1
|
Cai XY, Tang HT, Wang YZ, Ul Haq I, Wang JD, Hou YM. Salivary effector SfPDI modulates plant defense responses to enhance foraging efficiency of Spodoptera frugiperda. Int J Biol Macromol 2025; 308:142548. [PMID: 40147661 DOI: 10.1016/j.ijbiomac.2025.142548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Research on the interactions between herbivorous insects and plants, facilitated by insect secretions, has increasingly emphasized species with chewing mandibles over time. However, the molecular mechanisms underlying the interaction between Spodoptera frugiperda and plants remain poorly understood. In this study, we identified a protein disulfide isomerase (SfPDI) from the salivary glands of S. frugiperda that regulates the interaction between S. frugiperda and plants. We found that SfPDI is highly expressed in the salivary glands of S. frugiperda and is secreted into plants as a secretory protein. The RNAi revealed that SfPDI contributes to the growth and development of S. frugiperda on host plants, while its overexpression in tobacco induces necrosis in tobacco leaves and triggers a burst of reactive oxygen species (ROS). Differentially expressed genes suggested that SfPDI may suppresses the expression of plant JA by positively regulating MYC2 and TIFYs and negatively regulating WRKYs. Notably, SfPDI may modulate these high expression of receptors (NB-LRR, GL-RLK, and RLK) lead to hypersensitive response (HR) cell death and the accumulation of lignification of plant. This study provides a foundation for further exploring insect-plant interaction mechanisms and a theoretical basis for developing insect-resistant germplasm and environmentally friendly pest control strategies.
Collapse
Affiliation(s)
- Xiang-Yun Cai
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua-Tao Tang
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Zhou Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Inzamam Ul Haq
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin-Da Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - You-Ming Hou
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Jia Z, Rui P, Fang X, Han K, Yu T, Lu Y, Zheng H, Chen J, Yan F, Wu G. Proteolysis of host DEAD-box RNA helicase by potyviral proteases activates plant immunity. THE NEW PHYTOLOGIST 2025; 245:1655-1672. [PMID: 39611543 DOI: 10.1111/nph.20318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
The precise mechanisms by which plant viral proteases interact with and cleave host proteins, thereby participating in virus-host interactions, are not well understood. Potyviruses, the largest group of known plant-infecting RNA viruses, are known to rely on the nuclear inclusion protease a (NIa-Pro) for the processing of viral polyproteins. Here, we demonstrate that the proteolytic activity of NIa-Pro from potyvirus turnip mosaic virus (TuMV) is indispensable for inducing hypersensitive cell death in Nicotiana benthamiana. NIa-Pro targets and degrades the host DEAD-box protein 5 (DBP5) via a specific cleavage motif, which initiates host cell death. Both the silencing of DBP5 and the overexpression of NIa-Pro lead to an increased frequency of stop codon readthrough, which could be potentially harmful to the host, as it may result in the production of aberrant proteins. Unlike the NIa-Pro of most other potyviruses, the NIa-Pro of tobacco etch virus can also degrade DBP5 and trigger cell death, in both pepper and N. benthamiana. Furthermore, we discovered that the TuMV-encoded nuclear inclusion b can counteract NIa-Pro-induced cell death by co-opting DBP5. These findings unveil hitherto uncharacterized roles for plant virus proteases in cleaving host proteins and highlight the role of host DBP5 in modulating plant immunity.
Collapse
Affiliation(s)
- Zhaoxing Jia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Penghuan Rui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xinxin Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianqi Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
3
|
Jan F, M P, Kaur S, Khan MA, Sheikh FA, Wani FJ, Saad AA, Singh Y, Kumar U, Gupta V, Thudi M, Saini DK, Kumar S, Varshney RK, Mir RR. Do different wheat ploidy levels respond differently against stripe rust infection: Interplay between reactive oxygen species (ROS) and the antioxidant defense system? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109259. [PMID: 39626524 DOI: 10.1016/j.plaphy.2024.109259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 02/05/2025]
Abstract
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) is the most damaging wheat disease, causing substantial losses in global wheat production and productivity. Our study aimed to unravel the complex reciprocity between reactive oxygen species and the antioxidant defense system as a source of resistance against stripe rust in diploid, tetraploid and hexaploid wheat genotypes. The significant genetic variability for stripe rust in the materials under study was evident as the genotypes showed contrasting responses during both the adult and seedling stages. Our thorough perspective on the biochemical responses of wheat genotypes to stripe rust infection revealed distinct patterns in oxidative damage, antioxidant enzymes and photosynthetic pigments. Principal component analysis revealed inverse correlations between antioxidants and ROS, underscoring their key function in maintaining the cellular redox balance and protecting plants against oxidative damage. Diploid (Ae. tauschii) wild wheat exhibited a better biochemical defense system and greater resistance to stripe rust than the tetraploid (T. durum) and hexaploid (Triticum aestivum) wheat genotypes. The antioxidant enzyme activity of durum wheat was moderate compared to diploid and hexaploid wheat genotypes. The hexaploid wheat genotypes exhibited increased ROS production, reduced antioxidant enzyme activity and decreased photosynthetic pigment levels. This study enhances understanding of the antioxidant defense system across different wheat ploidies facing stripe rust, serving as a valuable strategy for improving crop disease resistance. This study validated the biochemical response of stripe rust-resistant and susceptible candidate genotypes, which will be used to develop genetic resources for discovering stripe rust resistance genes in wheat.
Collapse
Affiliation(s)
- Farkhandah Jan
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India
| | - Parthiban M
- Division of Entomology, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Mohd Anwar Khan
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India
| | - Farooq Ahmad Sheikh
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India
| | - Fehim Jeelani Wani
- Division of Agricultural Economics and Statistics, Faculty of Agriculture (FoA), SKUAST Kashmir, India
| | - A A Saad
- Division of Agronomy, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India
| | - Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS HaryanaAgricultural University, Hisar, 125004, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS HaryanaAgricultural University, Hisar, 125004, India; Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243006, India
| | - Vikas Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, Haryana, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. RajendraPrasad CentralAgricultural University (RPCAU), Pusa, Bihar, India
| | - Dinesh K Saini
- Department of Plant and Soil Science, Texas Tech University, TX, USA
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Rajeev Kumar Varshney
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, 6150, Australia
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India; Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
4
|
Del Prete S, Pagano M. Enzyme Inhibitors as Multifaceted Tools in Medicine and Agriculture. Molecules 2024; 29:4314. [PMID: 39339309 PMCID: PMC11433695 DOI: 10.3390/molecules29184314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Enzymes are molecules that play a crucial role in maintaining homeostasis and balance in all living organisms by catalyzing metabolic and cellular processes. If an enzyme's mechanism of action is inhibited, the progression of certain diseases can be slowed or halted, making enzymes a key therapeutic target. Therefore, identifying or developing enzyme inhibitors is essential for treating significant diseases and ensuring plant defense against pathogens. This review aims to compile information on various types of enzyme inhibitors, particularly those that are well studied and beneficial in both human and plant contexts, by analyzing their mechanisms of action and the resulting benefits. Specifically, this review focuses on three different types of enzyme inhibitors that are most studied, recognized, and cited, each with distinct areas of action and potential benefits. For instance, serine enzyme inhibitors in plants help defend against pathogens, while the other two classes-alpha-glucosidase inhibitors and carbonic anhydrase inhibitors-have significant effects on human health. Furthermore, this review is also intended to assist other researchers by providing valuable insights into the biological effects of specific natural or synthetic inhibitors. Based on the current understanding of these enzyme inhibitors, which are among the most extensively studied in the scientific community, future research could explore their use in additional applications or the development of synthetic inhibitors derived from natural ones. Such inhibitors could aid in defending against pathogenic organisms, preventing the onset of diseases in humans, or even slowing the growth of certain pathogenic microorganisms. Notably, carbonic anhydrase inhibitors have shown promising results in potentially replacing antibiotics, thereby addressing the growing issue of antibiotic resistance.
Collapse
Affiliation(s)
- Sonia Del Prete
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Mario Pagano
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
5
|
Feng H, Jander G. Serine proteinase inhibitors from Nicotiana benthamiana, a nonpreferred host plant, inhibit the growth of Myzus persicae (green peach aphid). PEST MANAGEMENT SCIENCE 2024; 80:4470-4481. [PMID: 38666388 DOI: 10.1002/ps.8148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The green peach aphid (Myzus persicae) is a severe agricultural crop pest that has developed resistance to most current control methods, requiring the urgent development of novel strategies. Plant proteinase inhibitors (PINs) are small proteins that protect plants against pathogens and/or herbivores, likely by preventing efficient protein digestion. RESULTS We identified 67 protease genes in the transcriptomes of three M. persicae lineages (USDA-Red, G002 and G006). Comparison of gene expression levels in aphid guts and whole aphids showed that several proteases, including a highly expressed serine protease, are significantly overexpressed in the guts. Furthermore, we identified three genes encoding serine protease inhibitors (SerPIN-II1, 2 and 3) in Nicotiana benthamiana, which is a nonpreferred host for M. persicae. Using virus-induced gene silencing (VIGS) with a tobacco rattle virus (TRV) vector and overexpression with a turnip mosaic virus (TuMV) vector, we demonstrated that N. benthamiana SerPIN-II1 and SerPIN-II2 cause reduced survival and growth, but do not affect aphid protein content. Likewise, SerPIN-II3 overexpression reduced survival and growth, and serpin-II3 knockout mutations, which we generated using CRISPR/Cas9, increased survival and growth. Protein content was significantly increased in aphids fed on SerPIN-II3 overexpressing plants, yet it was decreased in aphids fed on serpin-II3 mutants. CONCLUSION Our results show that three PIN-IIs from N. benthamiana, a nonpreferred host plant, effectively inhibit M. persicae survival and growth, thereby representing a new resource for the development of aphid-resistant crop plants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Honglin Feng
- Boyce Thompson Institute, Ithaca, NY, USA
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | | |
Collapse
|
6
|
Priyanka G, Singiri JR, Adler-Agmon Z, Sannidhi S, Daida S, Novoplansky N, Grafi G. Detailed analysis of agro-industrial byproducts/wastes to enable efficient sorting for various agro-industrial applications. BIORESOUR BIOPROCESS 2024; 11:45. [PMID: 38703254 PMCID: PMC11069496 DOI: 10.1186/s40643-024-00763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Agriculture-based industries generate huge amounts of byproducts/wastes every year, which are not exploited or disposed efficiently posing an environmental problem with implications to human and animal health. Finding strategies to increase the recycling of agro-industrial byproducts/wastes (AIBWs) is a primary objective of the current study. A thorough examination of AIBWs in conjunction with experimental research is proposed to facilitate sorting for various agro-industrial applications and consequently increasing byproduct/waste utilization. Accordingly, two sustainable, locally available sources of AIBWs, namely, wheat bran (WB) and garlic straw and peels (GSP) were studied in detail including content and composition of proteins, phytohormones and nutritional elements, as well as the effect of AIBW extracts on plant and microbial growth. Hundreds of proteins were recovered from AIBW mainly from WBs, including chaperons, metabolite and protein modifying enzymes, and antimicrobial proteins. In-gel assays showed that WB and GSP possess high protease and nuclease activities. Conspicuously, phytohormone analysis of AIBWs revealed the presence of high levels of strigolactones, stimulants of seed germination of root parasitic weeds, as well as indole acetic acid (IAA) and abscisic acid (ABA). Garlic straw extract strongly inhibited germination of the weed Amaranthus palmeri but not of Abutilon theophrasti and all examined AIBWs significantly affected post-germination growth. Bacterial growth was strongly inhibited by garlic straw, but enhanced by WBs, which can be used at least partly as a bacterial growth medium. Thus, an in-depth examination of AIBW characteristics will enable appropriate sorting for diverse agro-industrial applications, which will increase their utilization and consequently their economic value.
