1
|
Qi S, Meng LZ, Lou Q, Li Y, Shen Y, Zhang S, Wang X, Zhao P, Wang J, Wang B, Chen X, Zhang C, Du Y, Zhao J, Zhan X, Liang Y. Association of the tomato co-chaperone gene Sldnaj harboring a promoter deletion with susceptibility to Tomato spotted wilt virus (TSWV). HORTICULTURE RESEARCH 2025; 12:uhaf019. [PMID: 40093380 PMCID: PMC11908825 DOI: 10.1093/hr/uhaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/29/2024] [Indexed: 03/19/2025]
Abstract
Tomato spotted wilt virus (TSWV) poses a significant threat as a devastating pathogen to the global production and quality of tomato (Solanum lycopersicum). Mining novel resistance genes within the tomato germplasm is an effective and environmentally friendly approach to combat TSWV. In this study, we investigated the mechanisms underlying high TSWV resistance in a specific tomato line after experimental inoculation, despite not possessing any known TSWV resistance genes. The candidate causal genes of disease resistance traits were finely mapped by constructing different genetic populations and performing bulk segregant analysis sequencing. This approach identified SlDnaJ (Solyc10g081220) as a key locus potentially regulating TSWV resistance. We determined a structural variant of SlDnaJ (designated Sldnaj) containing a 61-bp promoter sequence deletion that was specifically present in the germplasm of the susceptible M82 tomato plant lines. Sldnaj-knockout transgenic plants were significantly more resistant to TSWV than wild-type plants. Up-regulated expression of Sldnaj affected the salicylic acid/jasmonic acid signaling pathway, which induced and promoted the systemic infection of TSWV in M82 susceptible plants. In summary, this study identified a new candidate TSWV susceptibility gene with a natural deletion variation in tomato. These findings provide insights into the molecular mechanism underlying pathogen resistance while offering a target for breeding strategies of tomato with TSWV resistance.
Collapse
Affiliation(s)
- Shiming Qi
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, Gansu 734000, China
| | - Liang Zhe Meng
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianqi Lou
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yushun Li
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanbo Shen
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shijie Zhang
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Wang
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pan Zhao
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin Wang
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Wang
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiubin Chen
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, Gansu 734000, China
| | - Chunmei Zhang
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, Gansu 734000, China
| | - Yu Du
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiantao Zhao
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Xiangqiang Zhan
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Liang
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Gong S, Tang J, Xiao Y, Li T, Zhang Q. The fungal effector AaAlta1 inhibits PATHOGENESIS-RELATED PROTEIN10-2-mediated callose deposition and defense responses in apple. PLANT PHYSIOLOGY 2024; 197:kiae599. [PMID: 39589911 DOI: 10.1093/plphys/kiae599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Apple leaf spot, caused by Alternaria alternata f. sp mali (ALT), poses a substantial threat to the global apple (Malus × domestica Borkh.) industry. Fungal effectors promote pathogen infestation and survival by interfering with plant immune responses. In our study, we investigated the secretion of effector proteins by the virulent ALT7 strain. Using mass spectrometry, we identified the effector AaAlta1, which belongs to the Alt a 1 protein family (AA1s). Further analysis confirmed that ALT7 secretes AaAlta1. AaAlta1 knockdown mutants displayed reduced pathogenicity in apple tissue culture seedlings, while overexpression strains exhibited enhanced pathogenicity compared to the wild-type ALT7 strain. Using immunoprecipitation followed by mass spectrometry, we isolated pathogenesis-related protein 10-2 (PR10-2) as an interaction partner of AaAlta1 in apple. Knockdown mutants of AaAlta1 showed increased PR10-2-mediated callose deposition in apple, a critical plant defense response. The enhanced defense responses in apple substantially reduced their susceptibility to infection by these ALT7 mutants. Our findings delineate an infection strategy whereby ALT7 secretes AaAlta1 to suppress PR10-2, thereby circumventing the apple defense system.
Collapse
Affiliation(s)
- Shun Gong
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jinqi Tang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Xiao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Deng M, Zhang L, Yang C, Zeng Q, Zhong L, Guo X. GmERFVII transcription factors upregulate PATHOGENESIS-RELATED10 and contribute to soybean cyst nematode resistance. PLANT PHYSIOLOGY 2024; 197:kiae548. [PMID: 39575886 DOI: 10.1093/plphys/kiae548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/22/2024] [Indexed: 12/24/2024]
Abstract
Low oxygen availability within plant cells arises during plant development but is exacerbated under environmental stress conditions. The group VII ETHYLENE RESPONSE FACTOR (ERFVII) transcription factors have been identified as pivotal regulators in the hypoxia response to abiotic stress. However, their roles in transcriptional regulation during biotic stresses remain less defined. In this study, we investigated the biological function and regulatory mechanism of soybean (Glycine max) ERFVII transcription factors during soybean cyst nematode (Heterodera glycines Ichinohe) infection. We provide evidence that soybean cyst nematode infection induces responses at the infection sites similar to those induced by hypoxia, characterized by the stabilization of ERFVII proteins and increased expression of hypoxia-responsive genes. Hypoxia pretreatment of soybeans enhances their resistance to nematode infection. We demonstrate that ERFVII members GmRAP2.12 and GmRAP2.3 act as transcriptional activators to drive the expression of GmPR10-09g, a member of the PR10 gene family highly induced by soybean cyst nematode and positively impacting nematode resistance. Transgenic hairy root analysis of nematode infection for either GmRAP2.12 or N-end rule pathway components (GmATE or GmPRT6) indicates a positive role of ERFVIIs in soybean defense responses against cyst nematode. The results of our study emphasize the important functions of GmERFVIIs in strengthening soybean's immune responses against cyst nematode by transcriptional activation of GmPR10.
Collapse
Affiliation(s)
- Miaomiao Deng
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lei Zhang
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chao Yang
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qian Zeng
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Linlin Zhong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaoli Guo
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
4
|
Cao J, Maitirouzi A, Feng Y, Zhang H, Heng Y, Zhang J, Wang Y. Heterologous expression of Halostachys caspica pathogenesis-related protein 10 increases salt and drought resistance in transgenic Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2024; 115:5. [PMID: 39671054 DOI: 10.1007/s11103-024-01536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Pathogenesis-related proteins (PR), whose expressions are induced by biotic and abiotic stress, play important roles in plant defense. Previous research identified the salt-induced HcPR10 gene in the halophyte Halostachys caspica as a regulator of plant growth and development through interactions with cytokinin. However, the mechanisms by which HcPR10 mediates resistance to abiotic stress remain poorly understood. In this study, we found that the heterologous expression of HcPR10 significantly enhanced salt and drought tolerance in Arabidopsis, likely by increasing the activity of antioxidant enzyme systems, allowing for effective scavenging of reactive oxygen species (ROS) and thus protecting plant cells from oxidative damage. Additionally, the overexpression of HcPR10 also activated the expression of stress-related genes in Arabidopsis. Furthermore, using yeast two-hybrid technology, five proteins (HcLTPG6, HcGPX6, HcUGT73B3, HcLHCB2.2, and HcMSA1) were identified as potential interacting partners for HcPR10, which could positively regulate the salt stress response mediated by HcPR10. Our findings lay the foundation for a better understanding of the molecular mechanisms of HcPR10 in response to abiotic stress and reveal additional candidate genes for improving crop salt tolerance through genetic engineering.
Collapse
Affiliation(s)
- Jing Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Ayixianmuguli Maitirouzi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yudan Feng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Hua Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Youqiang Heng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Jinbo Zhang
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Yan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
5
|
Khanfir E, Zribi I, Dhouib H, Ghorbel M, Hamdi K, Jrad O, Yacoubi I, Brini F. Genome-Wide Identification of PR10 Family Members in Durum Wheat: Expression Profile and In Vitro Analyses of TdPR10.1 in Response to Various Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3128. [PMID: 39599337 PMCID: PMC11597350 DOI: 10.3390/plants13223128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
The functional characterization of PR10 proteins has been extensively studied in many plant species. However, little is known about the role of TdPR10 in the response of durum wheat (Triticum durum Desf.) to stress. In this study, we identified members of the T. durum PR10 family, which are divided into three major subfamilies based on phylogenetic analyses. The analysis revealed that tandem duplication was the primary driver of the expansion of the T. durum PR10 gene family. Additionally, gene structure and motif analyses showed that PR10 family genes were relatively conserved during evolution. We also identified several cis-regulatory elements in the TdPR10 promoter regions related not only to abiotic and biotic stress but also to phytohormonal responses. In response to abiotic stresses and phytohormones, several TdPR10 genes were highly expressed in the leaves and roots of durum wheat. Moreover, TdPR10.1 family members improve RNase activity, increase LDH protective activity under abiotic stress conditions, and ensure resistance to fungi in vitro. Collectively, these findings provide a basis for further functional studies of TdPR10 genes, which could be leveraged to enhance stress tolerance in durum wheat.
Collapse
Affiliation(s)
- Emna Khanfir
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia; (E.K.); (I.Z.); (K.H.); (O.J.); (I.Y.)
| | - Ikram Zribi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia; (E.K.); (I.Z.); (K.H.); (O.J.); (I.Y.)
| | - Hanen Dhouib
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia;
| | - Karama Hamdi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia; (E.K.); (I.Z.); (K.H.); (O.J.); (I.Y.)
| | - Olfa Jrad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia; (E.K.); (I.Z.); (K.H.); (O.J.); (I.Y.)
| | - Inès Yacoubi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia; (E.K.); (I.Z.); (K.H.); (O.J.); (I.Y.)
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia; (E.K.); (I.Z.); (K.H.); (O.J.); (I.Y.)
| |
Collapse
|
6
|
Li X, Weng Y, Chen Y, Liu K, Liu Y, Zhang K, Shi L, He S, Liu Z. CaARP1/CaSGT1 Module Regulates Vegetative Growth and Defense Response of Pepper Plants against Phytophthora capsici. PLANTS (BASEL, SWITZERLAND) 2024; 13:2849. [PMID: 39458796 PMCID: PMC11511434 DOI: 10.3390/plants13202849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Pepper (Capsicum annuum L.) suffers severe quality and yield loss from oomycete diseases caused by Phytophthora capsici. CaSGT1 was previously determined to positively regulate the immune response of pepper plants against P. capsici, but by which mechanism remains elusive. In the present study, the potential interacting proteins of CaSGT1 were isolated from pepper using a yeast two-hybrid system, among which CaARP1 was determined to interact with CaSGT1 via bimolecular fluorescence complementation (BiFC) and microscale thermophoresis (MST) assays. CaARP1 belongs to the auxin-repressed protein family, which is well-known to function in modulating plant growth. The transcriptional and protein levels of CaARP1 were both significantly induced by infection with P. capsici. Silencing of CaARP1 promotes the vegetative growth of pepper plants and attenuates its disease resistance to P. capsici, as well as compromising the hypersensitive response-like cell death in pepper leaves induced by PcINF1, a well-characterized typical PAMP from P. capsici. Chitin-induced transient expression of CaARP1 in pepper leaves enhanced its disease resistance to P. capsici, which is amplified by CaSGT1 co-expression as a positive regulator. Taken together, our result revealed that CaARP1 plays a dual role in the pepper, negatively regulating the vegetative growth and positively regulating plant immunity against P. capsici in a manner associated with CaSGT1.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yahong Weng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yufeng Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaisheng Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanyan Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China
| | - Kan Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanping Shi
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuilin He
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqin Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Feng H, Mon W, Su X, Li Y, Zhang S, Zhang Z, Zheng K. Integrated Biological Experiments and Proteomic Analyses of Nicotiana tabacum Xylem Sap Revealed the Host Response to Tomato Spotted Wilt Orthotospovirus Infection. Int J Mol Sci 2024; 25:10907. [PMID: 39456688 PMCID: PMC11507450 DOI: 10.3390/ijms252010907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The plant vascular system is not only a transportation system for delivering nutrients but also a highway transport network for spreading viruses. Tomato spotted wilt orthotospovirus (TSWV) is among the most destructive viruses that cause serious losses in economically important crops worldwide. However, there is minimal information about the long-distance movements of TSWV in the host plant vascular system. In this this study, we confirm that TSWV virions are present in the xylem as observed by transmission electron microscopy (TEM). Further, a quantitative proteomic analysis based on label-free methods was conducted to reveal the uniqueness of protein expression in xylem sap during TSWV infection. Thus, this study identified and quantified 3305 proteins in two groups. Furthermore, TSWV infection induced three viral structural proteins, N, Gn and Gc, and 315 host proteins differentially expressed in xylem (163 up-regulated and 152 down-regulated). GO enrichment analysis showed up-regulated proteins significantly enriched in homeostasis, wounding, defense response, and DNA integration terms, while down-regulated proteins significantly enriched in cell wall biogenesis/xyloglucan metabolic process-related terms. KEGG enrichment analysis showed that the differentially expressed proteins (DEPs) were most strongly associated with plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal transduction. Cluster analysis of DEPs function showed the DEPs can be categorized into cell wall metabolism-related proteins, antioxidant proteins, PCD-related proteins, host defense proteins such as receptor-like kinases (RLKs), salicylic acid binding protein (SABP), pathogenesis related proteins (PR), DNA methylation, and proteinase inhibitor (PI). Finally, parallel reaction monitoring (PRM) validated 20 DEPs, demonstrating that the protein abundances were consistent between label-free and PRM data. Finally, 11 genes were selected for RT-qPCR validation of the DEPs and label-free-based proteomic analysis concordant results. Our results contribute to existing knowledge on the complexity of host plant xylem system response to virus infection and provide a basis for further study of the mechanism underlying TSWV long-distance movement in host plant vascular system.
