genes of Japanese pear were constructed, and 649 kb around S(4)-RNase and 378 kb around S(2)-RNase were sequenced. Six and 10 pollen-specific F-box protein genes (designated as PpSFBB(4-u1-u4, 4-d1-d2) and PpSFBB(2-u1-u5,) (2-d1-d5), respectively) were found, but PpSFBB(4-α-γ) and PpSFBB(2-γ) were absent. The PpSFBB(4) genes showed 66.2-93.1% amino acid identity with the PpSFBB(2) genes, which indicated clustering of related polymorphic F-box protein genes between haplotypes near the S-RNase of the Japanese pear. Phylogenetic analysis classified 36 F-box protein genes of Pyrus and Malus into two major groups (I and II), and also generated gene pairs of PpSFBB genes and PpSFBB/Malus F-box protein genes. Group I consisted of gene pairs with 76.3-94.9% identity, while group II consisted of gene pairs with higher identities (>92%) than group I. This grouping suggests that less polymorphic PpSFBB genes in group II are non-S pollen genes and that the pollen S candidates are included in the group I PpSFBB genes.
Collapse
Affiliation(s)
- Kazuma Okada
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Nozomi Tonaka
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Tomio Taguchi
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Takehiko Ichikawa
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Yutaka Sawamura
- National Institute of Fruit Tree Science, Tsukuba, Ibaraki 305-8605, Japan
| | - Tetsu Nakanishi
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Takeshi Takasaki-Yasuda
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Kubo KI, Entani T, Takara A, Wang N, Fields AM, Hua Z, Toyoda M, Kawashima SI, Ando T, Isogai A, Kao TH, Takayama S. Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 2010; 330:796-9. [PMID: 21051632 DOI: 10.1126/science.1195243] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Self-incompatibility in flowering plants prevents inbreeding and promotes outcrossing to generate genetic diversity. In Solanaceae, a multiallelic gene, S-locus F-box (SLF), was previously shown to encode the pollen determinant in self-incompatibility. It was postulated that an SLF allelic product specifically detoxifies its non-self S-ribonucleases (S-RNases), allelic products of the pistil determinant, inside pollen tubes via the ubiquitin-26S-proteasome system, thereby allowing compatible pollinations. However, it remained puzzling how SLF, with much lower allelic sequence diversity than S-RNase, might have the capacity to recognize a large repertoire of non-self S-RNases. We used in vivo functional assays and protein interaction assays to show that in Petunia, at least three types of divergent SLF proteins function as the pollen determinant, each recognizing a subset of non-self S-RNases. Our findings reveal a collaborative non-self recognition system in plants.
Collapse
Affiliation(s)
- Ken-ichi Kubo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Indriolo E, Goring DR. Plant science. Pollen gets more complex. Science 2010; 330:767-8. [PMID: 21051623 DOI: 10.1126/science.1198346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Emily Indriolo
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | | |
Collapse
|
20
|
Robertson K, Goldberg EE, Igić B. Comparative evidence for the correlated evolution of polyploidy and self-compatibility in Solanaceae. Evolution 2010; 65:139-55. [PMID: 20722729 DOI: 10.1111/j.1558-5646.2010.01099.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Breakdown of self-incompatibility occurs repeatedly in flowering plants with important evolutionary consequences. In plant families in which self-incompatibility is mediated by S-RNases, previous evidence suggests that polyploidy may often directly cause self-compatibility through the formation of diploid pollen grains. We use three approaches to examine relationships between self-incompatibility and ploidy. First, we test whether evolution of self-compatibility and polyploidy is correlated in the nightshade family (Solanaceae), and find the expected close association between polyploidy and self-compatibility. Second, we compare the rate of breakdown of self-incompatibility in the absence of polyploidy against the rate of breakdown that arises as a byproduct of polyploidization, and we find the former to be greater. Third, we apply a novel extension to these methods to show that the relative magnitudes of the macroevolutionary pathways leading to self-compatible polyploids are time dependent. Over small time intervals, the direct pathway from self-incompatible diploids is dominant, whereas the pathway through self-compatible diploids prevails over longer time scales. This pathway analysis is broadly applicable to models of character evolution in which sequential combinations of rates are compared. Finally, given the strong evidence for both irreversibility of the loss of self-incompatibility in the family and the significant association between self-compatibility and polyploidy, we argue that ancient polyploidy is highly unlikely to have occurred within the Solanaceae, contrary to previous claims based on genomic analyses.
