1
|
Muñoz-Vargas MA, González-Gordo S, Taboada J, Palma JM, Corpas FJ. Activity and gene expression analysis of the NADP-dependent isocitrate dehydrogenase (NADP-ICDH) through pepper fruit ripening and its modulation by nitric oxide (NO). Molecular characterization of the peroxisomal isozyme. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112269. [PMID: 39313003 DOI: 10.1016/j.plantsci.2024.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
NADP-dependent isocitrate dehydrogenase (NADP-ICDH) is one of the main sources of cellular reductant capacity in the form of NADPH. Although there is significant knowledge about the relevance of this enzyme during some physiological and stress processes, the available information about its involvement in fruit ripening is scarce. Using sweet green pepper (Capsicum annuum L.) fruits, a 50-75 % ammonium-sulfate-enriched protein fraction containing the NADP-ICDH activity allowed its biochemical characterization. The enzyme displayed a typical Michaelis-Menten kinetics and exhibited Vmax and Km values of 97 μUnits and 78 µM for isocitrate, and 92 μUnits and 46 µM for NADP+. Three NADP-ICDH isozymes were identified by non-denaturing PAGE designated as NADP-ICDH I to III, each representing 33 %, 24 %, and 43 %, respectively, of the total activity. Based on our previous transcriptome (RNA-Seq), three CaICDH genes (CaNADP-ICDH1, CaNADP-ICDH2, and CaNADP-ICDH3) were identified in sweet pepper fruits encoding isozymes potentially distributed in the cytosol, cytosol/mitochondrion, and peroxisome, according to their percentage of identity with the Arabidopsis isozymes. The time-course expression analysis of these genes during different fruit ripening stages including green immature (G), breaking point (BP), and red ripe (R), and in fruits subjected to nitric oxide (NO) treatments, showed dissimilar expression patterns. During ripening from green to red fruits, CaNADP-ICDH1 and CaNADP-ICDH2 were upregulated but were negatively affected by NO; however, CaNADP-ICDH3 was downregulated during ripening but unaffected by NO treatment. Furthermore, during ripening, the NADP-ICDH activity increased in red ripe fruits whereas the NO gas treatment produced a significant inhibition. These findings provide, to our knowledge, the first characterization of the NADP-ICDH family in this non-climacteric fruit and suggest that NADP-ICDH must play an important role in maintaining the supply of NADPH during pepper fruit ripening and that NO partially modulates this NADPH-generating system.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, Granada 18008, Spain
| | - Salvador González-Gordo
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, Granada 18008, Spain
| | - Jorge Taboada
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, Granada 18008, Spain
| | - José M Palma
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, Granada 18008, Spain
| | - Francisco J Corpas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, Granada 18008, Spain.
| |
Collapse
|
2
|
Deng Q, Hong X, Xia Y, Gong Z, Dai H, Chen J, Feng Y, Zhang J, Xie X, Li N, Shen X, Hu J, Zhang Q, Lang X, Pan R. Comprehensive identification of plant peroxisome targeting signal type 1 tripeptides. THE NEW PHYTOLOGIST 2024; 243:1642-1650. [PMID: 38975665 DOI: 10.1111/nph.19955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Affiliation(s)
- Qianwen Deng
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
- Zhejiang Laboratory, Hangzhou, 311121, China
| | - Xiao Hong
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Yuqing Xia
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| | - Zhicheng Gong
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| | - Huaxin Dai
- Beijing Life Science Academy, Changping, Beijing, 102209, China
| | - Jiarong Chen
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanlei Feng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| | - Jianfeng Zhang
- Beijing Life Science Academy, Changping, Beijing, 102209, China
| | - Xiaodong Xie
- Beijing Life Science Academy, Changping, Beijing, 102209, China
| | - Nannan Li
- Zhejiang Laboratory, Hangzhou, 311121, China
| | - Xingxing Shen
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| | - Qiang Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| | - Xuye Lang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| | - Ronghui Pan
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| |
Collapse
|
3
|
Deng Q, Jiang H, Hu J, Pan R. Identification of Auxiliary Organellar Targeting Signals for Plant Peroxisomes Using Bioinformatic Analysis of Large Protein Sequence Datasets Followed by Experimental Validation. Methods Mol Biol 2024; 2792:265-275. [PMID: 38861094 DOI: 10.1007/978-1-0716-3802-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Eukaryotic cells are compartmentalized by membrane-bounded organelles to ensure that specific biochemical reactions and cellular functions occur in a spatially restricted manner. The subcellular localization of proteins is largely determined by their intrinsic targeting signals, which are mainly constituted by short peptides. A complete organelle targeting signal may contain a core signal (CoreS) as well as auxiliary signals (AuxiS). However, the AuxiS is often not as well characterized as the CoreS. Peroxisomes house many key steps in photorespiration, besides other crucial functions in plants. Peroxisome targeting signal type 1 (PTS1), which is carried by most peroxisome matrix proteins, was initially recognized as a C-terminal tripeptide with a "canonical" consensus of [S/A]-[K/R]-[L/M]. Many studies have shown the existence of auxiliary targeting signals upstream of PTS1, but systematic characterizations are lacking. Here, we designed an analytical strategy to characterize the auxiliary targeting signals for plant peroxisomes using large datasets and statistics followed by experimental validations. This method may also be applied to deciphering the auxiliary targeting signals for other organelles, whose organellar targeting depends on a core peptide with assistance from a nearby auxiliary signal.
Collapse
Affiliation(s)
- Qianwen Deng
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Zhijiang Lab, Hangzhou, China
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI, USA
| | - Ronghui Pan
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
- Zhijiang Lab, Hangzhou, China.
| |
Collapse
|
4
|
Mishra S, Spaccarotella K, Gido J, Samanta I, Chowdhary G. Effects of Heat Stress on Plant-Nutrient Relations: An Update on Nutrient Uptake, Transport, and Assimilation. Int J Mol Sci 2023; 24:15670. [PMID: 37958654 PMCID: PMC10649217 DOI: 10.3390/ijms242115670] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
As a consequence of global climate change, the frequency, severity, and duration of heat stress are increasing, impacting plant growth, development, and reproduction. While several studies have focused on the physiological and molecular aspects of heat stress, there is growing concern that crop quality, particularly nutritional content and phytochemicals important for human health, is also negatively impacted. This comprehensive review aims to provide profound insights into the multifaceted effects of heat stress on plant-nutrient relationships, with a particular emphasis on tissue nutrient concentration, the pivotal nutrient-uptake proteins unique to both macro- and micronutrients, and the effects on dietary phytochemicals. Finally, we propose a new approach to investigate the response of plants to heat stress by exploring the possible role of plant peroxisomes in the context of heat stress and nutrient mobilization. Understanding these complex mechanisms is crucial for developing strategies to improve plant nutrition and resilience during heat stress.
Collapse
Affiliation(s)
- Sasmita Mishra
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Kim Spaccarotella
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Jaclyn Gido
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Ishita Samanta
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| | - Gopal Chowdhary
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| |
Collapse
|
5
|
Samanta I, Roy PC, Das E, Mishra S, Chowdhary G. Plant Peroxisomal Polyamine Oxidase: A Ubiquitous Enzyme Involved in Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:652. [PMID: 36771734 PMCID: PMC9919379 DOI: 10.3390/plants12030652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Polyamines (PAs) are positively charged amines that are present in all organisms. In addition to their functions specific to growth and development, they are involved in responding to various biotic and abiotic stress tolerance functions. The appropriate concentration of PA in the cell is maintained by a delicate balance between the catabolism and anabolism of PAs, which is primarily driven by two enzymes, namely diamine oxidase and polyamine oxidase (PAO). PAOs have been found to be localized in multiple subcellular locations, including peroxisomes. This paper presents a holistic account of peroxisomal PAOs. PAOs are flavin adenine dinucleotide-dependent enzymes with varying degrees of substrate specificity. They are expressed differentially upon various abiotic stress conditions, namely heat, cold, salinity, and dehydration. It has also been observed that in a particular species, the various PAO isoforms are expressed differentially with a spatial and temporal distinction. PAOs are targeted to peroxisome via a peroxisomal targeting signal (PTS) type 1. We conducted an extensive bioinformatics analysis of PTS1s present in various peroxisomal PAOs and present a consensus peroxisome targeting signal present in PAOs. Furthermore, we also propose an evolutionary perspective of peroxisomal PAOs. PAOs localized in plant peroxisomes are of potential importance in abiotic stress tolerance since peroxisomes are one of the nodal centers of reactive oxygen species (ROS) homeostasis and an increase in ROS is a major indicator of the plant being in stress conditions; hence, in the future, PAO enzymes could be used as a key candidate for generating abiotic stress tolerant crops.
Collapse
Affiliation(s)
- Ishita Samanta
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| | - Pamela Chanda Roy
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| | - Eshani Das
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| | - Sasmita Mishra
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Gopal Chowdhary
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| |
Collapse
|
6
|
Hoernstein SNW, Özdemir B, van Gessel N, Miniera AA, Rogalla von Bieberstein B, Nilges L, Schweikert Farinha J, Komoll R, Glauz S, Weckerle T, Scherzinger F, Rodriguez-Franco M, Müller-Schüssele SJ, Reski R. A deeply conserved protease, acylamino acid-releasing enzyme (AARE), acts in ageing in Physcomitrella and Arabidopsis. Commun Biol 2023; 6:61. [PMID: 36650210 PMCID: PMC9845386 DOI: 10.1038/s42003-023-04428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Reactive oxygen species (ROS) are constant by-products of aerobic life. In excess, ROS lead to cytotoxic protein aggregates, which are a hallmark of ageing in animals and linked to age-related pathologies in humans. Acylamino acid-releasing enzymes (AARE) are bifunctional serine proteases, acting on oxidized proteins. AARE are found in all domains of life, albeit under different names, such as acylpeptide hydrolase (APEH/ACPH), acylaminoacyl peptidase (AAP), or oxidized protein hydrolase (OPH). In humans, AARE malfunction is associated with age-related pathologies, while their function in plants is less clear. Here, we provide a detailed analysis of AARE genes in the plant lineage and an in-depth analysis of AARE localization and function in the moss Physcomitrella and the angiosperm Arabidopsis. AARE loss-of-function mutants have not been described for any organism so far. We generated and analysed such mutants and describe a connection between AARE function, aggregation of oxidized proteins and plant ageing, including accelerated developmental progression and reduced life span. Our findings complement similar findings in animals and humans, and suggest a unified concept of ageing may exist in different life forms.
