1
|
Sharma S, Ganotra J, Samantaray J, Sahoo RK, Bhardwaj D, Tuteja N. An emerging role of heterotrimeric G-proteins in nodulation and nitrogen sensing. PLANTA 2023; 258:101. [PMID: 37847414 DOI: 10.1007/s00425-023-04251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
MAIN CONCLUSION A comprehensive understanding of nitrogen signaling cascades involving heterotrimeric G-proteins and their putative receptors can assist in the production of nitrogen-efficient plants. Plants are immobile in nature, so they must endure abiotic stresses including nutrient stress. Plant development and agricultural productivity are frequently constrained by the restricted availability of nitrogen in the soil. Non-legume plants acquire nitrogen from the soil through root membrane-bound transporters. In depleted soil nitrogen conditions, legumes are naturally conditioned to fix atmospheric nitrogen with the aid of nodulation elicited by nitrogen-fixing bacteria. Moreover, apart from the symbiotic nitrogen fixation process, nitrogen uptake from the soil can also be a significant secondary source to satisfy the nitrogen requirements of legumes. Heterotrimeric G-proteins function as molecular switches to help plant cells relay diverse stimuli emanating from external stress conditions. They are comprised of Gα, Gβ and Gγ subunits, which cooperate with several downstream effectors to regulate multiple plant signaling events. In the present review, we concentrate on signaling mechanisms that regulate plant nitrogen nutrition. Our review highlights the potential of heterotrimeric G-proteins, together with their putative receptors, to assist the legume root nodule symbiosis (RNS) cascade, particularly during calcium spiking and nodulation. Additionally, the functions of heterotrimeric G-proteins in nitrogen acquisition by plant roots as well as in improving nitrogen use efficiency (NUE) have also been discussed. Future research oriented towards heterotrimeric G-proteins through genome editing tools can be a game changer in the enhancement of the nitrogen fixation process. This will foster the precise manipulation and production of plants to ensure global food security in an era of climate change by enhancing crop productivity and minimizing reliance on external inputs.
Collapse
Affiliation(s)
- Suvriti Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jyotipriya Samantaray
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
2
|
Cervantes-Pérez SA, Thibivilliers S, Laffont C, Farmer AD, Frugier F, Libault M. Cell-specific pathways recruited for symbiotic nodulation in the Medicago truncatula legume. MOLECULAR PLANT 2022; 15:1868-1888. [PMID: 36321199 DOI: 10.1016/j.molp.2022.10.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Medicago truncatula is a model legume species that has been studied for decades to understand the symbiotic relationship between legumes and soil bacteria collectively named rhizobia. This symbiosis called nodulation is initiated in roots with the infection of root hair cells by the bacteria, as well as the initiation of nodule primordia from root cortical, endodermal, and pericycle cells, leading to the development of a new root organ, the nodule, where bacteria fix and assimilate the atmospheric dinitrogen for the benefit of the plant. Here, we report the isolation and use of the nuclei from mock and rhizobia-inoculated roots for the single nuclei RNA-seq (sNucRNA-seq) profiling to gain a deeper understanding of early responses to rhizobial infection in Medicago roots. A gene expression map of the Medicago root was generated, comprising 25 clusters, which were annotated as specific cell types using 119 Medicago marker genes and orthologs to Arabidopsis cell-type marker genes. A focus on root hair, cortex, endodermis, and pericycle cell types, showing the strongest differential regulation in response to a short-term (48 h) rhizobium inoculation, revealed not only known genes and functional pathways, validating the sNucRNA-seq approach, but also numerous novel genes and pathways, allowing a comprehensive analysis of early root symbiotic responses at a cell type-specific level.
Collapse
Affiliation(s)
- Sergio Alan Cervantes-Pérez
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Sandra Thibivilliers
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA; Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Carole Laffont
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Paris-Cité, Université d'Evry, 91190 Gif-sur-Yvette, France
| | - Andrew D Farmer
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Paris-Cité, Université d'Evry, 91190 Gif-sur-Yvette, France
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA; Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
3
|
Constitutive activation of a nuclear-localized calcium channel complex in Medicago truncatula. Proc Natl Acad Sci U S A 2022; 119:e2205920119. [PMID: 35972963 PMCID: PMC9407390 DOI: 10.1073/pnas.2205920119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear Ca2+ oscillations allow symbiosis signaling, facilitating plant recognition of beneficial microsymbionts, nitrogen-fixing rhizobia, and nutrient-capturing arbuscular mycorrhizal fungi. Two classes of channels, DMI1 and CNGC15, in a complex on the nuclear membrane, coordinate symbiotic Ca2+ oscillations. However, the mechanism of Ca2+ signature generation is unknown. Here, we demonstrate spontaneous activation of this channel complex, through gain-of-function mutations in DMI1, leading to spontaneous nuclear Ca2+ oscillations and spontaneous nodulation, in a CNGC15-dependent manner. The mutations destabilize a hydrogen-bond or salt-bridge network between two RCK domains, with the resultant structural changes, alongside DMI1 cation permeability, activating the channel complex. This channel complex was reconstituted in human HEK293T cell lines, with the resultant calcium influx enhanced by autoactivated DMI1 and CNGC15s. Our results demonstrate the mode of activation of this nuclear channel complex, show that DMI1 and CNGC15 are sufficient to create oscillatory Ca2+ signals, and provide insights into its native mode of induction.
Collapse
|
4
|
Distinct Role of Mono-2-ethylhexyl Phthalate in Neuronal Transmission in Rat CA3 Hippocampal Neurons: Involvement of Ion Channels. Molecules 2022; 27:molecules27103082. [PMID: 35630558 PMCID: PMC9143894 DOI: 10.3390/molecules27103082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Mono-(2-ethylhexyl) phthalate (MEHP) is one of the main active metabolites of di-(2-ethylhexyl) phthalate (DEHP). In our previous works, by using rat and Drosophila models, we showed a disruption of neural function due to DEHP. However, the exact neural effects of MEHP are still unclear. To explore the effects of MEHP on the central nervous system, the electrophysiological properties of spontaneous action potential (sAP), mini-excitatory postsynaptic currents (mEPSCs), ion channels, including Na+, Ca2+, and K+ channels from rat CA3 hippocampal neurons area were assessed. Our data showed that MEHP (at the concentrations of 100 or 300 μM) decreased the amplitude of sAP and the frequency of mEPSCs. Additionally, MEHP (100 or 300 μM) significantly reduced the peak current density of Ca2+ channels, whereas only the concentration of 300 μM decreased the peak current density of Na+ and K+ channels. Therefore, our results indicate that exposure to MEHP could affect the neuronal excitability and synaptic plasticity of rat CA3 hippocampal neurons by inhibiting ion channels’ activity, implying the distinct role of MEHP in neural transmission.
