1
|
Gimenez R, Lake L, Cossani CM, Ortega Martinez R, Hayes JE, Dreccer MF, French R, Weller JL, Sadras VO. Linking phenology, harvest index, and genetics to improve chickpea grain yield. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1658-1677. [PMID: 39626055 PMCID: PMC11981900 DOI: 10.1093/jxb/erae487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/28/2024] [Indexed: 04/11/2025]
Abstract
Understanding phenology and its regulation is central for the agronomic adaptation of chickpea. We grew 24 chickpea (Cicer arietinum) genotypes in 12 environments to analyse the environmental and genotypic drivers of phenology, associations between phenology and yield, and phenotypes associated with allelic variants of three flowering related candidate loci: CaELF3a, a cluster of three FT genes on chromosome 3, and an orthologue of the floral promoter GIGANTEA on chromosome 4. A simple model with three genotype-specific parameters explained the differences in flowering response to daylength. Environmental factors causing flower abortion, such as low temperature and radiation and high humidity, led to a longer flowering-to-podding interval. Late podding associated with poor partition to grain, limiting yield in favourable environments. The genotype Sonali, carrying the early allele of Caelf3a (elf3a), was generally the earliest to set pod and had low biomass but the highest harvest index. Genotypes combining the early variants of GIGANTEA and FT orthologues featured early reproduction and high harvest index, returning high yield in favourable environments. Our results emphasize the importance of pod set, rather than flowering, as a target for breeding, agronomic, and modelling applications.
Collapse
Affiliation(s)
- Raul Gimenez
- South Australian Research and Development Institute, Urrbrae, 5064, South Australia, Australia
- School of Natural Sciences, University of Tasmania, Sandy Bay Campus, Hobart, 7000, Tasmania, Australia
- Consejo Nacional de Investigaciones Científicas y Técnicas (IMASL-CONICET), San Luis, 5700, Argentina
| | - Lachlan Lake
- South Australian Research and Development Institute, Urrbrae, 5064, South Australia, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, 5064, Australia
- College of Science and Engineering, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Cesar Mariano Cossani
- South Australian Research and Development Institute, Urrbrae, 5064, South Australia, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, 5064, Australia
- College of Science and Engineering, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Raul Ortega Martinez
- School of Natural Sciences, University of Tasmania, Sandy Bay Campus, Hobart, 7000, Tasmania, Australia
| | - Julie E Hayes
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, 5064, Australia
| | - Maria Fernanda Dreccer
- Commonwealth Scientific and Industrial Research Organization, St Lucia, 4067, Queensland, Australia
| | - Robert French
- Department of Primary Industries and Regional Development, Merredin, 6415, WA, Australia
| | - James L Weller
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, 5064, Australia
| | - Victor O Sadras
- South Australian Research and Development Institute, Urrbrae, 5064, South Australia, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, 5064, Australia
- College of Science and Engineering, Flinders University, Bedford Park, 5042, South Australia, Australia
| |
Collapse
|
2
|
Liu R, Hu C, Gao D, Li M, Yuan X, Chen L, Shu Q, Wang Z, Yang X, Dai Z, Yu H, Yang F, Zheng A, Lv M, Garg V, Jiao C, Zhang H, Hou W, Teng C, Zhou X, Du C, Xiang C, Xu D, Tang Y, Chitikineni A, Duan Y, Maalouf F, Agrawal SK, Wei L, Zhao N, Barmukh R, Li X, Wang D, Ding H, Liu Y, Chen X, Varshney RK, He Y, Zong X, Yang T. A special short-wing petal faba genome and genetic dissection of floral and yield-related traits accelerate breeding and improvement of faba bean. Genome Biol 2025; 26:62. [PMID: 40098156 PMCID: PMC11916958 DOI: 10.1186/s13059-025-03532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND A comprehensive study of the genome and genetics of superior germplasms is fundamental for crop improvement. As a widely adapted protein crop with high yield potential, the improvement in breeding and development of the seeds industry of faba bean have been greatly hindered by its giant genome size and high outcrossing rate. RESULTS To fully explore the genomic diversity and genetic basis of important agronomic traits, we first generate a de novo genome assembly and perform annotation of a special short-wing petal faba bean germplasm (VF8137) exhibiting a low outcrossing rate. Comparative genome and pan-genome analyses reveal the genome evolution characteristics and unique pan-genes among the three different faba bean genomes. In addition, the genome diversity of 558 accessions of faba bean germplasm reveals three distinct genetic groups and remarkable genetic differences between the southern and northern germplasms. Genome-wide association analysis identifies several candidate genes associated with adaptation- and yield-related traits. We also identify one candidate gene related to short-wing petals by combining quantitative trait locus mapping and bulked segregant analysis. We further elucidate its function through multiple lines of evidence from functional annotation, sequence variation, expression differences, and protein structure variation. CONCLUSIONS Our study provides new insights into the genome evolution of Leguminosae and the genomic diversity of faba bean. It offers valuable genomic and genetic resources for breeding and improvement of faba bean.
Collapse
Affiliation(s)
- Rong Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Chaoqin Hu
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Dan Gao
- Smartgenomics Technology Institute, Tianjin, 301700, China
| | - Mengwei Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Liyang Chen
- Smartgenomics Technology Institute, Tianjin, 301700, China
| | - Qin Shu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Zonghe Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Xin Yang
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Zhengming Dai
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Haitian Yu
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Feng Yang
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Aiqing Zheng
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Meiyuan Lv
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Vanika Garg
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Chengzhi Jiao
- Smartgenomics Technology Institute, Tianjin, 301700, China
| | - Hongyan Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
| | - Wanwei Hou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
| | - Changcai Teng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
| | - Xianli Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, 810016, China
| | - Chengzhang Du
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Chao Xiang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Dongxu Xu
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, Hebei, 075032, China
| | - Yongsheng Tang
- Qujing Academy of Agricultural Sciences, Qujingaq, Yunnan, 655000, China
| | - Annapurna Chitikineni
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Yinmei Duan
- Dali Academy of Agricultural Sciences, Dali, Yunnan, 671005, China
| | - Fouad Maalouf
- International Center for Agricultural Researchin the, Dry Areas (ICARDA), Beirut, 1108-2010, Lebanon
| | - Shiv Kumar Agrawal
- International Center for Agricultural Researchin the, Dry Areas (ICARDA), Beirut, 1108-2010, Lebanon
| | - Libin Wei
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, Jiangsu, 226541, China
| | - Na Zhao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, Jiangsu, 226541, China
| | - Rutwik Barmukh
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Xiang Li
- Yuxi Academy of Agricultural Sciences, Yuxi, Yunnan, 653100, China
| | - Dong Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, 250100, China
| | - Hanfeng Ding
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, 250100, China
| | - Yujiao Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China.
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Yuhua He
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China.
| | - Xuxiao Zong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China.
| | - Tao Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China.
| |
Collapse
|
3
|
Duk MA, Gursky VV, Bankin MP, Semenova EA, Gurkina MV, Golubkova EV, Hirata D, Samsonova MG, Surkova SY. Modeling Floral Induction in the Narrow-Leafed Lupin Lupinus angustifolius Under Different Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3548. [PMID: 39771246 PMCID: PMC11678331 DOI: 10.3390/plants13243548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Flowering is initiated in response to environmental cues, with the photoperiod and ambient temperature being the main ones. The regulatory pathways underlying floral transition are well studied in Arabidopsis thaliana but remain largely unknown in legumes. Here, we first applied an in silico approach to infer the regulatory inputs of four FT-like genes of the narrow-leafed lupin Lupinus angustifolius. We studied the roles of FTc1, FTc2, FTa1, and FTa2 in the activation of meristem identity gene AGL8 in response to 8 h and 16 h photoperiods, vernalization, and the circadian rhythm. We developed a set of regression models of AGL8 regulation by the FT-like genes and fitted these models to the recently published gene expression data. The importance of the input from each FT-like gene or their combinations was estimated by comparing the performance of models with one or few FT-like genes turned off, thereby simulating loss-of-function mutations that were yet unavailable in L. angustifolius. Our results suggested that in the early flowering Ku line and intermediate Pal line, the FTc1 gene played a major role in floral transition; however, it acted through different mechanisms under short and long days. Turning off the regulatory input of FTc1 resulted in substantial changes in AGL8 expression associated with vernalization sensitivity and the circadian rhythm. In the wild ku line, we found that both FTc1 and FTa1 genes had an essential role under long days, which was associated with the vernalization response. These results could be applied both for setting up new experiments and for data analysis using the proposed modeling approach.
Collapse
Affiliation(s)
- Maria A. Duk
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Vitaly V. Gursky
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Mikhail P. Bankin
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Elena A. Semenova
- Faculty of Agronomy and Ecology, Far Eastern State Agrarian University, 675005 Blagoveschensk, Russia
| | - Maria V. Gurkina
- Astrakhan Experiment Station, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 416462 Astrakhan, Russia
| | - Elena V. Golubkova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 St. Petersburg, Russia
| | - Daisuke Hirata
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria G. Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Yu. Surkova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
4
|
Xu X, Shi X, You X, Hao Z, Wang R, Wang M, He F, Peng S, Tao H, Liu Z, Wang J, Zhang C, Feng Q, Wu W, Wang GL, Ning Y. A pair of E3 ubiquitin ligases control immunity and flowering by targeting different ELF3 proteins in rice. Dev Cell 2024; 59:2731-2744.e4. [PMID: 39025063 DOI: 10.1016/j.devcel.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/19/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024]
Abstract
The ubiquitin-proteasome system (UPS) plays crucial roles in cellular processes including plant growth, development, and stress responses. In this study, we report that a pair of E3 ubiquitin ligases, AvrPiz-t-interaction protein 6 (APIP6) and IPA1-interaction protein 1 (IPI1), intricately target early flowering3 (ELF3) paralogous proteins to control rice immunity and flowering. APIP6 forms homo-oligomers or hetero-oligomers with IPI1. Both proteins interact with OsELF3-2, promoting its degradation to positively control resistance against the rice blast fungus (Magnaporthe oryzae). Intriguingly, overexpression of IPI1 in Nipponbare caused significantly late-flowering phenotypes similar to the oself3-1 mutant. Except for late flowering, oself3-1 enhances resistance against M. oryzae. IPI1 also interacts with and promotes the degradation of OsELF3-1, a paralog of OsELF3-2. Notably, IPI1 and APIP6 synergistically modulate OsELF3s degradation, finely tuning blast disease resistance by targeting OsELF3-2, while IPI1 controls both disease resistance and flowering by targeting OsELF3-1. This study unravels multiple functions for a pair of E3 ligases in rice.
Collapse
Affiliation(s)
- Xiao Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuetao Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoman You
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Min Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shasha Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Tao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zheng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jisong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qin Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Weixun Wu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Lake L, Hayes JE, Ortega Martinez R, Weller JL, Javid M, Butler JB, James LE, Gimenez R, Dreccer MF, French R, Sadras VO. Genetics of phenological development and implications for seed yield in lentil. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4772-4783. [PMID: 38712747 DOI: 10.1093/jxb/erae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/05/2024] [Indexed: 05/08/2024]
Abstract
Understanding phenology, its genetics and agronomic consequences, is critical for crop adaptation. Here we aim to (i) characterize lentil response to photoperiod with a focus on five loci: the lentil ELF3 orthologue Sn, two loci linked to clusters of lentil FT orthologues, and two loci without candidates in chromosomes 2 and 5 (Experiment 1: 36 lines, short and long days in a phytotron), and (ii) establish the phenology-yield relationship (Experiment 2: 25 lines, 11 field environments). A vintage perspective, where we quantify time trends in phenotype over three decades of breeding, links both experiments. Yield increased linearly from older to newer varieties at 29 kg ha-1 year-1 or 1.5% year-1, correlated negatively with flowering time in both winter- and summer-rainfall regimes, and decoupled from biomass in favourable environments. Time to flowering shortened from older to newer varieties at -0.56% year-1 in the field, and -0.42% year-1 (short days) and -0.99% year-1 (long days) in the phytotron. Early-flowering lines of diverse origin carried multiple early alleles for the five loci, indicating that at least some of these loci affect phenology additively. Current germplasm primarily features the early-flowering haplotype for an FTb cluster region, hence the potential to increase phenological diversity with yield implications.
