1
|
Renna L, Stefano G, Puggioni MP, Kim SJ, Lavell A, Froehlich JE, Burkart G, Mancuso S, Benning C, Brandizzi F. ER-associated VAP27-1 and VAP27-3 proteins functionally link the lipid-binding ORP2A at the ER-chloroplast contact sites. Nat Commun 2024; 15:6008. [PMID: 39019917 PMCID: PMC11255254 DOI: 10.1038/s41467-024-50425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
The plant endoplasmic reticulum (ER) contacts heterotypic membranes at membrane contact sites (MCSs) through largely undefined mechanisms. For instance, despite the well-established and essential role of the plant ER-chloroplast interactions for lipid biosynthesis, and the reported existence of physical contacts between these organelles, almost nothing is known about the ER-chloroplast MCS identity. Here we show that the Arabidopsis ER membrane-associated VAP27 proteins and the lipid-binding protein ORP2A define a functional complex at the ER-chloroplast MCSs. Specifically, through in vivo and in vitro association assays, we found that VAP27 proteins interact with the outer envelope membrane (OEM) of chloroplasts, where they bind to ORP2A. Through lipidomic analyses, we established that VAP27 proteins and ORP2A directly interact with the chloroplast OEM monogalactosyldiacylglycerol (MGDG), and we demonstrated that the loss of the VAP27-ORP2A complex is accompanied by subtle changes in the acyl composition of MGDG and PG. We also found that ORP2A interacts with phytosterols and established that the loss of the VAP27-ORP2A complex alters sterol levels in chloroplasts. We propose that, by interacting directly with OEM lipids, the VAP27-ORP2A complex defines plant-unique MCSs that bridge ER and chloroplasts and are involved in chloroplast lipid homeostasis.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, University of Florence, Florence, Italy
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Biology, University of Florence, Florence, Italy
| | - Maria Paola Puggioni
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Sang-Jin Kim
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Anastasiya Lavell
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - John E Froehlich
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Biochemistry and Molecular Biology Department, Michigan State University, East Lansing, MI, USA
| | - Graham Burkart
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - Stefano Mancuso
- Department of Horticulture, University of Florence, Florence, Italy
- Fondazione per il Futuro delle Città, Florence, Italy
| | - Christoph Benning
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Biochemistry and Molecular Biology Department, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Quinn O, Kumar M, Turner S. The role of lipid-modified proteins in cell wall synthesis and signaling. PLANT PHYSIOLOGY 2023; 194:51-66. [PMID: 37682865 PMCID: PMC10756762 DOI: 10.1093/plphys/kiad491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
The plant cell wall is a complex and dynamic extracellular matrix. Plant primary cell walls are the first line of defense against pathogens and regulate cell expansion. Specialized cells deposit a secondary cell wall that provides support and permits water transport. The composition and organization of the cell wall varies between cell types and species, contributing to the extensibility, stiffness, and hydrophobicity required for its proper function. Recently, many of the proteins involved in the biosynthesis, maintenance, and remodeling of the cell wall have been identified as being post-translationally modified with lipids. These modifications exhibit diverse structures and attach to proteins at different sites, which defines the specific role played by each lipid modification. The introduction of relatively hydrophobic lipid moieties promotes the interaction of proteins with membranes and can act as sorting signals, allowing targeted delivery to the plasma membrane regions and secretion into the apoplast. Disruption of lipid modification results in aberrant deposition of cell wall components and defective cell wall remodeling in response to stresses, demonstrating the essential nature of these modifications. Although much is known about which proteins bear lipid modifications, many questions remain regarding the contribution of lipid-driven membrane domain localization and lipid heterogeneity to protein function in cell wall metabolism. In this update, we highlight the contribution of lipid modifications to proteins involved in the formation and maintenance of plant cell walls, with a focus on the addition of glycosylphosphatidylinositol anchors, N-myristoylation, prenylation, and S-acylation.