Collapse
|
5
|
Ren CG, Kong CC, Liu ZY, Zhong ZH, Yang JC, Wang XL, Qin S. A Perspective on Developing a Plant ‘Holobiont’ for Future Saline Agriculture. Front Microbiol 2022; 13:763014. [PMID: 35602056 PMCID: PMC9120776 DOI: 10.3389/fmicb.2022.763014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Soil salinity adversely affects plant growth and has become a major limiting factor for agricultural development worldwide. There is a continuing demand for sustainable technology innovation in saline agriculture. Among various bio-techniques being used to reduce the salinity hazard, symbiotic microorganisms such as rhizobia and arbuscular mycorrhizal (AM) fungi have proved to be efficient. These symbiotic associations each deploy an array of well-tuned mechanisms to provide salinity tolerance for the plant. In this review, we first comprehensively cover major research advances in symbiont-induced salinity tolerance in plants. Second, we describe the common signaling process used by legumes to control symbiosis establishment with rhizobia and AM fungi. Multi-omics technologies have enabled us to identify and characterize more genes involved in symbiosis, and eventually, map out the key signaling pathways. These developments have laid the foundation for technological innovations that use symbiotic microorganisms to improve crop salt tolerance on a larger scale. Thus, with the aim of better utilizing symbiotic microorganisms in saline agriculture, we propose the possibility of developing non-legume ‘holobionts’ by taking advantage of newly developed genome editing technology. This will open a new avenue for capitalizing on symbiotic microorganisms to enhance plant saline tolerance for increased sustainability and yields in saline agriculture.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | - Cun-Cui Kong
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zheng-Yi Liu
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhi-Hai Zhong
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | | | - Xiao-Li Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Song Qin
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Song Qin,
| |
Collapse
|
6
|
Khatri R, Pant SR, Sharma K, Niraula PM, Lawaju BR, Lawrence KS, Alkharouf NW, Klink VP. Glycine max Homologs of DOESN'T MAKE INFECTIONS 1, 2, and 3 Function to Impair Heterodera glycines Parasitism While Also Regulating Mitogen Activated Protein Kinase Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:842597. [PMID: 35599880 PMCID: PMC9114929 DOI: 10.3389/fpls.2022.842597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Glycine max root cells developing into syncytia through the parasitic activities of the pathogenic nematode Heterodera glycines underwent isolation by laser microdissection (LM). Microarray analyses have identified the expression of a G. max DOESN'T MAKE INFECTIONS3 (DMI3) homolog in syncytia undergoing parasitism but during a defense response. DMI3 encodes part of the common symbiosis pathway (CSP) involving DMI1, DMI2, and other CSP genes. The identified DMI gene expression, and symbiosis role, suggests the possible existence of commonalities between symbiosis and defense. G. max has 3 DMI1, 12 DMI2, and 2 DMI3 paralogs. LM-assisted gene expression experiments of isolated syncytia under further examination here show G. max DMI1-3, DMI2-7, and DMI3-2 expression occurring during the defense response in the H. glycines-resistant genotypes G.max [Peking/PI548402] and G.max [PI88788] indicating a broad and consistent level of expression of the genes. Transgenic overexpression (OE) of G. max DMI1-3, DMI2-7, and DMI3-2 impairs H. glycines parasitism. RNA interference (RNAi) of G. max DMI1-3, DMI2-7, and DMI3-2 increases H. glycines parasitism. The combined opposite outcomes reveal a defense function for these genes. Prior functional transgenic analyses of the 32-member G. max mitogen activated protein kinase (MAPK) gene family has determined that 9 of them act in the defense response to H. glycines parasitism, referred to as defense MAPKs. RNA-seq analyses of root RNA isolated from the 9 G. max defense MAPKs undergoing OE or RNAi reveal they alter the relative transcript abundances (RTAs) of specific DMI1, DMI2, and DMI3 paralogs. In contrast, transgenically-manipulated DMI1-3, DMI2-7, and DMI3-2 expression influences MAPK3-1 and MAPK3-2 RTAs under certain circumstances. The results show G. max homologs of the CSP, and defense pathway are linked, apparently involving co-regulated gene expression.
Collapse
Affiliation(s)
- Rishi Khatri
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Shankar R. Pant
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Bisho R. Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, United States
| | - Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Beltsville, MD, United States
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
7
|
Völkner C, Holzner LJ, Day PM, Ashok AD, de Vries J, Bölter B, Kunz HH. Two plastid POLLUX ion channel-like proteins are required for stress-triggered stromal Ca2+release. PLANT PHYSIOLOGY 2021; 187:2110-2125. [PMID: 34618095 PMCID: PMC8644588 DOI: 10.1093/plphys/kiab424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Two decades ago, large cation currents were discovered in the envelope membranes of Pisum sativum L. (pea) chloroplasts. The deduced K+-permeable channel was coined fast-activating chloroplast cation channel but its molecular identity remained elusive. To reveal candidates, we mined proteomic datasets of isolated pea envelopes. Our search uncovered distant members of the nuclear POLLUX ion channel family. Since pea is not amenable to molecular genetics, we used Arabidopsis thaliana to characterize the two gene homologs. Using several independent approaches, we show that both candidates localize to the chloroplast envelope membrane. The proteins, designated PLASTID ENVELOPE ION CHANNELS (PEC1/2), form oligomers with regulator of K+ conductance domains protruding into the intermembrane space. Heterologous expression of PEC1/2 rescues yeast mutants deficient in K+ uptake. Nuclear POLLUX ion channels cofunction with Ca2+ channels to generate Ca2+ signals, critical for establishing mycorrhizal symbiosis and root development. Chloroplasts also exhibit Ca2+ transients in the stroma, probably to relay abiotic and biotic cues between plastids and the nucleus via the cytosol. Our results show that pec1pec2 loss-of-function double mutants fail to trigger the characteristic stromal Ca2+ release observed in wild-type plants exposed to external stress stimuli. Besides this molecular abnormality, pec1pec2 double mutants do not show obvious phenotypes. Future studies of PEC proteins will help to decipher the plant's stress-related Ca2+ signaling network and the role of plastids. More importantly, the discovery of PECs in the envelope membrane is another critical step towards completing the chloroplast ion transport protein inventory.
Collapse
Affiliation(s)
- Carsten Völkner
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Lorenz Josef Holzner
- Department of Plant Biochemistry, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Philip M Day
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Amra Dhabalia Ashok
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, 37077 Göttingen,Germany
- International Max Planck Research School for Genome Science, 37077 Göttingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, 37077 Göttingen,Germany
- International Max Planck Research School for Genome Science, 37077 Göttingen, Germany
- Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Göttingen,Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, 37077 Göttingen, Germany
| | - Bettina Bölter
- Department of Plant Biochemistry, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Hans-Henning Kunz
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
- Department of Plant Biochemistry, LMU Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
8
|
He J, Rössner N, Hoang MTT, Alejandro S, Peiter E. Transport, functions, and interaction of calcium and manganese in plant organellar compartments. PLANT PHYSIOLOGY 2021; 187:1940-1972. [PMID: 35235665 PMCID: PMC8890496 DOI: 10.1093/plphys/kiab122] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/02/2021] [Indexed: 05/05/2023]
Abstract
Calcium (Ca2+) and manganese (Mn2+) are essential elements for plants and have similar ionic radii and binding coordination. They are assigned specific functions within organelles, but share many transport mechanisms to cross organellar membranes. Despite their points of interaction, those elements are usually investigated and reviewed separately. This review takes them out of this isolation. It highlights our current mechanistic understanding and points to open questions of their functions, their transport, and their interplay in the endoplasmic reticulum (ER), vesicular compartments (Golgi apparatus, trans-Golgi network, pre-vacuolar compartment), vacuoles, chloroplasts, mitochondria, and peroxisomes. Complex processes demanding these cations, such as Mn2+-dependent glycosylation or systemic Ca2+ signaling, are covered in some detail if they have not been reviewed recently or if recent findings add to current models. The function of Ca2+ as signaling agent released from organelles into the cytosol and within the organelles themselves is a recurrent theme of this review, again keeping the interference by Mn2+ in mind. The involvement of organellar channels [e.g. glutamate receptor-likes (GLR), cyclic nucleotide-gated channels (CNGC), mitochondrial conductivity units (MCU), and two-pore channel1 (TPC1)], transporters (e.g. natural resistance-associated macrophage proteins (NRAMP), Ca2+ exchangers (CAX), metal tolerance proteins (MTP), and bivalent cation transporters (BICAT)], and pumps [autoinhibited Ca2+-ATPases (ACA) and ER Ca2+-ATPases (ECA)] in the import and export of organellar Ca2+ and Mn2+ is scrutinized, whereby current controversial issues are pointed out. Mechanisms in animals and yeast are taken into account where they may provide a blueprint for processes in plants, in particular, with respect to tunable molecular mechanisms of Ca2+ versus Mn2+ selectivity.
Collapse
Affiliation(s)
- Jie He
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Nico Rössner
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Minh T T Hoang
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Santiago Alejandro
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Edgar Peiter
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
- Author for communication:
| |
Collapse
|
9
|
Khokhani D, Carrera Carriel C, Vayla S, Irving TB, Stonoha-Arther C, Keller NP, Ané JM. Deciphering the Chitin Code in Plant Symbiosis, Defense, and Microbial Networks. Annu Rev Microbiol 2021; 75:583-607. [PMID: 34623896 DOI: 10.1146/annurev-micro-051921-114809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chitin is a structural polymer in many eukaryotes. Many organisms can degrade chitin to defend against chitinous pathogens or use chitin oligomers as food. Beneficial microorganisms like nitrogen-fixing symbiotic rhizobia and mycorrhizal fungi produce chitin-based signal molecules called lipo-chitooligosaccharides (LCOs) and short chitin oligomers to initiate a symbiotic relationship with their compatible hosts and exchange nutrients. A recent study revealed that a broad range of fungi produce LCOs and chitooligosaccharides (COs), suggesting that these signaling molecules are not limited to beneficial microbes. The fungal LCOs also affect fungal growth and development, indicating that the roles of LCOs beyond symbiosis and LCO production may predate mycorrhizal symbiosis. This review describes the diverse structures of chitin; their perception by eukaryotes and prokaryotes; and their roles in symbiotic interactions, defense, and microbe-microbe interactions. We also discuss potential strategies of fungi to synthesize LCOs and their roles in fungi with different lifestyles.