Collapse
Affiliation(s)
- Lachlan Lake
- South Australian Research and Development Institute, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Australia
- College of Science and Engineering, Flinders University, Australia
| | - Julie E Hayes
- School of Agriculture, Food and Wine, The University of Adelaide, Australia
| | - Raul Ortega Martinez
- School of Natural Sciences, University of Tasmania, Sandy Bay Campus, Hobart, Tasmania, Australia
| | - Jim L Weller
- School of Natural Sciences, University of Tasmania, Sandy Bay Campus, Hobart, Tasmania, Australia
| | - Muhammad Javid
- Department of Primary Industries and Regional Development, Merredin, WA, Australia
| | - Jacob B Butler
- School of Natural Sciences, University of Tasmania, Sandy Bay Campus, Hobart, Tasmania, Australia
| | - Laura E James
- School of Natural Sciences, University of Tasmania, Sandy Bay Campus, Hobart, Tasmania, Australia
| | - Raul Gimenez
- South Australian Research and Development Institute, Australia
- School of Natural Sciences, University of Tasmania, Sandy Bay Campus, Hobart, Tasmania, Australia
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - M Fernanda Dreccer
- Commonwealth Scientific and Industrial Research Organisation, Queensland, Australia
| | - Robert French
- Department of Primary Industries and Regional Development, Merredin, WA, Australia
| | - Victor O Sadras
- South Australian Research and Development Institute, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Australia
- College of Science and Engineering, Flinders University, Australia
| |
Collapse
|
6
|
Rychel-Bielska S, Bielski W, Surma A, Annicchiarico P, Belter J, Kozak B, Galek R, Harzic N, Książkiewicz M. A GWAS study highlights significant associations between a series of indels in a FLOWERING LOCUS T gene promoter and flowering time in white lupin (Lupinus albus L.). BMC PLANT BIOLOGY 2024; 24:722. [PMID: 39075363 PMCID: PMC11285409 DOI: 10.1186/s12870-024-05438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND White lupin (Lupinus albus L.) is a high-protein Old World grain legume with remarkable food and feed production interest. It is sown in autumn or early spring, depending on the local agroclimatic conditions. This study aimed to identify allelic variants associated with vernalization responsiveness, in order to improve our knowledge of legume flowering regulatory pathways and develop molecular selection tools for the desired phenology as required for current breeding and adaptation to the changing climate. RESULTS Some 120 white lupin accessions originating from a wide range of environments of Europe, Africa, and Asia were phenotyped under field conditions in three environments with different intensities of vernalization, namely, a Mediterranean and a subcontinental climate sites of Italy under autumn sowing, and a suboceanic climate site of France under spring sowing. Two hundred sixty-two individual genotypes extracted from them were phenotyped in a greenhouse under long-day photoperiod without vernalization. Phenology data, and marker data generated by Diversity Arrays Technology sequencing (DArT-seq) and by PCR-based screening targeting published quantitative trait loci (QTLs) from linkage map and newly identified insertion/deletion polymorphisms in the promoter region of the FLOWERING LOCUS T homolog, LalbFTc1 gene (Lalb_Chr14g0364281), were subjected to a genome-wide association study (GWAS). Population structure followed differences in phenology and isolation by distance pattern. The GWAS highlighted numerous loci significantly associated with flowering time, including four LalbFTc1 gene promoter deletions: 2388 bp and 2126 bp deletions at the 5' end, a 264 bp deletion in the middle and a 28 bp deletion at the 3' end of the promoter. Besides LalbFTc1 deletions, this set contained DArT-seq markers that matched previously published major QTLs in chromosomes Lalb_Chr02, Lalb_Chr13 and Lalb_Chr16, and newly discovered QTLs in other chromosomes. CONCLUSIONS This study highlighted novel QTLs for flowering time and validated those already published, thereby providing novel evidence on the convergence of FTc1 gene functional evolution into the vernalization pathway in Old World lupin species. Moreover, this research provided the set of loci specific for extreme phenotypes (the earliest or the latest) awaiting further implementation in marker-assisted selection for spring- or winter sowing.
Collapse
Affiliation(s)
- Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Plac Grunwaldzki 24A, Wrocław, 50-363, Poland
| | - Wojciech Bielski
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, Poznan, 60-632, Poland
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznań, 60-479, Poland
| | - Anna Surma
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznań, 60-479, Poland
| | - Paolo Annicchiarico
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, Viale Piacenza 29, Lodi, 26900, Italy
| | - Jolanta Belter
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznań, 60-479, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Plac Grunwaldzki 24A, Wrocław, 50-363, Poland
| | - Renata Galek
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Plac Grunwaldzki 24A, Wrocław, 50-363, Poland
| | - Nathalie Harzic
- Cérience, 1 Allée de la Sapinière, Saint Sauvant, 86600, France
| | - Michał Książkiewicz
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznań, 60-479, Poland.
| |
Collapse
|
7
|
Perez-Rial A, Carmona A, Ali L, Rubio J, Millan T, Castro P, Die JV. Phenotypic and genetic characterization of a near-isogenic line pair: insights into flowering time in chickpea. BMC PLANT BIOLOGY 2024; 24:709. [PMID: 39054447 PMCID: PMC11270784 DOI: 10.1186/s12870-024-05411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Cicer arietinum is a significant legume crop cultivated mainly in short-season environments, where early-flowering is a desirable trait to overcome terminal constraints. Despite its agricultural significance, the genetic control of flowering time in chickpea is not fully understood. In this study, we developed, phenotyped, re-sequenced and genetically characterized a pair of near-isogenic lines (NILs) with contrasting days to flowering to identify candidate gene variants potentially associated with flowering time. RESULTS In addition to days to flowering, noticeable differences in multiple shoot architecture traits were observed between the NILs. The resequencing data confirms that the NILs developed in this study serve as appropriate plant materials, effectively constraining genetic variation to specific regions and thereby establishing a valuable resource for future genetic and functional investigations in chickpea research. Leveraging bioinformatics tools and public genomic datasets, we identified homologs of flowering-related genes from Arabidopsis thaliana, including ELF3 and, for the first time in chickpea, MED16 and STO/BBX24, with variants among the NILs. Analysis of the allelic distribution of these genes revealed their preservation within chickpea diversity and their potential association with flowering time. Variants were also identified in members of the ERF and ARF gene families. Furthermore, in silico expression analysis was conducted elucidating their putative roles in flowering. CONCLUSIONS While the gene CaELF3a is identified as a prominent candidate, this study also exposes new targets in chickpea, such as CaMED16b and LOC101499101 (BBX24-like), homologs of flowering-related genes in Arabidopsis, as well as ERF12 and ARF2. The in silico expression characterization and genetic variability analysis performed could contribute to their use as specific markers for chickpea breeding programs. This study lays the groundwork for future investigations utilizing this plant material, promising further insights into the complex mechanisms governing flowering time in chickpea.
Collapse
Affiliation(s)
- Adrian Perez-Rial
- Department of Genetics-ETSIAM, University of Córdoba, Campus de Rabanales, Córdoba, 14071, Spain
| | - Alejandro Carmona
- Department of Genetics-ETSIAM, University of Córdoba, Campus de Rabanales, Córdoba, 14071, Spain
| | - Latifah Ali
- Department of Plant Biology-Science Faculty, University of Tishreen, Lattakia City, Syria
| | - Josefa Rubio
- Área de Mejora y Biotecnología, IFAPA Centro 'Alameda del Obispo', Córdoba, 14080, Spain
| | - Teresa Millan
- Department of Genetics-ETSIAM, University of Córdoba, Campus de Rabanales, Córdoba, 14071, Spain
| | - Patricia Castro
- Department of Genetics-ETSIAM, University of Córdoba, Campus de Rabanales, Córdoba, 14071, Spain.
| | - Jose V Die
- Department of Genetics-ETSIAM, University of Córdoba, Campus de Rabanales, Córdoba, 14071, Spain
| |
Collapse
|
8
|
Hernández-Soriano L, Gálvez-Sandre L, Ávila de Dios E, Simpson J. How to awaken a sleeping giant: antagonistic expression of Flowering locus T homologs and elements of the age-related pathway are associated with the flowering transition in Agave tequilana. PLANT REPRODUCTION 2024; 37:111-132. [PMID: 38082036 PMCID: PMC11180032 DOI: 10.1007/s00497-023-00489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/08/2023] [Indexed: 06/16/2024]
Abstract
KEY MESSAGE Antagonistic expression of Flowering locus T proteins and the ageing pathway via miRNAs and sugar metabolism regulate the initiation of flowering in A. tequilana. Flowering in commercial plantations of Agave tequilana signals that plants are ready to harvest for tequila production. However, time of flowering is often unpredictable and a detailed understanding of the process would be beneficial in the field, for breeding and for the development of future research. This report describes the functional analysis of A. tequilana FLOWERING LOCUS T (FT) genes by heterologous expression in A. thaliana and in situ hybridization in agave plants. The gene structures of the Agave tequilana FT family are also described and putative regulatory promoter elements were identified. Most Agave species have monocarpic, perennial life cycles that can last over 25 years during which plants do not respond to the normal environmental signals which induce flowering, suggesting that the ageing pathway as described in Arabidopsis may play an important role in determining flowering time in these species. Elements of this pathway were analyzed and in silico data is presented that supports the regulation of SQUAMOSA PROMOTER BINDING LIKE proteins (SPL), APETALA2 (AP2) proteins and members of Plant Glycoside Hydrolase Family 32 (PGHF32) by interactions with miRNAs 156, 172 and 164 during the initiation of flowering in A. tequilana.
Collapse
Affiliation(s)
| | - Laura Gálvez-Sandre
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Guanajuato, Mexico
| | - Emmanuel Ávila de Dios
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Guanajuato, Mexico
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - June Simpson
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Guanajuato, Mexico.
| |
Collapse
|
9
|
Chen B, Shi Y, Sun Y, Lu L, Wang L, Liu Z, Cheng S. Innovations in functional genomics and molecular breeding of pea: exploring advances and opportunities. ABIOTECH 2024; 5:71-93. [PMID: 38576433 PMCID: PMC10987475 DOI: 10.1007/s42994-023-00129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 04/06/2024]
Abstract
The garden pea (Pisum sativum L.) is a significant cool-season legume, serving as crucial food sources, animal feed, and industrial raw materials. The advancement of functional genomics over the past two decades has provided substantial theoretical foundations and progress to pea breeding. Notably, the release of the pea reference genome has enhanced our understanding of plant architecture, symbiotic nitrogen fixation (SNF), flowering time, floral organ development, seed development, and stress resistance. However, a considerable gap remains between pea functional genomics and molecular breeding. This review summarizes the current advancements in pea functional genomics and breeding while highlighting the future challenges in pea molecular breeding.
Collapse
Affiliation(s)
- Baizhi Chen
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Yan Shi
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Yuchen Sun
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Lu Lu
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Luyao Wang
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Zijian Liu
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Shifeng Cheng
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| |
Collapse
|
10
|
Jiang X, Zhang L, Li Y, Long R, Yang Q, Kang J. Functional Characterization of the MsFKF1 Gene Reveals Its Dual Role in Regulating the Flowering Time and Plant Height in Medicago sativa L. PLANTS (BASEL, SWITZERLAND) 2024; 13:655. [PMID: 38475501 DOI: 10.3390/plants13050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 03/14/2024]
Abstract
Alfalfa (M. sativa), a perennial legume forage, is known for its high yield and good quality. As a long-day plant, it is sensitive to changes in the day length, which affects the flowering time and plant growth, and limits alfalfa yield. Photoperiod-mediated delayed flowering in alfalfa helps to extend the vegetative growth period and increase the yield. We isolated a blue-light phytohormone gene from the alfalfa genome that is an ortholog of soybean FKF1 and named it MsFKF1. Gene expression analyses showed that MsFKF1 responds to blue light and the circadian clock in alfalfa. We found that MsFKF1 regulates the flowering time through the plant circadian clock pathway by inhibiting the transcription of E1 and COL, thus suppressing FLOWERING LOCUS T a1 (FTa1) transcription. In addition, transgenic lines exhibited higher plant height and accumulated more biomass in comparison to wild-type plants. However, the increased fiber (NDF and ADF) and lignin content also led to a reduction in the digestibility of the forage. The key genes related to GA biosynthesis, GA20OX1, increased in the transgenic lines, while GA2OX1 decreased for the inactive GA transformation. These findings offer novel insights on the function of MsFKF1 in the regulation of the flowering time and plant height in cultivated M. sativa. These insights into MsFKF1's roles in alfalfa offer potential strategies for molecular breeding aimed at optimizing flowering time and biomass yield.