Collapse
Affiliation(s)
- Oliver Quinn
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Simon Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| |
Collapse
|
3
|
Rivière F, Monassa P, Giglione C, Meinnel T. Kinetic and catalytic features of N-myristoyltransferases. Methods Enzymol 2023; 684:167-190. [DOI: 10.1016/bs.mie.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Sarwar R, Li L, Yu J, Zhang Y, Geng R, Meng Q, Zhu K, Tan XL. Functional Characterization of the Cystine-Rich-Receptor-like Kinases ( CRKs) and Their Expression Response to Sclerotinia sclerotiorum and Abiotic Stresses in Brassica napus. Int J Mol Sci 2022; 24:ijms24010511. [PMID: 36613954 PMCID: PMC9820174 DOI: 10.3390/ijms24010511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins that bind to the calcium ion to regulate stress-signaling and plant development-related pathways, as indicated by several pieces of evidence. However, the CRK gene family hasn’t been inadequately examined in Brassica napus. In our study, 27 members of the CRK gene family were identified in Brassica napus, which are categorized into three phylogenetic groups and display synteny relationship to the Arabidopsis thaliana orthologs. All the CRK genes contain highly conserved N-terminal PKINASE domain; however, the distribution of motifs and gene structure were variable conserved. The functional divergence analysis between BnaCRK groups indicates a shift in evolutionary rate after duplication events, demonstrating that BnaCRKs might direct a specific function. RNA-Seq datasets and quantitative real-time PCR (qRT-PCR) exhibit the complex expression profile of the BnaCRKs in plant tissues under multiple stresses. Nevertheless, BnaA06CRK6-1 and BnaA08CRK8 from group B were perceived to play a predominant role in the Brassica napus stress signaling pathway in response to drought, salinity, and Sclerotinia sclerotiorum infection. Insights gained from this study improve our knowledge about the Brassica napus CRK gene family and provide a basis for enhancing the quality of rapeseed.
Collapse
Affiliation(s)
- Rehman Sarwar
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Lei Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiang Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yijie Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Rui Geng
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qingfeng Meng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keming Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Soupene E, Kuypers FA. Dual Role of ACBD6 in the Acylation Remodeling of Lipids and Proteins. Biomolecules 2022; 12:biom12121726. [PMID: 36551154 PMCID: PMC9775454 DOI: 10.3390/biom12121726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The transfer of acyl chains to proteins and lipids from acyl-CoA donor molecules is achieved by the actions of diverse enzymes and proteins, including the acyl-CoA binding domain-containing protein ACBD6. N-myristoyl-transferase (NMT) enzymes catalyze the covalent attachment of a 14-carbon acyl chain from the relatively rare myristoyl-CoA to the N-terminal glycine residue of myr-proteins. The interaction of the ankyrin-repeat domain of ACBD6 with NMT produces an active enzymatic complex for the use of myristoyl-CoA protected from competitive inhibition by acyl donor competitors. The absence of the ACBD6/NMT complex in ACBD6.KO cells increased the sensitivity of the cells to competitors and significantly reduced myristoylation of proteins. Protein palmitoylation was not altered in those cells. The specific defect in myristoyl-transferase activity of the ACBD6.KO cells provided further evidence of the essential functional role of the interaction of ACBD6 with the NMT enzymes. Acyl-CoAs bound to the acyl-CoA binding domain of ACBD6 are acyl donors for the lysophospholipid acyl-transferase enzymes (LPLAT), which acylate single acyl-chain lipids, such as the bioactive molecules LPA and LPC. Whereas the formation of acyl-CoAs was not altered in ACBD6.KO cells, lipid acylation processes were significantly reduced. The defect in PC formation from LPC by the LPCAT enzymes resulted in reduced lipid droplets content. The diversity of the processes affected by ACBD6 highlight its dual function as a carrier and a regulator of acyl-CoA dependent reactions. The unique role of ACBD6 represents an essential common feature of (acyl-CoA)-dependent modification pathways controlling the lipid and protein composition of human cell membranes.
Collapse
|
6
|
Meinnel T, Giglione C. N-terminal modifications, the associated processing machinery, and their evolution in plastid-containing organisms. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6013-6033. [PMID: 35768189 DOI: 10.1093/jxb/erac290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The N-terminus is a frequent site of protein modifications. Referring primarily to knowledge gained from land plants, here we review the modifications that change protein N-terminal residues and provide updated information about the associated machinery, including that in Archaeplastida. These N-terminal modifications include many proteolytic events as well as small group additions such as acylation or arginylation and oxidation. Compared with that of the mitochondrion, the plastid-dedicated N-terminal modification landscape is far more complex. In parallel, we extend this review to plastid-containing Chromalveolata including Stramenopiles, Apicomplexa, and Rhizaria. We report a well-conserved machinery, especially in the plastid. Consideration of the two most abundant proteins on Earth-Rubisco and actin-reveals the complexity of N-terminal modification processes. The progressive gene transfer from the plastid to the nuclear genome during evolution is exemplified by the N-terminus modification machinery, which appears to be one of the latest to have been transferred to the nuclear genome together with crucial major photosynthetic landmarks. This is evidenced by the greater number of plastid genes in Paulinellidae and red algae, the most recent and fossil recipients of primary endosymbiosis.