Collapse
Affiliation(s)
- Devanshi Khokhani
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Current affiliation: Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota 55108, USA;
| | - Cristobal Carrera Carriel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Shivangi Vayla
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Christina Stonoha-Arther
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
10
|
Nasir F, Bahadur A, Lin X, Gao Y, Tian C. Novel insights into host receptors and receptor-mediated signaling that regulate arbuscular mycorrhizal symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1546-1557. [PMID: 33252650 DOI: 10.1093/jxb/eraa538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
More than 80% of land plant species benefit from symbiotic partnerships with arbuscular mycorrhizal (AM) fungi, which assist in nutrient acquisition and enhance the ability of host plants to adapt to environmental constraints. Host-generated plasma membrane-residing receptor-like kinases and the intracellular α/β-hydrolase DWARF14-LIKE, a putative karrikin receptor, detect the presence of AM fungi before physical contact between the host and fungus. Detection induces appropriate symbiotic responses, which subsequently enables a favorable environment for AM symbiosis to occur. To prevent hyper-colonization and maintain a mutually beneficial association, the host plant precisely monitors and controls AM colonization by receptor-like kinases, such as SUPER NUMERIC NODULES. Previous studies have elucidated how host plant receptors and receptor-mediated signaling regulate AM symbiosis, but the underlying molecular mechanisms remain poorly understood. The identification of a rice CHITIN ELICITOR RECEPTOR KINASE 1 interaction partner, MYC FACTOR RECEPTOR 1, and new insights into DWARF14-LIKE receptor- and SUPER NUMERIC NODULES receptor-mediated signaling have expanded our understanding of how host plant receptors and their corresponding signals regulate AM symbiosis. This review summarizes these and other recent relevant findings. The identified receptors and/or their signaling components could be manipulated to engineer crops with improved agronomic traits by conferring the ability to precisely control AM colonization.
Collapse
Affiliation(s)
- Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin Province, China
| | - Ali Bahadur
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu Province, China
| | - Xiaolong Lin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin Province, China
| | - Yingzhi Gao
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin Province, China
- Key Laboratory of Straw Biology and Utilization of the Ministry of Education, Jilin Agricultural University, Changchun, Jilin Province, China
| |
Collapse
|
11
|
Quilbé J, Lamy L, Brottier L, Leleux P, Fardoux J, Rivallan R, Benichou T, Guyonnet R, Becana M, Villar I, Garsmeur O, Hufnagel B, Delteil A, Gully D, Chaintreuil C, Pervent M, Cartieaux F, Bourge M, Valentin N, Martin G, Fontaine L, Droc G, Dereeper A, Farmer A, Libourel C, Nouwen N, Gressent F, Mournet P, D'Hont A, Giraud E, Klopp C, Arrighi JF. Genetics of nodulation in Aeschynomene evenia uncovers mechanisms of the rhizobium-legume symbiosis. Nat Commun 2021; 12:829. [PMID: 33547303 PMCID: PMC7864950 DOI: 10.1038/s41467-021-21094-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023] Open
Abstract
Among legumes (Fabaceae) capable of nitrogen-fixing nodulation, several Aeschynomene spp. use a unique symbiotic process that is independent of Nod factors and infection threads. They are also distinctive in developing root and stem nodules with photosynthetic bradyrhizobia. Despite the significance of these symbiotic features, their understanding remains limited. To overcome such limitations, we conduct genetic studies of nodulation in Aeschynomene evenia, supported by the development of a genome sequence for A. evenia and transcriptomic resources for 10 additional Aeschynomene spp. Comparative analysis of symbiotic genes substantiates singular mechanisms in the early and late nodulation steps. A forward genetic screen also shows that AeCRK, coding a receptor-like kinase, and the symbiotic signaling genes AePOLLUX, AeCCamK, AeCYCLOPS, AeNSP2, and AeNIN are required to trigger both root and stem nodulation. This work demonstrates the utility of the A. evenia model and provides a cornerstone to unravel mechanisms underlying the rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Johan Quilbé
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Léo Lamy
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
- Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Laurent Brottier
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Philippe Leleux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
- Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Joël Fardoux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Ronan Rivallan
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Thomas Benichou
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Rémi Guyonnet
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080, Zaragoza, Spain
| | - Irene Villar
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080, Zaragoza, Spain
| | - Olivier Garsmeur
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Bárbara Hufnagel
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Amandine Delteil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Clémence Chaintreuil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Marjorie Pervent
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Fabienne Cartieaux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Mickaël Bourge
- Cytometry Facility, Imagerie-Gif, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Nicolas Valentin
- Cytometry Facility, Imagerie-Gif, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Loïc Fontaine
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34398, Montpellier, France
| | - Gaëtan Droc
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Alexis Dereeper
- Institut de Recherche pour le Développement (IRD), University of Montpellier, DIADE, IPME, Montpellier, France
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Cyril Libourel
- LRSV, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Nico Nouwen
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Frédéric Gressent
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Pierre Mournet
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Angélique D'Hont
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France
| | - Christophe Klopp
- Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Jean-François Arrighi
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRAE/ UM2 /CIRAD, TA-A82/J, Campus de Baillarguet 34398, Montpellier, cedex 5, France.
| |
Collapse
|
12
|
Ma Y, Chen R. Nitrogen and Phosphorus Signaling and Transport During Legume-Rhizobium Symbiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:683601. [PMID: 34239527 PMCID: PMC8258413 DOI: 10.3389/fpls.2021.683601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/25/2021] [Indexed: 05/11/2023]
Abstract
Nitrogen (N) and phosphorus (P) are the two predominant mineral elements, which are not only essential for plant growth and development in general but also play a key role in symbiotic N fixation in legumes. Legume plants have evolved complex signaling networks to respond to both external and internal levels of these macronutrients to optimize symbiotic N fixation in nodules. Inorganic phosphate (Pi) and nitrate (NO3 -) are the two major forms of P and N elements utilized by plants, respectively. Pi starvation and NO3 - application both reduce symbiotic N fixation via similar changes in the nodule gene expression and invoke local and long-distance, systemic responses, of which N-compound feedback regulation of rhizobial nitrogenase activity appears to operate under both conditions. Most of the N and P signaling and transport processes have been investigated in model organisms, such as Medicago truncatula, Lotus japonicus, Glycine max, Phaseolus vulgaris, Arabidopsis thaliana, Oryza sativa, etc. We attempted to discuss some of these processes wherever appropriate, to serve as references for a better understanding of the N and P signaling and transport during symbiosis.