Collapse
Affiliation(s)
- Xu Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Lili Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yajing Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Yang J, Song J, Jeong BR. Flowering and Runnering of Seasonal Strawberry under Different Photoperiods Are Affected by Intensity of Supplemental or Night-Interrupting Blue Light. PLANTS (BASEL, SWITZERLAND) 2024; 13:375. [PMID: 38337908 PMCID: PMC10857185 DOI: 10.3390/plants13030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The strawberry (Fragaria × ananassa Duch.) "Sulhyang" is a typical seasonal flowering (SF) strawberry that produces flower buds in day lengths shorter than a critical limit (variable, but often defined as <12 h). There is a trade-off between photoperiod-controlled flowering and gibberellin (GA) signaling pathway-mediated runnering. Some related genes (such as CO, FT1, SOC1, and TFL1) participating in light signaling and circadian rhythm in plants are altered under blue light (BL). Sugars for flowering and runnering are mainly produced by photosynthetic carbon assimilation. The intensity of light could affect photosynthesis, thereby regulating flowering and runnering. Here, we investigated the effect of the intensity of supplemental blue light (S-BL) or night-interrupting blue light (NI-BL) in photoperiodic flowering and runnering regulation by applying 4 h of S-BL or NI-BL with either 0, 10, 20, 30, or 40 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) in a 10 h short-day (SD10) (SD10 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)) or 14 h long-day (LD14) conditions (LD14 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)). Approximately 45 days after the photoperiodic light treatment, generally, whether S-BL or NI-BL, BL (20) was the most promotive in runnering, leading to more runners in both the LD and SD conditions. For flowering, except the treatment LD14 + S-BL, BL (20) was still the key light, either from BL (20) or BL (40), promoting flowering, especially when BL acted as the night-interrupting light, regardless of the photoperiod. At the harvest stage, larger numbers of inflorescences and runners were observed in the LD14 + NI-BL4 treatment, and the most were observed in the LD14 + NI-BL (20). Moreover, the SD10 + NI-BL4 was slightly inferior to the LD14 + NI-BL4 in increasing the numbers of inflorescences and runners, but it caused earlier flowering. Additionally, the circadian rhythm expression of flowering-related genes was affected differently by the S-BL and NI-BL. After the application of BL in LD conditions, the expression of an LD-specific floral activator FaFT1 was stimulated, while that of a flowering suppressor FaTFL1 was inhibited, resetting the balance of expression between these two opposite flowering regulators. The SD runnering was caused by BL in non-runnering SD conditions associated with the stimulation of two key genes that regulate runner formation in the GA pathway, FaGRAS32 and FaGA20ox4. In addition, the positive effects of BL on enhancing photosynthesis and carbohydrate production also provided an abundant energy supply for the flowering and runnering processes.
Collapse
Affiliation(s)
- Jingli Yang
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinnan Song
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
12
|
Duk MA, Gursky VV, Samsonova MG, Surkova SY. Modeling the Flowering Activation Motif during Vernalization in Legumes: A Case Study of M. trancatula. Life (Basel) 2023; 14:26. [PMID: 38255642 PMCID: PMC10817331 DOI: 10.3390/life14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
In many plant species, flowering is promoted by the cold treatment or vernalization. The mechanism of vernalization-induced flowering has been extensively studied in Arabidopsis but remains largely unknown in legumes. The orthologs of the FLC gene, a major regulator of vernalization response in Arabidopsis, are absent or non-functional in the vernalization-sensitive legume species. Nevertheless, the legume integrator genes FT and SOC1 are involved in the transition of the vernalization signal to meristem identity genes, including PIM (AP1 ortholog). However, the regulatory contribution of these genes to PIM activation in legumes remains elusive. Here, we presented the theoretical and data-driven analyses of a feed-forward regulatory motif that includes a vernalization-responsive FT gene and several SOC1 genes, which independently activate PIM and thereby mediate floral transition. Our theoretical model showed that the multiple regulatory branches in this regulatory motif facilitated the elimination of no-sense signals and amplified useful signals from the upstream regulator. We further developed and analyzed four data-driven models of PIM activation in Medicago trancatula in vernalized and non-vernalized conditions in wild-type and fta1-1 mutants. The model with FTa1 providing both direct activation and indirect activation via three intermediate activators, SOC1a, SOC1b, and SOC1c, resulted in the most relevant PIM dynamics. In this model, the difference between regulatory inputs of SOC1 genes was nonessential. As a result, in the M. trancatula model, the cumulative action of SOC1a, SOC1b, and SOC1c was favored. Overall, in this study, we first presented the in silico analysis of vernalization-induced flowering in legumes. The considered vernalization network motif can be supplemented with additional regulatory branches as new experimental data become available.
Collapse
Affiliation(s)
- Maria A. Duk
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Vitaly V. Gursky
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Maria G. Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Yu. Surkova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
13
|
Naveed S, Gandhi N, Billings G, Jones Z, Campbell BT, Jones M, Rustgi S. Alterations in Growth Habit to Channel End-of-Season Perennial Reserves towards Increased Yield and Reduced Regrowth after Defoliation in Upland Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2023; 24:14174. [PMID: 37762483 PMCID: PMC10532291 DOI: 10.3390/ijms241814174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Cotton (Gossypium spp.) is the primary source of natural textile fiber in the U.S. and a major crop in the Southeastern U.S. Despite constant efforts to increase the cotton fiber yield, the yield gain has stagnated. Therefore, we undertook a novel approach to improve the cotton fiber yield by altering its growth habit from perennial to annual. In this effort, we identified genotypes with high-expression alleles of five floral induction and meristem identity genes (FT, SOC1, FUL, LFY, and AP1) from an Upland cotton mini-core collection and crossed them in various combinations to develop cotton lines with annual growth habit, optimal flowering time, and enhanced productivity. To facilitate the characterization of genotypes with the desired combinations of stacked alleles, we identified molecular markers associated with the gene expression traits via genome-wide association analysis using a 63 K SNP Array. Over 14,500 SNPs showed polymorphism and were used for association analysis. A total of 396 markers showed associations with expression traits. Of these 396 markers, 159 were mapped to genes, 50 to untranslated regions, and 187 to random genomic regions. Biased genomic distribution of associated markers was observed where more trait-associated markers mapped to the cotton D sub-genome. Many quantitative trait loci coincided at specific genomic regions. This observation has implications as these traits could be bred together. The analysis also allowed the identification of candidate regulators of the expression patterns of these floral induction and meristem identity genes whose functions will be validated.
Collapse
Affiliation(s)
- Salman Naveed
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - Nitant Gandhi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - Grant Billings
- Department of Crop & Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Zachary Jones
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - B. Todd Campbell
- USDA-ARS Coastal Plains Soil, Water, and Plant Research Center, Florence, SC 29501, USA;
| | - Michael Jones
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| |
Collapse
|
14
|
Imbert B, Kreplak J, Flores RG, Aubert G, Burstin J, Tayeh N. Development of a knowledge graph framework to ease and empower translational approaches in plant research: a use-case on grain legumes. Front Artif Intell 2023; 6:1191122. [PMID: 37601035 PMCID: PMC10435283 DOI: 10.3389/frai.2023.1191122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
While the continuing decline in genotyping and sequencing costs has largely benefited plant research, some key species for meeting the challenges of agriculture remain mostly understudied. As a result, heterogeneous datasets for different traits are available for a significant number of these species. As gene structures and functions are to some extent conserved through evolution, comparative genomics can be used to transfer available knowledge from one species to another. However, such a translational research approach is complex due to the multiplicity of data sources and the non-harmonized description of the data. Here, we provide two pipelines, referred to as structural and functional pipelines, to create a framework for a NoSQL graph-database (Neo4j) to integrate and query heterogeneous data from multiple species. We call this framework Orthology-driven knowledge base framework for translational research (Ortho_KB). The structural pipeline builds bridges across species based on orthology. The functional pipeline integrates biological information, including QTL, and RNA-sequencing datasets, and uses the backbone from the structural pipeline to connect orthologs in the database. Queries can be written using the Neo4j Cypher language and can, for instance, lead to identify genes controlling a common trait across species. To explore the possibilities offered by such a framework, we populated Ortho_KB to obtain OrthoLegKB, an instance dedicated to legumes. The proposed model was evaluated by studying the conservation of a flowering-promoting gene. Through a series of queries, we have demonstrated that our knowledge graph base provides an intuitive and powerful platform to support research and development programmes.
Collapse
Affiliation(s)
- Baptiste Imbert
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Jonathan Kreplak
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Raphaël-Gauthier Flores
- Université Paris-Saclay, INRAE, URGI, Versailles, France
- Université Paris-Saclay, INRAE, BioinfOmics, Plant Bioinformatics Facility, Versailles, France
| | - Grégoire Aubert
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Judith Burstin
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Nadim Tayeh
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
15
|
Cheng B, Tao N, Ma Y, Chai H, Liu P, Chen W, Zhao Y. Overexpression of the Capebp2 Gene Encoding the PEBP-like Protein Promotes the Cap Redifferentiation in Cyclocybe aegerita. J Fungi (Basel) 2023; 9:657. [PMID: 37367593 DOI: 10.3390/jof9060657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Phosphatidylethanolamine-binding protein (PEBP) is widely involved in various physiological behaviors, such as the transition from vegetative growth to reproductive growth in plants, tumorigenesis in the human, etc. However, few functional studies have examined pebp genes affecting the development of fungi. In this study, Capebp2 was cloned from Cyclocybe aegerita AC0007 strains based on the genome sequence and gene prediction, and the sequence alignment of CaPEBP2 with other PEBP proteins from other biological sources including plant, animal, fungi, and bacteria indicated that PEBP had low sequence similarity in fungi, whereas all protein sequences had some conserved motifs such as DPDAP and HRY. Expression analysis showed the transcription level of Capebp2 increased approximately 20-fold in fruiting bodies compared with mycelia. To uncover the function of Capebp2 in C. aegetita development, Capebp2 was cloned into a pATH vector driven by the actin promoter for obtaining overexpression transformant lines. Fruiting experiments showed the transformed strains overexpressing Capebp2 exhibited redifferentiation of the cap on their surface, including intact fruiting bodies or partial lamella during fruiting development stage, and the longitudinal section indicated that all regenerated bodies or lamella sprouted from the flesh and shared the epidermis with the mother fruiting bodies. In summary, the sequence characterization of Capebp2, expression level during different development stages, and function on fruiting body development were documented in this study, and these findings provided a reference to study the role of pebp in the development process of basidiomycetes. Importantly, gene mining of pebp, function characterization, and the regulating pathways involved need to be uncovered in further studies.
Collapse
Affiliation(s)
- Bopu Cheng
- College of Life Science, Southwest Forestry University, Kunming 650224, China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Nan Tao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Yuanhao Ma
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Hongmei Chai
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Ping Liu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Weimin Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Yongchang Zhao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| |
Collapse
|
16
|
Lembinen S, Cieslak M, Zhang T, Mackenzie K, Elomaa P, Prusinkiewicz P, Hytönen T. Diversity of woodland strawberry inflorescences arises from heterochrony regulated by TERMINAL FLOWER 1 and FLOWERING LOCUS T. THE PLANT CELL 2023; 35:2079-2094. [PMID: 36943776 DOI: 10.1093/plcell/koad086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 05/30/2023]
Abstract
A vast variety of inflorescence architectures have evolved in angiosperms. Here, we analyze the diversity and development of the woodland strawberry (Fragaria vesca) inflorescence. Contrary to historical classifications, we show that it is a closed thyrse: a compound inflorescence with determinate primary monopodial axis and lateral sympodial branches, thus combining features of racemes and cymes. We demonstrate that this architecture is generated by 2 types of inflorescence meristems differing in their geometry. We further show that woodland strawberry homologs of TERMINAL FLOWER 1 (FvTFL1) and FLOWERING LOCUS T (FvFT1) regulate the development of both the racemose and cymose components of the thyrse. Loss of functional FvTFL1 reduces the number of lateral branches of the main axis and iterations in the lateral branches but does not affect their cymose pattern. These changes can be enhanced or compensated by altering FvFT1 expression. We complement our experimental findings with a computational model that captures inflorescence development using a small set of rules. The model highlights the distinct regulation of the fate of the primary and higher-order meristems, and explains the phenotypic diversity among inflorescences in terms of heterochrony resulting from the opposite action of FvTFL1 and FvFT1 within the thyrse framework. Our results represent a detailed analysis of thyrse architecture development at the meristematic and molecular levels.