Collapse
Affiliation(s)
- Govindegowda Priyanka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Jeevan R Singiri
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Zachor Adler-Agmon
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Sasank Sannidhi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Spurthi Daida
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Nurit Novoplansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel.
| |
Collapse
|
7
|
Ortolan F, Trenz TS, Delaix CL, Lazzarotto F, Margis-Pinheiro M. bHLH-regulated routes in anther development in rice and Arabidopsis. Genet Mol Biol 2024; 46:e20230171. [PMID: 38372977 PMCID: PMC10875983 DOI: 10.1590/1678-4685-gmb-2023-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024] Open
Abstract
Anther development is a complex process essential for plant reproduction and crop yields. In recent years, significant progress has been made in the identification and characterization of the bHLH transcription factor family involved in anther regulation in rice and Arabidopsis, two extensively studied model plants. Research on bHLH transcription factors has unveiled their crucial function in controlling tapetum development, pollen wall formation, and other anther-specific processes. By exploring deeper into regulatory mechanisms governing anther development and bHLH transcription factors, we can gain important insights into plant reproduction, thereby accelerating crop yield improvement and the development of new plant breeding strategies. This review provides an overview of the current knowledge on anther development in rice and Arabidopsis, emphasizing the critical roles played by bHLH transcription factors in this process. Recent advances in gene expression analysis and functional studies are highlighted, as they have significantly enhanced our understanding of the regulatory networks involved in anther development.
Collapse
Affiliation(s)
- Francieli Ortolan
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Genética e Biologia Molecular, Departamento de Genética, Porto Alegre, RS,
Brazil
| | - Thomaz Stumpf Trenz
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Genética e Biologia Molecular, Departamento de Genética, Porto Alegre, RS,
Brazil
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS,
Brazil
| | - Camila Luiza Delaix
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS,
Brazil
| | - Fernanda Lazzarotto
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Genética e Biologia Molecular, Departamento de Genética, Porto Alegre, RS,
Brazil
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS,
Brazil
| | - Marcia Margis-Pinheiro
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Genética e Biologia Molecular, Departamento de Genética, Porto Alegre, RS,
Brazil
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS,
Brazil
| |
Collapse
|
8
|
Agho CA, Kaurilind E, Tähtjärv T, Runno-Paurson E, Niinemets Ü. Comparative transcriptome profiling of potato cultivars infected by late blight pathogen Phytophthora infestans: Diversity of quantitative and qualitative responses. Genomics 2023; 115:110678. [PMID: 37406973 PMCID: PMC10548088 DOI: 10.1016/j.ygeno.2023.110678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The Estonia potato cultivar Ando has shown elevated field resistance to Phytophthora infestans, even after being widely grown for over 40 years. A comprehensive transcriptional analysis was performed using RNA-seq from plant leaf tissues to gain insight into the mechanisms activated for the defense after infection. Pathogen infection in Ando resulted in about 5927 differentially expressed genes (DEGs) compared to 1161 DEGs in the susceptible cultivar Arielle. The expression levels of genes related to plant disease resistance such as serine/threonine kinase activity, signal transduction, plant-pathogen interaction, endocytosis, autophagy, mitogen-activated protein kinase (MAPK), and others were significantly enriched in the upregulated DEGs in Ando, whereas in the susceptible cultivar, only the pathway related to phenylpropanoid biosynthesis was enriched in the upregulated DEGs. However, in response to infection, photosynthesis was deregulated in Ando. Multi-signaling pathways of the salicylic-jasmonic-ethylene biosynthesis pathway were also activated in response to Phytophthora infestans infection.
Collapse
Affiliation(s)
- C A Agho
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia.
| | - E Kaurilind
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - T Tähtjärv
- Centre of Estonian Rural Research and Knowledge, J. Aamisepa 1, 48309 Jõgeva, Estonia
| | - E Runno-Paurson
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Ü Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
9
|
Pernis M, Salaj T, Bellová J, Danchenko M, Baráth P, Klubicová K. Secretome analysis revealed that cell wall remodeling and starch catabolism underlie the early stages of somatic embryogenesis in Pinus nigra. FRONTIERS IN PLANT SCIENCE 2023; 14:1225424. [PMID: 37600183 PMCID: PMC10436561 DOI: 10.3389/fpls.2023.1225424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Somatic embryogenesis is an efficient mean for rapid micropropagation and preservation of the germplasm of valuable coniferous trees. Little is known about how the composition of secretome tracks down the level of embryogenic capacity. Unlike embryogenic tissue on solid medium, suspension cell cultures enable the study of extracellular proteins secreted into a liquid cultivation medium, avoiding contamination from destructured cells. Here, we present proteomic data of the secretome of Pinus nigra cell lines with contrasting embryogenic capacity, accounting for variability between genotypes. Our results showed that cell wall-related and carbohydrate-acting proteins were the most differentially accumulated. Peroxidases, extensin, α-amylase, plant basic secretory family protein (BSP), and basic secretory protease (S) were more abundant in the medium from the lines with high embryogenic capacity. In contrast, the medium from the low embryogenic capacity cell lines contained a higher amount of polygalacturonases, hothead protein, and expansin, which are generally associated with cell wall loosening or softening. These results corroborated the microscopic findings in cell lines with low embryogenic capacity-long suspensor cells without proper assembly. Furthermore, proteomic data were subsequently validated by peroxidase and α-amylase activity assays, and hence, we conclude that both tested enzyme activities can be considered potential markers of high embryogenic capacity.
Collapse
Affiliation(s)
- Miroslav Pernis
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Terézia Salaj
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Jana Bellová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Klubicová
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
10
|
Namgial T, Singh AK, Singh NP, Francis A, Chattopadhyay D, Voloudakis A, Chakraborty S. Differential expression of genes during recovery of Nicotiana tabacum from tomato leaf curl Gujarat virus infection. PLANTA 2023; 258:37. [PMID: 37405593 PMCID: PMC10322791 DOI: 10.1007/s00425-023-04182-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/10/2023] [Indexed: 07/06/2023]
Abstract
MAIN CONCLUSION Nicotiana tabacum exhibits recovery response towards tomato leaf curl Gujarat virus. Transcriptome analysis revealed the differential expression of defense-related genes. Genes encoding for cysteine protease inhibitor, hormonal- and stress-related to DNA repair mechanism are found to be involved in the recovery process. Elucidating the role of host factors in response to viral infection is crucial in understanding the plant host-virus interaction. Begomovirus, a genus in the family Geminiviridae, is reported throughout the globe and is known to cause serious crop diseases. Tomato leaf curl Gujarat virus (ToLCGV) infection in Nicotiana tabacum resulted in initial symptom expression followed by a quick recovery in the systemic leaves. Transcriptome analysis using next-generation sequencing (NGS) revealed a large number of differentially expressed genes both in symptomatic as well as recovered leaves when compared to mock-inoculated plants. The virus infected N. tabacum results in alteration of various metabolic pathways, phytohormone signaling pathway, defense related protein, protease inhibitor, and DNA repair pathway. RT-qPCR results indicated that Germin-like protein subfamily T member 2 (NtGLPST), Cysteine protease inhibitor 1-like (NtCPI), Thaumatin-like protein (NtTLP), Kirola-like (NtKL), and Ethylene-responsive transcription factor ERF109-like (NtERTFL) were down-regulated in symptomatic leaves when compared to recovered leaves of ToLCGV-infected plants. In contrast, the Auxin-responsive protein SAUR71-like (NtARPSL) was found to be differentially down-regulated in recovered leaves when compared to symptomatic leaves and the mock-inoculated plants. Lastly, Histone 2X protein like (NtHH2L) gene was found to be down-regulated, whereas Uncharacterized (NtUNCD) was up-regulated in both symptomatic as well as recovered leaves compared to the mock-inoculated plants. Taken together, the present study suggests potential roles of the differentially expressed genes that might govern tobacco's susceptibility and/or recovery response towards ToLCGV infection.
Collapse
Affiliation(s)
- T Namgial
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, 11855, Greece
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - A K Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - N P Singh
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - A Francis
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - D Chattopadhyay
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - A Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, 11855, Greece.
| | - S Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Behdarvandi B, Goodwin PH. Effect of Soil and Root Extracts on the Innate Immune Response of American Ginseng ( Panax quinquefolius) to Root Rot Caused by Ilyonectria mors-panacis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2540. [PMID: 37447101 DOI: 10.3390/plants12132540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Panax quinquefolius shows much higher mortality to Ilyonectria mors-panacis root rot when grown in soil previously planted with ginseng than in soil not previously planted with ginseng, which is known as ginseng replant disease. Treatment of ginseng roots with methanol extracts of previous ginseng soils significantly increased root lesion sizes due to I. mors-panacis compared to roots treated with water or methanol extracts of ginseng roots or non-ginseng soils. Inoculation of water-treated roots with I. mors-panacis increased expression of a basic chitinase 1 gene (PqChi-1), neutral pathogenesis-related protein 5 gene (PqPR5) and pathogenesis-related protein 10-2 gene (PqPR10-2), which are related to jasmonic acid (JA), ethylene (ET) or necrotrophic infection, and also increased expression of an acidic β-1-3-glucanase gene (PqGlu), which is related to salicylic acid (SA). Infection did not affect expression of a cysteine protease inhibitor gene (PqCPI). Following infection, roots treated with ginseng root extract mostly showed similar expression patterns as roots treated with water, but roots treated with previous ginseng soil extract showed reduced expression of PqChi-1, PqPR5, PqPR10-2 and PqCPI, but increased expression of PqGlu. Methanol-soluble compound(s) in soil previously planted with ginseng are able to increase root lesion size, suppress JA/ET-related gene expression and trigger SA-related gene expression in ginseng roots during I. mors-panacis infection, and may be a factor contributing to ginseng replant disease.
Collapse
Affiliation(s)
- Behrang Behdarvandi
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W, Canada
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W, Canada
| |
Collapse
|
12
|
Choubey VK, Sakure AA, Kumar S, Vaja MB, Mistry JG, Patel DA. Proteomics profiling and in silico analysis of peptides identified during Fusarium oxysporum infection in castor (Ricinus communis). PHYTOCHEMISTRY 2023:113776. [PMID: 37393971 DOI: 10.1016/j.phytochem.2023.113776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
Castor is industrially important non-edible oil seeds crop severely affected by soil borne pathogen Fusarium oxysporum f. sp. ricini which causes heavy economic losses among the castor growing states in India and worldwide. The development of Fusarium wilt resistant varieties in castor is also challenging because the genes identified for resistance are recessive in nature. Unlike transcriptomics and genomics, proteomics is always a method of choice for quick identification of novel proteins expressed during biological events. Therefore, comparative proteomic approach was employed for identification of proteins released in resistant genotype during Fusarium infection. Protein was extracted from inoculated 48-1 resistant and JI-35 susceptible genotype and subjected to 2D-gel electrophoresis coupled with RPLC-MS/MS. This analysis resulted in 18 unique peptides in resistant genotype and 8 unique peptides in susceptible genotype were identified through MASCOT search database. The real time expression study showed that 5 genes namely CCR 1, Germin like protein 5-1, RPP8, Laccase 4 and Chitinase like 6 was found highly up-regulated during Fusarium oxysporum infection. Furthermore, end point PCR analysis of c-DNA showed amplification of three genes namely Chitinase 6 like, RPP8 and β-glucanase exclusively in resistant genotype indicating that these genes may be involved in resistance phenomenon in castor. Up-regulation of CCR-1 and Laccase 4 involved in lignin biosynthesis provides mechanical strength and may help to prevent the entry of fungal mycelia and protein Germin like 5-1 helps to neutralized ROS by SOD activity. The clear role of these genes can be further confirmed through functional genomics for castor improvement and also for development of transgenic in different crops for wilt resistance.