Collapse
Affiliation(s)
- Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Buğra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Euro-BioImaging Bio-Hub, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Alessandra A Miniera
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Bruno Rogalla von Bieberstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Department of Anesthesiology, University Hospital Würzburg, Oberduerrbacher Strasse 6, 97072, Würzburg, Germany
| | - Lars Nilges
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Joana Schweikert Farinha
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Ramona Komoll
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Heraeus Medical GmbH, Philipp-Reis-Straße 8-13, 61273, Wehrheim, Germany
| | - Stella Glauz
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Tim Weckerle
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Zymo Research Europe GmbH, Muelhauser Strasse 9, 79110, Freiburg, Germany
| | - Friedrich Scherzinger
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Stefanie J Müller-Schüssele
- Molecular Botany, Department of Biology, Technical University of Kaiserslautern, Erwin-Schrödinger-Strasse 70, 67663, Kaiserslautern, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, Schaenzlestrasse 18, 79104, Freiburg, Germany.
| |
Collapse
|
7
|
Kataya A, Fedosejevs E, Ye Y. Editorial: Post-translational mechanisms involved in regulating peroxisome biogenesis, functions and organelle-crosstalk. Front Cell Dev Biol 2023; 11:1136992. [PMID: 36711036 PMCID: PMC9877304 DOI: 10.3389/fcell.2023.1136992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Affiliation(s)
- Amr Kataya
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada,*Correspondence: Amr Kataya, ,
| | - Eric Fedosejevs
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON, Canada
| | - Yajin Ye
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
8
|
Das H, Zografakis A, Oeljeklaus S, Warscheid B. Analysis of Yeast Peroxisomes via Spatial Proteomics. Methods Mol Biol 2023; 2643:13-31. [PMID: 36952175 DOI: 10.1007/978-1-0716-3048-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Peroxisomes are ubiquitous organelles with essential functions in numerous cellular processes such as lipid metabolism, detoxification of reactive oxygen species, and signaling. Knowledge of the peroxisomal proteome including multi-localized proteins and, most importantly, changes of its composition induced by altering cellular conditions or impaired peroxisome biogenesis and function is of paramount importance for a holistic view on peroxisomes and their diverse functions in a cellular context. In this chapter, we provide a spatial proteomics protocol specifically tailored to the analysis of the peroxisomal proteome of baker's yeast that enables the definition of the peroxisomal proteome under distinct conditions and to monitor dynamic changes of the proteome including the relocation of individual proteins to a different cellular compartment. The protocol comprises subcellular fractionation by differential centrifugation followed by Nycodenz density gradient centrifugation of a crude peroxisomal fraction, quantitative mass spectrometric measurements of subcellular and density gradient fractions, and advanced computational data analysis, resulting in the establishment of organellar maps on a global scale.
Collapse
Affiliation(s)
- Hirak Das
- Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Alexandros Zografakis
- Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Silke Oeljeklaus
- Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany.
| | - Bettina Warscheid
- Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Bittner E, Stehlik T, Freitag J. Sharing the wealth: The versatility of proteins targeted to peroxisomes and other organelles. Front Cell Dev Biol 2022; 10:934331. [PMID: 36225313 PMCID: PMC9549241 DOI: 10.3389/fcell.2022.934331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are eukaryotic organelles with critical functions in cellular energy and lipid metabolism. Depending on the organism, cell type, and developmental stage, they are involved in numerous other metabolic and regulatory pathways. Many peroxisomal functions require factors also relevant to other cellular compartments. Here, we review proteins shared by peroxisomes and at least one different site within the cell. We discuss the mechanisms to achieve dual targeting, their regulation, and functional consequences. Characterization of dual targeting is fundamental to understand how peroxisomes are integrated into the metabolic and regulatory circuits of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
10
|
Zhang J, Liang L, Xiao J, Xie Y, Zhu L, Xue X, Xu L, Zhou P, Ran J, Huang Z, Sun G, Lai Y, Sun B, Tang Y, Li H. Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of CaPAO2 and CaPAO4 in the Cold Tolerance of Pepper ( Capsicum annuum L.). Int J Mol Sci 2022; 23:ijms23179999. [PMID: 36077395 PMCID: PMC9456136 DOI: 10.3390/ijms23179999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H2O2). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the ‘Zunla-1’ pepper genome (named CaPAO1–CaPAO6 according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). CaPAO2, CaPAO4, and CaPAO6 were ubiquitously and highly expressed in all tissues, CaPAO1 was mainly expressed in flowers, whereas CaPAO3 and CaPAO5 were expressed at very low levels in all tissues. RNA-seq analysis revealed that CaPAO2 and CaPAO4 were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. CaPAO2 and CaPAO4 overexpression in Arabidopsis thaliana significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H2O2, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (AtCOR15A, AtRD29A, AtCOR47, and AtKIN1). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars.
Collapse
Affiliation(s)
- Jianwei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiachang Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongdong Xie
- Institute for Processing and Storage of Agricultural Products, Chengdu Academy of Agricultural and Forest Sciences, Chengdu 611130, China
| | - Li Zhu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinru Xue
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyu Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Peihan Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianzhao Ran
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunsong Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
11
|
Yifrach E, Holbrook‐Smith D, Bürgi J, Othman A, Eisenstein M, van Roermund CWT, Visser W, Tirosh A, Rudowitz M, Bibi C, Galor S, Weill U, Fadel A, Peleg Y, Erdmann R, Waterham HR, Wanders RJA, Wilmanns M, Zamboni N, Schuldiner M, Zalckvar E. Systematic multi-level analysis of an organelle proteome reveals new peroxisomal functions. Mol Syst Biol 2022; 18:e11186. [PMID: 36164978 PMCID: PMC9513677 DOI: 10.15252/msb.202211186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Seventy years following the discovery of peroxisomes, their complete proteome, the peroxi-ome, remains undefined. Uncovering the peroxi-ome is crucial for understanding peroxisomal activities and cellular metabolism. We used high-content microscopy to uncover peroxisomal proteins in the model eukaryote - Saccharomyces cerevisiae. This strategy enabled us to expand the known peroxi-ome by ~40% and paved the way for performing systematic, whole-organellar proteome assays. By characterizing the sub-organellar localization and protein targeting dependencies into the organelle, we unveiled non-canonical targeting routes. Metabolomic analysis of the peroxi-ome revealed the role of several newly identified resident enzymes. Importantly, we found a regulatory role of peroxisomes during gluconeogenesis, which is fundamental for understanding cellular metabolism. With the current recognition that peroxisomes play a crucial part in organismal physiology, our approach lays the foundation for deep characterization of peroxisome function in health and disease.
Collapse
Affiliation(s)
- Eden Yifrach
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | | | - Jérôme Bürgi
- Hamburg Unit c/o DESYEuropean Molecular Biology Laboratory (EMBL)HamburgGermany
| | - Alaa Othman
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Miriam Eisenstein
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Carlo WT van Roermund
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Wouter Visser
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Asa Tirosh
- Life Sciences Core Facilities (LSCF)The Weizmann Institute of ScienceRehovotIsrael
| | - Markus Rudowitz
- Department of Systems Biochemistry, Institute of Biochemistry and PathobiochemistryRuhr‐University BochumBochumGermany
| | - Chen Bibi
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Shahar Galor
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Uri Weill
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Amir Fadel
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Yoav Peleg
- Life Sciences Core Facilities (LSCF)The Weizmann Institute of ScienceRehovotIsrael
| | - Ralf Erdmann
- Department of Systems Biochemistry, Institute of Biochemistry and PathobiochemistryRuhr‐University BochumBochumGermany
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Matthias Wilmanns
- Hamburg Unit c/o DESYEuropean Molecular Biology Laboratory (EMBL)HamburgGermany
- University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Nicola Zamboni
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Maya Schuldiner
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Einat Zalckvar
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
12
|
Tarafdar S, Chowdhary G. Translating the Arabidopsis thaliana Peroxisome Proteome Insights to Solanum lycopersicum: Consensus Versus Diversity. Front Cell Dev Biol 2022; 10:909604. [PMID: 35912119 PMCID: PMC9328179 DOI: 10.3389/fcell.2022.909604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Peroxisomes are small, single-membrane specialized organelles present in all eukaryotic organisms. The peroxisome is one of the nodal centers of reactive oxygen species homeostasis in plants, which are generated in a high amount due to various stress conditions. Over the past decade, there has been extensive study on peroxisomal proteins and their signaling pathways in the model plant Arabidopsis thaliana, and a lot has been deciphered. However, not much impetus has been given to studying the peroxisome proteome of economically important crops. Owing to the significance of peroxisomes in the physiology of plants during normal and stress conditions, understating its proteome is of much importance. Hence, in this paper, we have made a snapshot of putative peroxisomal matrix proteins in the economically important vegetable crop tomato (Solanum lycopersicum, (L.) family Solanaceae). First, a reference peroxisomal matrix proteome map was generated for Arabidopsis thaliana using the available proteomic and localization studies, and proteins were categorized into various groups as per their annotations. This was used to create the putative peroxisomal matrix proteome map for S. lycopersicum. The putative peroxisome proteome in S. lycopersicum retains the basic framework: the bulk of proteins had peroxisomal targeting signal (PTS) type 1, a minor group had PTS2, and the catalase family retained its characteristic internal PTS. Apart from these, a considerable number of S. lycopersicum orthologs did not contain any "obvious" PTS. The number of PTS2 isoforms was found to be reduced in S. lycopersicum. We further investigated the PTS1s in the case of both the plant species and generated a pattern for canonical and non-canonical PTS1s. The number of canonical PTS1 proteins was comparatively lesser in S. lycopersicum. The non-canonical PTS1s were found to be comparable in both the plant species; however, S. lycopersicum showed greater diversity in the composition of the signal tripeptide. Finally, we have tried to address the lacunas and probable strategies to fill those gaps.