Collapse
Affiliation(s)
- Hongping Feng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Waiwai Mon
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
- Deputy Director of Microbiology Laboratory, Department of Biotechnology Research, Ministry of Science and Technology, Tansoe Rd., Kyaukse 05151, Myanmar
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Yu Li
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Shaozhi Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| |
Collapse
|
8
|
Yarullina L, Kalatskaja J, Tsvetkov V, Burkhanova G, Yalouskaya N, Rybinskaya K, Zaikina E, Cherepanova E, Hileuskaya K, Nikalaichuk V. The Influence of Chitosan Derivatives in Combination with Bacillus subtilis Bacteria on the Development of Systemic Resistance in Potato Plants with Viral Infection and Drought. PLANTS (BASEL, SWITZERLAND) 2024; 13:2210. [PMID: 39204646 PMCID: PMC11360750 DOI: 10.3390/plants13162210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Viral diseases of potatoes are among the main problems causing deterioration in the quality of tubers and loss of yield. The growth and development of potato plants largely depend on soil moisture. Prevention strategies require comprehensive protection against pathogens and abiotic stresses, including modeling the beneficial microbiome of agroecosystems combining microorganisms and immunostimulants. Chitosan and its derivatives have great potential for use in agricultural engineering due to their ability to induce plant immune responses. The effect of chitosan conjugate with caffeic acid (ChCA) in combination with Bacillus subtilis 47 on the transcriptional activity of PR protein genes and changes in the proteome of potato plants during potato virus Y (PVY) infection and drought was studied. The mechanisms of increasing the resistance of potato plants to PVY and lack of moisture are associated with the activation of transcription of genes encoding PR proteins: the main protective protein (PR-1), chitinase (PR-3), thaumatin-like protein (PR-5), protease inhibitor (PR-6), peroxidase (PR-9), and ribonuclease (PR-10), as well as qualitative and quantitative changes in the plant proteome. The revealed activation of the expression of marker genes of systemic acquired resistance and induced systemic resistance under the influence of combined treatment with B. subtilis and chitosan conjugate indicate that, in potato plants, the formation of resistance to viral infection in drought conditions proceeds synergistically. By two-dimensional electrophoresis of S. tuberosum leaf proteins followed by MALDI-TOF analysis, 10 proteins were identified, the content and composition of which differed depending on the experiment variant. In infected plants treated with ChCA, the synthesis of proteinaceous RNase P 1 and oxygen-evolving enhancer protein 2 was enhanced in conditions of normal humidity, and 20 kDa chaperonin and TMV resistance protein N-like was enhanced in conditions of lack of moisture. The virus coat proteins were detected, which intensively accumulated in the leaves of plants infected with potato Y-virus. ChCA treatment reduced the content of these proteins in the leaves, and in plants treated with ChCA in combination with Bacillus subtilis, viral proteins were not detected at all, both in conditions of normal humidity and lack of moisture, which suggests the promising use of chitosan derivatives in combination with B. subtilis bacteria in the regulation of plant resistance.
Collapse
Affiliation(s)
- Liubov Yarullina
- Institute of Biochemistry and Genetics, pr. Oktyabrya, 71, 450054 Ufa, Russia; (G.B.); (E.Z.); (E.C.)
| | - Joanna Kalatskaja
- Institute of Experimental Botany Named after V.F. Kuprevich, ul. Akademicheskaya, 27, 220072 Minsk, Belarus; (J.K.); (N.Y.); (K.R.)
| | - Vyacheslav Tsvetkov
- Department of Biochemistry and Biotechnology, Ufa University of Science and Technology, ul. Zaki Validi, 32, 450076 Ufa, Russia;
| | - Guzel Burkhanova
- Institute of Biochemistry and Genetics, pr. Oktyabrya, 71, 450054 Ufa, Russia; (G.B.); (E.Z.); (E.C.)
| | - Ninel Yalouskaya
- Institute of Experimental Botany Named after V.F. Kuprevich, ul. Akademicheskaya, 27, 220072 Minsk, Belarus; (J.K.); (N.Y.); (K.R.)
| | - Katerina Rybinskaya
- Institute of Experimental Botany Named after V.F. Kuprevich, ul. Akademicheskaya, 27, 220072 Minsk, Belarus; (J.K.); (N.Y.); (K.R.)
| | - Evgenia Zaikina
- Institute of Biochemistry and Genetics, pr. Oktyabrya, 71, 450054 Ufa, Russia; (G.B.); (E.Z.); (E.C.)
| | - Ekaterina Cherepanova
- Institute of Biochemistry and Genetics, pr. Oktyabrya, 71, 450054 Ufa, Russia; (G.B.); (E.Z.); (E.C.)
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, The National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (K.H.); (V.N.)
| | - Viktoryia Nikalaichuk
- Institute of Chemistry of New Materials, The National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (K.H.); (V.N.)
| |
Collapse
|
9
|
Han Z, Schneiter R. Dual functionality of pathogenesis-related proteins: defensive role in plants versus immunosuppressive role in pathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1368467. [PMID: 39157512 PMCID: PMC11327054 DOI: 10.3389/fpls.2024.1368467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024]
Abstract
Plants respond to pathogen exposure by activating the expression of a group of defense-related proteins known as Pathogenesis-Related (PR) proteins, initially discovered in the 1970s. These PR proteins are categorized into 17 distinct families, denoted as PR1-PR17. Predominantly secreted, most of these proteins execute their defensive roles within the apoplastic space. Several PR proteins possess well-defined enzymatic functions, such as β-glucanase (PR2), chitinases (PR3, 4, 8, 11), proteinase (PR7), or RNase (PR10). Enhanced resistance against pathogens is observed upon PR protein overexpression, while their downregulation renders plants more susceptible to pathogen infections. Many of these proteins exhibit antimicrobial activity in vitro, and due to their compact size, some are classified as antimicrobial peptides. Recent research has unveiled that phytopathogens, including nematodes, fungi, and phytophthora, employ analogous proteins to bolster their virulence and suppress plant immunity. This raises a fundamental question: how can these conserved proteins act as antimicrobial agents when produced by the host plant but simultaneously suppress plant immunity when generated by the pathogen? In this hypothesis, we investigate PR proteins produced by pathogens, which we term "PR-like proteins," and explore potential mechanisms by which this class of virulence factors operate. Preliminary data suggests that these proteins may form complexes with the host's own PR proteins, thereby interfering with their defense-related functions. This analysis sheds light on the intriguing interplay between plant and pathogen-derived PR-like proteins, providing fresh insights into the intricate mechanisms governing plant-pathogen interactions.
Collapse
Affiliation(s)
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
10
|
Zou W, Sun T, Chen Y, Wang D, You C, Zang S, Lin P, Wu Q, Su Y, Que Y. Sugarcane ScOPR1 gene enhances plant disease resistance through the modulation of hormonal signaling pathways. PLANT CELL REPORTS 2024; 43:158. [PMID: 38822833 DOI: 10.1007/s00299-024-03241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
KEY MESSAGE Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways. 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analysis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone transduction signaling and plant-pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.
Collapse
Affiliation(s)
- Wenhui Zou
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Tingting Sun
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Yao Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chuihuai You
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Peixia Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Youxiong Que
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
11
|
Shen L, Yang S, Zhao E, Xia X, Yang X. StoMYB41 positively regulates the Solanum torvum response to Verticillium dahliae in an ABA dependent manner. Int J Biol Macromol 2024; 263:130072. [PMID: 38346615 DOI: 10.1016/j.ijbiomac.2024.130072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
MYB transcription factor despite their solid involvement in growth are potent regulator of plant stress response. Herein, we identified a MYB gene named as StoMYB41 in a wild eggplant species Solanum torvum. The expression level of StoMYB41 was higher in root than the tissues including stem, leaf, and seed. It induced significantly by Verticillium dahliae inoculation. StoMYB41 was localized in the nucleus and exhibited transcriptional activation activity. Silencing of StoMYB41 enhanced susceptibility of Solanum torvum against Verticillium dahliae, accompanied by higher disease index. The significant down-regulation of resistance marker gene StoABR1 comparing to the control plants was recorded in the silenced plants. Moreover, transient expression of StoMYB41 could trigger intense hypersensitive reaction mimic cell death, darker DAB and trypan blue staining, higher ion leakage, and induced the expression levels of StoABR1 and NbDEF1 in the leaves of Solanum torvum and Nicotiana benthamiana. Taken together, our data indicate that StoMYB41 acts as a positive regulator in Solanum torvum against Verticillium wilt.
Collapse
Affiliation(s)
- Lei Shen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Shixin Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Enpeng Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xin Xia
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xu Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
12
|
Longsaward R, Viboonjun U. Genome-wide identification of rubber tree pathogenesis-related 10 (PR-10) proteins with biological relevance to plant defense. Sci Rep 2024; 14:1072. [PMID: 38212354 PMCID: PMC10784482 DOI: 10.1038/s41598-024-51312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
Pathogenesis-related 10 (PR-10) is a group of small intracellular proteins that is one of 17 subclasses of pathogenesis-related proteins in plants. The PR-10 proteins have been studied extensively and are well-recognized for their contribution to host defense against phytopathogens in several plant species. Interestingly, the accumulation of PR-10 proteins in the rubber tree, one of the most economically important crops worldwide, after being infected by pathogenic organisms has only recently been reported. In this study, the homologous proteins of the PR-10 family were systemically identified from the recently available rubber tree genomes in the NCBI database. The sequence compositions, structural characteristics, protein physical properties, and phylogenetic relationships of identified PR-10 proteins in rubber trees support their classification into subgroups, which mainly consist of Pru ar 1-like major allergens and major latex-like (MLP) proteins. The rubber tree PR10-encoding genes were majorly clustered on chromosome 15. The potential roles of rubber tree PR-10 proteins are discussed based on previous reports. The homologous proteins in the PR-10 family were identified in the recent genomes of rubber trees and were shown to be crucial in host responses to biotic challenges. The genome-wide identification conducted here will accelerate the future study of rubber tree PR-10 proteins. A better understanding of these defense-related proteins may contribute to alternative ways of developing rubber tree clones with desirable traits in the future.