Collapse
Affiliation(s)
- Vikash Kumar Choubey
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, Gujarat, India
| | - Amar A Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, Gujarat, India.
| | - Sushil Kumar
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, Gujarat, India
| | - Mahesh B Vaja
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, Gujarat, India
| | - Jigar G Mistry
- Department of Genetics & Plant Breeding, BACA, Anand Agricultural University, Anand, 388110, Gujarat, India
| | - D A Patel
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, Gujarat, India
| |
Collapse
|
13
|
Qin H, Cui X, Shu X, Zhang J. The transcription factor VaNAC72-regulated expression of the VaCP17 gene from Chinese wild Vitis amurensis enhances cold tolerance in transgenic grape (V. vinifera). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107768. [PMID: 37247556 DOI: 10.1016/j.plaphy.2023.107768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Papain-like cysteine proteases (PLCP) play diverse roles in plant biology. In our previous studies, a VaCP17 gene from the cold-tolerant Vitis amurensis accession 'Shuangyou' was isolated and its role in cold tolerance was preliminarily verified in Arabidopsis. Here, we confirmed the function of VaCP17 in cold tolerance by stably overexpressing VaCP17 in the cold-sensitive Vitis vinifera cultivar 'Thompson Seedless' and transiently silencing VaCP17 in 'Shuangyou' leaves. The results showed that overexpression of VaCP17 improved the cold tolerance in 'Thompson Seedless' as manifested by reduced electrolyte leakage and malondialdehyde accumulation, chlorophyll homeostasis, increased antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) activitiy, and rapid up-regulation of stress-related genes (VvKIN2, VvRD29B, and VvNCED1) compared with wild-type line. Conversely, RNA interfere-mediated knockdown of VaCP17 in 'Shuangyou' leaves resulted in opposite physiological and biochemical responses and exacerbated leaves wilting compared with control. Subsequently, by yeast one-hybrid, dual-luciferase assays, and transient overexpression of VaNAC72 in 'Shuangyou' leaves, a VaCP17-interacting protein VaNAC72 was confirmed to promote the expression of VaCP17 under cold stress, which depends on abscisic acid, methyl jasmonate, and salicylic acid signaling. By yeast two-hybrids, bimolecular fluorescence complementation and luciferase complementation assays, it was found that VaNAC72 could form homodimers or heterodimers with VaCBF2. Furthermore, co-expression analysis confirmed that VaNAC72 works synergistically with VaCBF2 or VaCP17 to up-regulate the expression of VaCP17. In conclusion, the study revealed that the VaNAC72-VaCP17 module positively regulated cold tolerance in grapevine, and this knowledge is useful for further revealing the cold-tolerance mechanism of V. amurensis and grape molecular breeding.
Collapse
Affiliation(s)
- Haoxiang Qin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaoyue Cui
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xin Shu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
14
|
Li Y, Niu L, Zhou X, Liu H, Tai F, Wang W. Modifying the Expression of Cysteine Protease Gene PCP Affects Pollen Development, Germination and Plant Drought Tolerance in Maize. Int J Mol Sci 2023; 24:ijms24087406. [PMID: 37108569 PMCID: PMC10138719 DOI: 10.3390/ijms24087406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Cysteine proteases (CPs) are vital proteolytic enzymes that play critical roles in various plant processes. However, the particular functions of CPs in maize remain largely unknown. We recently identified a pollen-specific CP (named PCP), which highly accumulated on the surface of maize pollen. Here, we reported that PCP played an important role in pollen germination and drought response in maize. Overexpression of PCP inhibited pollen germination, while mutation of PCP promoted pollen germination to some extent. Furthermore, we observed that germinal apertures of pollen grains in the PCP-overexpression transgenic lines were excessively covered, whereas this phenomenon was not observed in the wild type (WT), suggesting that PCP regulated pollen germination by affecting the germinal aperture structure. In addition, overexpression of PCP enhanced drought tolerance in maize plants, along with the increased activities of the antioxidant enzymes and the decreased numbers of the root cortical cells. Conversely, mutation of PCP significantly impaired drought tolerance. These results may aid in clarifying the precise functions of CPs in maize and contribute to the development of drought-tolerant maize materials.
Collapse
Affiliation(s)
- Yanhua Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoli Zhou
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
15
|
Singh L, Coronejo S, Pruthi R, Chapagain S, Bhattarai U, Subudhi PK. Genetic Dissection of Alkalinity Tolerance at the Seedling Stage in Rice ( Oryza sativa) Using a High-Resolution Linkage Map. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233347. [PMID: 36501386 PMCID: PMC9738157 DOI: 10.3390/plants11233347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/12/2023]
Abstract
Although both salinity and alkalinity result from accumulation of soluble salts in soil, high pH and ionic imbalance make alkaline stress more harmful to plants. This study aimed to provide molecular insights into the alkalinity tolerance using a recombinant inbred line (RIL) population developed from a cross between Cocodrie and Dular with contrasting response to alkalinity stress. Forty-six additive QTLs for nine morpho-physiological traits were mapped on to a linkage map of 4679 SNPs under alkalinity stress at the seedling stage and seven major-effect QTLs were for alkalinity tolerance scoring, Na+ and K+ concentrations and Na+:K+ ratio. The candidate genes were identified based on the comparison of the impacts of variants of genes present in five QTL intervals using the whole genome sequences of both parents. Differential expression of no apical meristem protein, cysteine protease precursor, retrotransposon protein, OsWAK28, MYB transcription factor, protein kinase, ubiquitin-carboxyl protein, and NAD binding protein genes in parents indicated their role in response to alkali stress. Our study suggests that the genetic basis of tolerance to alkalinity stress is most likely different from that of salinity stress. Introgression and validation of the QTLs and genes can be useful for improving alkalinity tolerance in rice at the seedling stage and advancing understanding of the molecular genetic basis of alkalinity stress adaptation.
Collapse
|
16
|
Rose T, Wilkinson M, Lowe C, Xu J, Hughes D, Hassall KL, Hassani‐Pak K, Amberkar S, Noleto‐Dias C, Ward J, Heuer S. Novel molecules and target genes for vegetative heat tolerance in wheat. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:264-289. [PMID: 37284432 PMCID: PMC10168084 DOI: 10.1002/pei3.10096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 06/08/2023]
Abstract
To prevent yield losses caused by climate change, it is important to identify naturally tolerant genotypes with traits and related pathways that can be targeted for crop improvement. Here we report on the characterization of contrasting vegetative heat tolerance in two UK bread wheat varieties. Under chronic heat stress, the heat-tolerant cultivar Cadenza produced an excessive number of tillers which translated into more spikes and higher grain yield compared to heat-sensitive Paragon. RNAseq and metabolomics analyses revealed that over 5000 genotype-specific genes were differentially expressed, including photosynthesis-related genes, which might explain the observed ability of Cadenza to maintain photosynthetic rate under heat stress. Around 400 genes showed a similar heat-response in both genotypes. Only 71 genes showed a genotype × temperature interaction. As well as known heat-responsive genes such as heat shock proteins (HSPs), several genes that have not been previously linked to the heat response, particularly in wheat, have been identified, including dehydrins, ankyrin-repeat protein-encoding genes, and lipases. Contrary to primary metabolites, secondary metabolites showed a highly differentiated heat response and genotypic differences. These included benzoxazinoid (DIBOA, DIMBOA), and phenylpropanoids and flavonoids with known radical scavenging capacity, which was assessed via the DPPH assay. The most highly heat-induced metabolite was (glycosylated) propanediol, which is widely used in industry as an anti-freeze. To our knowledge, this is the first report on its response to stress in plants. The identified metabolites and candidate genes provide novel targets for the development of heat-tolerant wheat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sandeep Amberkar
- Rothamsted ResearchHarpendenUK
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | | | | | - Sigrid Heuer
- Rothamsted ResearchHarpendenUK
- National Institute of Agricultural Botany (NIAB)CambridgeUK
| |
Collapse
|
17
|
Mangena P. Pleiotropic effects of recombinant protease inhibitors in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:994710. [PMID: 36119571 PMCID: PMC9478479 DOI: 10.3389/fpls.2022.994710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Recombinant gene encoded protease inhibitors have been identified as some of the most effective antidigestive molecules to guard against proteolysis of essential proteins and plant attacking proteases from herbivorous pests and pathogenic microorganisms. Protease inhibitors (PIs) can be over expressed in transgenic plants to complement internal host defense systems, Bt toxins in genetically modified pest resistance and abiotic stress tolerance achieved through cystatins expression. Although the understanding of the role of proteolytic enzymes and their inhibitors encoded by both endogenous and transgenes expressed in crop plants has significantly advanced, their implication in biological systems still requires further elucidations. This paper, therefore, succinctly reviewed most recently published literature on recombinant proteases inhibitors (RPIs), focusing mainly on their unintended consequences in plants, other living organisms, and the environment. The review discusses major negative and unintended effects of RPIs involving the inhibitors' non-specificity on protease enzymes, non-target organisms and ubiquitous versatility in their mechanism of inhibition. The paper also discusses some direct and indirect effects of RPIs such as degradation by distinct classes of proteases, reduced functionality due to plant exposure to severe environmental stress and any other potential negative influences exerted on both the host plant as well as the environment. These pleiotropic effects must be decisively monitored to eliminate and prevent any potential adverse effects that transgenic plants carrying recombinant inhibitor genes may have on non-target organisms and biodiversity.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, Faculty of Science and Agriculture, School of Molecular and Life Sciences, University of Limpopo, Polokwane, Limpopo, South Africa
| |
Collapse
|
18
|
Microscopic and Transcriptomic Comparison of Powdery Mildew Resistance in the Progenies of Brassica carinata × B. napus. Int J Mol Sci 2022; 23:ijms23179961. [PMID: 36077359 PMCID: PMC9456427 DOI: 10.3390/ijms23179961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Powdery mildew is a widespread disease in rapeseed due to a lack of resistant germplasm. We compared the foliar epidermal features and transcriptomic responses between the resistant (R) and susceptible (S) plants among the two parents and progenies of Brassica carinata × B. napus. The amount of cuticular wax and callose deposition on the R plants was much lower than that on the S plants; hence, these chemicals are not all essential to pre-penetration resistance, although the cuticular wax on the R plants had more needle-like crystals. A total of 1049 genes involved in various defense responses were expressed differentially among the R/S plants. The expression levels of two well-known susceptibility genes, MLO6 and MLO12, were much lower in the R plant, indicating an important role in PM resistance. A set of genes related to wax biosynthesis (KCS6, LACS2, CER and MAH1), cell wall modification (PMR5, PMEI9, RWA2, PDCB1 and C/VIF2), chloroplast function (Chlorophyllase-1, OEP161, PSBO1, CP29B and CSP41b), receptor kinase activity (ERECTA, BAK1, BAM2, LYM1, LYM3, RLK902, RLP11, ERL1 and ERL2), IPCS2, GF14 lambda, RPS4 and RPS6 were highly expressed in the R plants. In the S plants, most highly expressed genes were involved in later defense responses, including CERK1, LYK4, LIK1, NIMIN-1, CHITINASE 10, PECTINESTERASE, CYP81F2 and RBOHF and the genes involved in salicylic acid-dependent systemic acquired resistance and hypersensitive responses, indicating the occurrence of severe fungal infection. The results indicate that some uncertain pre-penetration defenses are pivotal for high resistance, while post-penetration defenses are more important for the S plant survival.
Collapse
|
19
|
Grover S, Cardona JB, Zogli P, Alvarez S, Naldrett MJ, Sattler SE, Louis J. Reprogramming of sorghum proteome in response to sugarcane aphid infestation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111289. [PMID: 35643611 DOI: 10.1016/j.plantsci.2022.111289] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Sugarcane aphid (SCA; Melanaphis sacchari Zehntner) is a key piercing-sucking pest of sorghum (Sorghum bicolor) that cause significant yield losses. While feeding on host plants, complex signaling networks are invoked from recognition of insect attack to induction of plant defenses. Consequently, these signaling networks lead to the production of insecticidal compounds or limited access of nutrients to insects. Previously, several studies were published on the transcriptomics analysis of sorghum in response to SCA infestation, but no information is available on the physiological changes of sorghum at the proteome level. We used the SCA resistant sorghum genotype SC265 for the global proteomics analysis after 1 and 7 days of SCA infestation using the TMT-plex technique. Peptides matching a total of 4211 proteins were identified and 158 proteins were differentially expressed at day 1 and 7. Overall, proteome profiling of SC265 after SCA infestation at days 1 and 7 revealed the suppression of plant defense-related proteins and upregulation of plant defense and signaling-related proteins, respectively. The plant defense responses based on proteome data were validated using electrical penetration graph (EPG) technique to observe changes in aphid feeding. Feeding behavior analyses revealed that SCA spent significantly longer time in phloem phase on SCA infested plants for day 1 and lesser time in day 7 SCA infested sorghum plants, compared to their respective control plants. Overall, our study provides insights into underlying mechanisms that contribute to sorghum resistance to SCA.