Collapse
Affiliation(s)
| | - Gopal Chowdhary
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar, India
| |
Collapse
|
13
|
Deng Q, Li H, Feng Y, Xu R, Li W, Zhu R, Akhter D, Shen X, Hu J, Jiang H, Pan R. Defining upstream enhancing and inhibiting sequence patterns for plant peroxisome targeting signal type 1 using large-scale in silico and in vivo analyses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:567-582. [PMID: 35603488 PMCID: PMC9542071 DOI: 10.1111/tpj.15840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Peroxisomes are universal eukaryotic organelles essential to plants and animals. Most peroxisomal matrix proteins carry peroxisome targeting signal type 1 (PTS1), a C-terminal tripeptide. Studies from various kingdoms have revealed influences from sequence upstream of the tripeptide on peroxisome targeting, supporting the view that positive charges in the upstream region are the major enhancing elements. However, a systematic approach to better define the upstream elements influencing PTS1 targeting capability is needed. Here, we used protein sequences from 177 plant genomes to perform large-scale and in-depth analysis of the PTS1 domain, which includes the PTS1 tripeptide and upstream sequence elements. We identified and verified 12 low-frequency PTS1 tripeptides and revealed upstream enhancing and inhibiting sequence patterns for peroxisome targeting, which were subsequently validated in vivo. Follow-up analysis revealed that nonpolar and acidic residues have relatively strong enhancing and inhibiting effects, respectively, on peroxisome targeting. However, in contrast to the previous understanding, positive charges alone do not show the anticipated enhancing effect and that both the position and property of the residues within these patterns are important for peroxisome targeting. We further demonstrated that the three residues immediately upstream of the tripeptide are the core influencers, with a 'basic-nonpolar-basic' pattern serving as a strong and universal enhancing pattern for peroxisome targeting. These findings have significantly advanced our knowledge of the PTS1 domain in plants and likely other eukaryotic species as well. The principles and strategies employed in the present study may also be applied to deciphering auxiliary targeting signals for other organelles.
Collapse
Affiliation(s)
- Qianwen Deng
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou310027China
| | - He Li
- Center for Data ScienceZhejiang UniversityHangzhou310058China
| | - Yanlei Feng
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou310027China
| | - Ruonan Xu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Weiran Li
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Rui Zhu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Delara Akhter
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- Department of Genetics and Plant BreedingSylhet Agricultural UniversitySylhet3100Bangladesh
| | - Xingxing Shen
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Jianping Hu
- Department of Energy Plant Research Laboratory and Plant Biology DepartmentMichigan State UniversityEast LansingMichigan48824USA
| | - Hangjin Jiang
- Center for Data ScienceZhejiang UniversityHangzhou310058China
| | - Ronghui Pan
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou310027China
| |
Collapse
|
14
|
Ast J, Bäcker N, Bittner E, Martorana D, Ahmad H, Bölker M, Freitag J. Two Pex5 Proteins With Different Cargo Specificity Are Critical for Peroxisome Function in Ustilago maydis. Front Cell Dev Biol 2022; 10:858084. [PMID: 35646929 PMCID: PMC9133605 DOI: 10.3389/fcell.2022.858084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are dynamic multipurpose organelles with a major function in fatty acid oxidation and breakdown of hydrogen peroxide. Many proteins destined for the peroxisomal matrix contain a C-terminal peroxisomal targeting signal type 1 (PTS1), which is recognized by tetratricopeptide repeat (TPR) proteins of the Pex5 family. Various species express at least two different Pex5 proteins, but how this contributes to protein import and organelle function is not fully understood. Here, we analyzed truncated and chimeric variants of two Pex5 proteins, Pex5a and Pex5b, from the fungus Ustilago maydis. Both proteins are required for optimal growth on oleic acid-containing medium. The N-terminal domain (NTD) of Pex5b is critical for import of all investigated peroxisomal matrix proteins including PTS2 proteins and at least one protein without a canonical PTS. In contrast, the NTD of Pex5a is not sufficient for translocation of peroxisomal matrix proteins. In the presence of Pex5b, however, specific cargo can be imported via this domain of Pex5a. The TPR domains of Pex5a and Pex5b differ in their affinity to variations of the PTS1 motif and thus can mediate import of different subsets of matrix proteins. Together, our data reveal that U. maydis employs versatile targeting modules to control peroxisome function. These findings will promote our understanding of peroxisomal protein import also in other biological systems.
Collapse
Affiliation(s)
- Julia Ast
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Nils Bäcker
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Elena Bittner
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | | | - Humda Ahmad
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Michael Bölker
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
15
|
Huang XQ, Li R, Fu J, Dudareva N. A peroxisomal heterodimeric enzyme is involved in benzaldehyde synthesis in plants. Nat Commun 2022; 13:1352. [PMID: 35292635 PMCID: PMC8924275 DOI: 10.1038/s41467-022-28978-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/12/2022] [Indexed: 11/09/2022] Open
Abstract
Benzaldehyde, the simplest aromatic aldehyde, is one of the most wide-spread volatiles that serves as a pollinator attractant, flavor, and antifungal compound. However, the enzyme responsible for its formation in plants remains unknown. Using a combination of in vivo stable isotope labeling, classical biochemical, proteomics and genetic approaches, we show that in petunia benzaldehyde is synthesized via the β-oxidative pathway in peroxisomes by a heterodimeric enzyme consisting of α and β subunits, which belong to the NAD(P)-binding Rossmann-fold superfamily. Both subunits are alone catalytically inactive but, when mixed in equal amounts, form an active enzyme, which exhibits strict substrate specificity towards benzoyl-CoA and uses NADPH as a cofactor. Alpha subunits can form functional heterodimers with phylogenetically distant β subunits, but not all β subunits partner with α subunits, at least in Arabidopsis. Analysis of spatial, developmental and rhythmic expression of genes encoding α and β subunits revealed that expression of the gene for the α subunit likely plays a key role in regulating benzaldehyde biosynthesis. Benzaldehyde is a simple aromatic aldehyde that attracts pollinators, has antifungal properties and contributes to flavor in many plants. Here the authors show that benzaldehyde is synthesized in petunia via the benzoic acid β-oxidative pathway by a peroxisomal heterodimeric enzyme consisting of α and β subunits.
Collapse
Affiliation(s)
- Xing-Qi Huang
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Renqiuguo Li
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Jianxin Fu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.,School of Landscape Architecture, Zhejiang Agriculture & Forestry University, 311300, Hangzhou, P.R. China
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA. .,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA. .,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
16
|
Kataya A, Gautam N, Jamshed M, Muench DG, Samuel MA, Thelen JJ, Moorhead GB. Identification of Arabidopsis Protein Kinases That Harbor Functional Type 1 Peroxisomal Targeting Signals. Front Cell Dev Biol 2022; 10:745883. [PMID: 35242755 PMCID: PMC8886021 DOI: 10.3389/fcell.2022.745883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/25/2022] [Indexed: 12/25/2022] Open
Abstract
Peroxisomes are eukaryotic specific organelles that perform diverse metabolic functions including fatty acid β-oxidation, reactive species metabolism, photorespiration, and responses to stress. However, the potential regulation of these functions by post-translational modifications, including protein phosphorylation, has had limited study. Recently, we identified and catalogued a large number of peroxisomal phosphorylated proteins, implicating the presence of protein kinases in this organelle. Here, we employed available prediction models coupled with sequence conservation analysis to identify 31 protein kinases from the Arabidopsis kinome (all protein kinases) that contain a putative, non-canonical peroxisomal targeting signal type 1 (PTS1). From this, twelve C-terminal domain-PTS1s were demonstrated to be functional in vivo, targeting enhanced yellow fluorescent protein to peroxisomes, increasing the list of presumptive peroxisomal protein kinases to nineteen. Of the twelve protein kinases with functional PTS1s, we obtained full length clones for eight and demonstrated that seven target to peroxisomes in vivo. Screening homozygous mutants of the presumptive nineteen protein kinases revealed one candidate (GPK1) that harbors a sugar-dependence phenotype, suggesting it is involved in regulating peroxisomal fatty acid β-oxidation. These results present new opportunities for investigating the regulation of peroxisome functions.
Collapse
Affiliation(s)
- Amr Kataya
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway.,Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Christopher S. Bond Life Sciences Center, Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Nitija Gautam
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Muhammad Jamshed
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Marcus A Samuel
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jay J Thelen
- Christopher S. Bond Life Sciences Center, Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Greg B Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
González-Gordo S, Palma JM, Corpas FJ. Peroxisomal Proteome Mining of Sweet Pepper ( Capsicum annuum L.) Fruit Ripening Through Whole Isobaric Tags for Relative and Absolute Quantitation Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:893376. [PMID: 35615143 PMCID: PMC9125320 DOI: 10.3389/fpls.2022.893376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 05/05/2023]
Abstract
Peroxisomes are ubiquitous organelles from eukaryotic cells characterized by an active nitro-oxidative metabolism. They have a relevant metabolic plasticity depending on the organism, tissue, developmental stage, or physiological/stress/environmental conditions. Our knowledge of peroxisomal metabolism from fruits is very limited but its proteome is even less known. Using sweet pepper (Capsicum annuum L.) fruits at two ripening stages (immature green and ripe red), it was analyzed the proteomic peroxisomal composition by quantitative isobaric tags for relative and absolute quantitation (iTRAQ)-based protein profiling. For this aim, it was accomplished a comparative analysis of the pepper fruit whole proteome obtained by iTRAQ versus the identified peroxisomal protein profile from Arabidopsis thaliana. This allowed identifying 57 peroxisomal proteins. Among these proteins, 49 were located in the peroxisomal matrix, 36 proteins had a peroxisomal targeting signal type 1 (PTS1), 8 had a PTS type 2, 5 lacked this type of peptide signal, and 8 proteins were associated with the membrane of this organelle. Furthermore, 34 proteins showed significant differences during the ripening of the fruits, 19 being overexpressed and 15 repressed. Based on previous biochemical studies using purified peroxisomes from pepper fruits, it could be said that some of the identified peroxisomal proteins were corroborated as part of the pepper fruit antioxidant metabolism (catalase, superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductaseglutathione reductase, 6-phosphogluconate dehydrogenase and NADP-isocitrate dehydrogenase), the β-oxidation pathway (acyl-coenzyme A oxidase, 3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase), while other identified proteins could be considered "new" or "unexpected" in fruit peroxisomes like urate oxidase (UO), sulfite oxidase (SO), 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase (METE1), 12-oxophytodienoate reductase 3 (OPR3) or 4-coumarate-CoA ligase (4CL), which participate in different metabolic pathways such as purine, sulfur, L-methionine, jasmonic acid (JA) or phenylpropanoid metabolisms. In summary, the present data provide new insights into the complex metabolic machinery of peroxisomes in fruit and open new windows of research into the peroxisomal functions during fruit ripening.