Collapse
Affiliation(s)
- Yanlin Ma
- MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Rujin Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
- *Correspondence: Rujin Chen,
| |
Collapse
|
13
|
Leitão N, Dangeville P, Carter R, Charpentier M. Nuclear calcium signatures are associated with root development. Nat Commun 2019; 10:4865. [PMID: 31653864 PMCID: PMC6814746 DOI: 10.1038/s41467-019-12845-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/04/2019] [Indexed: 01/12/2023] Open
Abstract
In plants, nuclear Ca2+ releases are essential to the establishment of nitrogen-fixing and phosphate-delivering arbuscular mycorrhizal endosymbioses. In the legume Medicago truncatula, these nuclear Ca2+ signals are generated by a complex of nuclear membrane-localised ion channels including the DOES NOT MAKE INFECTIONS 1 (DMI1) and the cyclic nucleotide-gated channels (CNGC) 15s. DMI1 and CNCG15s are conserved among land plants, suggesting roles for nuclear Ca2+ signalling that extend beyond symbioses. Here we show that nuclear Ca2+ signalling initiates in the nucleus of Arabidopsis root cells and that these signals are correlated with primary root development, including meristem development and auxin homeostasis. In addition, we demonstrate that altering genetically AtDMI1 is sufficient to modulate the nuclear Ca2+ signatures, and primary root development. This finding supports the postulate that stimulus-specific information can be encoded in the frequency and duration of a Ca2+ signal and thereby regulate cellular function. Nuclear Ca2+ signals generated by DMI1 and CNGC15 ion channels in plant roots are needed to establish symbiotic relationships with soil microbes. Here Leitão et al. show that DMI1- dependent nuclear Ca2+ spiking also occurs in Arabidopsis root meristems and are linked to root development
Collapse
Affiliation(s)
- Nuno Leitão
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK.,Synthace Ltd, The Westworks, London, W12 7FQ, UK
| | - Pierre Dangeville
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Ross Carter
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Myriam Charpentier
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK.
| |
Collapse
|
14
|
Cope KR, Bascaules A, Irving TB, Venkateshwaran M, Maeda J, Garcia K, Rush TA, Ma C, Labbé J, Jawdy S, Steigerwald E, Setzke J, Fung E, Schnell KG, Wang Y, Schlief N, Bücking H, Strauss SH, Maillet F, Jargeat P, Bécard G, Puech-Pagès V, Ané JM. The Ectomycorrhizal Fungus Laccaria bicolor Produces Lipochitooligosaccharides and Uses the Common Symbiosis Pathway to Colonize Populus Roots. THE PLANT CELL 2019; 31:2386-2410. [PMID: 31416823 PMCID: PMC6790088 DOI: 10.1105/tpc.18.00676] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/17/2019] [Accepted: 08/06/2019] [Indexed: 05/21/2023]
Abstract
Mycorrhizal fungi form mutualistic associations with the roots of most land plants and provide them with mineral nutrients from the soil in exchange for fixed carbon derived from photosynthesis. The common symbiosis pathway (CSP) is a conserved molecular signaling pathway in all plants capable of associating with arbuscular mycorrhizal fungi. It is required not only for arbuscular mycorrhizal symbiosis but also for rhizobia-legume and actinorhizal symbioses. Given its role in such diverse symbiotic associations, we hypothesized that the CSP also plays a role in ectomycorrhizal associations. We showed that the ectomycorrhizal fungus Laccaria bicolor produces an array of lipochitooligosaccharides (LCOs) that can trigger both root hair branching in legumes and, most importantly, calcium spiking in the host plant Populus in a CASTOR/POLLUX-dependent manner. Nonsulfated LCOs enhanced lateral root development in Populus in a calcium/calmodulin-dependent protein kinase (CCaMK)-dependent manner, and sulfated LCOs enhanced the colonization of Populus by L. bicolor Compared with the wild-type Populus, the colonization of CASTOR/POLLUX and CCaMK RNA interference lines by L. bicolor was reduced. Our work demonstrates that similar to other root symbioses, L. bicolor uses the CSP for the full establishment of its mutualistic association with Populus.
Collapse
Affiliation(s)
- Kevin R Cope
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Adeline Bascaules
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Junko Maeda
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Kevin Garcia
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Tomás A Rush
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Edward Steigerwald
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Jonathan Setzke
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Emmeline Fung
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Kimberly G Schnell
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Yunqian Wang
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Nathaniel Schlief
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Heike Bücking
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota 57007
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331
| | - Fabienne Maillet
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Patricia Jargeat
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- Laboratoire Evolution et Diversité Biologique, Université de Toulouse, UPS, CNRS, IRD, 31077 Toulouse, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Virginie Puech-Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
15
|
Ca 2+-regulated Ca 2+ channels with an RCK gating ring control plant symbiotic associations. Nat Commun 2019; 10:3703. [PMID: 31420535 PMCID: PMC6697748 DOI: 10.1038/s41467-019-11698-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/20/2019] [Indexed: 11/24/2022] Open
Abstract
A family of plant nuclear ion channels, including DMI1 (Does not Make Infections 1) and its homologs CASTOR and POLLUX, are required for the establishment of legume-microbe symbioses by generating nuclear and perinuclear Ca2+ spiking. Here we show that CASTOR from Lotus japonicus is a highly selective Ca2+ channel whose activation requires cytosolic/nucleosolic Ca2+, contrary to the previous suggestion of it being a K+ channel. Structurally, the cytosolic/nucleosolic ligand-binding soluble region of CASTOR contains two tandem RCK (Regulator of Conductance for K+) domains, and four subunits assemble into the gating ring architecture, similar to that of large conductance, Ca2+-gated K+ (BK) channels despite the lack of sequence similarity. Multiple ion binding sites are clustered at two locations within each subunit, and three of them are identified to be Ca2+ sites. Our in vitro and in vivo assays also demonstrate the importance of these gating-ring Ca2+ binding sites to the physiological function of CASTOR as well as DMI1. CASTOR is a Lotus japonicus ion channel required for nuclear Ca2+ spiking and establishing rhizobial and mycorrhizal symbioses. Here, via structural and functional analysis, Kim et al. show that CASTOR is a Ca2+-selective channel activated via Ca2+ binding to a soluble gating ring consisting of tandem RCK domains.
Collapse
|
16
|
A set of Arabidopsis genes involved in the accommodation of the downy mildew pathogen Hyaloperonospora arabidopsidis. PLoS Pathog 2019; 15:e1007747. [PMID: 31299058 PMCID: PMC6625732 DOI: 10.1371/journal.ppat.1007747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
The intracellular accommodation structures formed by plant cells to host arbuscular mycorrhiza fungi and biotrophic hyphal pathogens are cytologically similar. Therefore we investigated whether these interactions build on an overlapping genetic framework. In legumes, the malectin-like domain leucine-rich repeat receptor kinase SYMRK, the cation channel POLLUX and members of the nuclear pore NUP107-160 subcomplex are essential for symbiotic signal transduction and arbuscular mycorrhiza development. We identified members of these three groups in Arabidopsis thaliana and explored their impact on the interaction with the oomycete downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa). We report that mutations in the corresponding genes reduced the reproductive success of Hpa as determined by sporangiophore and spore counts. We discovered that a developmental transition of haustorial shape occurred significantly earlier and at higher frequency in the mutants. Analysis of the multiplication of extracellular bacterial pathogens, Hpa-induced cell death or callose accumulation, as well as Hpa- or flg22-induced defence marker gene expression, did not reveal any traces of constitutive or exacerbated defence responses. These findings point towards an overlap between the plant genetic toolboxes involved in the interaction with biotrophic intracellular hyphal symbionts and pathogens in terms of the gene families involved. Our work reveals genetic commonalities between biotrophic intracellular interactions with symbiotic and pathogenic hyphal microbes. The majority of land plants engages in arbuscular mycorrhiza (AM) symbiosis with phosphate-acquiring arbuscular mycorrhizal fungi to avoid phosphate starvation. Nutrient exchange in this interaction occurs via arbuscules, tree-shaped fungal structures, hosted within plant root cells. A series of plant genes including the Symbiosis Receptor-like kinase (SYMRK), members of the NUP107-160 subcomplex and nuclear envelope localised cation channels are required for a signalling process leading to the development of AM. The model plant Arabidopsis thaliana lost the ability to form AM. Although the ortholog of SYMRK was deleted during evolution, members of the malectin-like domain leucine-rich repeat receptor kinase (MLD-LRR-RK) gene family, components of the NUP107-160 subcomplex, and an ortholog of the nuclear envelope-localized cation channel POLLUX, are still present in the Arabidopsis genome, and Arabidopsis leaf cells retained the ability to accommodate haustoria, presumed feeding structures of the obligate biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis. We discovered that both of these plant-microbe interactions utilize a corresponding set of genes including the ortholog of POLLUX, members of the NUP107-160 subcomplex and members of the MLD-LRR-RK gene family, thus revealing similarities in the plant program for the intracellular accommodation of biotrophic organisms in symbiosis and disease.