Collapse
Affiliation(s)
- Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | | | - Prince Zogli
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, US Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 68583, USA.
| |
Collapse
|
20
|
Osmani Z, Sabet MS, Nakahara KS. Aspartic protease inhibitor enhances resistance to potato virus Y and A in transgenic potato plants. BMC PLANT BIOLOGY 2022; 22:241. [PMID: 35549883 PMCID: PMC9097181 DOI: 10.1186/s12870-022-03596-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Viruses are the major threat to commercial potato (Solanum tuberosum) production worldwide. Because viral genomes only encode a small number of proteins, all stages of viral infection rely on interactions between viral proteins and host factors. Previously, we presented a list of the most important candidate genes involved in potato plants' defense response to viruses that are significantly activated in resistant cultivars. Isolated from this list, Aspartic Protease Inhibitor 5 (API5) is a critical host regulatory component of plant defense responses against pathogens. The purpose of this study is to determine the role of StAPI5 in defense of potato against potato virus Y and potato virus A, as well as its ability to confer virus resistance in a transgenic susceptible cultivar of potato (Desiree). Potato plants were transformed with Agrobacterium tumefaciens via a construct encoding the potato StAPI5 gene under the control of the Cauliflower mosaic virus (CaMV) 35S promoter. RESULTS Transgenic plants overexpressing StAPI5 exhibited comparable virus resistance to non-transgenic control plants, indicating that StAPI5 functions in gene regulation during virus resistance. The endogenous StAPI5 and CaMV 35S promoter regions shared nine transcription factor binding sites. Additionally, the net photosynthetic rate, stomatal conductivity, and maximum photochemical efficiency of photosystem II were significantly higher in virus-infected transgenic plants than in wild-type plants. CONCLUSION Overall, these findings indicate that StAPI5 may be a viable candidate gene for engineering plant disease resistance to viruses that inhibit disease development.
Collapse
Affiliation(s)
- Zhila Osmani
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14111713116, Iran
| | - Mohammad Sadegh Sabet
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14111713116, Iran.
| | - Kenji S Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Yingqi H, Lv Y, Zhang J, Ahmad N, Li Y, Wang N, Xiuming L, Na Y, Li X. Identification and functional characterization of safflower cysteine protease 1 as negative regulator in response to low-temperature stress in transgenic Arabidopsis. PLANTA 2022; 255:106. [PMID: 35445865 DOI: 10.1007/s00425-022-03875-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
We performed genome-wide and heterologous expression analysis of the safflower cysteine protease family and found that inhibition of CtCP1 expression enhanced plant cold resistance. Cysteine protease (CP) is mainly involved in plant senescence and stress responses. However, the molecular mechanism of endogenous cysteine protease inhibition in plant stress tolerance is yet unknown. Here, we report the discovery and functional characterization of a candidate CP1 gene from safflower. The conserved structural topology of CtCPs revealed important insights into their possible roles in plant growth and stress responses. The qRT-PCR results implied that most of CtCP genes were highly expressed at fading stage suggesting that they are most likely involved in senescence process. The CtCP1 expression was significantly induced at different time points under cold, NaCl, H2O2 and PEG stress, respectively. The in-vitro activity of heterologously expressed CtCP1 protein showed highest protease activity for casein and azocasein substrates. The expression and phenotypic data together with antioxidant activity and physiological indicators revealed that transgenic plants inhibited by CtCP1-anti showed higher tolerance to low temperature than WT and CtCP1-OE plants. Our findings demonstrated the discovery of a new Cysteine protease 1 gene that exerted a detrimental effect on transgenic Arabidopsis under low-temperature stress.
Collapse
Affiliation(s)
- Hong Yingqi
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Yanxi Lv
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Jianyi Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Naveed Ahmad
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Youbao Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Nan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Liu Xiuming
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
- Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Yao Na
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Xiaokun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
- Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
22
|
What Worth the Garlic Peel. Int J Mol Sci 2022; 23:ijms23042126. [PMID: 35216242 PMCID: PMC8875005 DOI: 10.3390/ijms23042126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Plants have two types of reproduction: sexual, resulting in embryo production, and asexual, resulting in vegetative bodies commonly derived from stems and roots (e.g., bulb, tuber). Dead organs enclosing embryos (DOEEs, such as seed coat and pericarp) are emerging as central components of the dispersal unit acting to nurture the embryo and ensure its survival in the habitat. Here we wanted to investigate the properties of dead organs enclosing plant asexual reproductive bodies, focusing on the garlic (Allium sativum) bulb. We investigated the biochemical and biological properties of the outer peel enclosing the bulb and the inner peel enclosing the clove using various methodologies, including bioassays, proteomics, and metabolomics. The garlic peels differentially affected germination and post-germination growth, with the outer peel demonstrating a strong negative effect on seed germination of Sinapis alba and on post-germination growth of Brassica juncea. Proteome analysis showed that dead garlic peels possess 67 proteins, including chitinases and proteases, which retained their enzymatic activity. Among primary metabolites identified in garlic peels, the outer peel accumulated multiple sugars, including rhamnose, mannitol, sorbitol, and trehalose, as well as the modified amino acid 5-hydroxylysine, known as a major component of collagen, at a higher level compared to the clove and the inner peel. Growth of Escherichia coli and Staphylococcus aureus was promoted by garlic peel extracts but inhibited by clove extract. All extracts strongly inhibited spore germination of Fusarium oxysporum f.sp. melonis. Thus, the garlic peels not only provide physical protection to vegetative offspring but also appear to function as a refined arsenal of proteins and metabolites for enhancing growth and development, combating potential pathogens, and conferring tolerance to abiotic stresses.
Collapse
|
23
|
Dervisi I, Haralampidis K, Roussis A. Investigation of the interaction of a papain-like cysteine protease (RD19c) with selenium-binding protein 1 (SBP1) in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111157. [PMID: 35067295 DOI: 10.1016/j.plantsci.2021.111157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
AtRD19c is a member of the papain-like cysteine proteases known for its participation in anther development after its maturation by βVPE (vacuolar processing enzyme). This papain-like cysteine protease was identified as an interacting protein of AtSBP1 (selenium binding protein 1) in a yeast two-hybrid screening. To confirm this interaction, we studied AtRD19c with respect to its expression and ability to interact with AtSBP1. The highest gene expression levels of AtRD19c were observed in the roots of 10-day-old seedlings, whereas minimum levels appeared in the hypocotyls of 10-day-old seedlings and flowers. AtRD19c expression was upregulated by selenium, and analysis of its promoter activity showed colocalization of a reporter gene (GUS) with AtSBP1. Additionally, the AtRD19c expression pattern was upregulated in the presence of selenite, indicating its participation in the Se response network. Confocal fluorescence microscopy revealed that AtRD19c localizes in the root tip, lateral roots, and leaf trichomes. Finally, we confirmed the physical interaction between AtRD19c and AtSBP1 and showed the importance of the first 175 aa of the AtSBP1 polypeptide in this interaction. Importantly, the AtRD19c-AtSBP1 interaction was also demonstrated in planta by employing bimolecular fluorescent complementation (BiFC) in a protoplast system.
Collapse
Affiliation(s)
- Irene Dervisi
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece.
| | - Kosmas Haralampidis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece.
| | - Andreas Roussis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece.
| |
Collapse
|
24
|
Transcriptome analysis of Kentucky bluegrass subject to drought and ethephon treatment. PLoS One 2021; 16:e0261472. [PMID: 34914788 PMCID: PMC8675742 DOI: 10.1371/journal.pone.0261472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
Kentucky bluegrass (Poa pratensis L.) is an excellent cool-season turfgrass utilized widely in Northern China. However, turf quality of Kentucky bluegrass declines significantly due to drought. Ethephon seeds-soaking treatment has been proved to effectively improve the drought tolerance of Kentucky bluegrass seedlings. In order to investigate the effect of ethephon leaf-spraying method on drought tolerance of Kentucky bluegrass and understand the underlying mechanism, Kentucky bluegrass plants sprayed with and without ethephon are subjected to either drought or well watered treatments. The relative water content and malondialdehyde conent were measured. Meanwhile, samples were sequenced through Illumina. Results showed that ethephon could improve the drought tolerance of Kentucky bluegrass by elevating relative water content and decreasing malondialdehyde content under drought. Transcriptome analysis showed that 58.43% transcripts (254,331 out of 435,250) were detected as unigenes. A total of 9.69% (24,643 out of 254,331) unigenes were identified as differentially expressed genes in one or more of the pairwise comparisons. Differentially expressed genes due to drought stress with or without ethephon pre-treatment showed that ethephon application affected genes associated with plant hormone, signal transduction pathway and plant defense, protein degradation and stabilization, transportation and osmosis, antioxidant system and the glyoxalase pathway, cell wall and cuticular wax, fatty acid unsaturation and photosynthesis. This study provides a theoretical basis for revealing the mechanism for how ethephon regulates drought response and improves drought tolerance of Kentucky bluegrass.
Collapse
|
25
|
Che R, Hu B, Wang W, Xiao Y, Liu D, Yin W, Tong H, Chu C. POLLEN STERILITY, a novel suppressor of cell division, is required for timely tapetal programmed cell death in rice. SCIENCE CHINA-LIFE SCIENCES 2021; 65:1235-1247. [PMID: 34767152 DOI: 10.1007/s11427-021-2011-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/18/2021] [Indexed: 11/28/2022]
Abstract
Timely programmed cell death (PCD) of the tapetum supplying nutrients to microspores is a prerequisite for normal pollen development. Here we identified a unique mutant of rice (Oryza sativa L.), pollen sterility (post), which showed aborted pollens accompanied with extra-large husks. Due to failure of timely PCD of tapetal cells, post exhibited abnormal pollen wall patterning and defective pollen grains. By map-based cloning, we identified a causal gene, POST, encoding a novel protein which is ubiquitously localized in cells. RNA in situ hybridization showed that POST is highly detected in the tapetum and microspores at stages 8 and 9. Transcriptome analysis indicated that POST could function as an important regulator of the metabolic process involved in tapetal PCD. Compared with wild-type rice, post mutant has an increased cell number resulting from elevated expression of cell cycle associated genes in grain husks. Overexpression of POST inhibits grain size in wild type, while appropriate expression of POST in post mutant can recover the seed fertility but has little effect on the large grains, illustrating that fine-tuning of POST expression could be a potential strategy for rice yield improvement. The connection between cell division and cell death conferred by POST provides novel insights into the understanding of the tapetal PCD process.
Collapse
Affiliation(s)
- Ronghui Che
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,School of Biological and Science Technology, University of Jinan, Jinan, 250022, China
| | - Bin Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yunhua Xiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dapu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenchao Yin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
26
|
Gechev T, Lyall R, Petrov V, Bartels D. Systems biology of resurrection plants. Cell Mol Life Sci 2021; 78:6365-6394. [PMID: 34390381 PMCID: PMC8558194 DOI: 10.1007/s00018-021-03913-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Plant species that exhibit vegetative desiccation tolerance can survive extreme desiccation for months and resume normal physiological activities upon re-watering. Here we survey the recent knowledge gathered from the sequenced genomes of angiosperm and non-angiosperm desiccation-tolerant plants (resurrection plants) and highlight some distinct genes and gene families that are central to the desiccation response. Furthermore, we review the vast amount of data accumulated from analyses of transcriptomes and metabolomes of resurrection species exposed to desiccation and subsequent rehydration, which allows us to build a systems biology view on the molecular and genetic mechanisms of desiccation tolerance in plants.