Collapse
Affiliation(s)
- Rawit Longsaward
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Unchera Viboonjun
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
13
|
Li R, Yao J, Ming Y, Guo J, Deng J, Liu D, Li Z, Cheng Y. Integrated proteomic analysis reveals interactions between phosphorylation and ubiquitination in rose response to Botrytis infection. HORTICULTURE RESEARCH 2024; 11:uhad238. [PMID: 38222823 PMCID: PMC10782497 DOI: 10.1093/hr/uhad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/06/2023] [Indexed: 01/16/2024]
Abstract
As two of the most abundant post-translational modifications, phosphorylation and ubiquitination play a significant role in modulating plant-pathogen interactions and increasing evidence indicates their crosstalk in plant immunity. Rose (Rosa sp.) is one of the most important ornamental plants and can be seriously infected by Botrytis cinerea. Here, integrated proteomics analysis was performed to detect global proteome, phosphorylation, and ubiquitination changes in rose upon B. cinerea infection and investigate the possible phosphorylation and ubiquitination crosstalk. A total of 6165 proteins, 11 774 phosphorylation and 10 582 ubiquitination sites, and 77 phosphorylation and 13 ubiquitination motifs were identified. Botrytis cinerea infection resulted in 169 up-regulated and 122 down-regulated proteins, 291 up-regulated and 404 down-regulated phosphorylation sites, and 250 up-regulated and 634 down-regulated ubiquitination sites. There were 12 up-regulated PR10 proteins and half of them also showed reduced ubiquitination. A lot of kinases probably involved in plant pattern-triggered immunity signaling were up-regulated phosphoproteins. Noticeably, numerous kinases and ubiquitination-related proteins also showed a significant change in ubiquitination and phosphorylation, respectively. A cross-comparison of phosphoproteome and ubiquitylome indicated that both of two post-translational modifications of 104 proteins were dynamically regulated, and many putative pattern-triggered immunity signaling components in the plant plasma membrane were co-regulated. Moreover, five selected proteins, including four PR10 proteins and a plasma membrane aquaporin, were proven to be involved in rose resistance to B. cinerea. Our study provides insights into the molecular mechanisms underlying rose resistance to B. cinerea and also increases the database of phosphorylation and ubiquitination sites in plants.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Juanni Yao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yue Ming
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jia Guo
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jingjing Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
14
|
Ding L, Wu Z, Xiang J, Cao X, Xu S, Zhang Y, Zhang D, Teng N. A LlWRKY33-LlHSFA4-LlCAT2 module confers resistance to Botrytis cinerea in lily. HORTICULTURE RESEARCH 2024; 11:uhad254. [PMID: 38274648 PMCID: PMC10809907 DOI: 10.1093/hr/uhad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/14/2023] [Indexed: 01/27/2024]
Abstract
Gray mold caused by Botrytis cinerea is one of the major threats in lily production. However, limited information is available about the underlying defense mechanism against B. cinerea in lily. Here, we characterized a nuclear-localized class A heat stress transcription factor (HSF)-LlHSFA4 from lily (Lilium longiflorum), which positively regulated the response to B. cinerea infection. LlHSFA4 transcript and its promoter activity were increased by B. cinerea infection in lily, indicating its involvement in the response to B. cinerea. Virus-induced gene silencing (VIGS) of LlHSFA4 impaired the resistance of lily to B. cinerea. Consistent with its role in lily, overexpression of LlHSFA4 in Arabidopsis (Arabidopsis thaliana) enhanced the resistance of transgenic Arabidopsis to B. cinerea infection. Further analysis showed that LlWRKY33 directly activated LlHSFA4 expression. We also found that both LlHSFA4 and LlWRKY33 positively regulated plant response to B. cinerea through reducing cell death and H2O2 accumulation and activating the expression of the reactive oxygen species (ROS) scavenging enzyme gene LlCAT2 (Catalase 2) by binding its prompter, which might contribute to reducing H2O2 accumulation in the infected area. Taken together, our data suggested that there may be a LlWRKY33-LlHSFA4-LlCAT2 regulatory module which confers B. cinerea resistance via reducing cell death and the ROS accumulation.
Collapse
Affiliation(s)
- Liping Ding
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| | - Ze Wu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| | - Jun Xiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| | - Xing Cao
- College of Architecture, Yantai University, Yantai, 264005, China
| | - Sujuan Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| | - Yinyi Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| | - Dehua Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| | - Nianjun Teng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| |
Collapse
|
15
|
Barghahn S, Saridis G, Mantz M, Meyer U, Mellüh JC, Misas Villamil JC, Huesgen PF, Doehlemann G. Combination of transcriptomic, proteomic, and degradomic profiling reveals common and distinct patterns of pathogen-induced cell death in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:574-596. [PMID: 37339931 DOI: 10.1111/tpj.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
Regulated cell death (RCD) is crucial for plant development, as well as in decision-making in plant-microbe interactions. Previous studies revealed components of the molecular network controlling RCD, including different proteases. However, the identity, the proteolytic network as well as molecular components involved in the initiation and execution of distinct plant RCD processes, still remain largely elusive. In this study, we analyzed the transcriptome, proteome, and N-terminome of Zea mays leaves treated with the Xanthomonas effector avrRxo1, the mycotoxin Fumonisin B1 (FB1), or the phytohormone salicylic acid (SA) to dissect plant cellular processes related to cell death and plant immunity. We found highly distinct and time-dependent biological processes being activated on transcriptional and proteome levels in response to avrRxo1, FB1, and SA. Correlation analysis of the transcriptome and proteome identified general, as well as trigger-specific markers for cell death in Zea mays. We found that proteases, particularly papain-like cysteine proteases, are specifically regulated during RCD. Collectively, this study characterizes distinct RCD responses in Z. mays and provides a framework for the mechanistic exploration of components involved in the initiation and execution of cell death.
Collapse
Affiliation(s)
- Sina Barghahn
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Georgios Saridis
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Ute Meyer
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | | | - Johana C Misas Villamil
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Guo WL, Yang HL, Zhao JP, Bian SJ, Guo YY, Chen XJ, Li XZ. A pathogenesis-related protein 1 of Cucurbita moschata responds to powdery mildew infection. Front Genet 2023; 14:1168138. [PMID: 37593115 PMCID: PMC10427922 DOI: 10.3389/fgene.2023.1168138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Pumpkin (Cucurbita moschata Duch.) productivity is severely hindered by powdery mildew (PM) worldwide. The causative agent of pumpkin PM is Podosphaera xanthii, a biotrophic fungus. Pathogenesis-related protein 1 (PR1) homolog was previously identified from transcriptomic analysis of a PM-resistant pumpkin. Here, we investigated the effects of CmPR1 gene from pumpkin for resistance to PM. Subcellular localization assay revealed that CmPR1 is a cytoplasmic protein in plants. The expression of CmPR1 gene was strongly induced by P. xanthii inoculation at 48 h and exogenous ethylene (ET), jasmonic acid (JA) and NaCl treatments, but repressed by H2O2 and salicylic acid (SA) treatments. Visual disease symptoms, histological observations of fungal growth and host cell death, and accumulation of H2O2 in transgenic tobacco plants indicated that CmPR1 overexpression significantly enhanced the resistance to Golovinomyces cichoracearum compared to wild type plants during PM pathogens infection, possibly due to inducing cell death and H2O2 accumulation near infected sites. The expression of PR1a was significantly induced in transgenic tobacco plants in response to G. cichoracearum, suggesting that CmPR1 overexpression positively modulates the resistance to PM via the SA signaling pathway. These findings indicate that CmPR1 is a defense response gene in C. moschata and can be exploited to develop disease-resistant crop varieties.
Collapse
Affiliation(s)
- Wei-Li Guo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - He-Lian Yang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Jin-Peng Zhao
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Shi-Jie Bian
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan-Yan Guo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Xue-Jin Chen
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Xin-Zheng Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
17
|
Lopes NDS, Santos AS, de Novais DPS, Pirovani CP, Micheli F. Pathogenesis-related protein 10 in resistance to biotic stress: progress in elucidating functions, regulation and modes of action. FRONTIERS IN PLANT SCIENCE 2023; 14:1193873. [PMID: 37469770 PMCID: PMC10352611 DOI: 10.3389/fpls.2023.1193873] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/08/2023] [Indexed: 07/21/2023]
Abstract
Introduction The Family of pathogenesis-related proteins 10 (PR-10) is widely distributed in the plant kingdom. PR-10 are multifunctional proteins, constitutively expressed in all plant tissues, playing a role in growth and development or being induced in stress situations. Several studies have investigated the preponderant role of PR-10 in plant defense against biotic stresses; however, little is known about the mechanisms of action of these proteins. This is the first systematic review conducted to gather information on the subject and to reveal the possible mechanisms of action that PR-10 perform. Methods Therefore, three databases were used for the article search: PubMed, Web of Science, and Scopus. To avoid bias, a protocol with inclusion and exclusion criteria was prepared. In total, 216 articles related to the proposed objective of this study were selected. Results The participation of PR-10 was revealed in the plant's defense against several stressor agents such as viruses, bacteria, fungi, oomycetes, nematodes and insects, and studies involving fungi and bacteria were predominant in the selected articles. Studies with combined techniques showed a compilation of relevant information about PR-10 in biotic stress that collaborate with the understanding of the mechanisms of action of these molecules. The up-regulation of PR-10 was predominant under different conditions of biotic stress, in addition to being more expressive in resistant varieties both at the transcriptional and translational level. Discussion Biological models that have been proposed reveal an intrinsic network of molecular interactions involving the modes of action of PR-10. These include hormonal pathways, transcription factors, physical interactions with effector proteins or pattern recognition receptors and other molecules involved with the plant's defense system. Conclusion The molecular networks involving PR-10 reveal how the plant's defense response is mediated, either to trigger susceptibility or, based on data systematized in this review, more frequently, to have plant resistance to the disease.
Collapse
Affiliation(s)
- Natasha dos Santos Lopes
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Ariana Silva Santos
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Diogo Pereira Silva de Novais
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Carlos Priminho Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Fabienne Micheli
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes Meditérranéennes et Tropicales (UMR AGAP Institut), Montpellier, France
| |
Collapse
|
18
|
Dos Santos C, Franco OL. Pathogenesis-Related Proteins (PRs) with Enzyme Activity Activating Plant Defense Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112226. [PMID: 37299204 DOI: 10.3390/plants12112226] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
Throughout evolution, plants have developed a highly complex defense system against different threats, including phytopathogens. Plant defense depends on constitutive and induced factors combined as defense mechanisms. These mechanisms involve a complex signaling network linking structural and biochemical defense. Antimicrobial and pathogenesis-related (PR) proteins are examples of this mechanism, which can accumulate extra- and intracellular space after infection. However, despite their name, some PR proteins are present at low levels even in healthy plant tissues. When they face a pathogen, these PRs can increase in abundance, acting as the first line of plant defense. Thus, PRs play a key role in early defense events, which can reduce the damage and mortality caused by pathogens. In this context, the present review will discuss defense response proteins, which have been identified as PRs, with enzymatic action, including constitutive enzymes, β-1,3 glucanase, chitinase, peroxidase and ribonucleases. From the technological perspective, we discuss the advances of the last decade applied to the study of these enzymes, which are important in the early events of higher plant defense against phytopathogens.
Collapse
Affiliation(s)
- Cristiane Dos Santos
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-700, Brazil
| |
Collapse
|
19
|
Zhang Y, Guo S, Zhang F, Gan P, Li M, Wang C, Li H, Gao G, Wang X, Kang Z, Zhang X. CaREM1.4 interacts with CaRIN4 to regulate Ralstonia solanacearum tolerance by triggering cell death in pepper. HORTICULTURE RESEARCH 2023; 10:uhad053. [PMID: 37213684 PMCID: PMC10199716 DOI: 10.1093/hr/uhad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/17/2023] [Indexed: 05/23/2023]
Abstract
Remorins, plant-specific proteins, have a significant role in conferring on plants the ability to adapt to adverse environments. However, the precise function of remorins in resistance to biological stress remains largely unknown. Eighteen CaREM genes were identified in pepper genome sequences based on the C-terminal conserved domain that is specific to remorin proteins in this research. Phylogenetic relations, chromosomal localization, motif, gene structures, and promoter regions of these remorins were analyzed and a remorin gene, CaREM1.4, was cloned for further study. The transcription of CaREM1.4 in pepper was induced by infection with Ralstonia solanacearum. Knocking down CaREM1.4 in pepper using virus-induced gene silencing (VIGS) technologies reduced the resistance of pepper plants to R. solanacearum and downregulated the expression of immunity-associated genes. Conversely, transient overexpression of CaREM1.4 in pepper and Nicotiana benthamiana plants triggered hypersensitive response-mediated cell death and upregulated expression of defense-related genes. In addition, CaRIN4-12, which interacted with CaREM1.4 at the plasma membrane and cell nucleus, was knocked down with VIGS, decreasing the susceptibility of Capsicum annuum to R. solanacearum. Furthermore, CaREM1.4 reduced ROS production by interacting with CaRIN4-12 upon co-injection in pepper. Taken together, our findings suggest that CaREM1.4 may function as a positive regulator of the hypersensitive response, and it interacts with CaRIN4-12, which negatively regulates plant immune responses of pepper to R. solanacearum. Our study provides new evidence for comprehending the molecular regulatory network of plant cell death.
Collapse
Affiliation(s)
- Yanqin Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuangyuan Guo
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Feng Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Pengfei Gan
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Min Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Cong Wang
- College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Huankun Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Gang Gao
- College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Xiaojie Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | | | | |
Collapse
|
20
|
Zhang H, Pei Y, He Q, Zhu W, Jahangir M, Haq SU, Khan A, Chen R. Salicylic acid-related ribosomal protein CaSLP improves drought and Pst.DC3000 tolerance in pepper. MOLECULAR HORTICULTURE 2023; 3:6. [PMID: 37789468 PMCID: PMC10514951 DOI: 10.1186/s43897-023-00054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/06/2023] [Indexed: 10/05/2023]
Abstract
The ribosomal protein contains complex structures that belong to polypeptide glycoprotein family, which are involved in plant growth and responses to various stresses. In this study, we found that capsicum annuum 40S ribosomal protein SA-like (CaSLP) was extensively accumulated in the cell nucleus and cell membrane, and the expression level of CaSLP was up-regulated by Salicylic acid (SA) and drought treatment. Significantly fewer peppers plants could withstand drought stress after CaSLP gene knockout. The transient expression of CaSLP leads to drought tolerance in pepper, and Arabidopsis's ability to withstand drought stress was greatly improved by overexpressing the CaSLP gene. Exogenous application of SA during spraying season enhanced drought tolerance. CaSLP-knockdown pepper plants demonstrated a decreased resistance of Pseudomonas syringae PV.tomato (Pst) DC3000 (Pst.DC3000), whereas ectopic expression of CaSLP increased the Pst.DC3000 stress resistance in Arabidopsis. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) results showed that CaNAC035 physically interacts with CaSLP in the cell nucleus. CaNAC035 was identified as an upstream partner of the CaPR1 promoter and activated transcription. Collectively the findings demonstrated that CaSLP plays an essential role in the regulation of drought and Pst.DC3000 stress resistance.