Collapse
|
17
|
Oelmüller R. Sensing environmental and developmental signals via cellooligomers. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:1-6. [PMID: 30005268 DOI: 10.1016/j.jplph.2018.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Roots respond to a cocktail of chemicals from microbes in the rhizosphere. Infochemicals in nmol concentrations activate receptor-mediated signal pathways, which reprogram the plant responses to environmental changes. The microbial signals have to pass the cell wall to activate pattern recognition receptors at the surface of the plant plasma membrane. The structure of the cell wall is not only a barrier for the signaling molecules, but also changes permanently during growth and development, as well as in response to microbial attacks or abiotic stress. Recently, cellooligomers (COMs) were identified as novel chemical mediators in Arabidopsis thaliana, which inform the cell about the alterations in and around the cell wall. They can be of microbial and plant origin and represent novel invasion patterns (Cook et al., 2015). COMs initiate Ca2+-dependent signaling events that reprogram the cell and adjust the expression and metabolite profiles as well as innate immunity in response to changes in their rhizosphere environment and the state of the cell wall. COMs operate synergistically with other signals or their recognition machineries and activates local and systemic responses in the entire plant. They also adjust the performance of the areal parts of the plant to signals perceived by the roots. Here, I summarize our current knowledge about COMs and propose strategies for future investigations.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| |
Collapse
|
18
|
Moscatiello R, Sello S, Ruocco M, Barbulova A, Cortese E, Nigris S, Baldan B, Chiurazzi M, Mariani P, Lorito M, Navazio L. The Hydrophobin HYTLO1 Secreted by the Biocontrol Fungus Trichoderma longibrachiatum Triggers a NAADP-Mediated Calcium Signalling Pathway in Lotus japonicus. Int J Mol Sci 2018; 19:E2596. [PMID: 30200468 PMCID: PMC6164116 DOI: 10.3390/ijms19092596] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
Trichoderma filamentous fungi are increasingly used as biocontrol agents and plant biostimulants. Growing evidence indicates that part of the beneficial effects is mediated by the activity of fungal metabolites on the plant host. We have investigated the mechanism of plant perception of HYTLO1, a hydrophobin abundantly secreted by Trichoderma longibrachiatum, which may play an important role in the early stages of the plant-fungus interaction. Aequorin-expressing Lotus japonicus suspension cell cultures responded to HYTLO1 with a rapid cytosolic Ca2+ increase that dissipated within 30 min, followed by the activation of the defence-related genes MPK3, WRK33, and CP450. The Ca2+-dependence of these gene expression was demonstrated by using the extracellular Ca2+ chelator EGTA and Ned-19, a potent inhibitor of the nicotinic acid adenine dinucleotide phosphate (NAADP) receptor in animal cells, which effectively blocked the HYTLO1-induced Ca2+ elevation. Immunocytochemical analyses showed the localization of the fungal hydrophobin at the plant cell surface, where it forms a protein film covering the plant cell wall. Our data demonstrate the Ca2+-mediated perception by plant cells of a key metabolite secreted by a biocontrol fungus, and provide the first evidence of the involvement of NAADP-gated Ca2+ release in a signalling pathway triggered by a biotic stimulus.
Collapse
Affiliation(s)
- Roberto Moscatiello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Simone Sello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection, CNR, Via Università 133, 80055 Portici (NA), Italy.
| | - Ani Barbulova
- Institute of BioSciences and BioResourses, CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| | - Enrico Cortese
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Sebastiano Nigris
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123 Padova, Italy.
| | - Barbara Baldan
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123 Padova, Italy.
| | - Maurizio Chiurazzi
- Institute of BioSciences and BioResourses, CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| | - Paola Mariani
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Napoli "Federico II", Via Università 100, 80055 Portici (NA), Italy.
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123 Padova, Italy.
| |
Collapse
|
19
|
Veklich TO, Nikonishyna YV, Kosterin SO. Pathways and mechanisms of transmembrane calcium ions exchange in the cell nucleus. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
20
|
Johnson JM, Thürich J, Petutschnig EK, Altschmied L, Meichsner D, Sherameti I, Dindas J, Mrozinska A, Paetz C, Scholz SS, Furch ACU, Lipka V, Hedrich R, Schneider B, Svatoš A, Oelmüller R. A Poly(A) Ribonuclease Controls the Cellotriose-Based Interaction between Piriformospora indica and Its Host Arabidopsis. PLANT PHYSIOLOGY 2018; 176:2496-2514. [PMID: 29371249 PMCID: PMC5841714 DOI: 10.1104/pp.17.01423] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/12/2018] [Indexed: 05/17/2023]
Abstract
Piriformospora indica, an endophytic root-colonizing fungus, efficiently promotes plant growth and induces resistance to abiotic stress and biotic diseases. P. indica fungal cell wall extract induces cytoplasmic calcium elevation in host plant roots. Here, we show that cellotriose (CT) is an elicitor-active cell wall moiety released by P. indica into the medium. CT induces a mild defense-like response, including the production of reactive oxygen species, changes in membrane potential, and the expression of genes involved in growth regulation and root development. CT-based cytoplasmic calcium elevation in Arabidopsis (Arabidopsis thaliana) roots does not require the BAK1 coreceptor or the putative Ca2+ channels TPC1, GLR3.3, GLR2.4, and GLR2.5 and operates synergistically with the elicitor chitin. We identified an ethyl methanesulfonate-induced mutant (cytoplasmiccalcium elevation mutant) impaired in the response to CT and various other cellooligomers (n = 2-7), but not to chitooligomers (n = 4-8), in roots. The mutant contains a single nucleotide exchange in the gene encoding a poly(A) ribonuclease (AtPARN; At1g55870) that degrades the poly(A) tails of specific mRNAs. The wild-type PARN cDNA, expressed under the control of a 35S promoter, complements the mutant phenotype. Our identification of cellotriose as a novel chemical mediator casts light on the complex P. indica-plant mutualistic relationship.
Collapse
Affiliation(s)
- Joy M Johnson
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Johannes Thürich
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Elena K Petutschnig
- Department of Plant Cell Biology, Albrecht von Haller Institute, Georg August University, 37077 Goettingen, Germany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Stadt Seeland, Germany
| | - Doreen Meichsner
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Irena Sherameti
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Julian Dindas
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, D-97082 Wuerzburg, Germany
| | - Anna Mrozinska
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sandra S Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Alexandra C U Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht von Haller Institute, Georg August University, 37077 Goettingen, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, D-97082 Wuerzburg, Germany
| | - Bernd Schneider
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich-Schiller-University, D-07743 Jena, Germany
| |
Collapse
|
21
|
Abstract
ABSTRACT
Mycorrhizal fungi belong to several taxa and develop mutualistic symbiotic associations with over 90% of all plant species, from liverworts to angiosperms. While descriptive approaches have dominated the initial studies of these fascinating symbioses, the advent of molecular biology, live cell imaging, and “omics” techniques have provided new and powerful tools to decipher the cellular and molecular mechanisms that rule mutualistic plant-fungus interactions. In this article we focus on the most common mycorrhizal association, arbuscular mycorrhiza (AM), which is formed by a group of soil fungi belonging to Glomeromycota. AM fungi are believed to have assisted the conquest of dry lands by early plants around 450 million years ago and are found today in most land ecosystems. AM fungi have several peculiar biological traits, including obligate biotrophy, intracellular development inside the plant tissues, coenocytic multinucleate hyphae, and spores, as well as unique genetics, such as the putative absence of a sexual cycle, and multiple ecological functions. All of these features make the study of AM fungi as intriguing as it is challenging, and their symbiotic association with most crop plants is currently raising a broad interest in agronomic contexts for the potential use of AM fungi in sustainable production under conditions of low chemical input.