Collapse
Affiliation(s)
- Sergei Lembinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FIN-00014, Finland
| | - Mikolaj Cieslak
- Department of Computer Science, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Teng Zhang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FIN-00014, Finland
| | - Kathryn Mackenzie
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FIN-00014, Finland
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FIN-00014, Finland
| | | | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FIN-00014, Finland
| |
Collapse
|
17
|
Neupane S, Wright DM, Martinez RO, Butler J, Weller JL, Bett KE. Focusing the GWAS Lens on days to flower using latent variable phenotypes derived from global multienvironment trials. THE PLANT GENOME 2023; 16:e20269. [PMID: 36284473 DOI: 10.1002/tpg2.20269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/25/2022] [Indexed: 05/10/2023]
Abstract
Adaptation constraints within crop species have resulted in limited genetic diversity in some breeding programs and areas where new crops have been introduced, for example, for lentil (Lens culinaris Medik.) in North America. An improved understanding of the underlying genetics involved in phenology-related traits is valuable knowledge to aid breeders in overcoming limitations associated with unadapted germplasm and expanding their genetic diversity by introducing new, exotic material. We used a large, 18 site-year, multienvironment dataset phenotyped for phenology-related traits across nine locations and over 3 yr along with accompanying latent variable phenotypes derived from a photothermal model and principal component analysis (PCA) of days from sowing to flower (DTF) data for a lentil diversity panel (324 accessions), which has also been genotyped with an exome capture array. Genome-wide association studies (GWAS) on DTF across multiple environments helped confirm associations with known flowering-time genes and identify new quantitative trait loci (QTL), which may contain previously unknown flowering time genes. Additionally, the use of latent variable phenotypes, which can incorporate environmental data such as temperature and photoperiod as both GWAS traits and as covariates, strengthened associations, revealed additional hidden associations, and alluded to potential roles of the associated QTL. Our approach can be replicated with other crop species, and the results from our GWAS serve as a resource for further exploration into the complex nature of phenology-related traits across the major growing environments for cultivated lentil.
Collapse
Affiliation(s)
- Sandesh Neupane
- Dep. of Plant Sciences, Univ. of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Derek M Wright
- Dep. of Plant Sciences, Univ. of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Raul O Martinez
- School of Natural Sciences, Univ. of Tasmania, Hobart, TAS, 7001, Australia
| | - Jakob Butler
- School of Natural Sciences, Univ. of Tasmania, Hobart, TAS, 7001, Australia
| | - James L Weller
- School of Natural Sciences, Univ. of Tasmania, Hobart, TAS, 7001, Australia
| | - Kirstin E Bett
- Dep. of Plant Sciences, Univ. of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
18
|
Gretsova M, Surkova S, Kanapin A, Samsonova A, Logacheva M, Shcherbakov A, Logachev A, Bankin M, Nuzhdin S, Samsonova M. Transcriptomic Analysis of Flowering Time Genes in Cultivated Chickpea and Wild Cicer. Int J Mol Sci 2023; 24:ijms24032692. [PMID: 36769014 PMCID: PMC9916832 DOI: 10.3390/ijms24032692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Chickpea (Cicer arietinum L.) is a major grain legume and a good source of plant-based protein. However, comprehensive knowledge of flowering time control in Cicer is lacking. In this study, we acquire high-throughput transcriptome sequencing data and analyze changes in gene expression during floral transition in the early flowering cultivar ICCV 96029, later flowering C. arietinum accessions, and two wild species, C. reticulatum and C. echinospermum. We identify Cicer orthologs of A. thaliana flowering time genes and analyze differential expression of 278 genes between four species/accessions, three tissue types, and two conditions. Our results show that the differences in gene expression between ICCV 96029 and other cultivated chickpea accessions are vernalization-dependent. In addition, we highlight the role of FTa3, an ortholog of FLOWERING LOCUS T in Arabidopsis, in the vernalization response of cultivated chickpea. A common set of differentially expressed genes was found for all comparisons between wild species and cultivars. The direction of expression change for different copies of the FT-INTERACTING PROTEIN 1 gene was variable in different comparisons, which suggests complex mechanisms of FT protein transport. Our study makes a contribution to the understanding of flowering time control in Cicer, and can provide genetic strategies to further improve this important agronomic trait.
Collapse
Affiliation(s)
- Maria Gretsova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Surkova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Alexander Kanapin
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Anastasia Samsonova
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Logacheva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Andrey Shcherbakov
- Laboratory of Microbial Technology, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Anton Logachev
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Mikhail Bankin
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Sergey Nuzhdin
- Section of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Maria Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
19
|
Wang F, Li S, Kong F, Lin X, Lu S. Altered regulation of flowering expands growth ranges and maximizes yields in major crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1094411. [PMID: 36743503 PMCID: PMC9892950 DOI: 10.3389/fpls.2023.1094411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/04/2023] [Indexed: 06/14/2023]
Abstract
Flowering time influences reproductive success in plants and has a significant impact on yield in grain crops. Flowering time is regulated by a variety of environmental factors, with daylength often playing an important role. Crops can be categorized into different types according to their photoperiod requirements for flowering. For instance, long-day crops include wheat (Triticum aestivum), barley (Hordeum vulgare), and pea (Pisum sativum), while short-day crops include rice (Oryza sativa), soybean (Glycine max), and maize (Zea mays). Understanding the molecular regulation of flowering and genotypic variation therein is important for molecular breeding and crop improvement. This paper reviews the regulation of flowering in different crop species with a particular focus on how photoperiod-related genes facilitate adaptation to local environments.
Collapse
Affiliation(s)
| | | | | | - Xiaoya Lin
- *Correspondence: Xiaoya Lin, ; Sijia Lu,
| | - Sijia Lu
- *Correspondence: Xiaoya Lin, ; Sijia Lu,
| |
Collapse
|
20
|
Maeda AE, Nakamichi N. Plant clock modifications for adapting flowering time to local environments. PLANT PHYSIOLOGY 2022; 190:952-967. [PMID: 35266545 PMCID: PMC9516756 DOI: 10.1093/plphys/kiac107] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/09/2022] [Indexed: 05/25/2023]
Abstract
During and after the domestication of crops from ancestral wild plants, humans selected cultivars that could change their flowering time in response to seasonal daylength. Continuous selection of this trait eventually allowed the introduction of crops into higher or lower latitudes and different climates from the original regions where domestication initiated. In the past two decades, numerous studies have found the causal genes or alleles that change flowering time and have assisted in adapting crop species such as barley (Hordeum vulgare), wheat (Triticum aestivum L.), rice (Oryza sativa L.), pea (Pisum sativum L.), maize (Zea mays spp. mays), and soybean (Glycine max (L.) Merr.) to new environments. This updated review summarizes the genes or alleles that contributed to crop adaptation in different climatic areas. Many of these genes are putative orthologs of Arabidopsis (Arabidopsis thaliana) core clock genes. We also discuss how knowledge of the clock's molecular functioning can facilitate molecular breeding in the future.
Collapse
Affiliation(s)
- Akari E Maeda
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Norihito Nakamichi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
21
|
Surkova SY, Samsonova MG. Mechanisms of Vernalization-Induced Flowering in Legumes. Int J Mol Sci 2022; 23:ijms23179889. [PMID: 36077286 PMCID: PMC9456104 DOI: 10.3390/ijms23179889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Vernalization is the requirement for exposure to low temperatures to trigger flowering. The best knowledge about the mechanisms of vernalization response has been accumulated for Arabidopsis and cereals. In Arabidopsis thaliana, vernalization involves an epigenetic silencing of the MADS-box gene FLOWERING LOCUS C (FLC), which is a flowering repressor. FLC silencing releases the expression of the main flowering inductor FLOWERING LOCUS T (FT), resulting in a floral transition. Remarkably, no FLC homologues have been identified in the vernalization-responsive legumes, and the mechanisms of cold-mediated transition to flowering in these species remain elusive. Nevertheless, legume FT genes have been shown to retain the function of the main vernalization signal integrators. Unlike Arabidopsis, legumes have three subclades of FT genes, which demonstrate distinct patterns of regulation with respect to environmental cues and tissue specificity. This implies complex mechanisms of vernalization signal propagation in the flowering network, that remain largely elusive. Here, for the first time, we summarize the available information on the genetic basis of cold-induced flowering in legumes with a special focus on the role of FT genes.
Collapse
|
22
|
Plewiński P, Rychel-Bielska S, Kozak B, Maureira-Butler IJ, Iqbal MM, Nelson MN, Książkiewicz M. FLOWERING LOCUS T indel variants confer vernalization-independent and photoperiod-insensitive flowering of yellow lupin ( Lupinus luteus L.). HORTICULTURE RESEARCH 2022; 9:uhac180. [PMID: 36338848 PMCID: PMC9627521 DOI: 10.1093/hr/uhac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
Ongoing climate change has considerably reduced the seasonal window for crop vernalization, concurrently expanding cultivation area into northern latitudes with long-day photoperiod. To address these changes, cool season legume breeders need to understand molecular control of vernalization and photoperiod. A key floral transition gene integrating signals from these pathways is the Flowering locus T (FT). Here, a recently domesticated grain legume, yellow lupin (Lupinus luteus L.), was explored for potential involvement of FT homologues in abolition of vernalization and photoperiod requirements. Two FTa (LlutFTa1a and LlutFTa1b) and FTc (LlutFTc1 and LlutFTc2) homologues were identified and sequenced for two contrasting parents of a reference recombinant inbred line (RIL) population, an early-flowering cultivar Wodjil and a late-flowering wild-type P28213. Large deletions were detected in the 5' promoter regions of three FT homologues. Quantitative trait loci were identified for flowering time and vernalization response in the RIL population and in a diverse panel of wild and domesticated accessions. A 2227 bp deletion found in the LlutFTc1 promoter was linked with early phenology and vernalization independence, whereas LlutFTa1a and LlutFTc2 indels with photoperiod responsiveness. Comparative mapping highlighted convergence of FTc1 indel evolution in two Old World lupin species, addressing both artificial selection during domestication and natural adaptation to short season environmental conditions. We concluded that rapid flowering in yellow lupin is associated with the de-repression of the LlutFTc1 homologue from the juvenile phase, putatively due to the elimination of all binding sites in the promoter region for the AGAMOUS-like 15 transcription factor.
Collapse
Affiliation(s)
- Piotr Plewiński
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Iván J Maureira-Butler
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia, Chile
| | - Muhammad Munir Iqbal
- Centre for Plant Genetics and Breeding, The University of Western Australia, Perth, 6009, WA, Australia
- Genomics WA, Joint initiative of Telethon Kids Institute, Harry Perkins Institute of Medical Research and The University of Western Australia, QEII campus, Nedlands, 6009, Western Australia, Australia
| | - Matthew N Nelson
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| | | |
Collapse
|
23
|
Harada A, Tsuji N, Fujimoto N, Matsuo M, Saito M, Kanzawa N. Heterologous expression of flowering locus T promotes flowering but does not affect diurnal movement in the legume Lotus japonicus. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:155-163. [PMID: 35937532 PMCID: PMC9300419 DOI: 10.5511/plantbiotechnology.22.0210a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Flowering locus T (FT) is known to promote flowering in response to photoperiodic conditions and has recently been shown to contribute to other phenomenon, such as diurnal stomatal movement. In legumes, FTs are classified into three subtypes, though the role of each subtype is not well defined. It has been reported that when FT of Lotus japonicus (LjFT) is heterologously expressed in Arabidopsis, LjFT functions as a mobile florigen to promote flowering, similar to Arabidopsis FT (AtFT). In this study, we expressed AtFT in L. japonicus using the SUC2 promoter and showed that heterologous expression of AtFT was able to promote flowering in the plant. We also showed that AtFT expression does not affect stomatal closing nor nyctinastic leaf movement. These findings contribute to our understanding of flower development and have potential application to breeding or plant biotechnology.