Collapse
Affiliation(s)
- Huafeng Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yingping Pei
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiang He
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wang Zhu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Maira Jahangir
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Saeed Ul Haq
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar, 25130, Pakistan
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Horticulture, The University of Haripur, Haripur, 22620, Pakistan
| | - Rugang Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Shaanxi Engineering Research Center for Vegetables, Yangling, 712100, China.
| |
Collapse
|
21
|
Wang Y, Wang X, Fang J, Yin W, Yan X, Tu M, Liu H, Zhang Z, Li Z, Gao M, Lu H, Wang Y, Wang X. VqWRKY56 interacts with VqbZIPC22 in grapevine to promote proanthocyanidin biosynthesis and increase resistance to powdery mildew. THE NEW PHYTOLOGIST 2023; 237:1856-1875. [PMID: 36527243 DOI: 10.1111/nph.18688] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Powdery mildew (PM) is a severe fungal disease of cultivated grapevine world-wide. Proanthocyanidins (PAs) play an important role in resistance to fungal pathogens; however, little is known about PA-mediated PM resistance in grapevine. We identified a WRKY transcription factor, VqWRKY56, from Vitis quinquangularis, the expression of which was significantly induced by PM. Overexpression (OE) of VqWRKY56 in Vitis vinifera increased PA content and reduced susceptibility to PM. Furthermore, the transgenic plants showed more cell death and increased accumulation of salicylic acid and reactive oxygen species. Transient silencing of VqWRKY56 in V. quinquangularis and V. vinifera reduced PA accumulation and increased the susceptibility to PM. VqWRKY56 interacted with VqbZIPC22 in vitro and in planta. The protein VqWRKY56 can bind to VvCHS3, VvLAR1, and VvANR promoters, and VqbZIPC22 can bind to VvANR promoter. Co-expression of VqWRKY56 and VqbZIPC22 significantly increased the transcript level of VvCHS3, VvLAR1, and VvANR genes. Finally, transient OE of VqbZIPC22 in V. vinifera promoted PA accumulation and improved resistance to PM, while transient silencing in V. quinquangularis had the opposite effect. Our study provides new insights into the mechanism of PA regulation by VqWRKY56 in grapevine and provides a basis for further metabolic engineering of PA biosynthesis to improve PM resistance.
Collapse
Affiliation(s)
- Ya Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianhang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Enology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinghao Fang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wuchen Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxiao Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingxing Tu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhengda Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
22
|
Melnikova DN, Finkina EI, Bogdanov IV, Tagaev AA, Ovchinnikova TV. Features and Possible Applications of Plant Lipid-Binding and Transfer Proteins. MEMBRANES 2022; 13:2. [PMID: 36676809 PMCID: PMC9866449 DOI: 10.3390/membranes13010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In plants, lipid trafficking within and inside the cell is carried out by lipid-binding and transfer proteins. Ligands for these proteins are building and signaling lipid molecules, secondary metabolites with different biological activities due to which they perform diverse functions in plants. Many different classes of such lipid-binding and transfer proteins have been found, but the most common and represented in plants are lipid transfer proteins (LTPs), pathogenesis-related class 10 (PR-10) proteins, acyl-CoA-binding proteins (ACBPs), and puroindolines (PINs). A low degree of amino acid sequence homology but similar spatial structures containing an internal hydrophobic cavity are common features of these classes of proteins. In this review, we summarize the latest known data on the features of these protein classes with particular focus on their ability to bind and transfer lipid ligands. We analyzed the structural features of these proteins, the diversity of their possible ligands, the key amino acids participating in ligand binding, the currently known mechanisms of ligand binding and transferring, as well as prospects for possible application.
Collapse
Affiliation(s)
- Daria N. Melnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Ekaterina I. Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Ivan V. Bogdanov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Andrey A. Tagaev
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| |
Collapse
|
23
|
Wang D, Qin L, Wu M, Zou W, Zang S, Zhao Z, Lin P, Guo J, Wang H, Que Y. Identification and characterization of WAK gene family in Saccharum and the negative roles of ScWAK1 under the pathogen stress. Int J Biol Macromol 2022; 224:1-19. [PMID: 36481328 DOI: 10.1016/j.ijbiomac.2022.11.300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Wall-associated kinase (WAK) is widely involved in signal transduction, reproductive growth, responses to pathogen infection and metal ion stress in plants. In this study, 19, 12, and 37 SsWAK genes were identified in Saccharum spontaneum, Saccharum hybrid and Sorghum bicolor, respectively. Phylogenetic tree showed that they could be divided into three groups. These WAK genes contained multiple cis-acting elements related to stress, growth and hormone response. RNA-seq analysis demonstrated that SsWAK genes were constitutively expressed in different sugarcane tissues and involved in response to smut pathogen (Sporisorium scitamineum) stress. Additionally, ScWAK1 (GenBank Accession No. OP479864), was then isolated from sugarcane cultivar ROC22. It was highly expressed in leaves and roots and its expression could be induced under SA and MeJA stress. Besides, ScWAK1 was significantly downregulated in both smut-resistant and susceptible sugarcane cultivars in response to S. scitamineum infection. ScWAK1 was a membrane protein without self-activating activity. Furthermore, transient expression of ScWAK1 in Nicotiana benthamiana enhanced the susceptibility of tobacco to the inoculation of Ralstonia solanacearum and Fusarium solani var. coeruleum, suggesting its negative role in disease resistance. The present study reveals the origin, distribution and evolution of WAK gene family and provides potential gene resources for sugarcane molecular breeding.
Collapse
Affiliation(s)
- Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Liqian Qin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Mingxing Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhennan Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Peixia Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hengbo Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
24
|
Genome-Wide Identification of Auxin-Responsive GH3 Gene Family in Saccharum and the Expression of ScGH3-1 in Stress Response. Int J Mol Sci 2022; 23:ijms232112750. [PMID: 36361540 PMCID: PMC9654502 DOI: 10.3390/ijms232112750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Gretchen Hagen3 (GH3), one of the three major auxin-responsive gene families, is involved in hormone homeostasis in vivo by amino acid splicing with the free forms of salicylic acid (SA), jasmonic acid (JA) or indole-3-acetic acid (IAA). Until now, the functions of sugarcane GH3 (SsGH3) family genes in response to biotic stresses have been largely unknown. In this study, we performed a systematic identification of the SsGH3 gene family at the genome level and identified 41 members on 19 chromosomes in the wild sugarcane species, Saccharum spontaneum. Many of these genes were segmentally duplicated and polyploidization was the main contributor to the increased number of SsGH3 members. SsGH3 proteins can be divided into three major categories (SsGH3-I, SsGH3-II, and SsGH3-III) and most SsGH3 genes have relatively conserved exon-intron arrangements and motif compositions. Diverse cis-elements in the promoters of SsGH3 genes were predicted to be essential players in regulating SsGH3 expression patterns. Multiple transcriptome datasets demonstrated that many SsGH3 genes were responsive to biotic and abiotic stresses and possibly had important functions in the stress response. RNA sequencing and RT-qPCR analysis revealed that SsGH3 genes were differentially expressed in sugarcane tissues and under Sporisorium scitamineum stress. In addition, the SsGH3 homolog ScGH3-1 gene (GenBank accession number: OP429459) was cloned from the sugarcane cultivar (Saccharum hybrid) ROC22 and verified to encode a nuclear- and membrane-localization protein. ScGH3-1 was constitutively expressed in all tissues of sugarcane and the highest amount was observed in the stem pith. Interestingly, it was down-regulated after smut pathogen infection but up-regulated after MeJA and SA treatments. Furthermore, transiently overexpressed Nicotiana benthamiana, transduced with the ScGH3-1 gene, showed negative regulation in response to the infection of Ralstonia solanacearum and Fusarium solani var. coeruleum. Finally, a potential model for ScGH3-1-mediated regulation of resistance to pathogen infection in transgenic N. benthamiana plants was proposed. This study lays the foundation for a comprehensive understanding of the sequence characteristics, structural properties, evolutionary relationships, and expression of the GH3 gene family and thus provides a potential genetic resource for sugarcane disease-resistance breeding.
Collapse
|
25
|
Arraes FBM, Vasquez DDN, Tahir M, Pinheiro DH, Faheem M, Freitas-Alves NS, Moreira-Pinto CE, Moreira VJV, Paes-de-Melo B, Lisei-de-Sa ME, Morgante CV, Mota APZ, Lourenço-Tessutti IT, Togawa RC, Grynberg P, Fragoso RR, de Almeida-Engler J, Larsen MR, Grossi-de-Sa MF. Integrated Omic Approaches Reveal Molecular Mechanisms of Tolerance during Soybean and Meloidogyne incognita Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202744. [PMID: 36297768 PMCID: PMC9612212 DOI: 10.3390/plants11202744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/08/2023]
Abstract
The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI 595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematode infestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT-qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematode M. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.
Collapse
Affiliation(s)
- Fabricio B M Arraes
- Postgraduate Program in Cellular and Molecular Biology (PPGBCM), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Daniel D N Vasquez
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Muhammed Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Daniele H Pinheiro
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Muhammed Faheem
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Department of Biological Sciences, National University of Medical Sciences, The Mall, Rawalpindi 46000, Punjab, Pakistan
| | - Nayara S Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Bioprocess Engineering and Biotechnology (PPGEBB), Federal University of Paraná (UFPR), Curitiba 80060-000, PR, Brazil
| | - Clídia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Valdeir J V Moreira
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Molecular Biology (PPGBiomol), University of Brasilia (UnB), Brasília 70910-900, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Maria E Lisei-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Minas Gerais Agricultural Research Company (EPAMIG), Uberaba 31170-495, MG, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Semiarid, Petrolina 56302-970, PE, Brazil
| | - Ana P Z Mota
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Roberto C Togawa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Priscila Grynberg
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Rodrigo R Fragoso
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil
| | - Janice de Almeida-Engler
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| |
Collapse
|
26
|
Soltabayeva A, Dauletova N, Serik S, Sandybek M, Omondi JO, Kurmanbayeva A, Srivastava S. Receptor-like Kinases (LRR-RLKs) in Response of Plants to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192660. [PMID: 36235526 PMCID: PMC9572924 DOI: 10.3390/plants11192660] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 05/14/2023]
Abstract
Plants live under different biotic and abiotic stress conditions, and, to cope with the adversity and severity, plants have well-developed resistance mechanisms. The mechanism starts with perception of the stimuli followed by molecular, biochemical, and physiological adaptive measures. The family of LRR-RLKs (leucine-rich repeat receptor-like kinases) is one such group that perceives biotic and abiotic stimuli and also plays important roles in different biological processes of development. This has been mostly studied in the model plant, Arabidopsis thaliana, and to some extent in other plants, such as Solanum lycopersicum, Nicotiana benthamiana, Brassica napus, Oryza sativa, Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Medicago truncatula, Gossypium barbadense, Phaseolus vulgaris, Solanum tuberosum, and Malus robusta. Most LRR-RLKs tend to form different combinations of LRR-RLKs-complexes (dimer, trimer, and tetramers), and some of them were observed as important receptors in immune responses, cell death, and plant development processes. However, less is known about the function(s) of LRR-RLKs in response to abiotic and biotic stresses. Here, we give recent updates about LRR-RLK receptors, specifically focusing on their involvement in biotic and abiotic stresses in the model plant, A. thaliana. Furthermore, the recent studies on LRR-RLKs that are homologous in other plants is also reviewed in relation to their role in triggering stress response processes against biotic and abiotic stimuli and/or in exploring their additional function(s). Furthermore, we present the interactions and combinations among LRR-RLK receptors that have been confirmed through experiments. Moreover, based on GENEINVESTIGATOR microarray database analysis, we predict some potential LRR-RLK genes involved in certain biotic and abiotic stresses whose function and mechanism may be explored.