Collapse
Affiliation(s)
- Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria.
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., Plovdiv, 4000, Bulgaria.
| | - Rafe Lyall
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
| | - Veselin Petrov
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
- Department of Plant Physiology, Biochemistry and Genetics, Agricultural University - Plovdiv, 12, Mendeleev Str, Plovdiv, 4000, Bulgaria
| | | |
Collapse
|
27
|
Genome-Wide Identification and Characterization of the Cystatin Gene Family in Bread Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:ijms221910264. [PMID: 34638605 PMCID: PMC8508539 DOI: 10.3390/ijms221910264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
Cystatins, as reversible inhibitors of papain-like and legumain proteases, have been identified in several plant species. Although the cystatin family plays crucial roles in plant development and defense responses to various stresses, this family in wheat (Triticum aestivum L.) is still poorly understood. In this study, 55 wheat cystatins (TaCystatins) were identified. All TaCystatins were divided into three groups and both the conserved gene structures and peptide motifs were relatively conserved within each group. Homoeolog analysis suggested that both homoeolog retention percentage and gene duplications contributed to the abundance of the TaCystatin family. Analysis of duplication events confirmed that segmental duplications played an important role in the duplication patterns. The results of codon usage pattern analysis showed that TaCystatins had evident codon usage bias, which was mainly affected by mutation pressure. TaCystatins may be regulated by cis-acting elements, especially abscisic acid and methyl jasmonate responsive elements. In addition, the expression of all selected TaCystatins was significantly changed following viral infection and cold stress, suggesting potential roles in response to biotic and abiotic challenges. Overall, our work provides new insights into TaCystatins during wheat evolution and will help further research to decipher the roles of TaCystatins under diverse stress conditions.
Collapse
|
28
|
The Cell Wall Proteome of Craterostigma plantagineum Cell Cultures Habituated to Dichlobenil and Isoxaben. Cells 2021; 10:cells10092295. [PMID: 34571944 PMCID: PMC8468770 DOI: 10.3390/cells10092295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The remarkable desiccation tolerance of the vegetative tissues in the resurrection species Craterostigma plantagineum (Hochst.) is favored by its unique cell wall folding mechanism that allows the ordered and reversible shrinking of the cells without damaging neither the cell wall nor the underlying plasma membrane. The ability to withstand extreme drought is also maintained in abscisic acid pre-treated calli, which can be cultured both on solid and in liquid culture media. Cell wall research has greatly advanced, thanks to the use of inhibitors affecting the biosynthesis of e.g., cellulose, since they allowed the identification of the compensatory mechanisms underlying habituation. Considering the innate cell wall plasticity of C. plantagineum, the goal of this investigation was to understand whether habituation to the cellulose biosynthesis inhibitors dichlobenil and isoxaben entailed or not identical mechanisms as known for non-resurrection species and to decipher the cell wall proteome of habituated cells. The results showed that exposure of C. plantagineum calli/cells triggered abnormal phenotypes, as reported in non-resurrection species. Additionally, the data demonstrated that it was possible to habituate Craterostigma cells to dichlobenil and isoxaben and that gene expression and protein abundance did not follow the same trend. Shotgun and gel-based proteomics revealed a common set of proteins induced upon habituation, but also identified candidates solely induced by habituation to one of the two inhibitors. Finally, it is hypothesized that alterations in auxin levels are responsible for the increased abundance of cell wall-related proteins upon habituation.
Collapse
|
29
|
Regulation of Proteolytic Activity to Improve the Recovery of Macrobrachium rosenbergii Nodavirus Capsid Protein. Int J Mol Sci 2021; 22:ijms22168725. [PMID: 34445426 PMCID: PMC8395934 DOI: 10.3390/ijms22168725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
The causative agent of white tail disease (WTD) in the giant freshwater prawn is Macrobrachium rosenbergii nodavirus (MrNV). The recombinant capsid protein (CP) of MrNV was previously expressed in Escherichia coli, and it self-assembled into icosahedral virus-like particles (VLPs) with a diameter of approximately 30 nm. Extensive studies on the MrNV CP VLPs have attracted widespread attention in their potential applications as biological nano-containers for targeted drug delivery and antigen display scaffolds for vaccine developments. Despite their advantageous features, the recombinant MrNV CP VLPs produced in E. coli are seriously affected by protease degradations, which significantly affect the yield and stability of the VLPs. Therefore, the aim of this study is to enhance the stability of MrNV CP by modulating the protease degradation activity. Edman degradation amino acid sequencing revealed that the proteolytic cleavage occurred at arginine 26 of the MrNV CP. The potential proteases responsible for the degradation were predicted in silico using the Peptidecutter, Expasy. To circumvent proteolysis, specific protease inhibitors (PMSF, AEBSF and E-64) were tested to reduce the degradation rates. Modulation of proteolytic activity demonstrated that a cysteine protease was responsible for the MrNV CP degradation. The addition of E-64, a cysteine protease inhibitor, remarkably improved the yield of MrNV CP by 2.3-fold compared to the control. This innovative approach generates an economical method to improve the scalability of MrNV CP VLPs using individual protease inhibitors, enabling the protein to retain their structural integrity and stability for prominent downstream applications including drug delivery and vaccine development.
Collapse
|
30
|
Dai X, Lu Y, Yang Y, Yu Z. 1-Methylcyclopropene Preserves the Quality of Chive ( Allium schoenoprasum L.) by Enhancing Its Antioxidant Capacities and Organosulfur Profile during Storage. Foods 2021; 10:foods10081792. [PMID: 34441569 PMCID: PMC8393522 DOI: 10.3390/foods10081792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/12/2023] Open
Abstract
The quality, antioxidant capacities, and organosulfur profile of chives (Allium schoenoprasum L.) treated with 1-methylcyclopropene (1-MCP) during storage were investigated in this study. The 1-MCP treatment (100 μL/L, fumigation 12 h at 20 °C) effectively inhibited tissue respiration and H2O2 production, enhanced the ascorbic acid (ASA) and glutathione (GSH) content, and promoted the activity of antioxidant enzymes (superoxide dismutase SOD, Catalase CAT, and ascorbic peroxidase APX) during the 5-day storage period at 20 °C. The result further showed that the 1-MCP treatment inhibited chlorophyll degradation, alleviated cell membrane damage, and delayed the chive senescence, with the yellowing rate being reduced by 67.8% and 34.5% in the 1-MCP treated chives on days 4 and 5 of storage at 20 °C, respectively. The free amino acid content of the chive was not affected by the 1-MCP treatment at 20 °C. However, the senescence rate of the chive was not reduced by the 1-MCP treatment when stored at 3 °C. The liquid chromatography data further showed that the 1-MCP treatment induced a 15.3% and 13.9% increase in the isoalliin and total S-alk(en)ylcysteine sulfoxides (ACSOs) content of the chive on day 2 at 20 °C, respectively. Furthermore, there was a strong positive correlation between ACSOs content and CAT/APX activity, indicating that ACSOs probably played a key role in enhancing the antioxidant capacities of the chive during storage at 20 °C. Thus the study efficiently demonstrates that 1-methylcyclopropene preserves the quality of chive (Allium schoenoprasum L.) by enhancing its antioxidant capacities and organosulfur profile during storage.
Collapse
Affiliation(s)
- Xiaomei Dai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.D.); (Y.Y.)
- Department of Food Science and Technology, Jiangsu Food & Pharmaceutical Science College, Huaian 223003, China
| | - Yaping Lu
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yuan Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.D.); (Y.Y.)
| | - Zhifang Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.D.); (Y.Y.)
- Correspondence: ; Tel.: +86-25-84399098
| |
Collapse
|
31
|
Ren Z, Wang X, Tao Q, Guo Q, Zhou Y, Yi F, Huang G, Li Y, Zhang M, Li Z, Duan L. Transcriptome dynamic landscape underlying the improvement of maize lodging resistance under coronatine treatment. BMC PLANT BIOLOGY 2021; 21:202. [PMID: 33906598 PMCID: PMC8077928 DOI: 10.1186/s12870-021-02962-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/07/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Lodging is one of the important factors causing maize yield. Plant height is an important factor in determining plant architecture in maize (Zea mays L.), which is closely related to lodging resistance under high planting density. Coronatine (COR), which is a phytotoxin and produced by the pathogen Pseudomonas syringae, is a functional and structural analogue of jasmonic acid (JA). RESULTS In this study, we found COR, as a new plant growth regulator, could effectively reduce plant height and ear height of both hybrids (ZD958 and XY335) and inbred (B73) maize by inhibiting internode growth during elongation, thus improve maize lodging resistance. To study gene expression changes in internode after COR treatment, we collected spatio-temporal transcriptome of inbred B73 internode under normal condition and COR treatment, including the three different regions of internode (fixed, meristem and elongation regions) at three different developmental stages. The gene expression levels of the three regions at normal condition were described and then compared with that upon COR treatment. In total, 8605 COR-responsive genes (COR-RGs) were found, consist of 802 genes specifically expressed in internode. For these COR-RGs, 614, 870, 2123 of which showed expression changes in only fixed, meristem and elongation region, respectively. Both the number and function were significantly changed for COR-RGs identified in different regions, indicating genes with different functions were regulated at the three regions. Besides, we found more than 80% genes of gibberellin and jasmonic acid were changed under COR treatment. CONCLUSIONS These data provide a gene expression profiling in different regions of internode development and molecular mechanism of COR affecting internode elongation. A putative schematic of the internode response to COR treatment is proposed which shows the basic process of COR affecting internode elongation. This research provides a useful resource for studying maize internode development and improves our understanding of the COR regulation mechanism based on plant height.
Collapse
Affiliation(s)
- Zhaobin Ren
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Xing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Qun Tao
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Qing Guo
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Fei Yi
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| | - Guanmin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Yanxia Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping, Beijing, 102206, China.
| |
Collapse
|
32
|
Ko DK, Brandizzi F. A temporal hierarchy underpins the transcription factor-DNA interactome of the maize UPR. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:254-270. [PMID: 33098715 PMCID: PMC7942231 DOI: 10.1111/tpj.15044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 05/10/2023]
Abstract
Adverse environmental conditions reduce crop productivity and often increase the load of unfolded or misfolded proteins in the endoplasmic reticulum (ER). This potentially lethal condition, known as ER stress, is buffered by the unfolded protein response (UPR), a set of signaling pathways designed to either recover ER functionality or ignite programmed cell death. Despite the biological significance of the UPR to the life of the organism, the regulatory transcriptional landscape underpinning ER stress management is largely unmapped, especially in crops. To fill this significant knowledge gap, we performed a large-scale systems-level analysis of the protein-DNA interaction (PDI) network in maize (Zea mays). Using 23 promoter fragments of six UPR marker genes in a high-throughput enhanced yeast one-hybrid assay, we identified a highly interconnected network of 262 transcription factors (TFs) associated with significant biological traits and 831 PDIs underlying the UPR. We established a temporal hierarchy of TF binding to gene promoters within the same family as well as across different families of TFs. Cistrome analysis revealed the dynamic activities of a variety of cis-regulatory elements (CREs) in ER stress-responsive gene promoters. By integrating the cistrome results into a TF network analysis, we mapped a subnetwork of TFs associated with a CRE that may contribute to UPR management. Finally, we validated the role of a predicted network hub gene using the Arabidopsis system. The PDIs, TF networks, and CREs identified in our work are foundational resources for understanding transcription-regulatory mechanisms in the stress responses and crop improvement.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
- Correspondence:
| |
Collapse
|
33
|
Chen G, Li R, Shen X. ApSerpin-ZX from Agapanthus praecox, is a potential cryoprotective agent to plant cryopreservation. Cryobiology 2020; 98:103-111. [PMID: 33316226 DOI: 10.1016/j.cryobiol.2020.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Cryopreservation-induced cell death is regarded as an important problem faced by cryobiologists. Oxidative stress and programmed cell death are detrimental to cell survival. Serine protease inhibitors (serpins) inhibit pro-cell-death proteases and play a pro-survival role in excessive cell death induced by abiotic stress. In this study, ApSerpin-ZX was isolated from Agapanthus praecox and characterized as a protective protein in plant cryopreservation. The mRNA level of ApSerpin-ZX was elevated under abiotic stress, such as salt, osmosis, oxidative, cold, and cryoinjury. The purified recombinant protein expressed in E. coli was added to the plant vitrification solution and used for A. praecox embryogenic callus cryopreservation. The concentration of 0.6-4.8 mg∙L-1 of ApSerpin-ZX protein was beneficial to the survival of cryopreserved embryogenic callus of A. praecox. The most effective concentration was 1.2 mg∙L-1, which elevated the survival by 37.15%. Subsequently, the cryopreservation procedure with 1.2 mg∙L-1 of ApSerpin-ZX protein was regarded as the treated group, compared to standard procedure, to determine the physiological mechanism of ApSerpin-ZX protein on cryopreserved cell. The MDA and H2O2 contents were significantly decreased in the treated group, along with reduced OH· generation activity in the recovery stage. After the addition of ApSerpin-ZX, the POD and CAT activities keep increased, while SOD activity increased only after dehydration. Besides, the caspase-1-like and caspase-3-like activities were lower than the standard procedure. This study indicated that ApSerpin-ZX was a potential cryoprotective agent that alleviated oxidative stress and cell death induced by cryopreservation.