Collapse
|
22
|
Jardinaud MF, Boivin S, Rodde N, Catrice O, Kisiala A, Lepage A, Moreau S, Roux B, Cottret L, Sallet E, Brault M, Emery RJN, Gouzy J, Frugier F, Gamas P. A Laser Dissection-RNAseq Analysis Highlights the Activation of Cytokinin Pathways by Nod Factors in the Medicago truncatula Root Epidermis. PLANT PHYSIOLOGY 2016; 171:2256-76. [PMID: 27217496 PMCID: PMC4936592 DOI: 10.1104/pp.16.00711] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 05/19/2023]
Abstract
Nod factors (NFs) are lipochitooligosaccharidic signal molecules produced by rhizobia, which play a key role in the rhizobium-legume symbiotic interaction. In this study, we analyzed the gene expression reprogramming induced by purified NF (4 and 24 h of treatment) in the root epidermis of the model legume Medicago truncatula Tissue-specific transcriptome analysis was achieved by laser-capture microdissection coupled to high-depth RNA sequencing. The expression of 17,191 genes was detected in the epidermis, among which 1,070 were found to be regulated by NF addition, including previously characterized NF-induced marker genes. Many genes exhibited strong levels of transcriptional activation, sometimes only transiently at 4 h, indicating highly dynamic regulation. Expression reprogramming affected a variety of cellular processes, including perception, signaling, regulation of gene expression, as well as cell wall, cytoskeleton, transport, metabolism, and defense, with numerous NF-induced genes never identified before. Strikingly, early epidermal activation of cytokinin (CK) pathways was indicated, based on the induction of CK metabolic and signaling genes, including the CRE1 receptor essential to promote nodulation. These transcriptional activations were independently validated using promoter:β-glucuronidase fusions with the MtCRE1 CK receptor gene and a CK response reporter (TWO COMPONENT SIGNALING SENSOR NEW). A CK pretreatment reduced the NF induction of the EARLY NODULIN11 (ENOD11) symbiotic marker, while a CK-degrading enzyme (CYTOKININ OXIDASE/DEHYDROGENASE3) ectopically expressed in the root epidermis led to increased NF induction of ENOD11 and nodulation. Therefore, CK may play both positive and negative roles in M. truncatula nodulation.
Collapse
Affiliation(s)
- Marie-Françoise Jardinaud
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Stéphane Boivin
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Nathalie Rodde
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Olivier Catrice
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Anna Kisiala
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Agnes Lepage
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Sandra Moreau
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Brice Roux
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Ludovic Cottret
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Erika Sallet
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Mathias Brault
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - R J Neil Emery
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Jérôme Gouzy
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Florian Frugier
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Pascal Gamas
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| |
Collapse
|
23
|
Checchetto V, Teardo E, Carraretto L, Leanza L, Szabo I. Physiology of intracellular potassium channels: A unifying role as mediators of counterion fluxes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1258-1266. [PMID: 26970213 DOI: 10.1016/j.bbabio.2016.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022]
Abstract
Plasma membrane potassium channels importantly contribute to maintain ion homeostasis across the cell membrane. The view is emerging that also those residing in intracellular membranes play pivotal roles for the coordination of correct cell function. In this review we critically discuss our current understanding of the nature and physiological tasks of potassium channels in organelle membranes in both animal and plant cells, with a special emphasis on their function in the regulation of photosynthesis and mitochondrial respiration. In addition, the emerging role of potassium channels in the nuclear membranes in regulating transcription will be discussed. The possible functions of endoplasmic reticulum-, lysosome- and plant vacuolar membrane-located channels are also referred to. Altogether, experimental evidence obtained with distinct channels in different membrane systems points to a possible unifying function of most intracellular potassium channels in counterbalancing the movement of other ions including protons and calcium and modulating membrane potential, thereby fine-tuning crucial cellular processes. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-7, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Vanessa Checchetto
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy; Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35131 Italy
| | - Enrico Teardo
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Luca Carraretto
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy; CNR Institute of Neuroscience, University of Padova, Viale G. Colombo 3, Padova 35131, Italy.
| |
Collapse
|
24
|
Genre A, Russo G. Does a Common Pathway Transduce Symbiotic Signals in Plant-Microbe Interactions? FRONTIERS IN PLANT SCIENCE 2016; 7:96. [PMID: 26909085 PMCID: PMC4754458 DOI: 10.3389/fpls.2016.00096] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/18/2016] [Indexed: 05/02/2023]
Abstract
Recent years have witnessed major advances in our knowledge of plant mutualistic symbioses such as the rhizobium-legume symbiosis (RLS) and arbuscular mycorrhizas (AM). Some of these findings caused the revision of longstanding hypotheses, but one of the most solid theories is that a conserved set of plant proteins rules the transduction of symbiotic signals from beneficial glomeromycetes and rhizobia in a so-called common symbiotic pathway (CSP). Nevertheless, the picture still misses several elements, and a few crucial points remain unclear. How does one common pathway discriminate between - at least - two symbionts? Can we exclude that microbes other than AM fungi and rhizobia also use this pathway to communicate with their host plants? We here discuss the possibility that our current view is biased by a long-lasting focus on legumes, whose ability to develop both AM and RLS is an exception among plants and a recent innovation in their evolution; investigations in non-legumes are starting to place legume symbiotic signaling in a broader perspective. Furthermore, recent studies suggest that CSP proteins act in a wider scenario of symbiotic and non-symbiotic signaling. Overall, evidence is accumulating in favor of distinct activities for CSP proteins in AM and RLS, depending on the molecular and cellular context where they act.
Collapse
|
25
|
Nakagawa T, Imaizumi-Anraku H. Rice arbuscular mycorrhiza as a tool to study the molecular mechanisms of fungal symbiosis and a potential target to increase productivity. RICE (NEW YORK, N.Y.) 2015; 8:32. [PMID: 26516078 PMCID: PMC4626465 DOI: 10.1186/s12284-015-0067-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/22/2015] [Indexed: 05/08/2023]
Abstract
Rice (Oryza sativa L.) is a monocot model crop for cereal molecular biology. Following the emergence of molecular genetics of arbuscular mycorrhizal (AM) symbiosis in model legumes in the 1990s, studies on rice genetic resources have considerably contributed to our understanding of the molecular mechanisms and evolution of root intracellular symbioses.In this review, we trace the history of these studies and suggest the potential utility of AM symbiosis for improvement in rice productivity.
Collapse
Affiliation(s)
- Tomomi Nakagawa
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Haruko Imaizumi-Anraku
- Division of Plant Sicences, National Institute of Agrobiological Sciences, 2-1-2 Kannon-dai, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
26
|
Abstract
Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis.
Collapse
|
27
|
Abstract
Rhizobia and arbuscular mycorrhizal fungi produce signals that are perceived by host legume receptors at the plasma membrane and trigger sustained oscillations of the nuclear and perinuclear Ca(2+) concentration (Ca(2+) spiking), which in turn leads to gene expression and downstream symbiotic responses. The activation of Ca(2+) spiking requires the plasma membrane-localized receptor-like kinase Does not Make Infections 2 (DMI2) as well as the nuclear cation channel DMI1. A key enzyme regulating the mevalonate (MVA) pathway, 3-Hydroxy-3-Methylglutaryl CoA Reductase 1 (HMGR1), interacts with DMI2 and is required for the legume-rhizobium symbiosis. Here, we show that HMGR1 is required to initiate Ca(2+) spiking and symbiotic gene expression in Medicago truncatula roots in response to rhizobial and arbuscular mycorrhizal fungal signals. Furthermore, MVA, the direct product of HMGR1 activity, is sufficient to induce nuclear-associated Ca(2+) spiking and symbiotic gene expression in both wild-type plants and dmi2 mutants, but interestingly not in dmi1 mutants. Finally, MVA induced Ca(2+) spiking in Human Embryonic Kidney 293 cells expressing DMI1. This demonstrates that the nuclear cation channel DMI1 is sufficient to support MVA-induced Ca(2+) spiking in this heterologous system.
Collapse
|
28
|
Chen J, Gutjahr C, Bleckmann A, Dresselhaus T. Calcium signaling during reproduction and biotrophic fungal interactions in plants. MOLECULAR PLANT 2015; 8:595-611. [PMID: 25660409 DOI: 10.1016/j.molp.2015.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/18/2015] [Accepted: 01/20/2015] [Indexed: 05/25/2023]
Abstract
Many recent studies have indicated that cellular communications during plant reproduction, fungal invasion, and defense involve identical or similar molecular players and mechanisms. Indeed, pollen tube invasion and sperm release shares many common features with infection of plant tissue by fungi and oomycetes, as a tip-growing intruder needs to communicate with the receptive cells to gain access into a cell and tissue. Depending on the compatibility between cells, interactions may result in defense, invasion, growth support, or cell death. Plant cells stimulated by both pollen tubes and fungal hyphae secrete, for example, small cysteine-rich proteins and receptor-like kinases are activated leading to intracellular signaling events such as the production of reactive oxygen species (ROS) and the generation of calcium (Ca(2+)) transients. The ubiquitous and versatile second messenger Ca(2+) thereafter plays a central and crucial role in modulating numerous downstream signaling processes. In stimulated cells, it elicits both fast and slow cellular responses depending on the shape, frequency, amplitude, and duration of the Ca(2+) transients. The various Ca(2+) signatures are transduced into cellular information via a battery of Ca(2+)-binding proteins. In this review, we focus on Ca(2+) signaling and discuss its occurrence during plant reproduction and interactions of plant cells with biotrophic filamentous microbes. The participation of Ca(2+) in ROS signaling pathways is also discussed.