Collapse
|
18
|
Tanaka M, Takahashi R, Hamada A, Terai Y, Ogawa T, Sawa Y, Ishikawa T, Maruta T. Distribution and Functions of Monodehydroascorbate Reductases in Plants: Comprehensive Reverse Genetic Analysis of Arabidopsis thaliana Enzymes. Antioxidants (Basel) 2021; 10:antiox10111726. [PMID: 34829597 PMCID: PMC8615211 DOI: 10.3390/antiox10111726] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Monodehydroascorbate reductase (MDAR) is an enzyme involved in ascorbate recycling. Arabidopsis thaliana has five MDAR genes that encode two cytosolic, one cytosolic/peroxisomal, one peroxisomal membrane-attached, and one chloroplastic/mitochondrial isoform. In contrast, tomato plants possess only three enzymes, lacking the cytosol-specific enzymes. Thus, the number and distribution of MDAR isoforms differ according to plant species. Moreover, the physiological significance of MDARs remains poorly understood. In this study, we classify plant MDARs into three classes: class I, chloroplastic/mitochondrial enzymes; class II, peroxisomal membrane-attached enzymes; and class III, cytosolic/peroxisomal enzymes. The cytosol-specific isoforms form a subclass of class III and are conserved only in Brassicaceae plants. With some exceptions, all land plants and a charophyte algae, Klebsormidium flaccidum, contain all three classes. Using reverse genetic analysis of Arabidopsis thaliana mutants lacking one or more isoforms, we provide new insight into the roles of MDARs; for example, (1) the lack of two isoforms in a specific combination results in lethality, and (2) the role of MDARs in ascorbate redox regulation in leaves can be largely compensated by other systems. Based on these findings, we discuss the distribution and function of MDAR isoforms in land plants and their cooperation with other recycling systems.
Collapse
Affiliation(s)
- Mio Tanaka
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Ryuki Takahashi
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Akane Hamada
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Yusuke Terai
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Takahisa Ogawa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Takahiro Ishikawa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan
| | - Takanori Maruta
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan
- Correspondence: ; Tel.: +81-882-32-6585
| |
Collapse
|
19
|
Sandalio LM, Peláez-Vico MA, Molina-Moya E, Romero-Puertas MC. Peroxisomes as redox-signaling nodes in intracellular communication and stress responses. PLANT PHYSIOLOGY 2021; 186:22-35. [PMID: 33587125 PMCID: PMC8154099 DOI: 10.1093/plphys/kiab060] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/22/2021] [Indexed: 05/05/2023]
Abstract
Peroxisomes are redox nodes playing a diverse range of roles in cell functionality and in the perception of and responses to changes in their environment.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
- Author for communication:
| | - Maria Angeles Peláez-Vico
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Eliana Molina-Moya
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Maria C Romero-Puertas
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
20
|
Abstract
Plants depend on the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) for CO2 fixation. However, especially in C3 plants, photosynthetic yield is reduced by formation of 2-phosphoglycolate, a toxic oxygenation product of Rubisco, which needs to be recycled in a high-flux-demanding metabolic process called photorespiration. Canonical photorespiration dissipates energy and causes carbon and nitrogen losses. Reducing photorespiration through carbon-concentrating mechanisms, such as C4 photosynthesis, or bypassing photorespiration through metabolic engineering is expected to improve plant growth and yield. The β-hydroxyaspartate cycle (BHAC) is a recently described microbial pathway that converts glyoxylate, a metabolite of plant photorespiration, into oxaloacetate in a highly efficient carbon-, nitrogen-, and energy-conserving manner. Here, we engineered a functional BHAC in plant peroxisomes to create a photorespiratory bypass that is independent of 3-phosphoglycerate regeneration or decarboxylation of photorespiratory precursors. While efficient oxaloacetate conversion in Arabidopsis thaliana still masks the full potential of the BHAC, nitrogen conservation and accumulation of signature C4 metabolites demonstrate the proof of principle, opening the door to engineering a photorespiration-dependent synthetic carbon-concentrating mechanism in C3 plants.
Collapse
|
21
|
High-throughput insertional mutagenesis reveals novel targets for enhancing lipid accumulation in Nannochloropsis oceanica. Metab Eng 2021; 66:239-258. [PMID: 33971293 DOI: 10.1016/j.ymben.2021.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022]
Abstract
The microalga Nannochloropsis oceanica is considered a promising platform for the sustainable production of high-value lipids and biofuel feedstocks. However, current lipid yields of N. oceanica are too low for economic feasibility. Gaining fundamental insights into the lipid metabolism of N. oceanica could open up various possibilities for the optimization of this species through genetic engineering. Therefore, the aim of this study was to discover novel genes associated with an elevated neutral lipid content. We constructed an insertional mutagenesis library of N. oceanica, selected high lipid mutants by five rounds of fluorescence-activated cell sorting, and identified disrupted genes using a novel implementation of a rapid genotyping procedure. One particularly promising mutant (HLM23) was disrupted in a putative APETALA2-like transcription factor gene. HLM23 showed a 40%-increased neutral lipid content, increased photosynthetic performance, and no growth impairment. Furthermore, transcriptome analysis revealed an upregulation of genes related to plastidial fatty acid biosynthesis, glycolysis and the Calvin-Benson-Bassham cycle in HLM23. Insights gained in this work can be used in future genetic engineering strategies for increased lipid productivity of Nannochloropsis.
Collapse
|
22
|
Kechasov D, de Grahl I, Endries P, Reumann S. Evolutionary Maintenance of the PTS2 Protein Import Pathway in the Stramenopile Alga Nannochloropsis. Front Cell Dev Biol 2020; 8:593922. [PMID: 33330478 PMCID: PMC7710942 DOI: 10.3389/fcell.2020.593922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
The stramenopile alga Nannochloropsis evolved by secondary endosymbiosis of a red alga by a heterotrophic host cell and emerged as a promising organism for biotechnological applications, such as the production of polyunsaturated fatty acids and biodiesel. Peroxisomes play major roles in fatty acid metabolism but experimental analyses of peroxisome biogenesis and metabolism in Nannochloropsis are not reported yet. In fungi, animals, and land plants, soluble proteins of peroxisomes are targeted to the matrix by one of two peroxisome targeting signals (type 1, PTS1, or type 2, PTS2), which are generally conserved across kingdoms and allow the prediction of peroxisomal matrix proteins from nuclear genome sequences. Because diatoms lost the PTS2 pathway secondarily, we investigated its presence in the stramenopile sister group of diatoms, the Eustigmatophyceae, represented by Nannochloropsis. We detected a full-length gene of a putative PEX7 ortholog coding for the cytosolic receptor of PTS2 proteins and demonstrated its expression in Nannochloropsis gaditana. The search for predicted PTS2 cargo proteins in N. gaditana yielded several candidates. In vivo subcellular targeting analyses of representative fusion proteins in different plant expression systems demonstrated that two predicted PTS2 domains were indeed functional and sufficient to direct a reporter protein to peroxisomes. Peroxisome targeting of the predicted PTS2 cargo proteins was further confirmed in Nannochloropsis oceanica by confocal and transmission electron microscopy. Taken together, the results demonstrate for the first time that one group of stramenopile algae maintained the import pathway for PTS2 cargo proteins. To comprehensively map and model the metabolic capabilities of Nannochloropsis peroxisomes, in silico predictions needs to encompass both the PTS1 and the PTS2 matrix proteome.
Collapse
Affiliation(s)
- Dmitry Kechasov
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Imke de Grahl
- Plant Biochemistry and Infection Biology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Pierre Endries
- Plant Biochemistry and Infection Biology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
- Plant Biochemistry and Infection Biology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
23
|
Schmitz J, Hüdig M, Meier D, Linka N, Maurino VG. The genome of Ricinus communis encodes a single glycolate oxidase with different functions in photosynthetic and heterotrophic organs. PLANTA 2020; 252:100. [PMID: 33170407 PMCID: PMC7655567 DOI: 10.1007/s00425-020-03504-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
The biochemical characterization of glycolate oxidase in Ricinus communis hints to different physiological functions of the enzyme depending on the organ in which it is active. Enzymatic activities of the photorespiratory pathway are not restricted to green tissues but are present also in heterotrophic organs. High glycolate oxidase (GOX) activity was detected in the endosperm of Ricinus communis. Phylogenetic analysis of the Ricinus L-2-hydroxy acid oxidase (Rc(L)-2-HAOX) family indicated that Rc(L)-2-HAOX1 to Rc(L)-2-HAOX3 cluster with the group containing streptophyte long-chain 2-hydroxy acid oxidases, whereas Rc(L)-2-HAOX4 clusters with the group containing streptophyte GOX. Rc(L)-2-HAOX4 is the closest relative to the photorespiratory GOX genes of Arabidopsis. We obtained Rc(L)-2-HAOX4 as a recombinant protein and analyze its kinetic properties in comparison to the Arabidopsis photorespiratory GOX. We also analyzed the expression of all Rc(L)-2-HAOXs and conducted metabolite profiling of different Ricinus organs. Phylogenetic analysis indicates that Rc(L)-2-HAOX4 is the only GOX encoded in the Ricinus genome (RcGOX). RcGOX has properties resembling those of the photorespiratory GOX of Arabidopsis. We found that glycolate, the substrate of GOX, is highly abundant in non-green tissues, such as roots, embryo of germinating seeds and dry seeds. We propose that RcGOX fulfills different physiological functions depending on the organ in which it is active. In autotrophic organs it oxidizes glycolate into glyoxylate as part of the photorespiratory pathway. In fast growing heterotrophic organs, it is most probably involved in the production of serine to feed the folate pathway for special demands of those tissues.