Collapse
Affiliation(s)
- Kelly Robertson
- Department of Biological Sciences, 840 West Taylor St., M/C 067, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| | | | | |
Collapse
|
21
|
Abstract
There are several different types of self-incompatibility in different flowering plant species, and there has recently been progress in understanding their molecular genetics by using combined molecular and evolutionary approaches. Questions include the mechanism of self-incompatibility (both the nature of the proteins encoded by the genes and whether incompatibility systems all have separate genes for the pollen and pistil recognition proteins, which is the focus of this mini-review) and whether these systems involve chromosome regions with suppressed recombination and, if so, the size of these regions.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratory King's Buildings, West Mains Road, Edinburgh, EH9 3JT UK
| |
Collapse
|
22
|
Chen G, Zhang B, Zhao Z, Sui Z, Zhang H, Xue Y. 'A life or death decision' for pollen tubes in S-RNase-based self-incompatibility. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2027-2037. [PMID: 20042540 DOI: 10.1093/jxb/erp381] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mate choice is an essential process during sexual plant reproduction, in which self-incompatibility (SI) is widely adopted as an intraspecific reproductive barrier to inhibit self-fertilization by many flowering plants. Genetic studies show that a single polymorphic S-locus, encoding at least two components from both the pollen and pistil sides, controls the discrimination of self and non-self pollen. In the Solanaceae, Plantaginaceae, and Rosaceae, an S-RNase-based SI mechanism is involved in such a discrimination process. Recent studies have provided some important clues to how a decision is made to accept cross pollen or specifically to reject self pollen. In this review, the molecular features of the pistil and pollen S-specificity factors are briefly summarized and then our current knowledge of the molecular control of cross-pollen compatibility (CPC) and self-pollen incompatibility (SPI) responses, respectively, is presented. The possible biochemical mechanisms of the specificity determinant between the pistil and pollen S factors are discussed and a hypothetical S-RNase endosome sorting model is proposed to illustrate the distinct destinies of pollen tubes following compatible and incompatible pollination.
Collapse
Affiliation(s)
- Guang Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
23
|
Wheeler MJ, Vatovec S, Franklin-Tong VE. The pollen S-determinant in Papaver: comparisons with known plant receptors and protein ligand partners. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2015-25. [PMID: 20097844 DOI: 10.1093/jxb/erp383] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell-cell communication is vital to multicellular organisms and much of it is controlled by the interactions of secreted protein ligands (or other molecules) with cell surface receptors. In plants, receptor-ligand interactions are known to control phenomena as diverse as floral abscission, shoot apical meristem maintenance, wound response, and self-incompatibility (SI). SI, in which 'self' (incompatible) pollen is rejected, is a classic cell-cell recognition system. Genetic control of SI is maintained by an S-locus, in which male (pollen) and female (pistil) S-determinants are encoded. In Papaver rhoeas, PrsS proteins encoded by the pistil S-determinant interact with incompatible pollen to effect inhibition of pollen growth via a Ca(2+)-dependent signalling network, resulting in programmed cell death of 'self' pollen. Recent studies are described here that identified and characterized the pollen S-determinant of SI in P. rhoeas. Cloning of three alleles of a highly polymorphic pollen-expressed gene, PrpS, which is linked to pistil-expressed PrsS revealed that PrpS encodes a novel approximately 20 kDa transmembrane protein. Use of antisense oligodeoxynucleotides provided data showing that PrpS functions in SI and is the pollen S-determinant. Identification of PrpS represents a milestone in the SI field. The nature of PrpS suggests that it belongs to a novel class of 'receptor' proteins. This opens up new questions about plant 'receptor'-ligand pairs, and PrpS-PrsS have been examined in the light of what is known about other receptors and their protein-ligand pairs in plants.
Collapse
Affiliation(s)
- Michael J Wheeler
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
24
|
You MK, Shin HY, Kim YJ, Ok SH, Cho SK, Jeung JU, Yoo SD, Kim JK, Shin JS. Novel bifunctional nucleases, OmBBD and AtBBD1, are involved in abscisic acid-mediated callose deposition in Arabidopsis. PLANT PHYSIOLOGY 2010; 152:1015-29. [PMID: 20018603 PMCID: PMC2815893 DOI: 10.1104/pp.109.147645] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 12/08/2009] [Indexed: 05/23/2023]
Abstract
Screening of the expressed sequence tag library of the wild rice species Oryza minuta revealed an unknown gene that was rapidly and strongly induced in response to attack by a rice fungal pathogen (Magnaporthe oryzae) and an insect (Nilaparvata lugens) and by wounding, abscisic acid (ABA), and methyl jasmonate treatments. Its recombinant protein was identified as a bifunctional nuclease with both RNase and DNase activities in vitro. This gene was designated OmBBD (for O. minuta bifunctional nuclease in basal defense response). Overexpression of OmBBD in an Arabidopsis (Arabidopsis thaliana) model system caused the constitutive expression of the PDF1.2, ABA1, and AtSAC1 genes, which are involved in priming ABA-mediated callose deposition. This activation of defense responses led to an increased resistance against Botrytis cinerea. atbbd1, the knockout mutant of the Arabidopsis ortholog AtBBD1, was susceptible to attack by B. cinerea and had deficient callose deposition. Overexpression of either OmBBD or AtBBD1 in atbbd1 plants complemented the susceptible phenotype of atbbd1 against B. cinerea as well as the deficiency of callose deposition. We suggest that OmBBD and AtBBD1 have a novel regulatory role in ABA-mediated callose deposition.