Collapse
Affiliation(s)
- Junyi Chen
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Caroline Gutjahr
- Faculty of Biology Genetics, Biocenter Martinsried, University of Munich (LMU), Grosshaderner Strasse 2-4, D-82152 Martinsried, Germany
| | - Andrea Bleckmann
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
29
|
Suzaki T, Yoro E, Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:111-58. [PMID: 25805123 DOI: 10.1016/bs.ircmb.2015.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Legumes and a few other plant species can establish a symbiotic relationship with nitrogen-fixing rhizobia, which enables them to survive in a nitrogen-deficient environment. During the course of nodulation, infection with rhizobia induces the dedifferentiation of host cells to form primordia of a symbiotic organ, the nodule, which prepares plants to accommodate rhizobia in host cells. While these nodulation processes are known to be genetically controlled by both plants and rhizobia, recent advances in studies on two model legumes, Lotus japonicus and Medicago truncatula, have provided great insight into the underlying plant-side molecular mechanism. In this chapter, we review such knowledge, with particular emphasis on two key processes of nodulation, nodule development and rhizobial invasion.
Collapse
Affiliation(s)
- Takuya Suzaki
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Emiko Yoro
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
30
|
Banhara A, Ding Y, Kühner R, Zuccaro A, Parniske M. Colonization of root cells and plant growth promotion by Piriformospora indica occurs independently of plant common symbiosis genes. FRONTIERS IN PLANT SCIENCE 2015; 6:667. [PMID: 26441999 PMCID: PMC4585188 DOI: 10.3389/fpls.2015.00667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/13/2015] [Indexed: 05/05/2023]
Abstract
Arbuscular mycorrhiza (AM) fungi (Glomeromycota) form symbiosis with and deliver nutrients via the roots of most angiosperms. AM fungal hyphae are taken up by living root epidermal cells, a program which relies on a set of plant common symbiosis genes (CSGs). Plant root epidermal cells are also infected by the plant growth-promoting fungus Piriformospora indica (Basidiomycota), raising the question whether this interaction relies on the AM-related CSGs. Here we show that intracellular colonization of root cells and intracellular sporulation by P. indica occurred in CSG mutants of the legume Lotus japonicus and in Arabidopsis thaliana, which belongs to the Brassicaceae, a family that has lost the ability to form AM as well as a core set of CSGs. A. thaliana mutants of homologs of CSGs (HCSGs) interacted with P. indica similar to the wild-type. Moreover, increased biomass of A. thaliana evoked by P. indica was unaltered in HCSG mutants. We conclude that colonization and growth promotion by P. indica are independent of the CSGs and that AM fungi and P. indica exploit different host pathways for infection.
Collapse
Affiliation(s)
- Aline Banhara
- Faculty of Biology, Institute of Genetics, University of MunichMartinsried, Germany
| | - Yi Ding
- Department of Organismic Interactions, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| | - Regina Kühner
- Faculty of Biology, Institute of Genetics, University of MunichMartinsried, Germany
| | - Alga Zuccaro
- Department of Organismic Interactions, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
- Cluster of Excellence on Plant Sciences, Botanical Institute, University of CologneCologne, Germany
| | - Martin Parniske
- Faculty of Biology, Institute of Genetics, University of MunichMartinsried, Germany
- *Correspondence: Martin Parniske, Genetics, Faculty of Biology, University of Munich (LMU), Großhaderner Strasse 4, 82152 Martinsried, Germany
| |
Collapse
|
31
|
Ried MK, Antolín-Llovera M, Parniske M. Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases. eLife 2014; 3:03891. [PMID: 25422918 PMCID: PMC4243133 DOI: 10.7554/elife.03891] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/29/2014] [Indexed: 01/23/2023] Open
Abstract
Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (NFR1), NFR5, and SYMRK initiate spontaneous nodule organogenesis and nodulation-related gene expression in the absence of rhizobia. Furthermore, overexpressed NFR1 or NFR5 associated with endogenous SYMRK in roots of the legume Lotus japonicus. Epistasis tests revealed that the dominant active SYMRK allele initiates signalling independently of either the NFR1 or NFR5 gene and upstream of a set of genes required for the generation or decoding of calcium-spiking in both symbioses. Only SYMRK but not NFR overexpression triggered the expression of AM-related genes, indicating that the receptors play a key role in the decision between AM- or root nodule symbiosis-development.
Collapse
Affiliation(s)
| | | | - Martin Parniske
- Faculty of Biology, Ludwig Maximilians University Munich, Munich, Germany
| |
Collapse
|
32
|
Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet 2014; 10:e1004487. [PMID: 25032823 PMCID: PMC4102449 DOI: 10.1371/journal.pgen.1004487] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 05/20/2014] [Indexed: 02/06/2023] Open
Abstract
Mutualistic symbioses between eukaryotes and beneficial microorganisms of their microbiome play an essential role in nutrition, protection against disease, and development of the host. However, the impact of beneficial symbionts on the evolution of host genomes remains poorly characterized. Here we used the independent loss of the most widespread plant–microbe symbiosis, arbuscular mycorrhization (AM), as a model to address this question. Using a large phenotypic approach and phylogenetic analyses, we present evidence that loss of AM symbiosis correlates with the loss of many symbiotic genes in the Arabidopsis lineage (Brassicales). Then, by analyzing the genome and/or transcriptomes of nine other phylogenetically divergent non-host plants, we show that this correlation occurred in a convergent manner in four additional plant lineages, demonstrating the existence of an evolutionary pattern specific to symbiotic genes. Finally, we use a global comparative phylogenomic approach to track this evolutionary pattern among land plants. Based on this approach, we identify a set of 174 highly conserved genes and demonstrate enrichment in symbiosis-related genes. Our findings are consistent with the hypothesis that beneficial symbionts maintain purifying selection on host gene networks during the evolution of entire lineages. Symbiotic associations between eukaryotes and microbes play essential roles in the nutrition, health and behavior of both partners. It is well accepted that hosts control and shape their associated microbiome. In this study, we provide evidence that symbiotic microbes also participate in the evolution of host genomes. In particular, we show that the independent loss of a symbiosis in several plant lineages results in a convergent modification of non-host genomes. Interestingly, a significant fraction of genes lost in non-hosts play an important role in this symbiosis, supporting the use of comparative genomics as a powerful approach to identify undiscovered gene networks.
Collapse
|
33
|
Delaux PM, Varala K, Edger PP, Coruzzi GM, Pires JC, Ané JM. Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet 2014. [PMID: 25032823 DOI: 10.1371/journal.pgen.100448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Mutualistic symbioses between eukaryotes and beneficial microorganisms of their microbiome play an essential role in nutrition, protection against disease, and development of the host. However, the impact of beneficial symbionts on the evolution of host genomes remains poorly characterized. Here we used the independent loss of the most widespread plant-microbe symbiosis, arbuscular mycorrhization (AM), as a model to address this question. Using a large phenotypic approach and phylogenetic analyses, we present evidence that loss of AM symbiosis correlates with the loss of many symbiotic genes in the Arabidopsis lineage (Brassicales). Then, by analyzing the genome and/or transcriptomes of nine other phylogenetically divergent non-host plants, we show that this correlation occurred in a convergent manner in four additional plant lineages, demonstrating the existence of an evolutionary pattern specific to symbiotic genes. Finally, we use a global comparative phylogenomic approach to track this evolutionary pattern among land plants. Based on this approach, we identify a set of 174 highly conserved genes and demonstrate enrichment in symbiosis-related genes. Our findings are consistent with the hypothesis that beneficial symbionts maintain purifying selection on host gene networks during the evolution of entire lineages.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kranthi Varala
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Patrick P Edger
- Bond Life Sciences Center, Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - J Chris Pires
- Bond Life Sciences Center, Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
34
|
Charpentier M, Oldroyd GE. Nuclear calcium signaling in plants. PLANT PHYSIOLOGY 2013; 163:496-503. [PMID: 23749852 PMCID: PMC3793031 DOI: 10.1104/pp.113.220863] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/05/2013] [Indexed: 05/18/2023]
Abstract
Plant cell nuclei can generate calcium responses to a variety of inputs, tantamount among them the response to signaling molecules from symbiotic microorganisms .