Collapse
Affiliation(s)
- Akari Harada
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Nanami Tsuji
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Nozomi Fujimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Mia Matsuo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Miha Saito
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Nobuyuki Kanzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| |
Collapse
|
24
|
Williams O, Vander Schoor JK, Butler JB, Ridge S, Sussmilch FC, Hecht VFG, Weller JL. The genetic architecture of flowering time changes in pea from wild to crop. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3978-3990. [PMID: 35383838 PMCID: PMC9238443 DOI: 10.1093/jxb/erac132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Change in phenology has been an important component in crop evolution, and selection for earlier flowering through a reduction in environmental sensitivity has helped broaden adaptation in many species. Natural variation for flowering in domesticated pea (Pisum sativum L.) has been noted and studied for decades, but there has been no clear account of change relative to its wild progenitor. Here we examined the genetic control of differences in flowering time between wild P. sativum ssp. humile and a typical late-flowering photoperiodic P. s. sativum accession in a recombinant inbred population under long and short photoperiods. Our results confirm the importance of the major photoperiod sensitivity locus Hr/PsELF3a and identify two other loci on chromosomes 1 (DTF1) and 3 (DTF3) that contribute to earlier flowering in the domesticated line under both photoperiods. The domesticated allele at a fourth locus on chromosome 6 (DTF6) delays flowering under long days only. Map positions, inheritance patterns, and expression analyses in near-isogenic comparisons imply that DTF1, DTF3, and DTF6 represent gain-of-function alleles of the florigen/antiflorigen genes FTa3, FTa1, and TFL1c/LF, respectively. This echoes similar variation in chickpea and lentil, and suggests a conserved route to reduced photoperiod sensitivity and early phenology in temperate pulses.
Collapse
Affiliation(s)
- Owen Williams
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | | | - Jakob B Butler
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Stephen Ridge
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Frances C Sussmilch
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Valerie F G Hecht
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| |
Collapse
|
25
|
Rajandran V, Ortega R, Vander Schoor JK, Butler JB, Freeman JS, Hecht VFG, Erskine W, Murfet IC, Bett KE, Weller JL. Genetic analysis of early phenology in lentil identifies distinct loci controlling component traits. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3963-3977. [PMID: 35290451 PMCID: PMC9238442 DOI: 10.1093/jxb/erac107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/11/2022] [Indexed: 05/25/2023]
Abstract
Modern-day domesticated lentil germplasm is generally considered to form three broad adaptation groups: Mediterranean, South Asian, and northern temperate, which correspond to the major global production environments. Reproductive phenology plays a key role in lentil adaptation to this diverse ecogeographic variation. Here, we dissect the characteristic earliness of the pilosae ecotype, suited to the typically short cropping season of South Asian environments. We identified two loci, DTF6a and DTF6b, at which dominant alleles confer early flowering, and we show that DTF6a alone is sufficient to confer early flowering under extremely short photoperiods. Genomic synteny confirmed the presence of a conserved cluster of three florigen (FT) gene orthologues among potential candidate genes, and expression analysis in near-isogenic material showed that the early allele is associated with a strong derepression of the FTa1 gene in particular. Sequence analysis revealed a 7.4 kb deletion in the FTa1-FTa2 intergenic region in the pilosae parent, and a wide survey of >350 accessions with diverse origin showed that the dtf6a allele is predominant in South Asian material. Collectively, these results contribute to understanding the molecular basis of global adaptation in lentil, and further emphasize the importance of this conserved genomic region for adaptation in temperate legumes generally.
Collapse
Affiliation(s)
- Vinodan Rajandran
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Raul Ortega
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | | | - Jakob B Butler
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Jules S Freeman
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
- Forest Genetics and Biotechnology, Scion, Private Bag 3020, Rotorua 3046, New Zealand
| | - Valerie F G Hecht
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Willie Erskine
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Ian C Murfet
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | | |
Collapse
|
26
|
Zhong J, Kong F. The control of compound inflorescences: insights from grasses and legumes. TRENDS IN PLANT SCIENCE 2022; 27:564-576. [PMID: 34973922 DOI: 10.1016/j.tplants.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
A major challenge in biology is to understand how organisms have increased developmental complexity during evolution. Inflorescences, with remarkable variation in branching systems, are a fitting model to understand architectural complexity. Inflorescences bear flowers that may become fruits and/or seeds, impacting crop productivity and species fitness. Great advances have been achieved in understanding the regulation of complex inflorescences, particularly in economically and ecologically important grasses and legumes. Surprisingly, a synthesis is still lacking regarding the common or distinct principles underlying the regulation of inflorescence complexity. Here, we synthesize the similarities and differences in the regulation of compound inflorescences in grasses and legumes, and propose that the emergence of novel higher-order repetitive modules is key to the evolution of inflorescence complexity.
Collapse
Affiliation(s)
- Jinshun Zhong
- School of Life Sciences, South China Agricultural University, Wushan Street 483, Guangzhou 510642, China; Institute for Plant Genetics, Heinrich-Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany; Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany; Cluster of Excellence on Plant Sciences, 'SMART Plants for Tomorrow's Needs', Heinrich-Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
27
|
Jiang X, Yang T, Zhang F, Yang X, Yang C, He F, Long R, Gao T, Jiang Y, Yang Q, Wang Z, Kang J. RAD-Seq-Based High-Density Linkage Maps Construction and Quantitative Trait Loci Mapping of Flowering Time Trait in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:899681. [PMID: 35720570 PMCID: PMC9199863 DOI: 10.3389/fpls.2022.899681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Alfalfa (Medicago sativa L.) is a perennial forage crop known as the "Queen of Forages." To dissect the genetic mechanism of flowering time (FT) in alfalfa, high-density linkage maps were constructed for both parents of an F1 mapping population derived from a cross between Cangzhou (P1) and ZhongmuNO.1 (P2), consisting of 150 progenies. The FT showed a transgressive segregation pattern in the mapping population. A total of 13,773 single-nucleotide polymorphism markers was obtained by using restriction-site associated DNA sequencing and distributed on 64 linkage groups, with a total length of 3,780.49 and 4,113.45 cM and an average marker interval of 0.58 and 0.59 cM for P1 and P2 parent, respectively. Quantitative trait loci (QTL) analyses were performed using the least square means of each year as well as the best linear unbiased prediction values across 4 years. Sixteen QTLs for FT were detected for P1 and 22 QTLs for P2, accounting for 1.40-16.04% of FT variation. RNA-Seq analysis at three flowering stages identified 5,039, 7,058, and 7,996 genes that were differentially expressed between two parents, respectively. Based on QTL mapping, DEGs analysis, and functional annotation, seven candidate genes associated with flowering time were finally detected. This study discovered QTLs and candidate genes for alfalfa FT, making it a useful resource for breeding studies on this essential crop.
Collapse
Affiliation(s)
- Xueqian Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xijiang Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changfu Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Jannat S, Hassan MU, Ortiz GT, Shah MKN, Ahmed M, Shah AH, Qayyum A. Genetic characterization of flowering and phytochrome genes in peanut (Arachis hypogaea L.) for early maturity. Mol Biol Rep 2022; 49:5495-5504. [PMID: 35355209 DOI: 10.1007/s11033-022-07362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Peanut (Arachis hypogaea L.) production and cropping pattern is highly influenced by the climatic factors including temperature and rain pattern fluctuations. It is one of the most important cash crop in the rain fed areas of Pakistan and its production, under changing climatic conditions, that can be improved by developing short duration varieties. The present study was based on the molecular characterization of the maturity associated gene families in the peanut under two light conditions. METHODS AND RESULTS Genomic analysis based on the in silico study of important gene families for early maturity associated attributes like flowering time, their pattern, duration and photoperiodism was done for a comprehensive mapping of maturity related genes. Phytochromes genes Phy A, Phy B and Phy E and flowering genes FT2a, Ft5a and COL2 were selected for in silico characterization for protein based analysis including Multiple Sequence Alignment (MSA), and Neighbor Joining (NJ) tree. MSA and NJ trees of the peanut with Arabidopsis thaliana and Glycine max showed a clear picture of the phylogenetic relationship on the basis of selected gene proteins. Expression profile of phytochrome and flowering genes revealed that photoperiod conditions i.e. short and long days, have great influence on the Phy A, Phy B and Phy E, Ft2a, FT5a and COL2 gene expression pattern. In current study, the relative expression of all studied genes was found higher in short day light condition at flower initiation stage of the plants than in the long light day condition with exception of COL2 gene protein. CONCLUSIONS The molecular characterization based on the in silico study of the particular genes and qPCR based gene expression profiling of the selected genes provided an evidence of the role of these genes and their comparative analysis under two photoperiodic conditions.
Collapse
Affiliation(s)
- Sammyia Jannat
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
- Department of Biotechnology, University of Kotli Azad Jammu and Kashmir, Kotli, AJK, 11100, Pakistan
| | - Mahmood Ul Hassan
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan.
| | | | - Muhammad Kausar Nawaz Shah
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Mukhtar Ahmed
- Department of Agronomy, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Asad Hussain Shah
- Department of Biotechnology, University of Kotli Azad Jammu and Kashmir, Kotli, AJK, 11100, Pakistan
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan.
| |
Collapse
|
29
|
Kong Y, Zhang Y, Liu X, Meng Z, Yu X, Zhou C, Han L. The Conserved and Specific Roles of the LUX ARRHYTHMO in Circadian Clock and Nodulation. Int J Mol Sci 2022; 23:ijms23073473. [PMID: 35408833 PMCID: PMC8998424 DOI: 10.3390/ijms23073473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/10/2022] Open
Abstract
LUX ARRHYTHMO (LUX) plays a key role in circadian rhythms and flowering. Here, we identified the MtLUX gene which is the putative ortholog of LUX in Medicago truncatula. The roles of MtLUX, in both the nodulation belowground and leaf movement aboveground, were investigated by characterizing a loss-of-function mtlux mutant. MtLUX was required for the control of flowering time under both long-day and short-day conditions. Further investigations showed that the early flowering in the mtlux mutant was correlated with the elevated expression level of the MtFTa1 gene but in a CO-like independent manner. MtLUX played a conserved role in the regulatory interactions with MtLHY, MtTOC1, and MtPRR genes, which is similar to those in other species. Meanwhile, the unexpected functions of MtLUX were revealed in nodule formation and nyctinastic leaf movement, probably through the indirect regulation in MtLHY. Its participation in nodulation is of interest in the context of functional conservation and the neo-functionalization of the products of LUX orthologs.
Collapse
Affiliation(s)
- Yiming Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan 250300, China;
| | - Yuxue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
| | - Xiu Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
| | - Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan 250300, China;
| | - Xiaolin Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (Y.K.); (Y.Z.); (X.L.); (X.Y.); (C.Z.)