Collapse
Affiliation(s)
- Jessica Schmitz
- Plant Molecular Physiology and Biotechnology Division, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Meike Hüdig
- Plant Molecular Physiology and Biotechnology Division, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Molecular Plant Physiology Division, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Dieter Meier
- Plant Molecular Physiology and Biotechnology Division, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Nicole Linka
- Institute for Plant Biochemistry, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Veronica G Maurino
- Plant Molecular Physiology and Biotechnology Division, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany.
- Molecular Plant Physiology Division, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
24
|
Hochreiter B, Chong CS, Hartig A, Maurer-Stroh S, Berger J, Schmid JA, Kunze M. A Novel FRET Approach Quantifies the Interaction Strength of Peroxisomal Targeting Signals and Their Receptor in Living Cells. Cells 2020; 9:E2381. [PMID: 33143123 PMCID: PMC7693011 DOI: 10.3390/cells9112381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 02/02/2023] Open
Abstract
Measuring Förster-resonance-energy-transfer (FRET) efficiency allows the investigation of protein-protein interactions (PPI), but extracting quantitative measures of affinity necessitates highly advanced technical equipment or isolated proteins. We demonstrate the validity of a recently suggested novel approach to quantitatively analyze FRET-based experiments in living mammalian cells using standard equipment using the interaction between different type-1 peroxisomal targeting signals (PTS1) and their soluble receptor peroxin 5 (PEX5) as a model system. Large data sets were obtained by flow cytometry coupled FRET measurements of cells expressing PTS1-tagged EGFP together with mCherry fused to the PTS1-binding domain of PEX5, and were subjected to a fitting algorithm extracting a quantitative measure of the interaction strength. This measure correlates with results obtained by in vitro techniques and a two-hybrid assay, but is unaffected by the distance between the fluorophores. Moreover, we introduce a live cell competition assay based on this approach, capable of depicting dose- and affinity-dependent modulation of the PPI. Using this system, we demonstrate the relevance of a sequence element next to the core tripeptide in PTS1 motifs for the interaction strength between PTS1 and PEX5, which is supported by a structure-based computational prediction of the binding energy indicating a direct involvement of this sequence in the interaction.
Collapse
Affiliation(s)
- Bernhard Hochreiter
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Cheng-Shoong Chong
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore; (C.-S.C.); (S.M.-S.)
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Andreas Hartig
- Department of Biochemistry and Cell Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria;
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore; (C.-S.C.); (S.M.-S.)
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Johannes Berger
- Center for Brain Research, Department of Pathobiology of the Nervous System, Medical University of Vienna, 1090 Vienna, Austria;
| | - Johannes A. Schmid
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Markus Kunze
- Center for Brain Research, Department of Pathobiology of the Nervous System, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
25
|
Kataya ARA, Elshobaky A, Heidari B, Dugassa NF, Thelen JJ, Lillo C. Multi-targeted trehalose-6-phosphate phosphatase I harbors a novel peroxisomal targeting signal 1 and is essential for flowering and development. PLANTA 2020; 251:98. [PMID: 32306103 PMCID: PMC7214503 DOI: 10.1007/s00425-020-03389-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/10/2020] [Indexed: 05/13/2023]
Abstract
This work reveals information about new peroxisomal targeting signals type 1 and identifies trehalose-6-phosphate phosphatase I as multitargeted and is implicated in plant development, reproduction, and stress response. A putative, non-canonical peroxisomal targeting signal type 1 (PTS1) Pro-Arg-Met > was identified in the extreme C-terminus of trehalose-6-phosphate phosphatase (TPP)I. TPP catalyzes the final step of trehalose synthesis, and the enzyme was previously characterized to be nuclear only (Krasensky et al. in Antioxid Redox Signal 21(9):1289-1304, 2014). Here we show that the TPPI C-terminal decapeptide ending with Pro-Arg-Met > or Pro-Lys-Met > can indeed function as a PTS1. Upon transient expression in two plant expression systems, the free C- or N-terminal end led to the full-length TPPI targeting to peroxisomes and plastids, respectively. The nucleus and nucleolus targeting of the full-length TPPI was observed in both cases. The homozygous T-DNA insertion line of TPPI showed a pleiotropic phenotype including smaller leaves, shorter roots, delayed flowering, hypersensitivity to salt, and a sucrose dependent seedling development. Our results identify novel PTS1s, and TPPI as a protein multi-targeted to peroxisomes, plastids, nucleus, and nucleolus. Altogether our findings implicate an essential role for TPPI in development, reproduction, and cell signaling.
Collapse
Affiliation(s)
- Amr R A Kataya
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway.
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| | - Ahmed Elshobaky
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Behzad Heidari
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nemie-Feyissa Dugassa
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| | - Jay J Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Cathrine Lillo
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| |
Collapse
|
26
|
Chen M, Witte CP. A Kinase and a Glycosylase Catabolize Pseudouridine in the Peroxisome to Prevent Toxic Pseudouridine Monophosphate Accumulation. THE PLANT CELL 2020; 32:722-739. [PMID: 31907295 PMCID: PMC7054038 DOI: 10.1105/tpc.19.00639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 05/02/2023]
Abstract
Pseudouridine (Ψ) is a frequent nucleoside modification that occurs in both noncoding RNAs and mRNAs. In pseudouridine, C5 of uracil is attached to the Rib via an unusual C-glycosidic bond. This RNA modification is introduced on the RNA by site-specific transglycosylation of uridine (U), a process mediated by pseudouridine synthases. RNA is subject to constant turnover, releasing free pseudouridine, but the metabolic fate of pseudouridine in eukaryotes is unclear. Here, we show that in Arabidopsis (Arabidopsis thaliana), pseudouridine is catabolized in the peroxisome by (1) a pseudouridine kinase (PUKI) from the PfkB family that generates 5'-pseudouridine monophosphate (5'-ΨMP) and (2) a ΨMP glycosylase (PUMY) that hydrolyzes ΨMP to uracil and ribose-5-phosphate. Compromising pseudouridine catabolism leads to strong pseudouridine accumulation and increased ΨMP content. ΨMP is toxic, causing delayed germination and growth inhibition, but compromising pseudouridine catabolism does not affect the Ψ/U ratios in RNA. The bipartite peroxisomal PUKI and PUMY are conserved in plants and algae, whereas some fungi and most animals (except mammals) possess a PUMY-PUKI fusion protein, likely in mitochondria. We propose that vacuolar turnover of ribosomal RNA produces most of the pseudouridine pool via 3'-ΨMP, which is imported through the cytosol into the peroxisomes for degradation by PUKI and PUMY, a process involving a toxic 5'-ΨMP intermediate.
Collapse
Affiliation(s)
- Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Hannover 30419, Germany
| |
Collapse
|
27
|
Pan R, Liu J, Wang S, Hu J. Peroxisomes: versatile organelles with diverse roles in plants. THE NEW PHYTOLOGIST 2020; 225:1410-1427. [PMID: 31442305 DOI: 10.1111/nph.16134] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 05/18/2023]
Abstract
Peroxisomes are small, ubiquitous organelles that are delimited by a single membrane and lack genetic material. However, these simple-structured organelles are highly versatile in morphology, abundance and protein content in response to various developmental and environmental cues. In plants, peroxisomes are essential for growth and development and perform diverse metabolic functions, many of which are carried out coordinately by peroxisomes and other organelles physically interacting with peroxisomes. Recent studies have added greatly to our knowledge of peroxisomes, addressing areas such as the diverse proteome, regulation of division and protein import, pexophagy, matrix protein degradation, solute transport, signaling, redox homeostasis and various metabolic and physiological functions. This review summarizes our current understanding of plant peroxisomes, focusing on recent discoveries. Current problems and future efforts required to better understand these organelles are also discussed. An improved understanding of peroxisomes will be important not only to the understanding of eukaryotic cell biology and metabolism, but also to agricultural efforts aimed at improving crop performance and defense.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Saisai Wang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
28
|
Lansing H, Doering L, Fischer K, Baune MC, Schaewen AV. Analysis of potential redundancy among Arabidopsis 6-phosphogluconolactonase isoforms in peroxisomes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:823-836. [PMID: 31641750 DOI: 10.1093/jxb/erz473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 05/21/2023]
Abstract
Recent work revealed that PGD2, an Arabidopsis 6-phosphogluconate dehydrogenase (6-PGD) catalysing the third step of the oxidative pentose-phosphate pathway (OPPP) in peroxisomes, is essential during fertilization. Earlier studies on the second step, catalysed by PGL3, a dually targeted Arabidopsis 6-phosphogluconolactonase (6-PGL), reported the importance of OPPP reactions in plastids but their irrelevance in peroxisomes. Assuming redundancy of 6-PGL activity in peroxisomes, we examined the sequences of other higher plant enzymes. In tomato, there exist two 6-PGL isoforms with the strong PTS1 motif SKL. However, their analysis revealed problems regarding peroxisomal targeting: reporter-PGL detection in peroxisomes required construct modification, which was also applied to the Arabidopsis isoforms. The relative contribution of PGL3 versus PGL5 during fertilization was assessed by mutant crosses. Reduced transmission ratios were found for pgl3-1 (T-DNA-eliminated PTS1) and also for knock-out allele pgl5-2. The prominent role of PGL3 showed as compromised growth of pgl3-1 seedlings on sucrose and higher activity of mutant PGL3-1 versus PGL5 using purified recombinant proteins. Evidence for PTS1-independent uptake was found for PGL3-1 and other Arabidopsis PGL isoforms, indicating that peroxisome import may be supported by a piggybacking mechanism. Thus, multiple redundancy at the level of the second OPPP step in peroxisomes explains the occurrence of pgl3-1 mutant plants.