Collapse
Affiliation(s)
- Aigerim Soltabayeva
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- Correspondence:
| | - Nurbanu Dauletova
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Symbat Serik
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Margulan Sandybek
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - John Okoth Omondi
- International Institute of Tropical Agriculture, Lilongwe P.O. Box 30258, Malawi
| | - Assylay Kurmanbayeva
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Sudhakar Srivastava
- NCS-TCP, National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
27
|
Chen Y, Wang J, Nguyen NK, Hwang BK, Jwa NS. The NIN-Like Protein OsNLP2 Negatively Regulates Ferroptotic Cell Death and Immune Responses to Magnaporthe oryzae in Rice. Antioxidants (Basel) 2022; 11:antiox11091795. [PMID: 36139868 PMCID: PMC9495739 DOI: 10.3390/antiox11091795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Nodule inception (NIN)-like proteins (NLPs) have a central role in nitrate signaling to mediate plant growth and development. Here, we report that OsNLP2 negatively regulates ferroptotic cell death and immune responses in rice during Magnaporthe oryzae infection. OsNLP2 was localized to the plant cell nucleus, suggesting that it acts as a transcription factor. OsNLP2 expression was involved in susceptible disease development. ΔOsnlp2 knockout mutants exhibited reactive oxygen species (ROS) and iron-dependent ferroptotic hypersensitive response (HR) cell death in response to M. oryzae. Treatments with the iron chelator deferoxamine, lipid-ROS scavenger ferrostatin-1, actin polymerization inhibitor cytochalasin A, and NADPH oxidase inhibitor diphenyleneiodonium suppressed the accumulation of ROS and ferric ions, lipid peroxidation, and HR cell death, which ultimately led to successful M. oryzae colonization in ΔOsnlp2 mutants. The loss-of-function of OsNLP2 triggered the expression of defense-related genes including OsPBZ1, OsPIP-3A, OsWRKY104, and OsRbohB in ΔOsnlp2 mutants. ΔOsnlp2 mutants exhibited broad-spectrum, nonspecific resistance to diverse M. oryzae strains. These combined results suggest that OsNLP2 acts as a negative regulator of ferroptotic HR cell death and defense responses in rice, and may be a valuable gene source for molecular breeding of rice with broad-spectrum resistance to blast disease.
Collapse
Affiliation(s)
- Yafei Chen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Wang
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Nam Khoa Nguyen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 06213, Korea
| | - Nam Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
- Correspondence:
| |
Collapse
|
28
|
Shen L, Zhao E, Liu R, Yang X. Transcriptome Analysis of Eggplant under Salt Stress: AP2/ERF Transcription Factor SmERF1 Acts as a Positive Regulator of Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:2205. [PMID: 36079586 PMCID: PMC9460861 DOI: 10.3390/plants11172205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Salt stress, a type of abiotic stress, impedes plant growth and development and strongly reduces crop yield. The molecular mechanisms underlying plant responses to salt stress remain largely unclear. To characterize the enriched pathways and genes that were affected during salt treatment, we performed mRNA sequencing (mRNA-seq) in eggplant roots and identified 8509 differentially expressed genes (DEGs) between the mock and 24 h under salt stress. Among these DEGs, we found that the AP2/ERF transcription factor family member SmERF1 belongs to the plant-pathogen interaction pathway, which was significantly upregulated by salt stress. We found that SmERF1 localizes in the nuclei with transcriptional activity. The results of the virus-induced gene silencing assay showed that SmERF1 silencing markedly enhanced the susceptibility of plants to salt stress, significantly downregulated the transcript expression levels of salt stress defense-related marker genes (9-cis-epoxycarotenoid dioxygenase [SmNCED1, SmNCED2], Dehydrin [SmDHN1], and Dehydrin (SmDHNX1), and reduced the activity of superoxide dismutase and catalase. Silencing SmERF1 promoted the generation of H2O2 and proline. In addition, the transient overexpression of SmERF1 triggered intense cell death in eggplant leaves, as assessed by the darker diaminobenzidine and trypan blue staining. These findings suggest that SmERF1 acts as a positive regulator of eggplant response to salt stress. Hence, our results suggest that AP2/ERF transcription factors play a vital role in the response to salt stress.
Collapse
Affiliation(s)
- Lei Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Enpeng Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Ruie Liu
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201600, China
| | - Xu Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
29
|
Transcriptomic Analysis of Radish (Raphanus sativus L.) Roots with CLE41 Overexpression. PLANTS 2022; 11:plants11162163. [PMID: 36015466 PMCID: PMC9416626 DOI: 10.3390/plants11162163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
The CLE41 peptide, like all other TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF) family CLE peptides, promotes cell division in (pro-)cambium vascular meristem and prevents xylem differentiation. In this work, we analyzed the differential gene expression in the radish primary-growing P35S:RsCLE41-1 roots using the RNA-seq. Our analysis of transcriptomic data revealed a total of 62 differentially expressed genes between transgenic radish roots overexpressing the RsCLE41-1 gene and the glucuronidase (GUS) gene. For genes associated with late embryogenesis, response to abscisic acid and auxin-dependent xylem cell fate determination, an increase in the expression in P35S:RsCLE41-1 roots was found. Among those downregulated, stress-associated genes prevailed. Moreover, several genes involved in xylem specification were also downregulated in the roots with RsCLE41-1 overexpression. Unexpectedly, none of the well-known targets of TDIFs, such as WOX4 and WOX14, were identified as DEGs in our experiment. Herein, we discuss a suggestion that the activation of pathways associated with desiccation resistance, which are more characteristic of late embryogenesis, in roots with RsCLE41-overexpression may be a consequence of water deficiency onset due to impaired vascular specification.
Collapse
|
30
|
Zang S, Qin L, Zhao Z, Zhang J, Zou W, Wang D, Feng A, Yang S, Que Y, Su Y. Characterization and Functional Implications of the Nonexpressor of Pathogenesis-Related Genes 1 (NPR1) in Saccharum. Int J Mol Sci 2022; 23:ijms23147984. [PMID: 35887330 PMCID: PMC9317693 DOI: 10.3390/ijms23147984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Sugarcane (Saccharum spp.) is an important sugar and energy crop worldwide. As a core regulator of the salicylic acid (SA) signaling pathway, nonexpressor of pathogenesis-related genes 1 (NPR1) plays a significant role in the response of the plant to biotic and abiotic stresses. However, there is currently no report on the NPR1-like gene family in sugarcane. In this study, a total of 18 NPR1-like genes were identified in Saccharum spontaneum and classified into three clades (clade I, II, and III). The cis-elements predicted in the promotors revealed that the sugarcane NPR1-like genes may be involved in various phytohormones and stress responses. RNA sequencing and quantitative real-time PCR analysis demonstrated that NPR1-like genes were differentially expressed in sugarcane tissues and under Sporisorium scitamineum stress. In addition, a novel ShNPR1 gene from Saccharum spp. hybrid ROC22 was isolated by homologous cloning and validated to be a nuclear-localized clade II member. The ShNPR1 gene was constitutively expressed in all the sugarcane tissues, with the highest expression level in the leaf and the lowest in the bud. The expression level of ShNPR1 was decreased by the plant hormones salicylic acid (SA) and abscisic acid (ABA). Additionally, the transient expression showed that the ShNPR1 gene plays a positive role in Nicotiana benthamiana plants’ defense response to Ralstonia solanacearum and Fusarium solani var. coeruleum. This study provided comprehensive information for the NPR1-like family in sugarcane, which should be helpful for functional characterization of sugarcane NPR1-like genes in the future.
Collapse
Affiliation(s)
- Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (L.Q.); (Z.Z.); (J.Z.); (W.Z.); (D.W.); (A.F.); (S.Y.)
| | - Liqian Qin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (L.Q.); (Z.Z.); (J.Z.); (W.Z.); (D.W.); (A.F.); (S.Y.)
| | - Zhennan Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (L.Q.); (Z.Z.); (J.Z.); (W.Z.); (D.W.); (A.F.); (S.Y.)
| | - Jing Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (L.Q.); (Z.Z.); (J.Z.); (W.Z.); (D.W.); (A.F.); (S.Y.)
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (L.Q.); (Z.Z.); (J.Z.); (W.Z.); (D.W.); (A.F.); (S.Y.)
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (L.Q.); (Z.Z.); (J.Z.); (W.Z.); (D.W.); (A.F.); (S.Y.)
| | - Aoyin Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (L.Q.); (Z.Z.); (J.Z.); (W.Z.); (D.W.); (A.F.); (S.Y.)
| | - Shaolin Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (L.Q.); (Z.Z.); (J.Z.); (W.Z.); (D.W.); (A.F.); (S.Y.)
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661600, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (L.Q.); (Z.Z.); (J.Z.); (W.Z.); (D.W.); (A.F.); (S.Y.)
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Y.Q.); (Y.S.); Tel.: +86-591-8385-2547 (Y.Q. & Y.S.)
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (L.Q.); (Z.Z.); (J.Z.); (W.Z.); (D.W.); (A.F.); (S.Y.)
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Y.Q.); (Y.S.); Tel.: +86-591-8385-2547 (Y.Q. & Y.S.)
| |
Collapse
|
31
|
Shi L, Li X, Weng Y, Cai H, Liu K, Xie B, Ansar H, Guan D, He S, Liu Z. The CaPti1-CaERF3 module positively regulates resistance of Capsicum annuum to bacterial wilt disease by coupling enhanced immunity and dehydration tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:250-268. [PMID: 35491968 DOI: 10.1111/tpj.15790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Bacterial wilt, a severe disease involving vascular system blockade, is caused by Ralstonia solanacearum. Although both plant immunity and dehydration tolerance might contribute to disease resistance, whether and how they are related remains unclear. Herein, we showed that immunity against R. solanacearum and dehydration tolerance are coupled and regulated by the CaPti1-CaERF3 module. CaPti1 and CaERF3 are members of the serine/threonine protein kinase and ethylene-responsive factor families, respectively. Expression profiling revealed that CaPti1 and CaERF3 were upregulated by R. solanacearum inoculation, dehydration stress, and exogenously applied abscisic acid (ABA). They in turn phenocopied each other in promoting resistance of pepper (Capsicum annuum) to bacterial wilt not only by activating salicylic acid-dependent CaPR1, but also by activating dehydration tolerance-related CaOSM1 and CaOSR1 and inducing stomatal closure to reduce water loss in an ABA signaling-dependent manner. Our yeast two hybrid assay showed that CaERF3 interacted with CaPti1, which was confirmed using co-immunoprecipitation, bimolecular fluorescence complementation, and pull-down assays. Chromatin immunoprecipitation and electrophoretic mobility shift assays showed that upon R. solanacearum inoculation, CaPR1, CaOSM1, and CaOSR1 were directly targeted and positively regulated by CaERF3 and potentiated by CaPti1. Additionally, our data indicated that the CaPti1-CaERF3 complex might act downstream of ABA signaling, as exogenously applied ABA did not alter regulation of stomatal aperture by the CaPti1-CaERF3 module. Importantly, the CaPti1-CaERF3 module positively affected pepper growth and the response to dehydration stress. Collectively, the results suggested that immunity and dehydration tolerance are coupled and positively regulated by CaPti1-CaERF3 in pepper plants to enhance resistance against R. solanacearum.
Collapse
Affiliation(s)
- Lanping Shi
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xia Li
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yahong Weng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hanyang Cai
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kaisheng Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baixue Xie
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hussain Ansar
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
32
|
N-Methyltransferase CaASHH3 Acts as a Positive Regulator of Immunity against Bacterial Pathogens in Pepper. Int J Mol Sci 2022; 23:ijms23126492. [PMID: 35742935 PMCID: PMC9224371 DOI: 10.3390/ijms23126492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Proteins with conserved SET domain play a critical role in plant immunity. However, the means of organization and functions of these proteins are unclear, particularly in non-model plants such as pepper (Capsicum annum L.). Herein, we functionally characterized CaASHH3, a member of class II (the ASH1 homologs H3K36) proteins in pepper immunity against Ralstonia solanacearum and Pseudomonas syringae pv tomato DC3000 (Pst DC3000). The CaASHH3 was localized in the nucleus, and its transcript levels were significantly enhanced by R. solanacearum inoculation (RSI) and exogenous application of salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), and abscisic acid (ABA). Knockdown of CaASHH3 by virus-induced gene silencing (VIGS) compromised peppers’ resistance to RSI. Furthermore, silencing of CaASHH3 impaired hypersensitive-response (HR)-like cell death response due to RSI and downregulated defense-associated marker genes, including CaPR1, CaNPR1, and CaABR1. The CaASHH3 protein was revealed to affect the promoters of CaNPR1, CaPR1, and CaHSP24. Transiently over-expression of CaASHH3 in pepper leaves elicited HR-like cell death and upregulated immunity-related marker genes. To further study the role of CaASHH3 in plant defense in vivo, CaASHH3 transgenic plants were generated in Arabidopsis. Overexpression of CaASHH3 in transgenic Arabidopsis thaliana enhanced innate immunity against Pst DC3000. Furthermore, CaASHH3 over-expressing transgenic A. thaliana plants exhibited upregulated transcriptional levels of immunity-associated marker genes, such as AtNPR1, AtPR1, and AtPR2. These results collectively confirm the role of CaASHH3 as a positive regulator of plant cell death and pepper immunity against bacterial pathogens, which is regulated by signaling synergistically mediated by SA, JA, ET, and ABA.