- Correspondence:
| |
Collapse
|
30
|
Fichtner F, Barbier FF, Kerr SC, Dudley C, Cubas P, Turnbull C, Brewer PB, Beveridge CA. Plasticity of bud outgrowth varies at cauline and rosette nodes in Arabidopsis thaliana. PLANT PHYSIOLOGY 2022; 188:1586-1603. [PMID: 34919723 PMCID: PMC8896621 DOI: 10.1093/plphys/kiab586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Shoot branching is a complex mechanism in which secondary shoots grow from buds that are initiated from meristems established in leaf axils. The model plant Arabidopsis (Arabidopsis thaliana) has a rosette leaf growth pattern in the vegetative stage. After flowering initiation, the main stem elongates with the top leaf primordia developing into cauline leaves. Meristems in Arabidopsis initiate in the axils of rosette or cauline leaves, giving rise to rosette or cauline buds, respectively. Plasticity in the process of shoot branching is regulated by resource and nutrient availability as well as by plant hormones. However, few studies have attempted to test whether cauline and rosette branching are subject to the same plasticity. Here, we addressed this question by phenotyping cauline and rosette branching in three Arabidopsis ecotypes and several Arabidopsis mutants with varied shoot architectures. Our results showed no negative correlation between cauline and rosette branch numbers in Arabidopsis, demonstrating that there is no tradeoff between cauline and rosette bud outgrowth. Through investigation of the altered branching pattern of flowering pathway mutants and Arabidopsis ecotypes grown in various photoperiods and light regimes, we further elucidated that the number of cauline branches is closely related to flowering time. The number of rosette branches has an enormous plasticity compared with cauline branches and is influenced by genetic background, flowering time, light intensity, and temperature. Our data reveal different levels of plasticity in the regulation of branching at rosette and cauline nodes, and promote a framework for future branching analyses.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia QLD 4072, Australia
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Francois F Barbier
- School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia QLD 4072, Australia
| | - Stephanie C Kerr
- School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Caitlin Dudley
- School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia QLD 4072, Australia
| | - Pilar Cubas
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Colin Turnbull
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Philip B Brewer
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Precinct, The University of Adelaide, Glen Osmond SA 5064, Australia
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia QLD 4072, Australia
| |
Collapse
|
31
|
The Genetic and Hormonal Inducers of Continuous Flowering in Orchids: An Emerging View. Cells 2022; 11:cells11040657. [PMID: 35203310 PMCID: PMC8870070 DOI: 10.3390/cells11040657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Orchids are the flowers of magnetic beauty. Vivid and attractive flowers with magnificent shapes make them the king of the floriculture industry. However, the long-awaited flowering is a drawback to their market success, and therefore, flowering time regulation is the key to studies about orchid flower development. Although there are some rare orchids with a continuous flowering pattern, the molecular regulatory mechanisms are yet to be elucidated to find applicable solutions to other orchid species. Multiple regulatory pathways, such as photoperiod, vernalization, circadian clock, temperature and hormonal pathways are thought to signalize flower timing using a group of floral integrators. This mini review, thus, organizes the current knowledge of floral time regulators to suggest future perspectives on the continuous flowering mechanism that may help to plan functional studies to induce flowering revolution in precious orchid species.
Collapse
|
32
|
Haile TA, Stonehouse R, Weller JL, Bett KE. Genetic basis for lentil adaptation to summer cropping in northern temperate environments. THE PLANT GENOME 2021; 14:e20144. [PMID: 34643336 DOI: 10.1002/tpg2.20144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The continued success of lentil (Lens culinaris Medik.) genetic improvement relies on the availability of broad genetic diversity, and new alleles need to be identified and incorporated into the cultivated gene pool. Availability of robust and predictive markers greatly enhances the precise transfer of genomic regions from unadapted germplasm. Quantitative trait loci (QTL) for key phenological traits in lentil were located using a recombinant inbreed line (RIL) population derived from a cross between an Ethiopian landrace (ILL 1704) and a northern temperate cultivar (CDC Robin). Field experiments were conducted at Sutherland research farm in Saskatoon and at Rosthern, Saskatchewan, Canada during 2018 and 2019. A linkage map was constructed using 21,634 single nucleotide polymorphisms (SNPs) located on seven linkage groups (LGs), which correspond to the seven haploid chromosomes of lentil. Eight QTL were identified for six phenological traits. Flowering-related QTL were identified at two regions on LG6. FLOWERING LOCUS T (FT) genes were annotated within the flowering time QTL interval based on the lentil reference genome. Similarly, a major QTL for postflowering developmental processes was located on LG5 with several senescence-associated genes annotated within the QTL interval. The flowering time QTL was validated in a different genetic background indicating the potential use of the identified markers for marker-assisted selection to precisely transfer genomic regions from exotic germplasm into elite crop cultivars without disrupting adaptation.
Collapse
Affiliation(s)
- Teketel A Haile
- Dep. of Plant Sciences, Univ. of Saskatchewan, Saskatoon, SK, Canada
| | - Robert Stonehouse
- Dep. of Plant Sciences, Univ. of Saskatchewan, Saskatoon, SK, Canada
| | - James L Weller
- School of Natural Sciences, Univ. of Tasmania, Hobart, TAS, Australia
| | - Kirstin E Bett
- Dep. of Plant Sciences, Univ. of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
33
|
Taylor CM, Garg G, Berger JD, Ribalta FM, Croser JS, Singh KB, Cowling WA, Kamphuis LG, Nelson MN. A Trimethylguanosine Synthase1-like (TGS1) homologue is implicated in vernalisation and flowering time control. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3411-3426. [PMID: 34258645 PMCID: PMC8440268 DOI: 10.1007/s00122-021-03910-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/06/2021] [Indexed: 05/30/2023]
Abstract
KEY MESSAGE A plant-specific Trimethylguanosine Synthase1-like homologue was identified as a candidate gene for the efl mutation in narrow-leafed lupin, which alters phenology by reducing vernalisation requirement. The vernalisation pathway is a key component of flowering time control in plants from temperate regions but is not well understood in the legume family. Here we examined vernalisation control in the temperate grain legume species, narrow-leafed lupin (Lupinus angustifolius L.), and discovered a candidate gene for an ethylene imine mutation (efl). The efl mutation changes phenology from late to mid-season flowering and additionally causes transformation from obligate to facultative vernalisation requirement. The efl locus was mapped to pseudochromosome NLL-10 in a recombinant inbred line (RIL) mapping population developed by accelerated single seed descent. Candidate genes were identified in the reference genome, and a diverse panel of narrow-leafed lupins was screened to validate mutations specific to accessions with efl. A non-synonymous SNP mutation within an S-adenosyl-L-methionine-dependent methyltransferase protein domain of a Trimethylguanosine Synthase1-like (TGS1) orthologue was identified as the candidate mutation giving rise to efl. This mutation caused substitution of an amino acid within an established motif at a position that is otherwise highly conserved in several plant families and was perfectly correlated with the efl phenotype in F2 and F6 genetic population and a panel of diverse accessions, including the original efl mutant. Expression of the TGS1 homologue did not differ between wild-type and efl genotypes, supporting altered functional activity of the gene product. This is the first time a TGS1 orthologue has been associated with vernalisation response and flowering time control in any plant species.
Collapse
Affiliation(s)
- Candy M Taylor
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Gagan Garg
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Floreat, WA, 6014, Australia
| | - Jens D Berger
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Floreat, WA, 6014, Australia
| | - Federico M Ribalta
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Janine S Croser
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Karam B Singh
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Floreat, WA, 6014, Australia
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia
| | - Wallace A Cowling
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia.
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Lars G Kamphuis
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Floreat, WA, 6014, Australia
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia
| | - Matthew N Nelson
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Floreat, WA, 6014, Australia
| |
Collapse
|
34
|
Reuveni M. Sex and Regeneration. BIOLOGY 2021; 10:937. [PMID: 34571814 PMCID: PMC8471910 DOI: 10.3390/biology10090937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 01/23/2023]
Abstract
Regeneration is usually regarded as a unique plant or some animal species process. In reality, regeneration is a ubiquitous process in all multicellular organisms. It ranges from response to wounding by healing the wounded tissue to whole body neoforming (remaking of the new body). In a larger context, regeneration is one facet of two reproduction schemes that dominate the evolution of life. Multicellular organisms can propagate their genes asexually or sexually. Here I present the view that the ability to regenerate tissue or whole-body regeneration is also determined by the sexual state of the multicellular organisms (from simple animals such as hydra and planaria to plants and complex animals). The above idea is manifested here by showing evidence that many organisms, organs, or tissues show inhibited or diminished regeneration capacity when in reproductive status compared to organs or tissues in nonreproductive conditions or by exposure to sex hormones.
Collapse
Affiliation(s)
- Moshe Reuveni
- Plant Science Institute, ARO, Volcani Institute, 68 Hamakabim Rd., P.O. Box 15159, Rishon LeZion 7528808, Israel
| |
Collapse
|
35
|
Yuan HY, Caron CT, Ramsay L, Fratini R, de la Vega MP, Vandenberg A, Weller JL, Bett KE. Genetic and gene expression analysis of flowering time regulation by light quality in lentil. ANNALS OF BOTANY 2021; 128:481-496. [PMID: 34185828 PMCID: PMC8414921 DOI: 10.1093/aob/mcab083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Flowering time is important due to its roles in plant adaptation to different environments and subsequent formation of crop yield. Changes in light quality affect a range of developmental processes including flowering time, but little is known about light quality-induced flowering time control in lentil. This study aims to investigate the genetic basis for differences in flowering response to light quality in lentil. METHODS We explored variation in flowering time caused by changes in red/far-red-related light quality environments of a lentil interspecific recombinant inbred line (RIL) population developed from a cross between Lens culinaris cv. Lupa and L. orientalis accession BGE 016880. A genetic linkage map was constructed and then used for identifying quantitative trait loci (QTLs) associated with flowering time regulation under different light quality environments. Differential gene expression analysis through transcriptomic study and RT-qPCR were used to identify potential candidate genes. KEY RESULTS QTL mapping located 13 QTLs controlling flower time under different light quality environments, with phenotypic variance explained ranging from 1.7 to 62.9 %. Transcriptomic profiling and gene expression analysis for both parents of this interspecific RIL population identified flowering-related genes showing environment-specific differential expression (flowering DEGs). One of these, a member of the florigen gene family FTa1 (LcFTa1), was located close to three major QTLs. Furthermore, gene expression results suggested that two other florigen genes (LcFTb1 and LcFTb2), MADS-box transcription factors such as LcAGL6/13d, LcSVPb, LcSOC1b and LcFULb, as well as bHLH transcription factor LcPIF6 and Gibberellin 20 oxidase LcGA20oxC,G may also be involved in the light quality response. CONCLUSIONS Our results show that a major component of flowering time sensitivity to light quality is tightly linked to LcFTa1 and associated with changes in its expression. This work provides a foundation for crop improvement of lentil with better adaptation to variable light environments.
Collapse
Affiliation(s)
- Hai Ying Yuan
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Carolyn T Caron
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Larissa Ramsay
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Richard Fratini
- Area de Genética, Departamento de Biología Molecular, Universidad de León, León, Spain
| | | | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - James L Weller
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
36
|
Abstract
Flowering time marks the transition from vegetative to reproductive growth and is key for optimal yield in any crop. The molecular mechanisms controlling this trait have been extensively studied in model plants such as Arabidopsis thaliana and rice. While knowledge on the molecular regulation of this trait is rapidly increasing in sequenced galegoid legume crops, understanding in faba bean remains limited. Here we exploited translational genomics from model legume crops to identify and fine map QTLs linked to flowering time in faba bean. Among the 31 candidate genes relevant for flowering control in A. thaliana and Cicer arietinum assayed, 25 could be mapped in a segregating faba bean RIL population. While most of the genes showed conserved synteny among related legume species, none of them co-localized with the 9 significant QTL regions identified. The FT gene, previously implicated in the control of flowering time in numerous members of the temperate legume clade, mapped close to the most relevant stable and conserved QTL in chromosome V. Interestingly, QTL analysis suggests an important role of epigenetic modifications in faba bean flowering control. The new QTLs and candidate genes assayed here provide a robust framework for further genetic studies and will contribute to the elucidation of the molecular mechanisms controlling this trait.