Collapse
Affiliation(s)
- Guanqun Chen
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ruilian Li
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaohui Shen
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
34
|
Nilsen KT, Walkowiak S, Xiang D, Gao P, Quilichini TD, Willick IR, Byrns B, N'Diaye A, Ens J, Wiebe K, Ruan Y, Cuthbert RD, Craze M, Wallington EJ, Simmonds J, Uauy C, Datla R, Pozniak CJ. Copy number variation of TdDof controls solid-stemmed architecture in wheat. Proc Natl Acad Sci U S A 2020; 117:28708-28718. [PMID: 33127757 PMCID: PMC7682410 DOI: 10.1073/pnas.2009418117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stem solidness is an important agronomic trait of durum (Triticum turgidum L. var. durum) and bread (Triticum aestivum L.) wheat that provides resistance to the wheat stem sawfly. This dominant trait is conferred by the SSt1 locus on chromosome 3B. However, the molecular identity and mechanisms underpinning stem solidness have not been identified. Here, we demonstrate that copy number variation of TdDof, a gene encoding a putative DNA binding with one finger protein, controls the stem solidness trait in wheat. Using map-based cloning, we localized TdDof to within a physical interval of 2.1 Mb inside the SSt1 locus. Molecular analysis revealed that hollow-stemmed wheat cultivars such as Kronos carry a single copy of TdDof, whereas solid-stemmed cultivars such as CDC Fortitude carry multiple identical copies of the gene. Deletion of all TdDof copies from CDC Fortitude resulted in the loss of stem solidness, whereas the transgenic overexpression of TdDof restored stem solidness in the TdDof deletion mutant pithless1 and conferred stem solidness in Kronos. In solid-stemmed cultivars, increased TdDof expression was correlated with the down-regulation of genes whose orthologs have been implicated in programmed cell death (PCD) in other species. Anatomical and histochemical analyses revealed that hollow-stemmed lines had stronger PCD-associated signals in the pith cells compared to solid-stemmed lines, which suggests copy number-dependent expression of TdDof could be directly or indirectly involved in the negative regulation of PCD. These findings provide opportunities to manipulate stem development in wheat and other monocots for agricultural or industrial purposes.
Collapse
Affiliation(s)
- Kirby T Nilsen
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada
| | - Sean Walkowiak
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, MB R3C 3G8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK S7N 0W9, Canada
| | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK S7N 0W9, Canada
| | - Ian R Willick
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Brook Byrns
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Amidou N'Diaye
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Jennifer Ens
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Krystalee Wiebe
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Richard D Cuthbert
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | | | | | | | | | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Curtis J Pozniak
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| |
Collapse
|
35
|
Sá Antunes TF, Maurastoni M, Madroñero LJ, Fuentes G, Santamaría JM, Ventura JA, Abreu EF, Fernandes AAR, Fernandes PMB. Battle of Three: The Curious Case of Papaya Sticky Disease. PLANT DISEASE 2020; 104:2754-2763. [PMID: 32813628 DOI: 10.1094/pdis-12-19-2622-fe] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Among the most serious problems in papaya production are the viruses associated with papaya ringspot and papaya sticky disease (PSD). PSD concerns producers worldwide because its symptoms are extremely aggressive and appear only after flowering. As no resistant cultivar is available, several disease management strategies have been used in affected countries, such as the use of healthy seeds, exclusion of the pathogen, and roguing. In the 1990s, a dsRNA virus, papaya meleira virus (PMeV), was identified in Brazil as the causal agent of PSD. However, in 2016 a second virus, papaya meleira virus 2 (PMeV2), with an ssRNA genome, was also identified in PSD plants. Only PMeV is detected in asymptomatic plants, whereas all symptomatic plants contain both viral RNAs separately packaged in particles formed by the PMeV capsid protein. PSD also affects papaya plants in Mexico, Ecuador, and Australia. PMeV2-like viruses have been identified in the affected plants, but the partner virus(es) in these countries are still unknown. In Brazil, PMeV and PMeV2 reside in laticifers that promote spontaneous latex exudation, resulting in the affected papaya fruit's sticky appearance. Genes modulated in plants affected by PSD include those involved in reactive oxygen species and salicylic acid signaling, proteasomal degradation, and photosynthesis, which are key plant defenses against PMeV complex infection. However, the complete activation of the defense response is impaired by the expression of negative effectors modulated by the virus. This review presents a summary of the current knowledge of the Carica papaya-PMeV complex interaction and management strategies.
Collapse
Affiliation(s)
- Tathiana F Sá Antunes
- Nucleo de Biotecnologia Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29040-090, Brazil
| | - Marlonni Maurastoni
- Nucleo de Biotecnologia Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29040-090, Brazil
| | - L Johana Madroñero
- Nucleo de Biotecnologia Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29040-090, Brazil
- Universidad El Bosque, Vicerrectoría de Investigaciones, Bogota, Colombia
| | - Gabriela Fuentes
- Centro de Investigación Científica de Yucatán, Col. Chuburná de Hidalgo, 97200 Mérida, Yucatán, Mexico
| | - Jorge M Santamaría
- Centro de Investigación Científica de Yucatán, Col. Chuburná de Hidalgo, 97200 Mérida, Yucatán, Mexico
| | - José Aires Ventura
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Vitória 29050790, Espírito Santo, Brazil
| | - Emanuel F Abreu
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-900, Brazil
| | - A Alberto R Fernandes
- Nucleo de Biotecnologia Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29040-090, Brazil
| | - Patricia M B Fernandes
- Nucleo de Biotecnologia Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29040-090, Brazil
| |
Collapse
|
36
|
Thanthrige N, Jain S, Bhowmik SD, Ferguson BJ, Kabbage M, Mundree S, Williams B. Centrality of BAGs in Plant PCD, Stress Responses, and Host Defense. TRENDS IN PLANT SCIENCE 2020; 25:1131-1140. [PMID: 32467063 DOI: 10.1016/j.tplants.2020.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 05/02/2023]
Abstract
Programmed cell death (PCD) is a genetically regulated process for the selective demise of unwanted and damaged cells. Although our understanding of plant PCD pathways has advanced significantly, doubts remain on the extent of conservation of animal apoptosis in plants. At least at the primary sequence level, plants do not encode the regulators of animal apoptosis. Structural analyses have enabled the identification of the B cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family of co-chaperones in plants. This discovery suggests that some aspects of animal PCD are conserved in plants, while the varied subcellular localization of plant BAGs indicates that they may have evolved distinct functions. Here we review plant BAG proteins, with an emphasis on their roles in the regulation of plant PCD.
Collapse
Affiliation(s)
- Nipuni Thanthrige
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Sachin Jain
- Department of Plant Pathology, University of Wisconsin-, Madison, WI 53706, USA
| | - Sudipta Das Bhowmik
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Brett J Ferguson
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-, Madison, WI 53706, USA
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
37
|
Zheng J, Duan S, Armstrong MR, Duan Y, Xu J, Chen X, Hein I, Jin L, Li G. New Findings on the Resistance Mechanism of an Elite Diploid Wild Potato Species JAM1-4 in Response to a Super Race Strain of Phytophthora infestans. PHYTOPATHOLOGY 2020; 110:1375-1387. [PMID: 32248746 DOI: 10.1094/phyto-09-19-0331-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Late blight is a devastating potato disease worldwide, caused by Phytophthora infestans. The P. infestans strain 2013-18-306 from Yunnan is a "supervirulent race" that overcomes all 11 known late blight resistance genes (R1 to R11) from Solanum demissum. In a previous study, we identified a diploid wild-type potato JAM1-4 (S. jamesii) with high resistance to 2013-18-306. dRenSeq analysis indicated the presence of novel R genes in JAM1-4. RNA-Seq was used to analyze the late blight resistance response genes and defense regulatory mechanisms of JAM1-4 against 2013-18-306. Gene ontology enrichment and KEGG pathway analysis showed that many disease-resistant pathways were significantly enriched. Analysis of differentially expressed genes (DEGs) revealed an active disease resistance mechanism of JAM1-4, and the essential role of multiple signal transduction pathways and secondary metabolic pathways comprised of SA-JA-ET in plant immunity. We also found that photosynthesis in JAM1-4 was inhibited to promote the immune response. Our study reveals the pattern of resistance-related gene expression in response to a super race strain of potato late blight and provides a theoretical basis for further exploration of potato disease resistance mechanisms, discovery of new late blight resistance genes, and disease resistance breeding.
Collapse
Affiliation(s)
- Jiayi Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shaoguang Duan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Miles R Armstrong
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, DD2 5DA, U.K
| | - Yanfeng Duan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianfei Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xinwei Chen
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, U.K
| | - Ingo Hein
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, DD2 5DA, U.K
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, U.K
| | - Liping Jin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guangcun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
38
|
Kim JH, Lim SD, Jang CS. Oryza sativa drought-, heat-, and salt-induced RING finger protein 1 (OsDHSRP1) negatively regulates abiotic stress-responsive gene expression. PLANT MOLECULAR BIOLOGY 2020; 103:235-252. [PMID: 32206999 DOI: 10.1007/s11103-020-00989-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/02/2020] [Indexed: 05/13/2023]
Abstract
Plants are sessile and unable to avoid environmental stresses, such as drought, high temperature, and high salinity, which often limit the overall plant growth. Plants have evolved many complex mechanisms to survive these abiotic stresses via post-translational modifications. Recent evidence suggests that ubiquitination plays a crucial role in regulating abiotic stress responses in plants by regulating their substrate proteins. Here, we reported the molecular function of a RING finger E3 ligase, Oryza sativa Drought, Heat and Salt-induced RING finger protein 1 (OsDHSRP1), involved in regulating plant abiotic stress tolerance via the Ub/26S proteasome system. The OsDHSRP1 gene transcripts were highly expressed under various abiotic stresses such as NaCl, drought, and heat and the phytohormone abscisic acid (ABA). In addition, in vitro ubiquitination assays demonstrated that the OsDHSRP1 protein possesses a RING-H2 type domain that confers ligase functionality. The results of yeast two-hybrid (Y2H), in vitro pull-down, and bimolecular fluorescence complementation assays support that OsDHSRP1 is able to regulate two substrates, O. sativa glyoxalase (OsGLYI-11.2) and O. sativa abiotic stress-induced cysteine proteinase 1 (OsACP1). We further confirmed that these two substrate proteins were ubiquitinated by OsDHSRP1 E3 ligase and caused protein degradation via the Ub/26S proteasome system. The Arabidopsis plants overexpressing OsDHSRP1 exhibited hypersensitivity to drought, heat, and NaCl stress and a decrease in their germination rates and root lengths compared to the control plants because the degradation of the OsGLYI-11.2 protein maintained lower glyoxalase levels, which increased the methylglyoxal amount in transgenic Arabidopsis plants. However, the OsDHSRP1-overexpressing plants showed no significant difference when treated with ABA. Our finding supports the hypothesis that the OsDHSRP1 E3 ligase acts as a negative regulator, and the degradation of its substrate proteins via ubiquitination plays important roles in regulating various abiotic stress responses via an ABA-independent pathway.