Collapse
|
33
|
Cen G, Sun T, Chen Y, Wang W, Feng A, Liu A, Que Y, Gao S, Su Y, You C. Characterization of silicon transporter gene family in Saccharum and functional analysis of the ShLsi6 gene in biotic stress. Gene X 2022; 822:146331. [PMID: 35183686 DOI: 10.1016/j.gene.2022.146331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 11/04/2022] Open
Abstract
Silicon, one of the most prevalent elements in the soil, is beneficial for plant growth and defense against different stresses. The silicon transporter gene (Lsi) plays an important role in the uptake and transport of silicon in higher plants. In this study, a total of 32 Lsi genes, including 20 SsLsi in sugarcane wild species Saccharum spontaneum, 5 ShLsi in Saccharum hybrid cultivar R570 and 7 SbLsi in sugarcane related species Sorghum bicolor, were identified and classified into three groups. Bioinformatics analysis showed that instability, hydrophobicity, localization of cell membranes and vacuoles were the main features of the Lsi proteins. Whole genome and segmental duplication contributed to the main expansion of Lsi gene family. Collinearity analysis of the Lsi genes showed that S. spontanum and R570 had a collinear relationship with monocotyledonous plants S. bicolor and Oryza sativa, but not with dicotyledonous plants Arabidopsis thaliana and Vitis vinifera. The replicated Lsi genes were mainly subjected to strong selection pressure for purification. The diverse cis-regulatory elements in the promoter of SsLsi, ShLsi and SbLsi genes suggested that they were widely involved in the response of plants to various stresses and the regulation of the growth and development. Transcriptome data and real time quantitative PCR analysis showed that the Lsi genes exhibited different expression profiles in sugarcane tissues and under Sporisorium scitamineum, drought and cold stresses. In addition, the cDNA and genomic DNA sequences of ShLsi6 that was homologous to SsLsi1b gene was cloned from Saccharum hybrid cultivar ROC22. Transient expression analysis showed that, compared with the control, Nicotiana benthamiana leaves which overexpressed the ShLsi6 gene showed a high sensitivity after inoculation with tobacco pathogens Ralstonia solanacearum and Fusarium solani var. coeruleum. This study provides important information for further functional analysis of Lsi genes and resistant breeding in sugarcane.
Collapse
Affiliation(s)
- Guangli Cen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province (Fujian Agriculture and Forestry University), Fuzhou, Fujian 350002, China
| | - Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yanling Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wenju Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Aoyin Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Anyu Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province (Fujian Agriculture and Forestry University), Fuzhou, Fujian 350002, China.
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
34
|
Park IW, Hwang IS, Oh EJ, Kwon CT, Oh CS. Nicotiana benthamiana, a Surrogate Host to Study Novel Virulence Mechanisms of Gram-Positive Bacteria, Clavibacter michiganensis, and C. capsici in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:876971. [PMID: 35620684 PMCID: PMC9127732 DOI: 10.3389/fpls.2022.876971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 06/11/2023]
Abstract
Clavibacter michiganensis is a Gram-positive bacterium that causes bacterial canker and wilting in host plants like tomato. Two major virulence genes encoding a cellulase (celA) and a putative serine protease (pat-1) have been reported. Here we show that Nicotiana benthamiana, a commonly used model plant for studying molecular plant-pathogen interactions, is a surrogate host of C. michiganensis and C. capsici. When a low concentration of two Clavibacter species, C. michiganensis and C. capsici, were infiltrated into N. benthamiana leaves, they caused blister-like lesions closely associated with cell death and the generation of reactive oxygen species and proliferated significantly like a pathogenic bacterium. By contrast, they did not cause any disease symptoms in N. tabacum leaves. The celA and pat-1 mutants of C. michiganensis still caused blister-like lesions and cankers like the wild-type strain. When a high concentration of two Clavibacter species and two mutant strains were infiltrated into N. benthamiana leaves, all of them caused strong and rapid necrosis. However, only C. michiganensis strains, including the celA and pat-1 mutants, caused wilting symptoms when it was injected into stems. When two Clavibacter species and two mutants were infiltrated into N. tabacum leaves at the high concentration, they (except for the pat-1 mutant) caused a strong hypersensitive response. These results indicate that C. michiganensis causes blister-like lesions, canker, and wilting in N. benthamiana, and celA and pat-1 genes are not necessary for the development of these symptoms. Overall, N. benthamiana is a surrogate host of Clavibacter species, and their novel virulence factors are responsible for disease development in this plant.
Collapse
Affiliation(s)
- In Woong Park
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - In Sun Hwang
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Eom-Ji Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Choon-Tak Kwon
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
35
|
Cai Z, Zhang Y, Tang W, Chen X, Lin C, Liu Y, Ye Y, Wu W, Duan Y. LUX ARRHYTHMO Interacts With ELF3a and ELF4a to Coordinate Vegetative Growth and Photoperiodic Flowering in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:853042. [PMID: 35401642 PMCID: PMC8993510 DOI: 10.3389/fpls.2022.853042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/22/2022] [Indexed: 05/27/2023]
Abstract
The evening complex (EC) plays a critical role in photoperiod flowering in Arabidopsis. Nevertheless, the underlying functions of individual components and coordinate regulation mechanism of EC genes in rice flowering remain to be elucidated. Here, we characterized the critical role of LUX ARRHYTHMO (LUX) in photoperiod perception and coordinating vegetative growth and flowering in rice. Non-functional alleles of OsLUX extremely extended vegetative phase, leading to photoperiod-insensitive late flowering and great increase of grain yield. OsLUX displayed an obvious diurnal rhythm expression with the peak at dusk and promoted rice flowering via coordinating the expression of genes associated with the circadian clock and the output integrators of photoperiodic flowering. OsLUX combined with OsELF4a and OsELF3a or OsELF3b to form two ECs, of which the OsLUX-OsELF3a-OsELF4a was likely the dominant promoter for photoperiodic flowering. In addition, OsELF4a was also essential for promoting rice flowering. Unlike OsLUX, loss OsELF4a displayed a marginal influence under short-day (SD) condition, but markedly delayed flowering time under long-day (LD) condition. These results suggest that rice EC genes share the function of promoting flowering. This is agreement with the orthologs of SD plant, but opposite to the counterparts of LD species. Taken together, rice EC genes display similar but not identical function in photoperiodic flowering, probably through regulating gene expression cooperative and independent. These findings facilitate our understanding of photoperiodic flowering in plants, especially the SD crops.
Collapse
Affiliation(s)
- Zhengzheng Cai
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yudan Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiqi Tang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuequn Chen
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenchen Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Liu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanfang Ye
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiren Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanlin Duan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
36
|
Yang S, Cai W, Shen L, Cao J, Liu C, Hu J, Guan D, He S. A CaCDPK29-CaWRKY27b module promotes CaWRKY40-mediated thermotolerance and immunity to Ralstonia solanacearum in pepper. THE NEW PHYTOLOGIST 2022; 233:1843-1863. [PMID: 34854082 DOI: 10.1111/nph.17891] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
CaWRKY40 in pepper (Capsicum annuum) promotes immune responses to Ralstonia solanacearum infection (RSI) and to high-temperature, high-humidity (HTHH) stress, but how it interacts with upstream signalling components remains poorly understood. Here, using approaches of reverse genetics, biochemical and molecular biology we functionally characterised the relationships among the WRKYGMK-containing WRKY protein CaWRKY27b, the calcium-dependent protein kinase CaCDPK29, and CaWRKY40 during pepper response to RSI or HTHH. Our data indicate that CaWRKY27b is upregulated and translocated from the cytoplasm to the nucleus upon phosphorylation of Ser137 in the nuclear localisation signal by CaCDPK29. Using electrophoretic mobility shift assays and microscale thermophoresis, we observed that, due to the replacement of Q by M in the conserved WRKYGQK, CaWRKY27b in the nucleus failed to bind to W-boxes in the promoters of immunity- and thermotolerance-related marker genes. Instead, CaWRKY27b interacted with CaWRKY40 and promoted its binding and positive regulation of the tested marker genes including CaNPR1, CaDEF1 and CaHSP24. Notably, mutation of the WRKYGMK motif in CaWRKY27b to WRKYGQK restored the W-box binding ability. Our data therefore suggest that CaWRKY27b is phosphorylated by CaCDPK29 and acts as a transcriptional activator of CaWRKY40 during the pepper response to RSI and HTHH.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Weiwei Cai
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lei Shen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jianshen Cao
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Cailing Liu
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350002, China
| | - Jiong Hu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
37
|
Yang S, Cai W, Shen L, Wu R, Cao J, Tang W, Lu Q, Huang Y, Guan D, He S. Solanaceous plants switch to cytokinin-mediated immunity against Ralstonia solanacearum under high temperature and high humidity. PLANT, CELL & ENVIRONMENT 2022; 45:459-478. [PMID: 34778967 DOI: 10.1111/pce.14222] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Plant diseases generally tend to be more serious under conditions of high temperature and high humidity (HTHH) than under ambient temperature, but plant immunity against pathogen attacks under HTHH remains elusive. Herein, we used pepper as an example to study how Solanaceae cope with Ralstonia solanacearum infection (RSI) under HTHH by performing RNA-seq combined with the reverse genetic method. The result showed that immunities mediated by salicylic acid (SA) and jasmonic acid (JA) in pepper roots were activated by RSI under ambient temperature. However, upon RSI under HTHH, JA signalling was blocked and SA signalling was activated early but its duration was greatly shortened in pepper roots, instead, expression of CaIPT5 and Glutathione S-transferase encoding genes, as well as endogenous content of trans-Zeatin, were enhanced. In addition, by silencing in pepper plants and overexpression in Nicotiana benthamiana, CaIPT5 was found to act positively in the immune response to RSI under HTHH in a way related to CaPRP1 and CaMgst3. Furthermore, the susceptibility of pepper, tomato and tobacco to RSI under HTHH was significantly reduced by exogenously applied tZ, but not by either SA or MeJA. All these data collectively suggest that pepper employs cytokinin-mediated immunity to cope with RSI under HTHH.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Weiwei Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Ruijie Wu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Jianshen Cao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Weiqi Tang
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qiaoling Lu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yu Huang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| |
Collapse
|
38
|
Fang H, Shen S, Wang D, Zhang F, Zhang C, Wang Z, Zhou Q, Wang R, Tao H, He F, Yang C, Peng M, Jing X, Hao Z, Liu X, Luo J, Wang GL, Ning Y. A monocot-specific hydroxycinnamoylputrescine gene cluster contributes to immunity and cell death in rice. Sci Bull (Beijing) 2021; 66:2381-2393. [PMID: 36654124 DOI: 10.1016/j.scib.2021.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 02/03/2023]
Abstract
Phenolamides (PAs), a diverse group of specialized metabolites, including hydroxycinnamoylputrescine (HP), hydroxycinnamoylagmatine, and hydroxycinnamoyltryptamine, are important in plant resistance to biotic stress. However, the genes involved in the biosynthesis and modulation of PAs have not been fully elucidated. This study identified an HP biosynthetic gene cluster in rice (Oryza sativa) comprising one gene (OsODC) encoding a decarboxylase and two tandem-duplicated genes (OsPHT3 and OsPHT4) encoding putrescine hydroxycinnamoyl acyltransferases coexpressed in different tissues. OsODC catalyzes the conversion of ornithine to putrescine, which is used in HP biosynthesis involving OsPHT3 and OsPHT4. OsPHT3 or OsPHT4 overexpression causes HP accumulation and cell death and putrescine hydroxycinnamoyl acyltransferases (PHT) activity-dependent resistance against the fungal pathogen Magnaporthe oryzae. OsODC overexpression plants also confer enhanced resistance to M. oryzae. Notably, the basic leucine zipper transcription factor APIP5, a negative regulator of cell death, directly binds to the OsPHT4 promoter, repressing its transcription. Moreover, APIP5 suppression induces OsPHT4 expression and HP accumulation. Comparative genomic analysis revealed that the HP biosynthetic gene cluster is conserved in monocots. These results characterized a previously unidentified monocot-specific gene cluster that is involved in HP biosynthesis and contributes to defense and cell death in rice.
Collapse
Affiliation(s)
- Hong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Fan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zixuan Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Tao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Jing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xionglun Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou 572208, China.
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus OH 43210, USA.