Collapse
Affiliation(s)
- David Aguilar-Benitez
- Área de Genómica y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain
| | - Inés Casimiro-Soriguer
- Área de Genómica y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain
| | - Fouad Maalouf
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Ana M Torres
- Área de Genómica y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain.
| |
Collapse
|
37
|
Aguilar-Benitez D, Casimiro-Soriguer I, Maalouf F, Torres AM. Linkage mapping and QTL analysis of flowering time in faba bean. Sci Rep 2021; 11:13716. [PMID: 34215783 PMCID: PMC8253854 DOI: 10.1038/s41598-021-92680-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/03/2021] [Indexed: 11/22/2022] Open
Abstract
Flowering time marks the transition from vegetative to reproductive growth and is key for optimal yield in any crop. The molecular mechanisms controlling this trait have been extensively studied in model plants such as Arabidopsis thaliana and rice. While knowledge on the molecular regulation of this trait is rapidly increasing in sequenced galegoid legume crops, understanding in faba bean remains limited. Here we exploited translational genomics from model legume crops to identify and fine map QTLs linked to flowering time in faba bean. Among the 31 candidate genes relevant for flowering control in A. thaliana and Cicer arietinum assayed, 25 could be mapped in a segregating faba bean RIL population. While most of the genes showed conserved synteny among related legume species, none of them co-localized with the 9 significant QTL regions identified. The FT gene, previously implicated in the control of flowering time in numerous members of the temperate legume clade, mapped close to the most relevant stable and conserved QTL in chromosome V. Interestingly, QTL analysis suggests an important role of epigenetic modifications in faba bean flowering control. The new QTLs and candidate genes assayed here provide a robust framework for further genetic studies and will contribute to the elucidation of the molecular mechanisms controlling this trait.
Collapse
Affiliation(s)
- David Aguilar-Benitez
- Área de Genómica y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain
| | - Inés Casimiro-Soriguer
- Área de Genómica y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain
| | - Fouad Maalouf
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Ana M Torres
- Área de Genómica y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain.
| |
Collapse
|
38
|
Zhang P, Liu H, Mysore KS, Wen J, Meng Y, Lin H, Niu L. MtFDa is essential for flowering control and inflorescence development in Medicago truncatula. JOURNAL OF PLANT PHYSIOLOGY 2021; 260:153412. [PMID: 33845341 DOI: 10.1016/j.jplph.2021.153412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Flowering plants display a vast diversity of flowering time and inflorescence architecture, which plays an important role in determining seed yield and fruit production. However, the molecular mechanism underlying the flowering control and compound inflorescence development, especially in legumes, remain to be elucidated. Here, we reported the identification of MtFDa, an essential regulator of flowering in the model legume Medicago truncatula. Mutation of MtFDa, led to the late flowering, abnormal secondary inflorescences as well as severe floral organ defects. Biochemical and molecular analyses revealed that MtFDa physically interacts with M. truncaula FLOWERING LOCUS T homolog, MtFTa1, a key regulator of Medicago flowering time, and this interaction facilitates MtFDa's function in activating the expression of MtSOC1a. Moreover, we demonstrated that MtFDa may affect secondary inflorescence development via regulating MtFULc expression in M. truncatula. Our findings help elucidate the mechanism of MtFDa-mediated regulation of flowering time and inflorescence development and provide insights into understanding the genetic regulatory network underlying complex productive development in legumes.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huan Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Jiangqi Wen
- Noble Research Institute, Ardmore, OK, 73401, USA
| | - Yingying Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifang Niu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
39
|
Circadian Rhythms in Legumes: What Do We Know and What Else Should We Explore? Int J Mol Sci 2021; 22:ijms22094588. [PMID: 33925559 PMCID: PMC8123782 DOI: 10.3390/ijms22094588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
The natural timing devices of organisms, commonly known as biological clocks, are composed of specific complex folding molecules that interact to regulate the circadian rhythms. Circadian rhythms, the changes or processes that follow a 24-h light–dark cycle, while endogenously programmed, are also influenced by environmental factors, especially in sessile organisms such as plants, which can impact ecosystems and crop productivity. Current knowledge of plant clocks emanates primarily from research on Arabidopsis, which identified the main components of the circadian gene regulation network. Nonetheless, there remain critical knowledge gaps related to the molecular components of circadian rhythms in important crop groups, including the nitrogen-fixing legumes. Additionally, little is known about the synergies and trade-offs between environmental factors and circadian rhythm regulation, especially how these interactions fine-tune the physiological adaptations of the current and future crops in a rapidly changing world. This review highlights what is known so far about the circadian rhythms in legumes, which include major as well as potential future pulse crops that are packed with nutrients, particularly protein. Based on existing literature, this review also identifies the knowledge gaps that should be addressed to build a sustainable food future with the reputed “poor man’s meat”.
Collapse
|
40
|
Quantitative Control of Early Flowering in White Lupin ( Lupinus albus L.). Int J Mol Sci 2021; 22:ijms22083856. [PMID: 33917799 PMCID: PMC8068107 DOI: 10.3390/ijms22083856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 12/03/2022] Open
Abstract
White lupin (Lupinus albus L.) is a pulse annual plant cultivated from the tropics to temperate regions for its high-protein grain as well as a cover crop or green manure. Wild populations are typically late flowering and have high vernalization requirements. Nevertheless, some early flowering and thermoneutral accessions were found in the Mediterranean basin. Recently, quantitative trait loci (QTLs) explaining flowering time variance were identified in bi-parental population mapping, however, phenotypic and genotypic diversity in the world collection has not been addressed yet. In this study, a diverse set of white lupin accessions (n = 160) was phenotyped for time to flowering in a controlled environment and genotyped with PCR-based markers (n = 50) tagging major QTLs and selected homologs of photoperiod and vernalization pathway genes. This survey highlighted quantitative control of flowering time in white lupin, providing statistically significant associations for all major QTLs and numerous regulatory genes, including white lupin homologs of CONSTANS, FLOWERING LOCUS T, FY, MOTHER OF FT AND TFL1, PHYTOCHROME INTERACTING FACTOR 4, SKI-INTERACTING PROTEIN 1, and VERNALIZATION INDEPENDENCE 3. This revealed the complexity of flowering control in white lupin, dispersed among numerous loci localized on several chromosomes, provided economic justification for future genome-wide association studies or genomic selection rather than relying on simple marker-assisted selection.
Collapse
|
41
|
Pavlinova P, Samsonova MG, Gursky VV. Dynamical Modeling of the Core Gene Network Controlling Transition to Flowering in Pisum sativum. Front Genet 2021; 12:614711. [PMID: 33777095 PMCID: PMC7990781 DOI: 10.3389/fgene.2021.614711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022] Open
Abstract
Transition to flowering is an important stage of plant development. Many regulatory modules that control floral transition are conservative across plants. This process is best studied for the model plant Arabidopsis thaliana. The homologues of Arabidopsis genes responsible for the flowering initiation in legumes have been identified, and available data on their expression provide a good basis for gene network modeling. In this study, we developed several dynamical models of a gene network controlling transition to flowering in pea (Pisum sativum) using two different approaches. We used differential equations for modeling a previously proposed gene regulation scheme of floral initiation in pea and tested possible alternative hypothesis about some regulations. As the second approach, we applied neural networks to infer interactions between genes in the network directly from gene expression data. All models were verified on previously published experimental data on the dynamic expression of the main genes in the wild type and in three mutant genotypes. Based on modeling results, we made conclusions about the functionality of the previously proposed interactions in the gene network and about the influence of different growing conditions on the network architecture. It was shown that regulation of the PIM, FTa1, and FTc genes in pea does not correspond to the previously proposed hypotheses. The modeling suggests that short- and long-day growing conditions are characterized by different gene network architectures. Overall, the results obtained can be used to plan new experiments and create more accurate models to study the flowering initiation in pea and, in a broader context, in legumes.
Collapse
Affiliation(s)
- Polina Pavlinova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Maria G Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Vitaly V Gursky
- Theoretical Department, Ioffe Institute, Saint Petersburg, Russia
| |
Collapse
|
42
|
Cheng X, Li G, Krom N, Tang Y, Wen J. Genetic regulation of flowering time and inflorescence architecture by MtFDa and MtFTa1 in Medicago truncatula. PLANT PHYSIOLOGY 2021; 185:161-178. [PMID: 33631796 PMCID: PMC8133602 DOI: 10.1093/plphys/kiaa005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/11/2020] [Indexed: 05/29/2023]
Abstract
Regulation of floral transition and inflorescence development is crucial for plant reproductive success. FLOWERING LOCUS T (FT) is one of the central players in the flowering genetic regulatory network, whereas FLOWERING LOCUS D (FD), an interactor of FT and TERMINAL FLOWER 1 (TFL1), plays significant roles in both floral transition and inflorescence development. Here we show the genetic regulatory networks of floral transition and inflorescence development in Medicago truncatula by characterizing MtFTa1 and MtFDa and their genetic interactions with key inflorescence meristem (IM) regulators. Both MtFTa1 and MtFDa promote flowering; the double mutant mtfda mtfta1 does not proceed to floral transition. RNAseq analysis reveals that a broad range of genes involved in flowering regulation and flower development are up- or downregulated by MtFTa1 and/or MtFDa mutations. Furthermore, mutation of MtFDa also affects the inflorescence architecture. Genetic analyses of MtFDa, MtFTa1, MtTFL1, and MtFULc show that MtFDa is epistatic to MtFULc and MtTFL1 in controlling IM identity. Our results demonstrate that MtFTa1 and MtFDa are major flowering regulators in M. truncatula, and MtFDa is essential both in floral transition and secondary inflorescence development. The study will advance our understanding of the genetic regulation of flowering time and inflorescence development in legumes.
Collapse
Affiliation(s)
- Xiaofei Cheng
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Guifen Li
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Nick Krom
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Yuhong Tang
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| |
Collapse
|
43
|
Fichtner F, Barbier FF, Annunziata MG, Feil R, Olas JJ, Mueller-Roeber B, Stitt M, Beveridge CA, Lunn JE. Regulation of shoot branching in arabidopsis by trehalose 6-phosphate. THE NEW PHYTOLOGIST 2021; 229:2135-2151. [PMID: 33068448 DOI: 10.1111/nph.17006] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/05/2020] [Indexed: 05/03/2023]
Abstract
Trehalose 6-phosphate (Tre6P) is a sucrose signalling metabolite that has been implicated in regulation of shoot branching, but its precise role is not understood. We expressed tagged forms of TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) to determine where Tre6P is synthesized in arabidopsis (Arabidopsis thaliana), and investigated the impact of localized changes in Tre6P levels, in axillary buds or vascular tissues, on shoot branching in wild-type and branching mutant backgrounds. TPS1 is expressed in axillary buds and the subtending vasculature, as well as in the leaf and stem vasculature. Expression of a heterologous Tre6P phosphatase (TPP) to lower Tre6P in axillary buds strongly delayed bud outgrowth in long days and inhibited branching in short days. TPP expression in the vasculature also delayed lateral bud outgrowth and decreased branching. Increased Tre6P in the vasculature enhanced branching and was accompanied by higher expression of FLOWERING LOCUS T (FT) and upregulation of sucrose transporters. Increased vascular Tre6P levels enhanced branching in branched1 but not in ft mutant backgrounds. These results provide direct genetic evidence of a local role for Tre6P in regulation of axillary bud outgrowth within the buds themselves, and also connect Tre6P with systemic regulation of shoot branching via FT.