Collapse
Affiliation(s)
- Hannes Lansing
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Lennart Doering
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Kerstin Fischer
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Marie-Christin Baune
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Antje Von Schaewen
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| |
Collapse
|
29
|
Jossier M, Liu Y, Massot S, Hodges M. Enzymatic Properties of Recombinant Phospho-Mimetic Photorespiratory Glycolate Oxidases from Arabidopsis thaliana and Zea mays. PLANTS (BASEL, SWITZERLAND) 2019; 9:plants9010027. [PMID: 31878154 PMCID: PMC7020226 DOI: 10.3390/plants9010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
In photosynthetic organisms, the photorespiratory cycle is an essential pathway leading to the recycling of 2-phosphoglycolate, produced by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase, to 3-phosphoglycerate. Although photorespiration is a widely studied process, its regulation remains poorly understood. In this context, phosphoproteomics studies have detected six phosphorylation sites associated with photorespiratory glycolate oxidases from Arabidopsis thaliana (AtGOX1 and AtGOX2). Phosphorylation sites at T4, T158, S212 and T265 were selected and studied using Arabidopsis and maize recombinant glycolate oxidase (GOX) proteins mutated to produce either phospho-dead or phospho-mimetic enzymes in order to compare their kinetic parameters. Phospho-mimetic mutations (T4D, T158D and T265D) led to a severe inhibition of GOX activity without altering the KM glycolate. In two cases (T4D and T158D), this was associated with the loss of the cofactor, flavin mononucleotide. Phospho-dead versions exhibited different modifications according to the phospho-site and/or the GOX mutated. Indeed, all T4V and T265A enzymes had kinetic parameters similar to wild-type GOX and all T158V proteins showed low activities while S212A and S212D mutations had no effect on AtGOX1 activity and AtGOX2/ZmGO1 activities were 50% reduced. Taken together, our results suggest that GOX phosphorylation has the potential to modulate GOX activity.
Collapse
|
30
|
Falter C, Thu NBA, Pokhrel S, Reumann S. New guidelines for fluorophore application in peroxisome targeting analyses in transient plant expression systems. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:884-899. [PMID: 30791204 DOI: 10.1111/jipb.12791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Peroxisome research has been revolutionized by proteome studies combined with in vivo subcellular targeting analyses. Yellow and cyan fluorescent protein (YFP and CFP) are the classical fluorophores of plant peroxisome research. In the new transient expression system of Arabidopsis seedlings co-cultivated with Agrobacterium we detected the YFP fusion of one candidate protein in peroxisomes, but only upon co-transformation with the peroxisome marker, CFP-PTS1. The data suggested that the YFP fusion was directed to peroxisomes due to its weak heterodimerization ability with CFP-PTS1, allowing piggy-back import into peroxisomes. Indeed, if co-expressed with monomeric Cerulean-PTS1 (mCer-PTS1), the YFP fusion was no longer matrix localized. We systematically investigated the occurrence and extent of dimerization-based piggy-back import for different fluorophore combinations in five major transient plant expression systems. In Arabidopsis seedlings and tobacco leaves both untagged YFP and monomeric Venus were imported into peroxisomes if co-expressed with CFP-PTS1 but not with mCer-PTS1. By contrast, piggy-back import of cytosolic proteins was not observed in Arabidopsis and tobacco protoplasts or in onion epidermal cells for any fluorophore combination at any time point. Based on these important results we formulate new guidelines for fluorophore usage and experimental design to guarantee reliable identification of novel plant peroxisomal proteins.
Collapse
Affiliation(s)
- Christian Falter
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Nguyen Binh Anh Thu
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Saugat Pokhrel
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Sigrun Reumann
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
31
|
Corpas FJ, Del Río LA, Palma JM. Plant peroxisomes at the crossroad of NO and H 2 O 2 metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:803-816. [PMID: 30609289 DOI: 10.1111/jipb.12772] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Plant peroxisomes are subcellular compartments involved in many biochemical pathways during the life cycle of a plant but also in the mechanism of response against adverse environmental conditions. These organelles have an active nitro-oxidative metabolism under physiological conditions but this could be exacerbated under stress situations. Furthermore, peroxisomes have the capacity to proliferate and also undergo biochemical adaptations depending on the surrounding cellular status. An important characteristic of peroxisomes is that they have a dynamic metabolism of reactive nitrogen and oxygen species (RNS and ROS) which generates two key molecules, nitric oxide (NO) and hydrogen peroxide (H2 O2 ). These molecules can exert signaling functions by means of post-translational modifications that affect the functionality of target molecules like proteins, peptides or fatty acids. This review provides an overview of the endogenous metabolism of ROS and RNS in peroxisomes with special emphasis on polyamine and uric acid metabolism as well as the possibility that these organelles could be a source of signal molecules involved in the functional interconnection with other subcellular compartments.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
32
|
Kataya ARA, Muench DG, Moorhead GB. A Framework to Investigate Peroxisomal Protein Phosphorylation in Arabidopsis. TRENDS IN PLANT SCIENCE 2019; 24:366-381. [PMID: 30683463 DOI: 10.1016/j.tplants.2018.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Peroxisomes perform essential roles in a range of cellular processes, highlighted by lipid metabolism, reactive species detoxification, and response to a variety of stimuli. The ability of peroxisomes to grow, divide, respond to changing cellular needs, interact with other organelles, and adjust their proteome as required, suggest that, like other organelles, their specialized roles are highly regulated. Similar to most other cellular processes, there is an emerging role for protein phosphorylation to regulate these events. In this review, we establish a knowledge framework of key players that control protein phosphorylation events in the plant peroxisome (i.e., the protein kinases and phosphatases), and highlight a vastly expanded set of (phospho)substrates.
Collapse
Affiliation(s)
- Amr R A Kataya
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, 4036, Norway; Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada; www.katayaproject.com.
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Greg B Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| |
Collapse
|
33
|
Teresinski HJ, Gidda SK, Nguyen TND, Howard NJM, Porter BK, Grimberg N, Smith MD, Andrews DW, Dyer JM, Mullen RT. An RK/ST C-Terminal Motif is Required for Targeting of OEP7.2 and a Subset of Other Arabidopsis Tail-Anchored Proteins to the Plastid Outer Envelope Membrane. PLANT & CELL PHYSIOLOGY 2019; 60:516-537. [PMID: 30521026 DOI: 10.1093/pcp/pcy234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Tail-anchored (TA) proteins are a unique class of integral membrane proteins that possess a single C-terminal transmembrane domain and target post-translationally to the specific organelles at which they function. While significant advances have been made in recent years in elucidating the mechanisms and molecular targeting signals involved in the proper sorting of TA proteins, particularly to the endoplasmic reticulum and mitochondria, relatively little is known about the targeting of TA proteins to the plastid outer envelope. Here we show that several known or predicted plastid TA outer envelope proteins (OEPs) in Arabidopsis possess a C-terminal RK/ST sequence motif that serves as a conserved element of their plastid targeting signal. Evidence for this conclusion comes primarily from experiments with OEP7.2, which is a member of the Arabidopsis 7 kDa OEP family. We confirmed that OEP7.2 is localized to the plastid outer envelope and possesses a TA topology, and its C-terminal sequence (CTS), which includes the RK/ST motif, is essential for proper targeting to plastids. The CTS of OEP7.2 is functionally interchangeable with the CTSs of other TA OEPs that possess similar RK/ST motifs, but not with those that lack the motif. Further, a bioinformatics search based on a consensus sequence led to the identification of several new OEP TA proteins. Collectively, this study provides new insight into the mechanisms of TA protein sorting in plant cells, defines a new targeting signal element for a subset of TA OEPs and expands the number and repertoire of TA proteins at the plastid outer envelope.
Collapse
Affiliation(s)
- Howard J Teresinski
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Thuy N D Nguyen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Naomi J Marty Howard
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Brittany K Porter
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Nicholas Grimberg
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - David W Andrews
- Sunnybrook Research Institute and Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John M Dyer
- United States Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
34
|
Korani W, Clevenger JP, Chu Y, Ozias-Akins P. Machine Learning as an Effective Method for Identifying True Single Nucleotide Polymorphisms in Polyploid Plants. THE PLANT GENOME 2019; 12:180023. [PMID: 30951095 DOI: 10.3835/plantgenome2018.05.0023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Single nucleotide polymorphisms (SNPs) have many advantages as molecular markers since they are ubiquitous and codominant. However, the discovery of true SNPs in polyploid species is difficult. Peanut ( L.) is an allopolyploid, which has a very low rate of true SNP calling. A large set of true and false SNPs identified from the Axiom_ 58k array was leveraged to train machine-learning models to enable identification of true SNPs directly from sequence data to reduce ascertainment bias. These models achieved accuracy rates above 80% using real peanut RNA sequencing (RNA-seq) and whole-genome shotgun (WGS) resequencing data, which is higher than previously reported for polyploids and at least a twofold improvement for peanut. A 48K SNP array, Axiom_2, was designed using this approach resulting in 75% accuracy of calling SNPs from different tetraploid peanut genotypes. Using the method to simulate SNP variation in several polyploids, models achieved >98% accuracy in selecting true SNPs. Additionally, models built with simulated genotypes were able to select true SNPs at >80% accuracy using real peanut data. This work accomplished the objective to create an effective approach for calling highly reliable SNPs from polyploids using machine learning. A novel tool was developed for predicting true SNPs from sequence data, designated as SNP machine learning (SNP-ML), using the described models. The SNP-ML additionally provides functionality to train new models not included in this study for customized use, designated SNP machine learner (SNP-MLer). The SNP-ML is publicly available.
Collapse
|
35
|
Li J, Tietz S, Cruz JA, Strand DD, Xu Y, Chen J, Kramer DM, Hu J. Photometric screens identified Arabidopsis peroxisome proteins that impact photosynthesis under dynamic light conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:460-474. [PMID: 30350901 DOI: 10.1111/tpj.14134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 05/02/2023]
Abstract
Plant peroxisomes function collaboratively with other subcellular organelles, such as chloroplasts and mitochondria, in several metabolic processes. To comprehensively investigate the impact of peroxisomal function on photosynthesis, especially under conditions that are more relevant to natural environments, a systematic screen of over 150 Arabidopsis mutants of genes encoding peroxisomal proteins was conducted using the automated Dynamic Environment Photosynthesis Imager (DEPI). Dynamic and high-light (HL) conditions triggered significant photosynthetic defects in a subset of the mutants, including those of photorespiration (PR) and other peroxisomal processes, some of which may also be related to PR. Further analysis of the PR mutants revealed activation of cyclic electron flow (CEF) around photosystem I and higher accumulation of hydrogen peroxide (H2 O2 ) under HL conditions. We hypothesize that impaired PR disturbs the balance of ATP and NADPH, leading to the accumulation of H2 O2 that activates CEF to produce ATP to compensate for the imbalance of reducing equivalents. The identification of peroxisomal mutants involved in PR and other peroxisomal functions in the photometric screen will enable further investigation of regulatory links between photosynthesis and PR and interorganellar interaction at the mechanistic level.