Collapse
Affiliation(s)
- Ju Hee Kim
- Plant Genomics Laboratory, Department of Bio-Resources Sciences, Kangwon National University, Chuncheon, 200-713, South Korea
| | - Sung Don Lim
- Plant Genomics Laboratory, Department of Bio-Resources Sciences, Kangwon National University, Chuncheon, 200-713, South Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Bio-Resources Sciences, Kangwon National University, Chuncheon, 200-713, South Korea.
| |
Collapse
|
39
|
Cai J, Chen T, Wang Y, Qin G, Tian S. SlREM1 Triggers Cell Death by Activating an Oxidative Burst and Other Regulators. PLANT PHYSIOLOGY 2020; 183:717-732. [PMID: 32317359 PMCID: PMC7271787 DOI: 10.1104/pp.20.00120] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/23/2020] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD), a highly regulated feature of the plant immune response, involves multiple molecular players. Remorins (REMs) are plant-specific proteins with varied biological functions, but their function in PCD and plant defense remains largely unknown. Here, we report a role for remorin in disease resistance, immune response, and PCD regulation. Overexpression of tomato (Solanum lycopersicum) REMORIN1 (SlREM1) increased susceptibility of tomato to the necrotrophic fungus Botrytis cinerea and heterologous expression of this gene triggered cell death in Nicotiana benthamiana leaves. Further investigation indicated that amino acids 173 to 187 and phosphorylation of SlREM1 played key roles in SlREM1-triggered cell death. Intriguingly, multiple tomato REMs induced cell death in N benthamiana leaves. Yeast two-hybrid, split luciferase complementation, and coimmunoprecipitation assays all demonstrated that remorin proteins could form homo- and heterocomplexes. Using isobaric tags for relative and absolute quantitative proteomics, we identified that some proteins related to cell death regulation, as well as N benthamiana RESPIRATORY BURST OXIDASE HOMOLOG B (which is essential for reactive oxygen species production), were notably upregulated in SlREM1-expressing leaves. Heterologous expression of SlREM1 increased reactive oxygen species accumulation and triggered other cell death regulators. Our findings indicate that SlREM1 is a positive regulator of plant cell death and provide clues for understanding the PCD molecular regulatory network in plants.
Collapse
Affiliation(s)
- Jianghua Cai
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Ying Wang
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| |
Collapse
|
40
|
Mangena P. Phytocystatins and their Potential Application in the Development of Drought Tolerance Plants in Soybeans (Glycine max L.). Protein Pept Lett 2020; 27:135-144. [PMID: 31612812 DOI: 10.2174/0929866526666191014125453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/06/2019] [Accepted: 08/07/2019] [Indexed: 11/22/2022]
Abstract
Plant cystatins, also called phytocystatins constitute a family of specific cysteine protease inhibitors found in several monocots and dicots. In soybean, phytocystatins regulate several endogenous processes contributing immensely to this crop's tolerance to abiotic stress factors. Soybeans offer numerous nutritional, pharmaceutical and industrial benefits; however, their growth and yields is hampered by drought, which causes more than 10% yield losses recorded every harvest period worldwide. This review analyses the role of papain-like cysteine proteases and their inhibitors in soybean plant growth and development under drought stress. It also describes their localisation, regulation, target organs and tissues, and the overall impact of cystatins on generating drought tolerance soybean plants. These proteins have many functions that remain poorly characterized, particularly under abiotic stress. Although much information is available on the utilisation of proteases for industrial applications, very few reports have focused on the impact of proteases on plant stress responses. The exploitation of cystatins in plant engineering, as competitive proteases inhibitors is one of the means that will guarantee the continued utilisation of soybeans as an important oilseed crop.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, School of Molecular and Life Sciences, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga, 0727,South Africa
| |
Collapse
|
41
|
Turrà D, Vitale S, Marra R, Woo SL, Lorito M. Heterologous Expression of PKPI and Pin1 Proteinase Inhibitors Enhances Plant Fitness and Broad-Spectrum Resistance to Biotic Threats. FRONTIERS IN PLANT SCIENCE 2020; 11:461. [PMID: 32425963 PMCID: PMC7204852 DOI: 10.3389/fpls.2020.00461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/27/2020] [Indexed: 05/05/2023]
Abstract
Kunitz-type (PKPI) and Potato type I (Pin1) protease inhibitors (PIs) are two families of serine proteinase inhibitors often associated to plant storage organs and with well known insecticidal and nematicidal activities. Noteworthy, their ability to limit fungal and bacterial pathogenesis in vivo or to influence plant physiology has not been investigated in detail. To this aim, we generated a set of PVX-based viral constructs to transiently and heterologously express two potato PKPI (PKI1, PKI2) and three potato Pin1 (PPI3A2, PPI3B2, PPI2C4) genes in Nicotiana benthamiana plants, a widely used model for plant-pathogen interaction studies. Interestingly, transgenic plants expressing most of the tested PIs showed to be highly resistant against two economically important necrotrophic fungal pathogens, Botrytis cinerea and Alternaria alternata. Unexpectedly, overexpression of the PKI2 Kunitz-type or of the PPI2C4 and PPI3A2 Potato type I inhibitor genes also lead to a dramatic reduction in the propagation and symptom development produced by the bacterial pathogen Pseudomonas syringae. We further found that localized expression of PPI2C4 and PKI2 in N. benthamiana leaves caused an increase in cell expansion and proliferation which lead to tissue hypertrophy and trichome accumulation. In line with this, the systemic expression of these proteins resulted in plants with enhanced shoot and root biomass. Collectively, our results indicate that PKPI and Pin1 PIs might represent valuable tools to simultaneously increase plant fitness and broad-spectrum resistance toward phytopathogens.
Collapse
Affiliation(s)
- David Turrà
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: David Turrà,
| | - Stefania Vitale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Sheridan L. Woo
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, Naples, Italy
- Matteo Lorito,
| |
Collapse
|
42
|
Li S, Fang X, Han S, Zhu T, Zhu H. Differential Proteome Analysis of Hybrid Bamboo (Bambusa pervariabilis × Dendrocalamopsis grandis) Under Fungal Stress (Arthrinium phaeospermum). Sci Rep 2019; 9:18681. [PMID: 31822726 PMCID: PMC6904554 DOI: 10.1038/s41598-019-55229-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
In this study, TMT (tandem mass tag)-labeled quantitative protein technology combined with LC–MS/MS (liquid chromatography-mass spectrometry/mass spectrometry) was used to isolate and identify the proteins of the hybrid bamboo (Bambusa pervariabilis × Dendrocalamopsis grandis) and the bamboo inoculated with the pathogenic fungi Arthrinium phaeospermum. A total of 3320 unique peptide fragments were identified after inoculation with either A. phaeospermum or sterile water, and 1791 proteins were quantified. A total of 102 differentially expressed proteins were obtained, of which 66 differential proteins were upregulated and 36 downregulated in the treatment group. Annotation and enrichment analysis of these peptides and proteins using the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases with bioinformatics software showed that the differentially expressed protein functional annotation items were mainly concentrated on biological processes and cell components. The LC–PRM/MS (liquid chromatography-parallel reaction monitoring/mass spectrometry) quantitative analysis technique was used to quantitatively analyze 11 differential candidate proteins obtained by TMT combined with LC–MS/MS. The up–down trend of 10 differential proteins in the PRM results was consistent with that of the TMT quantitative analysis. The coincidence rate of the two results was 91%, which confirmed the reliability of the proteomic results. Therefore, the differentially expressed proteins and signaling pathways discovered here may be the further concern for the bamboo-pathogen interaction studies.
Collapse
Affiliation(s)
- Shujiang Li
- College of Forestry, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Xinmei Fang
- College of Forestry, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| | - Hanmingyue Zhu
- College of Forestry, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| |
Collapse
|
43
|
Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, Hashemi M, Glover KKM, Sher AA, Coombs KM, Ghavami S. The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence 2019; 10:376-413. [PMID: 30966844 PMCID: PMC6527025 DOI: 10.1080/21505594.2019.1605803] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/16/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Virus infection induces different cellular responses in infected cells. These include cellular stress responses like autophagy and unfolded protein response (UPR). Both autophagy and UPR are connected to programed cell death I (apoptosis) in chronic stress conditions to regulate cellular homeostasis via Bcl2 family proteins, CHOP and Beclin-1. In this review article we first briefly discuss arboviruses, influenza virus, and HIV and then describe the concepts of apoptosis, autophagy, and UPR. Finally, we focus upon how apoptosis, autophagy, and UPR are involved in the regulation of cellular responses to arboviruses, influenza virus and HIV infections. Abbreviation: AIDS: Acquired Immunodeficiency Syndrome; ATF6: Activating Transcription Factor 6; ATG6: Autophagy-specific Gene 6; BAG3: BCL Associated Athanogene 3; Bak: BCL-2-Anatagonist/Killer1; Bax; BCL-2: Associated X protein; Bcl-2: B cell Lymphoma 2x; BiP: Chaperon immunoglobulin heavy chain binding Protein; CARD: Caspase Recruitment Domain; cART: combination Antiretroviral Therapy; CCR5: C-C Chemokine Receptor type 5; CD4: Cluster of Differentiation 4; CHOP: C/EBP homologous protein; CXCR4: C-X-C Chemokine Receptor Type 4; Cyto c: Cytochrome C; DCs: Dendritic Cells; EDEM1: ER-degradation enhancing-a-mannosidase-like protein 1; ENV: Envelope; ER: Endoplasmic Reticulum; FasR: Fas Receptor;G2: Gap 2; G2/M: Gap2/Mitosis; GFAP: Glial Fibrillary Acidic Protein; GP120: Glycoprotein120; GP41: Glycoprotein41; HAND: HIV Associated Neurodegenerative Disease; HEK: Human Embryonic Kidney; HeLa: Human Cervical Epithelial Carcinoma; HIV: Human Immunodeficiency Virus; IPS-1: IFN-β promoter stimulator 1; IRE-1: Inositol Requiring Enzyme 1; IRGM: Immunity Related GTPase Family M protein; LAMP2A: Lysosome Associated Membrane Protein 2A; LC3: Microtubule Associated Light Chain 3; MDA5: Melanoma Differentiation Associated gene 5; MEF: Mouse Embryonic Fibroblast; MMP: Mitochondrial Membrane Permeabilization; Nef: Negative Regulatory Factor; OASIS: Old Astrocyte Specifically Induced Substrate; PAMP: Pathogen-Associated Molecular Pattern; PERK: Pancreatic Endoplasmic Reticulum Kinase; PRR: Pattern Recognition Receptor; Puma: P53 Upregulated Modulator of Apoptosis; RIG-I: Retinoic acid-Inducible Gene-I; Tat: Transactivator Protein of HIV; TLR: Toll-like receptor; ULK1: Unc51 Like Autophagy Activating Kinase 1; UPR: Unfolded Protein Response; Vpr: Viral Protein Regulatory; XBP1: X-Box Binding Protein 1.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Past eur Institute of IRAN, Tehran, Iran
| | - Sudharsana R. Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Javad Alizadeh
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
| | - Shahrzad Rahimizadeh
- Department of Medical Microbiology, Assiniboine Community College, School of Health and Human Services and Continuing Education, Winnipeg, MB, Canada
| | - Aryana Shariati
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hadis Malek
- Department of Biology, Islamic Azad University, Mashhad, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kathleen K. M. Glover
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Affan A. Sher
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin M. Coombs
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Health Policy Research Centre, Shiraz Medical University of Medical Science, Shiraz, Iran
| |
Collapse
|
44
|
Savić J, Nikolić R, Banjac N, Zdravković-Korać S, Stupar S, Cingel A, Ćosić T, Raspor M, Smigocki A, Ninković S. Beneficial implications of sugar beet proteinase inhibitor BvSTI on plant architecture and salt stress tolerance in Lotus corniculatus L. JOURNAL OF PLANT PHYSIOLOGY 2019; 243:153055. [PMID: 31639537 DOI: 10.1016/j.jplph.2019.153055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Food demands of increasing human population dictate intensification of livestock production, however, environmental stresses could jeopardize producers' efforts. Forage legumes suffer from yield losses and poor nutritional status due to salinity increase of agricultural soils. As tools aimed to reduce negative impacts of biotic or abiotic stresses, proteinase inhibitors (PIs) have been promoted for biotechnological improvements. In order to increase tolerance of Lotus corniculatus L. to salt stress, serine PI, BvSTI, was introduced into this legume using Agrobacterium rhizogenes, with final transformation efficiency of 4.57%. PCR, DNA gel-blot, RT-PCR and in-gel protein activity assays confirmed the presence and activity of BvSTI products in transformed lines. Plants from three selected transgenic lines (21, 73 and 109) showed significant alterations in overall phenotypic appearance, corresponding to differences in BvSTI accumulation. Lines 73 and 109 showed up to 7.3-fold higher number of tillers and massive, up to 5.8-fold heavier roots than in nontransformed controls (NTC). Line 21 was phenotypically similar to NTC, accumulated less BvSTI transcripts and did not exhibit an additional band of recombinant trypsin inhibitor as seen in lines 73 and 109. Exposure of the transgenic lines to NaCl revealed different levels of salt stress susceptibility. The NaCl sensitivity index, based on morphological appearance and chlorophyll concentrations showed that lines 73 and 109 were significantly less affected by salinity than NTC or line 21. High level of BvSTI altered morphology and delayed salt stress related senescence, implicating BvSTI gene as a promising tool for salinity tolerance improvement trials in L. corniculatus.