Collapse
|
25
|
Suzuki G. Recent progress in plant reproduction research: the story of the male gametophyte through to successful fertilization. PLANT & CELL PHYSIOLOGY 2009; 50:1857-64. [PMID: 19825944 DOI: 10.1093/pcp/pcp142] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sexual reproduction is an important biological event not only for evolution but also for breeding in plants. It is a well known fact that Charles Darwin (1809-1882) was interested in the reproduction system of plants as part of his concept of 'species' and 'evolution.' His keen observation and speculation is timeless even in the current post-genome era. In the Darwin anniversary year of 2009, I have summarized recent molecular genetic studies of plant reproduction, focusing especially on male gametophyte development, pollination and fertilization. We are just beginning to understand the molecular mechanisms of the elaborate reproduction system in flowering plants, which have been a mystery for >100 years.
Collapse
Affiliation(s)
- Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Kashiwara, 582-8582 Japan.
| |
Collapse
|
26
|
Sassa H, Kakui H, Minamikawa M. Pollen-expressed F-box gene family and mechanism of S-RNase-based gametophytic self-incompatibility (GSI) in Rosaceae. ACTA ACUST UNITED AC 2009; 23:39-43. [PMID: 20165962 DOI: 10.1007/s00497-009-0111-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 08/13/2009] [Indexed: 11/29/2022]
Abstract
Many species of Rosaceae, Solanaceae, and Plantaginaceae exhibit S-RNase-based self-incompatibility (SI) in which pistil-part specificity is controlled by S locus-encoded ribonuclease (S-RNase). Although recent findings revealed that S locus-encoded F-box protein, SLF/SFB, determines pollen-part specificity, how these pistil- and pollen-part S locus products interact in vivo and elicit the SI reaction is largely unclear. Furthermore, genetic studies suggested that pollen S function can differ among species. In Solanaceae and the rosaceous subfamily Maloideae (e.g., apple and pear), the coexistence of two different pollen S alleles in a pollen breaks down SI of the pollen, a phenomenon known as competitive interaction. However, competitive interaction seems not to occur in the subfamily Prunoideae (e.g., cherry and almond) of Rosaceae. Furthermore, the effect of the deletion of pollen S seems to vary among taxa. This review focuses on the potential differences in pollen-part function between subfamilies of Rosaceae, Maloideae, and Prunoideae, and discusses implications for the mechanistic divergence of the S-RNase-based SI.
Collapse
Affiliation(s)
- Hidenori Sassa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, 271-8510, Japan.
| | | | | |
Collapse
|
27
|
Xue Y, Zhang Y, Yang Q, Li Q, Cheng Z, Dickinson HG. Genetic features of a pollen-part mutation suggest an inhibitory role for the Antirrhinum pollen self-incompatibility determinant. PLANT MOLECULAR BIOLOGY 2009; 70:499-509. [PMID: 19360476 DOI: 10.1007/s11103-009-9487-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 03/29/2009] [Indexed: 05/27/2023]
Abstract
Self-incompatibility (SI), an important barrier to inbreeding in flowering plants, is controlled in many species by a single polymorphic S-locus. In the Solanaceae, two tightly linked S-locus genes, S-RNase and SLF (S-locus F-box)/SFB (S-haplotype-specific F-box), control SI expression in pistil and pollen, respectively. The pollen S-determinant appears to function to inhibit all but self S-RNase in the Solanaceae, but its genetic function in the closely-related Plantaginaceae remains equivocal. We have employed transposon mutagenesis in a member of the Plantaginaceae (Antirrhinum) to generate a pollen-part SI-breakdown mutant Pma1 (Pollen-part mutation in Antirrhinum1). Molecular genetic analyses showed that an extra telocentric chromosome containing AhSLF-S ( 1 ) is present in its self-compatible but not in its SI progeny. Furthermore, analysis of the effects of selection revealed positive selection acting on both SLFs and SFBs, but with a stronger purifying selection on SLFs. Taken together, our results suggest an inhibitor role of the pollen S in the Plantaginaceae (as represented by Antirrhinum), similar to that found in the Solanaceae. The implication of these findings is discussed in the context of S-locus evolution in flowering plants.