Collapse
Affiliation(s)
- Myriam Charpentier
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Giles E.D. Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
35
|
Martins TV, Evans MJ, Woolfenden HC, Morris RJ. Towards the Physics of Calcium Signalling in Plants. PLANTS (BASEL, SWITZERLAND) 2013; 2:541-88. [PMID: 27137393 PMCID: PMC4844391 DOI: 10.3390/plants2040541] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/17/2013] [Accepted: 09/22/2013] [Indexed: 12/21/2022]
Abstract
Calcium is an abundant element with a wide variety of important roles within cells. Calcium ions are inter- and intra-cellular messengers that are involved in numerous signalling pathways. Fluctuating compartment-specific calcium ion concentrations can lead to localised and even plant-wide oscillations that can regulate downstream events. Understanding the mechanisms that give rise to these complex patterns that vary both in space and time can be challenging, even in cases for which individual components have been identified. Taking a systems biology approach, mathematical and computational techniques can be employed to produce models that recapitulate experimental observations and capture our current understanding of the system. Useful models make novel predictions that can be investigated and falsified experimentally. This review brings together recent work on the modelling of calcium signalling in plants, from the scale of ion channels through to plant-wide responses to external stimuli. Some in silico results that have informed later experiments are highlighted.
Collapse
Affiliation(s)
- Teresa Vaz Martins
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew J Evans
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hugh C Woolfenden
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
36
|
Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 2013; 11:252-63. [PMID: 23493145 DOI: 10.1038/nrmicro2990] [Citation(s) in RCA: 872] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plants associate with a wide range of microorganisms, with both detrimental and beneficial outcomes. Central to plant survival is the ability to recognize invading microorganisms and either limit their intrusion, in the case of pathogens, or promote the association, in the case of symbionts. To aid in this recognition process, elaborate communication and counter-communication systems have been established that determine the degree of ingress of the microorganism into the host plant. In this Review, I describe the common signalling processes used by plants during mutualistic interactions with microorganisms as diverse as arbuscular mycorrhizal fungi and rhizobial bacteria.
Collapse
|
37
|
Oldroyd GED. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 2013. [PMID: 23493145 DOI: 10.1038/nrmicro.2990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plants associate with a wide range of microorganisms, with both detrimental and beneficial outcomes. Central to plant survival is the ability to recognize invading microorganisms and either limit their intrusion, in the case of pathogens, or promote the association, in the case of symbionts. To aid in this recognition process, elaborate communication and counter-communication systems have been established that determine the degree of ingress of the microorganism into the host plant. In this Review, I describe the common signalling processes used by plants during mutualistic interactions with microorganisms as diverse as arbuscular mycorrhizal fungi and rhizobial bacteria.
Collapse
Affiliation(s)
- Giles E D Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
38
|
Charpentier M, Vaz Martins T, Granqvist E, Oldroyd GE, Morris RJ. The role of DMI1 in establishing Ca (2+) oscillations in legume symbioses. PLANT SIGNALING & BEHAVIOR 2013; 8:e22894. [PMID: 23299416 PMCID: PMC3656989 DOI: 10.4161/psb.22894] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/14/2012] [Indexed: 05/20/2023]
Abstract
Calcium (Ca (2+)) is a key secondary messenger in many plant signaling pathways. One such pathway is the SYM pathway, required in the establishment of both arbuscular mycorrhizal and rhizobial root symbioses with legume host plants. (1) When the host plant has perceived the diffusible signals from the microbial symbionts, one of the earliest physiological responses are Ca (2+) oscillations in and around the nucleus. (2) These oscillations are essential for activating downstream gene expression, but the precise mechanisms of encoding and decoding the Ca (2+) signals are unclear and still under intense investigation. Here we put forward a hypothesis for the mechanism of the cation channel DMI1.
Collapse
Affiliation(s)
| | | | - Emma Granqvist
- Computational and Systems Biology; John Innes Centre; Norwich, UK
| | | | - Richard J. Morris
- Computational and Systems Biology; John Innes Centre; Norwich, UK
- Correspondence to: Richard J. Morris,
| |
Collapse
|
39
|
Venkateshwaran M, Volkening JD, Sussman MR, Ané JM. Symbiosis and the social network of higher plants. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:118-27. [PMID: 23246268 DOI: 10.1016/j.pbi.2012.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 05/22/2023]
Abstract
In the Internet era, communicating with friends and colleagues via social networks constitutes a significant proportion of our daily activities. Similarly animals and plants also interact with many organisms, some of which are pathogens and do no good for the plant, while others are beneficial symbionts. Almost all plants indulge in developing social networks with microbes, in particular with arbuscular mycorrhizal fungi, and emerging evidence indicates that most employ an ancient and widespread central 'social media' pathway made of signaling molecules within what is called the SYM pathway. Some plants, like legumes, are particularly active recruiters of friends, as they have established very sophisticated and beneficial interactions with nitrogen-fixing bacteria, also via the SYM pathway. Interestingly, many members of the Brassicaceae, including the model plant Arabidopsis thaliana, seem to have removed themselves from this ancestral social network and lost the ability to engage in mutually favorable interactions with arbuscular mycorrhizal fungi. Despite these generalizations, recent studies exploring the root microbiota of A. thaliana have found that in natural conditions, A. thaliana roots are colonized by many different bacterial species and therefore may be using different and probably more recent 'social media' for these interactions. In general, recent advances in the understanding of such molecular machinery required for plant-symbiont associations are being obtained using high throughput genomic profiling strategies including transcriptomics, proteomics and metabolomics. The crucial mechanistic understanding that such data reveal may provide the infrastructure for future efforts to genetically manipulate crop social networks for our own food and fiber needs.
Collapse
|
40
|
Granqvist E, Wysham D, Hazledine S, Kozlowski W, Sun J, Charpentier M, Martins TV, Haleux P, Tsaneva-Atanasova K, Downie JA, Oldroyd GE, Morris RJ. Buffering capacity explains signal variation in symbiotic calcium oscillations. PLANT PHYSIOLOGY 2012; 160:2300-10. [PMID: 23027664 PMCID: PMC3510149 DOI: 10.1104/pp.112.205682] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Legumes form symbioses with rhizobial bacteria and arbuscular mycorrhizal fungi that aid plant nutrition. A critical component in the establishment of these symbioses is nuclear-localized calcium (Ca(2+)) oscillations. Different components on the nuclear envelope have been identified as being required for the generation of the Ca(2+) oscillations. Among these an ion channel, Doesn't Make Infections1, is preferentially localized on the inner nuclear envelope and a Ca(2+) ATPase is localized on both the inner and outer nuclear envelopes. Doesn't Make Infections1 is conserved across plants and has a weak but broad similarity to bacterial potassium channels. A possible role for this cation channel could be hyperpolarization of the nuclear envelope to counterbalance the charge caused by the influx of Ca(2+) into the nucleus. Ca(2+) channels and Ca(2+) pumps are needed for the release and reuptake of Ca(2+) from the internal store, which is hypothesized to be the nuclear envelope lumen and endoplasmic reticulum, but the release mechanism of Ca(2+) remains to be identified and characterized. Here, we develop a mathematical model based on these components to describe the observed symbiotic Ca(2+) oscillations. This model can recapitulate Ca(2+) oscillations, and with the inclusion of Ca(2+)-binding proteins it offers a simple explanation for several previously unexplained phenomena. These include long periods of frequency variation, changes in spike shape, and the initiation and termination of oscillations. The model also predicts that an increase in buffering capacity in the nucleoplasm would cause a period of rapid oscillations. This phenomenon was observed experimentally by adding more of the inducing signal.
Collapse
|