Collapse
Affiliation(s)
- Franziska Fichtner
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Francois F Barbier
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Maria G Annunziata
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Justyna J Olas
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, Potsdam, 14476, Germany
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, Potsdam, 14476, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
44
|
Thomson G, Zhang L, Wen J, Mysore KS, Putterill J. The Candidate Photoperiod Gene MtFE Promotes Growth and Flowering in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:634091. [PMID: 33841463 PMCID: PMC8032900 DOI: 10.3389/fpls.2021.634091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/01/2021] [Indexed: 05/04/2023]
Abstract
Flowering time influences the yield and productivity of legume crops. Medicago truncatula is a reference temperate legume that, like the winter annual Arabidopsis thaliana, shows accelerated flowering in response to vernalization (extended cold) and long-day (LD) photoperiods (VLD). However, unlike A. thaliana, M. truncatula appears to lack functional homologs of core flowering time regulators CONSTANS (CO) and FLOWERING LOCUS C (FLC) which act upstream of the mobile florigen FLOWERING LOCUS T (FT). Medicago truncatula has three LD-induced FT-like genes (MtFTa1, MtFTb1, and MtFTb2) with MtFTa1 promoting M. truncatula flowering in response to VLD. Another photoperiodic regulator in A. thaliana, FE, acts to induce FT expression. It also regulates the FT transport pathway and is required for phloem development. Our study identifies a M. truncatula FE homolog Medtr6g444980 (MtFE) which complements the late flowering fe-1 mutant when expressed from the phloem-specific SUCROSE-PROTON SYMPORTER 2 (SUC2) promoter. Analysis of two M. truncatula Tnt1 insertional mutants indicate that MtFE promotes flowering in LD and VLD and growth in all conditions tested. Expression of MtFTa1, MtFTb1, and MtFTb2 are reduced in Mtfe mutant (NF5076), correlating with its delayed flowering. The NF5076 mutant plants are much smaller than wild type indicating that MtFE is important for normal plant growth. The second mutant (NF18291) displays seedling lethality, like strong fe mutants. We searched for mutants in MtFTb1 and MtFTb2 identifying a Mtftb2 knock out Tnt1 mutant (NF20803). However, it did not flower significantly later than wild type. Previously, yeast-two-hybrid assays (Y2H) suggested that Arabidopsis FE interacted with CO and NUCLEAR FACTOR-Y (NF-Y)-like proteins to regulate FT. We found that MtFE interacts with CO and also M. truncatula NF-Y-like proteins in Y2H experiments. Our study indicates that despite the apparent absence of a functional MtCO-like gene, M. truncatula FE likely influences photoperiodic FT expression and flowering time in M. truncatula via a partially conserved mechanism with A. thaliana.
Collapse
Affiliation(s)
- Geoffrey Thomson
- The Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- *Correspondence: Geoffrey Thomson, ;
| | - Lulu Zhang
- The Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, OK, United States
| | | | - Joanna Putterill
- The Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- *Correspondence: Geoffrey Thomson, ;
| |
Collapse
|
45
|
The vascular targeted citrus FLOWERING LOCUS T3 gene promotes non-inductive early flowering in transgenic Carrizo rootstocks and grafted juvenile scions. Sci Rep 2020; 10:21404. [PMID: 33293614 PMCID: PMC7722890 DOI: 10.1038/s41598-020-78417-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
Shortening the juvenile stage in citrus and inducing early flowering has been the focus of several citrus genetic improvement programs. FLOWERING LOCUS T (FT) is a small phloem-translocated protein that regulates precocious flowering. In this study, two populations of transgenic Carrizo citrange rootstocks expressing either Citrus clementina FT1 or FT3 genes under the control of the Arabidopsis thaliana phloem specific SUCROSE SYNTHASE 2 (AtSUC2) promoter were developed. The transgenic plants were morphologically similar to the non-transgenic controls (non-transgenic Carrizo citrange), however, only AtSUC2-CcFT3 was capable of inducing precocious flowers. The transgenic lines produced flowers 16 months after transformation and flower buds appeared 30-40 days on juvenile immature scions grafted onto transgenic rootstock. Gene expression analysis revealed that the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and APETALA1 (AP1) were enhanced in the transgenics. Transcriptome profiling of a selected transgenic line showed the induction of genes in different groups including: genes from the flowering induction pathway, APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) family genes, and jasmonic acid (JA) pathway genes. Altogether, our results suggested that ectopic expression of CcFT3 in phloem tissues of Carrizo citrange triggered the expression of several genes to mediate early flowering.
Collapse
|
46
|
Lebedeva MA, Dodueva IE, Gancheva MS, Tvorogova VE, Kuznetsova KA, Lutova LA. The Evolutionary Aspects of Flowering Control: Florigens and Anti-Florigens. RUSS J GENET+ 2020. [DOI: 10.1134/s102279542011006x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Genetic and comparative mapping of Lupinus luteus L. highlight syntenic regions with major orthologous genes controlling anthracnose resistance and flowering time. Sci Rep 2020; 10:19174. [PMID: 33154532 PMCID: PMC7645761 DOI: 10.1038/s41598-020-76197-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/23/2020] [Indexed: 01/12/2023] Open
Abstract
Anthracnose susceptibility and ill-adapted flowering time severely affect Lupinus luteus yield, which has high seed protein content, is excellent for sustainable agriculture, but requires genetic improvement to fulfil its potential. This study aimed to (1) develop a genetic map; (2) define collinearity and regions of synteny with Lupinus angustifolius; and (3) map QTLs/candidate genes for anthracnose resistant and flowering time. A few linkage groups/genomic regions tended to be associated with segregation distortion, but did not affect the map. The developed map showed collinearity, and syntenic regions with L. angustifolius. Major QTLs were mapped in syntenic regions. Alleles from the wild parent and cultivar, explained 75% of the phenotypic variance for anthracnose resistance and 83% for early flowering, respectively. Marker sequences flanking the QTLs showed high homology with the Lanr1 gene and Flowering-locus-T of L. angustifolius. This suggests orthologous genes for both traits in the L. luteus genome. The findings are remarkable, revealing the potential to combine early flowering/anthracnose resistant in fulfilling yield capacity in L. luteus, and can be a major strategy in the genetic improvement and usage of this species for sustainable protein production. Allele sequences and PCR-marker tagging of these genes are being applied in marker assisted selection.
Collapse
|
48
|
Rychel-Bielska S, Plewiński P, Kozak B, Galek R, Ksia̧żkiewicz M. Photoperiod and Vernalization Control of Flowering-Related Genes: A Case Study of the Narrow-Leafed Lupin ( Lupinus angustifolius L.). FRONTIERS IN PLANT SCIENCE 2020; 11:572135. [PMID: 33193508 PMCID: PMC7663182 DOI: 10.3389/fpls.2020.572135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) is a moderate-yielding legume crop known for its high grain protein content and contribution to soil improvement. It is cultivated under photoperiods ranging from 9 to 17 h, as a spring-sown (in colder locations) or as an autumn-sown crop (in warmer regions). Wild populations require a prolonged cold period, called vernalization, to induce flowering. The key achievement of L. angustifolius domestication was the discovery of two natural mutations (named Ku and Jul) conferring vernalization independence. These mutations are overlapping deletion variants in the promoter of LanFTc1, a homolog of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene. The third deletion, named here as Pal, was recently found in primitive germplasm. In this study, we genotyped L. angustifolius germplasm that differs in domestication status and geographical origin for LanFTc1 alleles, which we then phenotyped to establish flowering time and vernalization responsiveness. The Ku and Jul lines were vernalization-independent and early flowering, wild (ku) lines were vernalization-dependent and late flowering, whereas the Pal line conferred intermediate phenotype. Three lines representing ku, Pal, and Ku alleles were subjected to gene expression surveys under 8- and 16-h photoperiods. FT homologs (LanFTa1, LanFTa2, LanFTc1, and LanFTc2) and some genes selected by recent expression quantitative trait loci mapping were analyzed. Expression profiles of LanFTc1 and LanAGL8 (AGAMOUS-like 8) matched observed differences in flowering time between genotypes, highlighted by high induction after vernalization in the ku line. Moreover, these genes revealed altered circadian clock control in Pal line under short days. LanFD (FD) and LanCRLK1 (CALCIUM/CALMODULIN-REGULATED RECEPTOR-LIKE KINASE 1) were negatively responsive to vernalization in Ku and Pal lines but positively responsive or variable in ku, whereas LanUGT85A2 (UDP-GLUCOSYL TRANSFERASE 85A2) was significantly suppressed by vernalization in all lines. Such a pattern suggests the opposite regulation of these gene pairs in the vernalization pathway. LanCRLK1 and LanUGT85A2 are homologs of A. thaliana genes involved in the FLOWERING LOCUS C (FLC) vernalization pathway. Lupins, like many other legumes, do not have any FLC homologs. Therefore, candidate genes surveyed in this study, namely LanFTc1, LanAGL8, LanCRLK1, and LanUGT85A2, may constitute anchors for further elucidation of molecular components contributing to vernalization response in legumes.
Collapse
Affiliation(s)
- Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Piotr Plewiński
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Renata Galek
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Michał Ksia̧żkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
49
|
Lorenzo CD, García‐Gagliardi P, Antonietti MS, Sánchez‐Lamas M, Mancini E, Dezar CA, Vazquez M, Watson G, Yanovsky MJ, Cerdán PD. Improvement of alfalfa forage quality and management through the down-regulation of MsFTa1. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:944-954. [PMID: 31536663 PMCID: PMC7061867 DOI: 10.1111/pbi.13258] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 05/02/2023]
Abstract
Alfalfa (Medicago sativa L.) is one of the most important forage crops worldwide. As a perennial, alfalfa is cut several times each year. Farmers face a dilemma: if cut earlier, forage nutritive value is much higher but regrowth is affected and the longevity of the stand is severely compromised. On the other hand, if alfalfa is cut later at full flower, stands persist longer and more biomass may be harvested, but the nutritive value diminishes. Alfalfa is a strict long-day plant. We reasoned that by manipulating the response to photoperiod, we could delay flowering to improve forage quality and widen each harvesting window, facilitating management. With this aim, we functionally characterized the FLOWERING LOCUS T family of genes, represented by five members: MsFTa1, MsFTa2, MsFTb1, MsFTb2 and MsFTc. The expression of MsFTa1 correlated with photoperiodic flowering and its down-regulation led to severe delayed flowering. Altogether, with late flowering, low expression of MsFTa1 led to changes in plant architecture resulting in increased leaf to stem biomass ratios and forage digestibility. By manipulating photoperiodic flowering, we were able to improve the quality of alfalfa forage and management, which may allow farmers to cut alfalfa of high nutritive value without compromising stand persistence.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlos A. Dezar
- Instituto de Agrobiotecnología de Rosario (INDEAR)CONICETRosarioArgentina
| | - Martin Vazquez
- Instituto de Agrobiotecnología de Rosario (INDEAR)CONICETRosarioArgentina
| | - Gerónimo Watson
- Instituto de Agrobiotecnología de Rosario (INDEAR)CONICETRosarioArgentina
| | | | - Pablo D. Cerdán
- Fundación Instituto LeloirIIBBA‐CONICETBuenos AiresArgentina
- Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
50
|
Chen L, Cai Y, Qu M, Wang L, Sun H, Jiang B, Wu T, Liu L, Sun S, Wu C, Yao W, Yuan S, Han T, Hou W. Soybean adaption to high-latitude regions is associated with natural variations of GmFT2b, an ortholog of FLOWERING LOCUS T. PLANT, CELL & ENVIRONMENT 2020; 43:934-944. [PMID: 31981430 PMCID: PMC7154755 DOI: 10.1111/pce.13695] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 05/03/2023]
Abstract
Day length has an important influence on flowering and growth habit in many plant species. In crops such as soybean, photoperiod sensitivity determines the geographical range over which a given cultivar can grow and flower. The soybean genome contains ~10 genes homologous to FT, a central regulator of flowering from Arabidopsis thaliana. However, the precise roles of these soybean FTs are not clearly. Here we show that one such gene, GmFT2b, promotes flowering under long-days (LDs). Overexpression of GmFT2b upregulates expression of flowering-related genes which are important in regulating flowering time. We propose a 'weight' model for soybean flowering under short-day (SD) and LD conditions. Furthermore, we examine GmFT2b sequences in 195 soybean cultivars, as well as flowering phenotypes, geographical distributions and maturity groups. We found that Hap3, a major GmFT2b haplotype, is associated with significantly earlier flowering at higher latitudes. We anticipate our assay to provide important resources for the genetic improvement of soybean, including new germplasm for soybean breeding, and also increase our understanding of functional diversity in the soybean FT gene family.
Collapse
Affiliation(s)
- Li Chen
- National Center for Transgenic Research in PlantsInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing)Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yupeng Cai
- National Center for Transgenic Research in PlantsInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing)Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Mengnan Qu
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing)Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Liwei Wang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing)Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Hongbo Sun
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing)Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Bingjun Jiang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing)Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Tingting Wu
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing)Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Luping Liu
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing)Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shi Sun
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing)Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Cunxiang Wu
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing)Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Weiwei Yao
- National Center for Transgenic Research in PlantsInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing)Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shan Yuan
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing)Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Tianfu Han
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing)Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Wensheng Hou
- National Center for Transgenic Research in PlantsInstitute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing)Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|