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
39
|
Zheng Y, He S, Cai W, Shen L, Huang X, Yang S, Huang Y, Lu Q, Wang H, Guan D, He S. CaAIL1 Acts Positively in Pepper Immunity against Ralstonia solanacearum by Repressing Negative Regulators. PLANT & CELL PHYSIOLOGY 2021; 62:1702-1717. [PMID: 34463342 DOI: 10.1093/pcp/pcab125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/09/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
APETALA2 (AP2) subfamily transcription factors participate in plant growth and development, but their roles in plant immunity remain unclear. Here, we discovered that the AP2 transcription factor CaAIL1 functions in immunity against Ralstonia solanacearum infection (RSI) in pepper (Capsicum annuum). CaAIL1 expression was upregulated by RSI, and loss- and gain-of-function assays using virus-induced gene silencing and transient overexpression, respectively, revealed that CaAIL1 plays a positive role in immunity to RSI in pepper. Chromatin immunoprecipitation sequencing (ChIP-seq) uncovered a subset of transcription-factor-encoding genes, including CaRAP2-7, CaGATA17, CaGtf3a and CaTCF25, that were directly targeted by CaAIL1 via their cis-elements, such as GT or AGGCA motifs. ChIP-qPCR and electrophoretic mobility shift assays confirmed these findings. These genes, encoding transcription factors with negative roles in immunity, were repressed by CaAIL1 during pepper response to RSI, whereas genes encoding positive immune regulators such as CaEAS were derepressed by CaAIL1. Importantly, we showed that the atypical EAR motif (LXXLXXLXX) in CaAIL1 is indispensable for its function in immunity. These findings indicate that CaAIL1 enhances the immunity of pepper against RSI by repressing a subset of negative immune regulators during the RSI response through its binding to several cis-elements in their promoters.
Collapse
Affiliation(s)
- Yutong Zheng
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Shicong He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Weiwei Cai
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Xueying Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Yu Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Qiaoling Lu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| |
Collapse
|
40
|
Hussain A, Khan MI, Albaqami M, Mahpara S, Noorka IR, Ahmed MAA, Aljuaid BS, El-Shehawi AM, Liu Z, Farooq S, Zuan ATK. CaWRKY30 Positively Regulates Pepper Immunity by Targeting CaWRKY40 against Ralstonia solanacearum Inoculation through Modulating Defense-Related Genes. Int J Mol Sci 2021; 22:ijms222112091. [PMID: 34769521 PMCID: PMC8584995 DOI: 10.3390/ijms222112091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
The WRKY transcription factors (TFs) network is composed of WRKY TFs’ subset, which performs a critical role in immunity regulation of plants. However, functions of WRKY TFs’ network remain unclear, particularly in non-model plants such as pepper (Capsicum annuum L.). This study functionally characterized CaWRKY30—a member of group III Pepper WRKY protein—for immunity of pepper against Ralstonia solanacearum infection. The CaWRKY30 was detected in nucleus, and its transcriptional expression levels were significantly upregulated by R. solanacearum inoculation (RSI), and foliar application ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). Virus induced gene silencing (VIGS) of CaWRKY30 amplified pepper’s vulnerability to RSI. Additionally, the silencing of CaWRKY30 by VIGS compromised HR-like cell death triggered by RSI and downregulated defense-associated marker genes, like CaPR1, CaNPR1, CaDEF1, CaABR1, CaHIR1, and CaWRKY40. Conversely, transient over-expression of CaWRKY30 in pepper leaves instigated HR-like cell death and upregulated defense-related maker genes. Furthermore, transient over-expression of CaWRKY30 upregulated transcriptional levels of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. On the other hand, transient over-expression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 upregulated transcriptional expression levels of CaWRKY30. The results recommend that newly characterized CaWRKY30 positively regulates pepper’s immunity against Ralstonia attack, which is governed by synergistically mediated signaling by phytohormones like ET, ABA, and SA, and transcriptionally assimilating into WRKY TFs networks, consisting of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. Collectively, our data will facilitate to explicate the underlying mechanism of crosstalk between pepper’s immunity and response to RSI.
Collapse
Affiliation(s)
- Ansar Hussain
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Muhammad Ifnan Khan
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Shahzadi Mahpara
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Ijaz Rasool Noorka
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Mohamed A. A. Ahmed
- Plant Production Department (Horticulture—Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Bandar S. Aljuaid
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (B.S.A.); (A.M.E.-S.)
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (B.S.A.); (A.M.E.-S.)
| | - Zhiqin Liu
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350001, China
- Correspondence: (Z.L.); (A.T.K.Z.)
| | - Shahid Farooq
- Department of Plant Protection, Faculty of Agriculture, Harran University, Şanlıurfa 63050, Turkey;
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (Z.L.); (A.T.K.Z.)
| |
Collapse
|
41
|
Zhang Q, Xu C, Wei H, Fan W, Li T. Two pathogenesis-related proteins interact with leucine-rich repeat proteins to promote Alternaria leaf spot resistance in apple. HORTICULTURE RESEARCH 2021; 8:219. [PMID: 34593778 PMCID: PMC8484663 DOI: 10.1038/s41438-021-00654-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/07/2021] [Accepted: 07/13/2021] [Indexed: 05/24/2023]
Abstract
Alternaria leaf spot in apple (Malus x domestica), caused by the fungal pathogen Alternaria alternata f. sp. mali (also called A. mali), is a devastating disease resulting in substantial economic losses. We previously established that the resistance (R) protein MdRNL2, containing a coiled-coil, nucleotide-binding, and leucine-rich repeat (CCR-NB-LRR) domain, interacts with another CCR-NB-LRR protein, MdRNL6, to form a MdRNL2-MdRNL6 complex that confers resistance to A. mali. Here, to investigate the function of the MdRNL2-MdRNL6 complex, we identified two novel pathogenesis-related (PR) proteins, MdPR10-1 and MdPR10-2, that interact with MdRNL2. Yeast two-hybrid (Y2H) assays and bimolecular fluorescence complementation (BiFC) assays confirmed that MdPR10-1 and MdPR10-2 interact with MdRNL2 and MdRNL6 at the leucine-rich repeat domain. Transient expression assays demonstrated that accumulation of MdPR10-1 and MdPR10-2 enhanced the resistance of apple to four strains of A. mali that we tested: ALT1, GBYB2, BXSB5, and BXSB7. In vitro antifungal activity assays demonstrated that both the proteins contribute to Alternaria leaf spot resistance by inhibiting fungal growth. Our data provide evidence for a novel regulatory mechanism in which MdRNL2 and MdRNL6 interact with MdPR10-1 and MdPR10-2 to inhibit fungal growth, thereby contributing to Alternaria leaf spot resistance in apple. The identification of these two novel PR proteins will facilitate breeding for fungal disease resistance in apple.
Collapse
Affiliation(s)
- Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Haiyang Wei
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wenqi Fan
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
42
|
Cai W, Yang S, Wu R, Cao J, Shen L, Guan D, Shuilin H. Pepper NAC-type transcription factor NAC2c balances the trade-off between growth and defense responses. PLANT PHYSIOLOGY 2021; 186:2169-2189. [PMID: 33905518 PMCID: PMC8331138 DOI: 10.1093/plphys/kiab190] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/10/2021] [Indexed: 05/27/2023]
Abstract
Plant responses to pathogen attacks and high-temperature stress (HTS) are distinct in nature but generally share several signaling components. How plants produce specific responses through these common signaling intermediates remains elusive. With the help of reverse-genetics approaches, we describe here the mechanism underlying trade-offs in pepper (Capsicum annuum) between growth, immunity, and thermotolerance. The NAC-type transcription factor CaNAC2c was induced by HTS and Ralstonia solanacearum infection (RSI). CaNAC2c-inhibited pepper growth, promoted immunity against RSI by activating jasmonate-mediated immunity and H2O2 accumulation, and promoted HTS responses by activating Heat shock factor A5 (CaHSFA5) transcription and blocking H2O2 accumulation. We show that CaNAC2c physically interacts with CaHSP70 and CaNAC029 in a context-specific manner. Upon HTS, CaNAC2c-CaHSP70 interaction in the nucleus protected CaNAC2c from degradation and resulted in the activation of thermotolerance by increasing CaNAC2c binding and transcriptional activation of its target promoters. CaNAC2c did not induce immunity-related genes under HTS, likely due to the degradation of CaNAC029 by the 26S proteasome. Upon RSI, CaNAC2c interacted with CaNAC029 in the nucleus and activated jasmonate-mediated immunity but was prevented from activating thermotolerance-related genes. In non-stressed plants, CaNAC2c was tethered outside the nucleus by interaction with CaHSP70, and thus was unable to activate either immunity or thermotolerance. Our results indicate that pepper growth, immunity, and thermotolerance are coordinately and tightly regulated by CaNAC2c via its inducible expression and differential interaction with CaHSP70 and CaNAC029.
Collapse
Affiliation(s)
- Weiwei Cai
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ruijie Wu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jianshen Cao
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - He Shuilin
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
43
|
Dangol S, Nguyen NK, Singh R, Chen Y, Wang J, Lee HG, Hwang BK, Jwa NS. Mitogen-Activated Protein Kinase OsMEK2 and OsMPK1 Signaling Is Required for Ferroptotic Cell Death in Rice- Magnaporthe oryzae Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:710794. [PMID: 34408766 PMCID: PMC8365360 DOI: 10.3389/fpls.2021.710794] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/05/2021] [Indexed: 05/25/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling is required for plant cell death responses to invading microbial pathogens. Iron- and reactive oxygen species (ROS)-dependent ferroptotic cell death occurs in rice (Oryza sativa) during an incompatible rice-Magnaporthe oryzae interaction. Here, we show that rice MAP kinase (OsMEK2 and OsMPK1) signaling cascades are involved in iron- and ROS-dependent ferroptotic cell death responses of rice to M. oryzae infection using OsMEK2 knock-out mutant and OsMEK2 and OsMPK1 overexpression rice plants. The OsMPK1:GFP and OsWRKY90:GFP transcription factor were localized to the nuclei, suggesting that OsMPK1 in the cytoplasm moves into the nuclei to interact with the WRKY90. M. oryzae infection in ΔOsmek2 knock-out plants did not trigger iron and ROS accumulation and lipid peroxidation, and also downregulated OsMPK1, OsWRKY90, OsRbohB, and OsPR-1b expression. However, 35S:OsMEK2 overexpression induced ROS- and iron-dependent cell death in rice. The downstream MAP kinase (OsMPK1) overexpression induced ROS- and iron-dependent ferroptotic cell death response to virulent M. oryzae infection. The small-molecule ferroptosis inhibitor ferrostatin-1 suppressed iron- and ROS-dependent ferroptotic cell death in 35S:OsMPK1 overexpression plants. However, the small-molecule inducer erastin triggered iron- and lipid ROS-dependent, but OsMEK2-independent, ferroptotic cell death during M. oryzae infection. Disease (susceptibility)-related cell death was lipid ROS-dependent, but iron-independent in the ΔOsmek2 knock-out mutant during the late M. oryzae infection stage. These combined results suggest that OsMEK2 and OsMPK1 expression positively regulates iron- and ROS-dependent ferroptotic cell death, and blast disease (susceptibility)-related cell death was ROS-dependent but iron-independent in rice-M. oryzae interactions.