Collapse
Affiliation(s)
- Yongbiao Xue
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, West Lincui Road, Chaoyang District, Beijing, China.
| | | | | | | | | | | |
Collapse
|
28
|
Vieira J, Fonseca NA, Vieira CP. RNase-based gametophytic self-incompatibility evolution: Questioning the hypothesis of multiple independent recruitments of the S-pollen gene. J Mol Evol 2009; 69:32-41. [PMID: 19495553 DOI: 10.1007/s00239-009-9249-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/15/2009] [Accepted: 05/12/2009] [Indexed: 11/24/2022]
Abstract
Multiple independent recruitments of the S-pollen component (always an F-box gene) during RNase-based gametophytic self-incompatibility evolution have recently been suggested. Therefore, different mechanisms could be used to achieve the rejection of incompatible pollen in different plant families. This hypothesis is, however, mainly based on the interpretation of phylogenetic analyses, using a small number of divergent nucleotide sequences. In this work we show, based on a large collection of F-box S-like sequences, that the inferred relationship of F-box S-pollen and F-box S-like sequences is dependent on the sequence alignment software and phylogenetic method used. Thus, at present, it is not possible to address the phylogenetic relationship of F-box S-pollen and S-like sequences from different plant families. In Petunia and Malus/Pyrus the putative S-pollen gene(s) show(s) variability patterns different than expected for an S-pollen gene, raising the question of false identification. Here we show that in Petunia, the unexpected features of the putative S-pollen gene are not incompatible with this gene's being the S-pollen gene. On the other hand, it is very unlikely that the Pyrus SFBB-gamma gene is involved in specificity determination.
Collapse
Affiliation(s)
- Jorge Vieira
- Instituto de Biologia Molecular e Celular, University of Porto, Portugal
| | | | | |
Collapse
|
29
|
Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature 2009; 459:992-5. [PMID: 19483678 PMCID: PMC2699350 DOI: 10.1038/nature08027] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 03/27/2009] [Indexed: 11/14/2022]
Abstract
Higher plants produce seed through pollination, using specific interactions between pollen and pistil. Self-incompatibility (SI) is an important mechanism used in many species to prevent inbreeding, and is controlled by a multi-allelic S locus1,2. “Self” (incompatible) pollen is discriminated from “non-self” (compatible) pollen, by interaction of pollen and pistil S locus components, and is subsequently inhibited. In Papaver rhoeas, the pistil S locus product is a small protein that interacts with incompatible pollen, triggering a Ca2+-dependent signalling network, resulting in pollen inhibition and programmed cell death3-7. Here we have cloned three alleles of a highly polymorphic pollen-expressed gene, PrpS, from Papaver and provide evidence that this encodes the pollen S locus determinant. PrpS is a single copy gene linked to the pistil S gene, PrsS. Sequence analysis indicates that PrsS and PrpS are equally ancient and are likely to have co-evolved. PrpS encodes a novel ~20 kDa protein. Consistent with predictions that it is a transmembrane protein, PrpS is associated with the plasma membrane. We show that a predicted extracellular loop segment of PrpS interacts with PrsS and, using PrpS antisense oligonucleotides, we demonstrate that PrpS is involved in S-specific inhibition of incompatible pollen. Identification of PrpS represents a major advance in our understanding of the Papaver SI system. As a novel cell-cell recognition determinant it contributes to the available information concerning the origins and evolution of cell-cell recognition systems involved in discrimination between “self” and “non-self”, which also include histocompatibility systems in primitive chordates and vertebrates.
Collapse
|
30
|
McClure B. Darwin's foundation for investigating self-incompatibility and the progress toward a physiological model for S-RNase-based SI. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1069-1081. [PMID: 19297550 DOI: 10.1093/jxb/erp024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Charles Darwin made extensive observations of the pollination biology of a wide variety of plants. He carefully documented the consequences of self-pollination and described species that were self-sterile but that could easily be crossed with other plants of the same species. He believed that compatibility was controlled by the 'mutual action' of pollen and pistil contents. A genetic model for self-sterility was developed in the early 1900 s based on studies of the compatibility relationships among, what are now referred to as, self-incompatible (SI) Nicotiana species. Today, it is believed that SI in these species is controlled by an interaction between S-RNases produced in the pistil and F-box proteins expressed in pollen and, moreover, that this S-RNase-based SI system is shared by a great diversity of other plant species. Current research is aimed at understanding how the mutual actions of these S-gene products function in the physiological context of pollen tube growth.
Collapse
Affiliation(s)
- Bruce McClure
- Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310, USA.
| |
Collapse
|