Collapse
Affiliation(s)
- Jiying Li
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Stefanie Tietz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jeffrey A Cruz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Deserah D Strand
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Ye Xu
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jin Chen
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - David M Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianping Hu
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
36
|
Pan R, Reumann S, Lisik P, Tietz S, Olsen LJ, Hu J. Proteome analysis of peroxisomes from dark-treated senescent Arabidopsis leaves. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1028-1050. [PMID: 29877633 DOI: 10.1111/jipb.12670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/29/2018] [Indexed: 05/21/2023]
Abstract
Peroxisomes compartmentalize a dynamic suite of biochemical reactions and play a central role in plant metabolism, such as the degradation of hydrogen peroxide, metabolism of fatty acids, photorespiration, and the biosynthesis of plant hormones. Plant peroxisomes have been traditionally classified into three major subtypes, and in-depth mass spectrometry (MS)-based proteomics has been performed to explore the proteome of the two major subtypes present in green leaves and etiolated seedlings. Here, we carried out a comprehensive proteome analysis of peroxisomes from Arabidopsis leaves given a 48-h dark treatment. Our goal was to determine the proteome of the third major subtype of plant peroxisomes from senescent leaves, and further catalog the plant peroxisomal proteome. We identified a total of 111 peroxisomal proteins and verified the peroxisomal localization for six new proteins with potential roles in fatty acid metabolism and stress response by in vivo targeting analysis. Metabolic pathways compartmentalized in the three major subtypes of peroxisomes were also compared, which revealed a higher number of proteins involved in the detoxification of reactive oxygen species in peroxisomes from senescent leaves. Our study takes an important step towards mapping the full function of plant peroxisomes.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Sigrun Reumann
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Center of Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
- Department of Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, D-22609 Hamburg, Germany
| | - Piotr Lisik
- Center of Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
| | - Stefanie Tietz
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Laura J Olsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
37
|
Corpas FJ, Barroso JB. Peroxisomal plant metabolism - an update on nitric oxide, Ca 2+ and the NADPH recycling network. J Cell Sci 2018; 131:jcs.202978. [PMID: 28775155 DOI: 10.1242/jcs.202978] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant peroxisomes are recognized organelles that - with their capacity to generate greater amounts of H2O2 than other subcellular compartments - have a remarkable oxidative metabolism. However, over the last 15 years, new information has shown that plant peroxisomes contain other important molecules and enzymes, including nitric oxide (NO), peroxynitrite, a NADPH-recycling system, Ca2+ and lipid-derived signals, such as jasmonic acid (JA) and nitro-fatty acid (NO2-FA). This highlights the potential for complex interactions within the peroxisomal nitro-oxidative metabolism, which also affects the status of the cell and consequently its physiological processes. In this review, we provide an update on the peroxisomal interactions between all these molecules. Particular emphasis will be placed on the generation of the free-radical NO, which requires the presence of Ca2+, calmodulin and NADPH redox power. Peroxisomes possess several NADPH regeneration mechanisms, such as those mediated by glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) proteins, which are involved in the oxidative phase of the pentose phosphate pathway, as well as that mediated by NADP-isocitrate dehydrogenase (ICDH). The generated NADPH is also an essential cofactor across other peroxisomal pathways, including the antioxidant ascorbate-glutathione cycle and unsaturated fatty acid β-oxidation, the latter being a source of powerful signaling molecules such as JA and NO2-FA.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| |
Collapse
|
38
|
Freitag J, Stehlik T, Stiebler AC, Bölker M. The Obvious and the Hidden: Prediction and Function of Fungal Peroxisomal Matrix Proteins. Subcell Biochem 2018; 89:139-155. [PMID: 30378022 DOI: 10.1007/978-981-13-2233-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fungal peroxisomes are characterized by a number of specific biological functions. To understand the physiology and biochemistry of these organelles knowledge of the proteome content is crucial. Here, we address different strategies to predict peroxisomal proteins by bioinformatics approaches. These tools range from simple text searches to network based learning strategies. A complication of this analysis is the existence of cryptic peroxisomal proteins, which are overlooked in conventional bioinformatics queries. These include proteins where targeting information results from transcriptional and posttranscriptional alterations. But also proteins with low efficiency targeting motifs that are predominantly localized in the cytosol, and proteins lacking any canonical targeting information, can play important roles within peroxisomes. Many of these proteins are so far unpredictable. Detection and characterization of these cryptic peroxisomal proteins revealed the presence of novel peroxisomal enzymatic reaction networks in fungi.
Collapse
Affiliation(s)
- Johannes Freitag
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Thorsten Stehlik
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Alina C Stiebler
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Michael Bölker
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
39
|
Kao YT, Gonzalez KL, Bartel B. Peroxisome Function, Biogenesis, and Dynamics in Plants. PLANT PHYSIOLOGY 2018; 176:162-177. [PMID: 29021223 PMCID: PMC5761812 DOI: 10.1104/pp.17.01050] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/09/2017] [Indexed: 05/19/2023]
Abstract
Recent advances highlight understanding of the diversity of peroxisome contributions to plant biology and the mechanisms through which these essential organelles are generated.
Collapse
Affiliation(s)
- Yun-Ting Kao
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Kim L Gonzalez
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Bonnie Bartel
- Department of Biosciences, Rice University, Houston, Texas 77005
| |
Collapse
|
40
|
Abstract
Our knowledge of the proteome of plant peroxisomes is far from being complete, and the functional complexity and plasticity of this cell organelle are amazingly high particularly in plants, as exemplified by the model species Arabidopsis thaliana. Plant-specific peroxisome functions that have been uncovered only recently include, for instance, the participation of peroxisomes in phylloquinone and biotin biosynthesis. Experimental proteome studies have been proved very successful in defining the proteome of Arabidopsis peroxisomes but this approach also faces significant challenges and limitations. Complementary to experimental approaches, computational methods have emerged as important powerful tools to define the proteome of soluble matrix proteins of plant peroxisomes. Compared to other cell organelles such as mitochondria, plastids and the ER, the simultaneous operation of two major import pathways for soluble proteins in peroxisomes is rather atypical. Novel machine learning prediction approaches have been developed for peroxisome targeting signals type 1 (PTS1) and revealed high sensitivity and specificity, as validated by in vivo subcellular targeting analyses in diverse transient plant expression systems. Accordingly, the algorithms allow the correct prediction of many novel peroxisome-targeted proteins from plant genome sequences and the discovery of additional organelle functions. In contrast, the prediction of PTS2 proteins largely remains restricted to genome searches by conserved patterns contrary to more advanced machine learning methods. Here, we summarize and discuss the capabilities and accuracies of available prediction algorithms for PTS1 and PTS2 carrying proteins.
Collapse
Affiliation(s)
- Sigrun Reumann
- Department of Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Gopal Chowdhary
- KIIT School of Biotechnology, Campus XI, KIIT University, Bhubaneswar, 751024, India
| |
Collapse
|
41
|
Kunze M. Predicting Peroxisomal Targeting Signals to Elucidate the Peroxisomal Proteome of Mammals. Subcell Biochem 2018; 89:157-199. [PMID: 30378023 DOI: 10.1007/978-981-13-2233-4_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peroxisomes harbor a plethora of proteins, but the peroxisomal proteome as the entirety of all peroxisomal proteins is still unknown for mammalian species. Computational algorithms can be used to predict the subcellular localization of proteins based on their amino acid sequence and this method has been amply used to forecast the intracellular fate of individual proteins. However, when applying such algorithms systematically to all proteins of an organism the prediction of its peroxisomal proteome in silico should be possible. Therefore, a reliable detection of peroxisomal targeting signals (PTS ) acting as postal codes for the intracellular distribution of the encoding protein is crucial. Peroxisomal proteins can utilize different routes to reach their destination depending on the type of PTS. Accordingly, independent prediction algorithms have been developed for each type of PTS, but only those for type-1 motifs (PTS1) have so far reached a satisfying predictive performance. This is partially due to the low number of peroxisomal proteins limiting the power of statistical analyses and partially due to specific properties of peroxisomal protein import, which render functional PTS motifs inactive in specific contexts. Moreover, the prediction of the peroxisomal proteome is limited by the high number of proteins encoded in mammalian genomes, which causes numerous false positive predictions even when using reliable algorithms and buries the few yet unidentified peroxisomal proteins. Thus, the application of prediction algorithms to identify all peroxisomal proteins is currently ineffective as stand-alone method, but can display its full potential when combined with other methods.
Collapse
Affiliation(s)
- Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
42
|
Abstract
Plant peroxisomes are required for a number of fundamental physiological processes, such as primary and secondary metabolism, development and stress response. Indexing the dynamic peroxisome proteome is prerequisite to fully understanding the importance of these organelles. Mass Spectrometry (MS)-based proteome analysis has allowed the identification of novel peroxisomal proteins and pathways in a relatively high-throughput fashion and significantly expanded the list of proteins and biochemical reactions in plant peroxisomes. In this chapter, we summarize the experimental proteomic studies performed in plants, compile a list of ~200 confirmed Arabidopsis peroxisomal proteins, and discuss the diverse plant peroxisome functions with an emphasis on the role of Arabidopsis MS-based proteomics in discovering new peroxisome functions. Many plant peroxisome proteins and biochemical pathways are specific to plants, substantiating the complexity, plasticity and uniqueness of plant peroxisomes. Mapping the full plant peroxisome proteome will provide a knowledge base for the improvement of crop production, quality and stress tolerance.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
43
|
Bersch K, Lobos Matthei I, Thoms S. Multiple Localization by Functional Translational Readthrough. Subcell Biochem 2018; 89:201-219. [PMID: 30378024 DOI: 10.1007/978-981-13-2233-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In a compartmentalized cell, correct protein localization is crucial for function of virtually all cellular processes. From the cytoplasm as a starting point, proteins are imported into organelles by specific targeting signals. Many proteins, however, act in more than one cellular compartment. In this chapter, we discuss mechanisms by which proteins can be targeted to multiple organelles with a focus on a novel gene regulatory mechanism, functional translational readthrough, that permits multiple targeting of proteins to the peroxisome and other organelles. In mammals, lactate and malate dehydrogenase are the best-characterized enzymes whose targeting is controlled by functional translational readthrough.