Collapse
Affiliation(s)
- Jelena Savić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Radomirka Nikolić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Nevena Banjac
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Snežana Zdravković-Korać
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Sofija Stupar
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Aleksandar Cingel
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Tatjana Ćosić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Martin Raspor
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Ann Smigocki
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, MD, 20705, USA
| | - Slavica Ninković
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| |
Collapse
|
45
|
Serpins: Genome-Wide Characterisation and Expression Analysis of the Serine Protease Inhibitor Family in Triticum aestivum. G3-GENES GENOMES GENETICS 2019; 9:2709-2722. [PMID: 31227524 PMCID: PMC6686943 DOI: 10.1534/g3.119.400444] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The serine protease inhibitor (serpin) gene family is the largest family of protease inhibitors. Serine protease inhibitors have an active, but under-characterized, role in grain development and defense against pathogen attack in cereal crops. By exploiting publicly available genomic, transcriptomic and proteomic data for wheat (Triticum aestivum), we have identified and annotated the entire ’serpinome’ of wheat and constructed a high-quality and robust phylogenetic tree of the gene family, identifying paralogous and homeologous clades from the hexaploid wheat genome, including the Serpin-Z group that have been well characterized in barley. Using publicly available RNAseq data (http://www.wheat-expression.com/), expression profiles of the wheat serpins were explored across a variety of tissues from the developing grain, spikelet and spike. We show that the SERPIN-Z clade, among others, are highly expressed during grain development, and that there is homeologous and paralogous functional redundancy in this gene family. Further to their role in grain development, serpins play an important but under-explored role in response to fungal pathogens. Using 13 RNAseq datasets of wheat tissues infected by fungal pathogens, we identified 37 serpins with a significant disease response. The majority of the disease-responsive serpins were upregulated by Fusarium graminearum, a destructive fungal pathogen that attacks the spike and developing grain of wheat. As serpins are ubiquitous in wheat grain, the genes encoding serpins may be linked to grain development, with their disease response a result of pleiotropy.
Collapse
|
46
|
Abstract
Dozens of studies have assessed the practical value of plant cystatins as ectopic inhibitors of Cys proteases in biological systems. The potential of these proteins in crop protection to control herbivorous pests and pathogens has been documented extensively over the past 25 years. Their usefulness to regulate endogenous Cys proteases in planta has also been considered recently, notably to implement novel traits of agronomic relevance in crops or to generate protease activity-depleted environments in plants or plant cells used as bioreactors for recombinant proteins. After a brief update on the basic structural characteristics of plant cystatins, we summarize recent advances on the use of these proteins in plant biotechnology. Attention is also paid to the molecular improvement of their structural properties for the improvement of their protease inhibitory effects or the fine-tuning of their biological target range.
Collapse
|
47
|
Prior N, Little SA, Boyes I, Griffith P, Husby C, Pirone-Davies C, Stevenson DW, Tomlinson PB, von Aderkas P. Complex reproductive secretions occur in all extant gymnosperm lineages: a proteomic survey of gymnosperm pollination drops. PLANT REPRODUCTION 2019; 32:153-166. [PMID: 30430247 PMCID: PMC6500509 DOI: 10.1007/s00497-018-0348-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/09/2018] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Complex protein-containing reproductive secretions are a conserved trait amongst all extant gymnosperms; the pollination drops of most groups include carbohydrate-modifying enzymes and defence proteins. Pollination drops are aqueous secretions that receive pollen and transport it to the ovule interior in gymnosperms (Coniferales, Cycadales, Ginkgoales, Gnetales). Proteins are well established as components of pollination drops in conifers (Coniferales) and Ephedra spp. (Gnetales), but it is unknown whether proteins are also present in the pollination drops of cycads (Cycadales), Ginkgo (Ginkgoales), Gnetum (Gnetales), or in the pollination drops produced by sterile ovules occurring on pollen plants in the Gnetales. We used liquid chromatography-tandem mass spectrometry followed by database-derived protein identification to conduct proteomic surveys of pollination drops collected from: Ceratozamia hildae, Zamia furfuracea and Cycas rumphii (Cycadales); Ginkgo biloba (Ginkgoales); Gnetum gnemon and Welwitschia mirabilis, including pollination drops from both microsporangiate and ovulate plants (Gnetales). We identified proteins in all samples: C. hildae (61), Z. furfuracea (40), C. rumphii (9), G. biloba (57), G. gnemon ovulate (17) and sterile ovules from microsporangiate plants (25) and W. mirabilis fertile ovules (1) and sterile ovules from microsporangiate plants (138). Proteins involved in defence and carbohydrate modification occurred in the drops of most groups, indicating conserved functions for proteins in pollination drops. Our study demonstrates that all extant gymnosperm groups produce complex reproductive secretions containing proteins, an ancient trait that likely contributed to the evolutionary success of seed plants.
Collapse
Affiliation(s)
- Natalie Prior
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, Canada
| | - Stefan A Little
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - Ian Boyes
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, Canada
| | - Patrick Griffith
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL, USA
| | - Chad Husby
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL, USA
| | - Cary Pirone-Davies
- The Arnold Arboretum of Harvard University, 125 Arborway, Boston, MA, USA
| | | | - P Barry Tomlinson
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL, USA
| | - Patrick von Aderkas
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, Canada.
| |
Collapse
|
48
|
Ujvárosi AZ, Riba M, Garda T, Gyémánt G, Vereb G, M-Hamvas M, Vasas G, Máthé C. Attack of Microcystis aeruginosa bloom on a Ceratophyllum submersum field: Ecotoxicological measurements in real environment with real microcystin exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:735-745. [PMID: 30703731 DOI: 10.1016/j.scitotenv.2019.01.226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/20/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Overproduction of toxic cyanobacteria is a type of harmful algal blooms (HABs). The heptapeptide microcystins (MCs) are one of the most common cyanotoxins. There is increasing research concerning the effects of MCs on growth and physiology of vascular plants, however there is a lack of studies on their direct effects on aquatic macrophytes in the real environment. Here we report the occurrence of a MC producing HAB in Lake Bárdos, Hungary in 2012 with harmful effects on cytological, histological and biochemical parameters of Ceratophyllum submersum (soft hornwort) plants naturally growing at the blooming site. Blue-Green Sinapis Test (BGST) showed high toxicity of HAB samples. Cell-free water samples contained a significant amount of MCs (7.31 ± 0.17 μg L-1) while C. submersum plants contained 1.01 ± 0.21 μg g DW-1 MCs. Plants showed significant increases of protein content and decreases of anthocyanin content and carotenoid/chlorophyll ratio, indicating physiological stress- as compared to plants from the control (MC free) sampling site of the same water body. Histological and cytological studies showed (i) radial swelling and the abnormal formation of lateral buds at the shoot tip leading to abnormal development; (ii) the fragmentation of nuclei as well as accumulation of phenolics in the nucleus indicating that the HAB induced cell death and stress reactions at the nuclear level. The most relevant effect was the increase of histone H3 phosphorylation in metaphase chromosomes: since MCs are strong inhibitors of protein phosphatases, this alteration is related to the biochemical targets of these toxins. The HAB decreased peroxidase activity, but increased nuclease and protease activities, showing the decreased capacity of plants to face biotic stress and as the cytological changes, the induction of cell death. This study is one of the first to show the complex harmful changes in aquatic plants that co-exist with HABs.
Collapse
Affiliation(s)
- Andrea Zsuzsanna Ujvárosi
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary
| | - Milán Riba
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary
| | - Tamás Garda
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary
| | - Gyöngyi Gyémánt
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Chemistry, Department of Inorganic and Analytical Chemistry, Hungary
| | - György Vereb
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Medicine, Department of Biophysics and Cell Biology and Faculty of Pharmacy, Hungary
| | - Márta M-Hamvas
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary.
| | - Gábor Vasas
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary.
| | - Csaba Máthé
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary.
| |
Collapse
|
49
|
Sańko-Sawczenko I, Łotocka B, Mielecki J, Rekosz-Burlaga H, Czarnocka W. Transcriptomic Changes in Medicago truncatula and Lotus japonicus Root Nodules during Drought Stress. Int J Mol Sci 2019; 20:E1204. [PMID: 30857310 PMCID: PMC6429210 DOI: 10.3390/ijms20051204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Drought is one of the major environmental factors limiting biomass and seed yield production in agriculture. In this research, we focused on plants from the Fabaceae family, which has a unique ability for the establishment of symbiosis with nitrogen-fixing bacteria, and are relatively susceptible to water limitation. We have presented the changes in nitrogenase activity and global gene expression occurring in Medicago truncatula and Lotus japonicus root nodules during water deficit. Our results proved a decrease in the efficiency of nitrogen fixation, as well as extensive changes in plant and bacterial transcriptomes, shortly after watering cessation. We showed for the first time that not only symbiotic plant components but also Sinorhizobium meliloti and Mesorhizobium loti bacteria residing in the root nodules of M. truncatula and L. japonicus, respectively, adjust their gene expression in response to water shortage. Although our results demonstrated that both M. truncatula and L. japonicus root nodules were susceptible to water deprivation, they indicated significant differences in plant and bacterial response to drought between the tested species, which might be related to the various types of root nodules formed by these species.
Collapse
Affiliation(s)
- Izabela Sańko-Sawczenko
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Barbara Łotocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Jakub Mielecki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Hanna Rekosz-Burlaga
- Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Weronika Czarnocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
50
|
Shamsi TN, Parveen R, Ahmad A, Samal RR, Kumar S, Fatima S. Inhibition of gut proteases and development of dengue vector, Aedes aegypti by Allium sativum protease inhibitor. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.chnaes.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|