Collapse
Affiliation(s)
- Sarmina Dangol
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Nam Khoa Nguyen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Raksha Singh
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
- Crop Production and Pest Control Research Unit, United States Department of Agriculture-Agricultural Research Service, Purdue University, West Lafayette, IN, United States
| | - Yafei Chen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Juan Wang
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Hyeon-Gu Lee
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Byung KooK Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| |
Collapse
|
44
|
Yang S, Zhang Y, Cai W, Liu C, Hu J, Shen L, Huang X, Guan D, He S. CaWRKY28 Cys249 is Required for Interaction with CaWRKY40 in the Regulation of Pepper Immunity to Ralstonia solanacearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:733-745. [PMID: 33555219 DOI: 10.1094/mpmi-12-20-0361-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
WRKY transcription factors have been implicated in plant response to pathogens but how WRKY-mediated networks are organized and operate to produce appropriate transcriptional outputs remains largely unclear. Here, we identify a member of the WRKY family from pepper (Capsicum annuum), CaWRKY28, that physically interacts with CaWRKY40, a positive regulator of pepper immunity and thermotolerance. We confirmed CaWRKY28-CaWRKY40 interaction by coimmunoprecipitation, bimolecular fluorescence complementation, and microscale thermophoresis. Our findings supported the idea that CaWRKY28 is a nuclear protein that acts as positive regulator in pepper responses to infection by the pathogenic bacterium Ralstonia solanacearum. It performs its function not by directly modulating the W-box containing immunity-related genes but by promoting CaWRKY40 via physical interaction to bind and activate its immunity-related target genes, including CaPR1, CaNPR1, CaDEF1, and CaABR1, but not its thermotolerance-related target gene, CaHSP24. All of these data indicate that CaWRKY28 interacts with and potentiates CaWRKY40 in regulating immunity against R. solanacearum infection but not thermotolerance. Importantly, we discovered that CaWRKY28 Cys249, shared by CaWRKY28 and its orthologs probably only in the family Solanaceae, is crucial for the CaWRKY28-CaWRKY40 interaction. These results highlight how CaWRKY28 associates with CaWRKY40 during the establishment of WRKY networks, and how CaWRKY40 achieves its functional specificity during pepper responses to R. solanacearum infection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yangwen Zhang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Weiwei Cai
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Cailing Liu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiong Hu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lei Shen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Xueying Huang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
45
|
Hussain A, Noman A, Arif M, Farooq S, Khan MI, Cheng P, Qari SH, Anwar M, Hashem M, Ashraf MF, Alamri S, Adnan M, Khalofah A, Al-Zoubi OM, Ansari MJ, Khan KA, Sun Y. A basic helix-loop-helix transcription factor CabHLH113 positively regulate pepper immunity against Ralstonia solanacearum. Microb Pathog 2021; 156:104909. [PMID: 33964418 DOI: 10.1016/j.micpath.2021.104909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 11/26/2022]
Abstract
Pepper's (Capsicum annum) response to bacterial pathogen Ralstonia solanacearm inoculation (RSI) and abiotic stresses is known to be synchronized by transcriptional network; however, related molecular mechanisms need extensive experimentation. We identified and characterized functions of CabHLH113 -a basic helix-loop-helix transcription factor-in pepper immunity to R. solanacearum infection. The RSI and foliar spray of phytohormones, including salicylic acid (SA), methyl jasmonate (MeJA), ethylene (ETH), and absicic acid (ABA) induced transcription of CabHLH113 in pepper. Loss of function of CabHLH113 by virus-induced-gene-silencing (VIGS) compromised defense of pepper plants against RSI and suppressed relative expression levels of immunity-associated marker genes, i.e., CaPR1, CaNPR1, CaDEF1, CaHIR1 and CaABR1. Pathogen growth was significantly increased after loss of function of CabHLH113 compared with un-silenced plants with remarkable increase in pepper susceptibility. Besides, transiently over-expression of CabHLH113 induced HR-like cell death, H2O2 accumulation and up-regulation of defense-associated marker genes, e.g. CaPR1, CaNPR1, CaDEF1, CaHIR1 and CaABR1. Additionally, transient over-expression of CabHLH113 enhanced the transcriptional levels of CaWRKY6, CaWRKY27 and CaWRKY40. Conversely, transient over-expression of CaWRKY6, CaWRKY27 and CaWRKY40 enhanced the transcriptional levels of CabHLH113. Collectively, our results indicate that newly characterized CabHLH113 has novel defense functions in pepper immunity against RSI via triggering HR-like cell death and cellular levels of defense linked genes.
Collapse
Affiliation(s)
- Ansar Hussain
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan.
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan.
| | - Muhammad Arif
- Department of Plant Protection, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Shahid Farooq
- Department of Agronomy, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Ifnan Khan
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Sameer H Qari
- Biology Department, Aljumum University College, Umm Al - Qura University, Makkah, Saudi Arabia
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, 71516, Egypt
| | - Muhammad Furqan Ashraf
- College of Life Sciences, South China Agricultural University, No.483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Muhammad Adnan
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ahlam Khalofah
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | | | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), 244001, India
| | - Khalid Ali Khan
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
| |
Collapse
|
46
|
Yang B, Wang Y, Tian M, Dai K, Zheng W, Liu Z, Yang S, Liu X, Shi D, Zhang H, Wang Y, Ye W, Wang Y. Fg12 ribonuclease secretion contributes to Fusarium graminearum virulence and induces plant cell death. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:365-377. [PMID: 32725938 DOI: 10.1111/jipb.12997] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Filamentous fungal pathogens secrete effectors that modulate host immunity and facilitate infection. Fusarium graminearum is an important plant pathogen responsible for various devastating diseases. However, little is known about the function of effector proteins secreted by F. graminearum. Herein, we identified several effector candidates in the F. graminearum secretome. Among them, the secreted ribonuclease Fg12 was highly upregulated during the early stages of F. graminearum infection in soybean; its deletion compromised the virulence of F. graminearum. Transient expression of Fg12 in Nicotiana benthamiana induced cell death in a light-dependent manner. Fg12 possessed ribonuclease (RNase) activity, degrading total RNA. The enzymatic activity of Fg12 was required for its cell death-promoting effects. Importantly, the ability of Fg12 to induce cell death was independent of BAK1/SOBIR1, and treatment of soybean with recombinant Fg12 protein induced resistance to various pathogens, including F. graminearum and Phytophthora sojae. Overall, our results provide evidence that RNase effectors not only contribute to pathogen virulence but also induce plant cell death.
Collapse
Affiliation(s)
- Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyin Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengjun Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaixin Dai
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenyue Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zehan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongya Shi
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
47
|
Liu Z, Shi L, Yang S, Qiu S, Ma X, Cai J, Guan D, Wang Z, He S. A conserved double-W box in the promoter of CaWRKY40 mediates autoregulation during response to pathogen attack and heat stress in pepper. MOLECULAR PLANT PATHOLOGY 2021; 22:3-18. [PMID: 33151622 PMCID: PMC7749755 DOI: 10.1111/mpp.13004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 05/11/2023]
Abstract
CaWRKY40 was previously found to be transcriptionally up-regulated by Ralstonia solanacearum inoculation (RSI) or heat stress (HS), but the underlying mechanism remains unknown. Herein, we report that a double-W box-element (DWE) in the promoter of CaWRKY40 is critical for these responses. The upstream W box unit WI of this composite element is crucial for preferential binding by CaWRKY40 and responsiveness to RSI or HS. DWE-driven CaWRKY40 can be transcriptionally and nonspecifically regulated by itself and by CaWRKY58 and CaWRKY27. The DWE was also found in the promoters of CaWRKY40 orthologs, including AtWRKY40, VvWRKY40, GmWRKY40, CplWRKY40, SaWRKY40, SpWRKY40, NtWRKY40, and NaWRKY40. DWEAtWRKY40 was analogous to DWECaWRKY40 by responding to RSI or HS and AtWRKY40 expression. These data suggest that a conserved response of plants to pathogen infection or HS is probably mediated by binding of the DWE by WRKY40.
Collapse
Affiliation(s)
- Zhi‐Qin Liu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lan‐Ping Shi
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Sheng Yang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shan‐Shan Qiu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiao‐Ling Ma
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jin‐Sen Cai
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - De‐Yi Guan
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zong‐Hua Wang
- Fujian University Key Laboratory for Plant‐Microbe InteractionCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Institute of OceanographyMinjiang UniversityFuzhouChina
| | - Shui‐Lin He
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
48
|
Wang W, Nie J, Lv L, Gong W, Wang S, Yang M, Xu L, Li M, Du H, Huang L. A Valsa mali Effector Protein 1 Targets Apple ( Malus domestica) Pathogenesis-Related 10 Protein to Promote Virulence. FRONTIERS IN PLANT SCIENCE 2021; 12:741342. [PMID: 34691119 PMCID: PMC8528966 DOI: 10.3389/fpls.2021.741342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 05/14/2023]
Abstract
To successfully colonize the plants, the pathogenic microbes secrete a mass of effector proteins which manipulate host immunity. Apple valsa canker is a destructive disease caused by the weakly parasitic fungus Valsa mali. A previous study indicated that the V. mali effector protein 1 (VmEP1) is an essential virulence factor. However, the pathogenic mechanism of VmEP1 in V. mali remains poorly understood. In this study, we found that the apple (Malus domestica) pathogenesis-related 10 proteins (MdPR10) are the virulence target of VmEP1 using a yeast two-hybrid screening. By bimolecular fluorescence (BiFC) and coimmunoprecipitation (Co-IP), we confirmed that the VmEP1 interacts with MdPR10 in vivo. Silencing of MdPR10 notably enhanced the V. mali infection, and overexpression of MdPR10 markedly reduced its infection, which corroborates its positive role in plant immunity against V. mali. Furthermore, we showed that the co-expression of VmEP1 with MdPR10 compromised the MdPR10-mediated resistance to V. mali. Taken together, our results revealed a mechanism by which a V. mali effector protein suppresses the host immune responses by interfering with the MdPR10-mediated resistance to V. mali during the infection.
Collapse
Affiliation(s)
- Weidong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiajun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Luqiong Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wan Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shuaile Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Mingming Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Hongxia Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
- *Correspondence: Lili Huang,
| |
Collapse
|
49
|
Wang D, Wang L, Su W, Ren Y, You C, Zhang C, Que Y, Su Y. A class III WRKY transcription factor in sugarcane was involved in biotic and abiotic stress responses. Sci Rep 2020; 10:20964. [PMID: 33262418 PMCID: PMC7708483 DOI: 10.1038/s41598-020-78007-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023] Open
Abstract
WRKY transcription factors play significant roles in plant stress responses. In this study, a class III WRKY gene ScWRKY5, was successfully isolated from sugarcane variety ROC22. The ScWRKY5 was a nucleus protein with transcriptional activation activity. The ScWRKY5 gene was constitutively expressed in all the sugarcane tissues, with the highest expression level in the stem epidermis and the lowest in the root. After inoculation with Sporisorium scitamineum for 1 d, the expression level of ScWRKY5 was significantly increased in two smut-resistant varieties (YZ01-1413 and LC05-136), while it was decreased in three smut-susceptible varieties (ROC22, YZ03-103, and FN40). Besides, the expression level of ScWRKY5 was increased by the plant hormones salicylic acid (SA) and abscisic acid (ABA), as well as the abiotic factors polyethylene glycol (PEG) and sodium chloride (NaCl). Transient overexpression of the ScWRKY5 gene enhanced the resistance of Nicotiana benthamiana to the tobacco bacterial pathogen Ralstonia solanacearum, however the transiently overexpressed N. benthamiana was more sensitive to the tobacco fungal pathogen Fusarium solani var. coeruleum. These results provide a reference for further research on the resistance function of sugarcane WRKY genes.
Collapse
Affiliation(s)
- Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ling Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yongjuan Ren
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chuihuai You
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chang Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
50
|
Sun T, Cen G, You C, Lou W, Wang Z, Su W, Wang W, Li D, Que Y, Su Y. ScAOC1, an allene oxide cyclase gene, confers defense response to biotic and abiotic stresses in sugarcane. PLANT CELL REPORTS 2020; 39:1785-1801. [PMID: 33001313 DOI: 10.1007/s00299-020-02606-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE An allene oxide cyclase gene which is involved in defense against biotic and abiotic stresses was cloned and characterized in sugarcane. Allene oxide cyclase (AOC), a key enzyme in jasmonate acid (JA) biosynthesis, affects the stereoisomerism and biological activity of JA molecules, and plays an important role in plant stress resistance. In this study, four SsAOC alleles (SsAOC1-SsAOC4), which shared similar gene structure and were located on Chr1A, Chr1B, Chr1C, and Chr1D, respectively, were mined from sugarcane wild species Saccharum spontaneum, and a homologous gene ScAOC1 (GenBank Accession Number: MK674849) was cloned from sugarcane hybrid variety Yacheng05-179 inoculated with Sporisorium scitamineum for 48 h. ScAOC1 and SsAOC1-SsAOC4 were alkaline, unstable, hydrophilic, and non-secretory proteins, which possess the same set of conserved motifs and were clustered into one group in the phylogenetic analysis. ScAOC1 was expressed in all sugarcane tissues, but with different levels. After infection by S. scitamineum, the transcripts of ScAOC1 were increased significantly both in the smut-susceptible (ROC22) and resistant (Yacheng05-179) varieties, but its transcripts were more accumulated and lasted for a longer period in the smut-resistant variety than in the smut-susceptible one. ScAOC1 was down-regulated under MeJA and NaCl treatments, but up-regulated under SA, ABA, PEG, and cold stresses. Transiently overexpressing ScAOC1 gene into Nicotiana benthamiana leaves regulated the responses of N. benthamiana to two pathogens Ralstonia solanacearum and Fusarium solani var. coeruleum. Furthermore, prokaryotic expression analysis showed overexpression of ScAOC1 in Escherichia coli BL21 could enhance its tolerance to NaCl, mannitol, and cold stimuli. These results indicated that ScAOC1 may play an active role in response to biotic and abiotic stresses in sugarcane.
Collapse
Affiliation(s)
- Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guangli Cen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Wenyue Lou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhoutao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Wenju Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Damei Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|