Collapse
Affiliation(s)
- Kristina Bersch
- Department of Child and Adolescent Health, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Ignacio Lobos Matthei
- Department of Child and Adolescent Health, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Sven Thoms
- Department of Child and Adolescent Health, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
44
|
Robin GP, Kleemann J, Neumann U, Cabre L, Dallery JF, Lapalu N, O’Connell RJ. Subcellular Localization Screening of Colletotrichum higginsianum Effector Candidates Identifies Fungal Proteins Targeted to Plant Peroxisomes, Golgi Bodies, and Microtubules. FRONTIERS IN PLANT SCIENCE 2018; 9:562. [PMID: 29770142 PMCID: PMC5942036 DOI: 10.3389/fpls.2018.00562] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/10/2018] [Indexed: 05/20/2023]
Abstract
The genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum, encodes a large inventory of putative secreted effector proteins that are sequentially expressed at different stages of plant infection, namely appressorium-mediated penetration, biotrophy and necrotrophy. However, the destinations to which these proteins are addressed inside plant cells are unknown. In the present study, we selected 61 putative effector genes that are highly induced in appressoria and/or biotrophic hyphae. We then used Agrobacterium-mediated transformation to transiently express them as N-terminal fusions with fluorescent proteins in cells of Nicotiana benthamiana for imaging by confocal microscopy. Plant compartments labeled by the fusion proteins in N. benthamiana were validated by co-localization with specific organelle markers, by transient expression of the proteins in the true host plant, Arabidopsis thaliana, and by transmission electron microscopy-immunogold labeling. Among those proteins for which specific subcellular localizations could be verified, nine were imported into plant nuclei, three were imported into the matrix of peroxisomes, three decorated cortical microtubule arrays and one labeled Golgi stacks. Two peroxisome-targeted proteins harbored canonical C-terminal tripeptide signals for peroxisome import via the PTS1 (peroxisomal targeting signal 1) pathway, and we showed that these signals are essential for their peroxisome localization. Our findings provide valuable information about which host processes are potentially manipulated by this pathogen, and also reveal plant peroxisomes, microtubules, and Golgi as novel targets for fungal effectors.
Collapse
Affiliation(s)
- Guillaume P. Robin
- UMR BIOGER, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Jochen Kleemann
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Lisa Cabre
- UMR BIOGER, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Jean-Félix Dallery
- UMR BIOGER, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Nicolas Lapalu
- UMR BIOGER, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Richard J. O’Connell
- UMR BIOGER, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Versailles, France
- *Correspondence: Richard J. O’Connell,
| |
Collapse
|
45
|
Abdelraheim SR, Spiller DG, McLennan AG. Mouse Nudt13 is a Mitochondrial Nudix Hydrolase with NAD(P)H Pyrophosphohydrolase Activity. Protein J 2017; 36:425-432. [PMID: 28755312 PMCID: PMC5626787 DOI: 10.1007/s10930-017-9734-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The mammalian NUDT13 protein possesses a sequence motif characteristic of the NADH pyrophosphohydrolase subfamily of Nudix hydrolases. Due to the persistent insolubility of the recombinant product expressed in Escherichia coli, active mouse Nudt13 was expressed in insect cells from a baculovirus vector as a histidine-tagged recombinant protein. In vitro, it efficiently hydrolysed NADH to NMNH and AMP and NADPH to NMNH and 2',5'-ADP and had a marked preference for the reduced pyridine nucleotides. Much lower activity was obtained with other nucleotide substrates tested. K m and k cat values for NADH were 0.34 mM and 7 s-1 respectively. Expression of Nudt13 as an N-terminal fusion to green fluorescent protein revealed that it was targeted exclusively to mitochondria by the N-terminal targeting peptide, suggesting that Nudt13 may act to regulate the concentration of mitochondrial reduced pyridine nucleotide cofactors and the NAD(P)+/NAD(P)H ratio in this organelle and elsewhere. Future studies of the enzymology of pyridine nucleotide metabolism in relation to energy homeostasis, redox control, free radical production and cellular integrity should consider the possible regulatory role of Nudt13.
Collapse
Affiliation(s)
- Salama R Abdelraheim
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, 61519, Egypt
| | - David G Spiller
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Faculty of Biology, Medicine and Health, Systems Microscopy Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Alexander G McLennan
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
46
|
Towards designer organelles by subverting the peroxisomal import pathway. Nat Commun 2017; 8:454. [PMID: 28878206 PMCID: PMC5587766 DOI: 10.1038/s41467-017-00487-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/03/2017] [Indexed: 01/09/2023] Open
Abstract
The development of ‘designer’ organelles could be a key strategy to enable foreign pathways to be efficiently controlled within eukaryotic biotechnology. A fundamental component of any such system will be the implementation of a bespoke protein import pathway that can selectively deliver constituent proteins to the new compartment in the presence of existing endogenous trafficking systems. Here we show that the protein–protein interactions that control the peroxisomal protein import pathway can be manipulated to create a pair of interacting partners that still support protein import in moss cells, but are orthogonal to the naturally occurring pathways. In addition to providing a valuable experimental tool to give new insights into peroxisomal protein import, the variant receptor-signal sequence pair forms the basis of a system in which normal peroxisomal function is downregulated and replaced with an alternative pathway, an essential first step in the creation of a designer organelle. Designer organelles could allow the isolation of synthetic biological pathways from endogenous components of the host cell. Here the authors engineer a peroxisomal protein import pathway orthogonal to the naturally occurring system.
Collapse
|
47
|
Activation of catalase activity by a peroxisome-localized small heat shock protein Hsp17.6CII. J Genet Genomics 2017; 44:395-404. [PMID: 28869112 DOI: 10.1016/j.jgg.2017.03.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023]
Abstract
Plant catalases are important antioxidant enzymes and are indispensable for plant to cope with adverse environmental stresses. However, little is known how catalase activity is regulated especially at an organelle level. In this study, we identified that small heat shock protein Hsp17.6CII (AT5G12020) interacts with and activates catalases in the peroxisome of Arabidopsis thaliana. Although Hsp17.6CII is classified into the cytosol-located small heat shock protein subfamily, we found that Hsp17.6CII is located in the peroxisome. Moreover, Hsp17.6CII contains a novel non-canonical peroxisome targeting signal 1 (PTS1), QKL, 16 amino acids upstream from the C-terminus. The QKL signal peptide can partially locate GFP to peroxisome, and mutations in the tripeptide lead to the abolishment of this activity. In vitro catalase activity assay and holdase activity assay showed that Hsp17.6CII increases CAT2 activity and prevents it from thermal aggregation. These results indicate that Hsp17.6CII is a peroxisome-localized catalase chaperone. Overexpression of Hsp17.6CII conferred enhanced catalase activity and tolerance to abiotic stresses in Arabidopsis. Interestingly, overexpression of Hsp17.6CII in catalase-deficient mutants, nca1-3 and cat2 cat3, failed to rescue their stress-sensitive phenotypes and catalase activity, suggesting that Hsp17.6CII-mediated stress response is dependent on NCA1 and catalase activity. Overall, we identified a novel peroxisome-located catalase chaperone that is involved in plant abiotic stress resistance by activating catalase activity.
Collapse
|
48
|
Corpas FJ, Barroso JB, Palma JM, Rodriguez-Ruiz M. Plant peroxisomes: A nitro-oxidative cocktail. Redox Biol 2017; 11:535-542. [PMID: 28092771 PMCID: PMC5238456 DOI: 10.1016/j.redox.2016.12.033] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022] Open
Abstract
Although peroxisomes are very simple organelles, research on different species has provided us with an understanding of their importance in terms of cell viability. In addition to the significant role played by plant peroxisomes in the metabolism of reactive oxygen species (ROS), data gathered over the last two decades show that these organelles are an endogenous source of nitric oxide (NO) and related molecules called reactive nitrogen species (RNS). Molecules such as NO and H2O2 act as retrograde signals among the different cellular compartments, thus facilitating integral cellular adaptation to physiological and environmental changes. However, under nitro-oxidative conditions, part of this network can be overloaded, possibly leading to cellular damage and even cell death. This review aims to update our knowledge of the ROS/RNS metabolism, whose important role in plant peroxisomes is still underestimated. However, this pioneering approach, in which key elements such as β-oxidation, superoxide dismutase (SOD) and NO have been mainly described in relation to plant peroxisomes, could also be used to explore peroxisomes from other organisms.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain.
| | - Juan B Barroso
- Biochemistry and Cell Signaling in Nitric Oxide Group, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071 Jaén, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain
| | - Marta Rodriguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain
| |
Collapse
|
49
|
Abstract
To date, less than 150 proteins have been located to plant peroxisomes, indicating that unbiased large-scale approaches such as experimental proteome research are required to uncover the remaining yet unknown metabolic functions of this organelle as well as its regulatory mechanisms and membrane proteins. For experimental proteome research, Arabidopsis thaliana is the model plant of choice and an isolation methodology that obtains peroxisomes of sufficient yield and high purity is vital for research on this organelle. However, organelle enrichment is more difficult from Arabidopsis when compared to other plant species and especially challenging for peroxisomes. Leaf peroxisomes from Arabidopsis are very fragile in aqueous solution and show pronounced physical interactions with chloroplasts and mitochondria in vivo that persist in vitro and decrease peroxisome purity. Here, we provide a detailed protocol for the isolation of Arabidopsis leaf peroxisomes using two different types of density gradients (Percoll and sucrose) sequentially that yields approximately 120 μg of peroxisome proteins from 60 g of fresh leaf material. A method is also provided to assess the relative purity of the isolated peroxisomes by immunoblotting to allow selection of the purest peroxisome isolates. To enable the analysis of peroxisomal membrane proteins, an enrichment strategy using sodium carbonate treatment of isolated peroxisome membranes has been adapted to suit isolated leaf peroxisomes and is described here.
Collapse
|
50
|
Chen N, Teng XL, Xiao XG. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal. FRONTIERS IN PLANT SCIENCE 2017; 8:1345. [PMID: 28824680 PMCID: PMC5539789 DOI: 10.3389/fpls.2017.01345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/18/2017] [Indexed: 05/03/2023]
Abstract
AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS.
Collapse
|