Collapse
Affiliation(s)
- Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
7
|
Giglione C, Meinnel T. Mapping the myristoylome through a complete understanding of protein myristoylation biochemistry. Prog Lipid Res 2021; 85:101139. [PMID: 34793862 DOI: 10.1016/j.plipres.2021.101139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
Abstract
Protein myristoylation is a C14 fatty acid modification found in all living organisms. Myristoylation tags either the N-terminal alpha groups of cysteine or glycine residues through amide bonds or lysine and cysteine side chains directly or indirectly via glycerol thioester and ester linkages. Before transfer to proteins, myristate must be activated into myristoyl coenzyme A in eukaryotes or, in bacteria, to derivatives like phosphatidylethanolamine. Myristate originates through de novo biosynthesis (e.g., plants), from external uptake (e.g., human tissues), or from mixed origins (e.g., unicellular organisms). Myristate usually serves as a molecular anchor, allowing tagged proteins to be targeted to membranes and travel across endomembrane networks in eukaryotes. In this review, we describe and discuss the metabolic origins of protein-bound myristate. We review strategies for in vivo protein labeling that take advantage of click-chemistry with reactive analogs, and we discuss new approaches to the proteome-wide discovery of myristate-containing proteins. The machineries of myristoylation are described, along with how protein targets can be generated directly from translating precursors or from processed proteins. Few myristoylation catalysts are currently described, with only N-myristoyltransferase described to date in eukaryotes. Finally, we describe how viruses and bacteria hijack and exploit myristoylation for their pathogenicity.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
8
|
Goodman K, Paez-Valencia J, Pennington J, Sonntag A, Ding X, Lee HN, Ahlquist PG, Molina I, Otegui MS. ESCRT components ISTL1 andLIP5 are required for tapetal function and pollen viability. THE PLANT CELL 2021; 33:2850-2868. [PMID: 34125207 PMCID: PMC8408459 DOI: 10.1093/plcell/koab132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/07/2021] [Indexed: 05/03/2023]
Abstract
Pollen wall assembly is crucial for pollen development and plant fertility. The durable biopolymer sporopollenin and the constituents of the tryphine coat are delivered to developing pollen grains by the highly coordinated secretory activity of the surrounding tapetal cells. The role of membrane trafficking in this process, however, is largely unknown. In this study, we used Arabidopsis thaliana to characterize the role of two late-acting endosomal sorting complex required for transport (ESCRT) components, ISTL1 and LIP5, in tapetal function. Plants lacking ISTL1 and LIP5 form pollen with aberrant exine patterns, leading to partial pollen lethality. We found that ISTL1 and LIP5 are required for exocytosis of plasma membrane and secreted proteins in the tapetal cells at the free microspore stage, contributing to pollen wall development and tryphine deposition. Whereas the ESCRT machinery is well known for its role in endosomal trafficking, the function of ISTL1 and LIP5 in exocytosis is not a typical ESCRT function. The istl1 lip5 double mutants also show reduced intralumenal vesicle concatenation in multivesicular endosomes in both tapetal cells and developing pollen grains as well as morphological defects in early endosomes/trans-Golgi networks, suggesting that late ESCRT components function in the early endosomal pathway and exocytosis.
Collapse
Affiliation(s)
- Kaija Goodman
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Julio Paez-Valencia
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Janice Pennington
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Annika Sonntag
- Department of Biology, Algoma University, Ontario P6A 2G4, Canada
| | - Xinxin Ding
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Han Nim Lee
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Paul G. Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Oncology and Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
- Morgridge Institute for Research, Madison, Wisconsin 53706, USA
| | - Isabel Molina
- Department of Biology, Algoma University, Ontario P6A 2G4, Canada
| | - Marisa S. Otegui
- Department of Botany, University of Wisconsin-Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Author for Correspondence:
| |
Collapse
|
9
|
Meinnel T, Dian C, Giglione C. Myristoylation, an Ancient Protein Modification Mirroring Eukaryogenesis and Evolution. Trends Biochem Sci 2020; 45:619-632. [PMID: 32305250 DOI: 10.1016/j.tibs.2020.03.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022]
Abstract
N-myristoylation (MYR) is a crucial fatty acylation catalyzed by N-myristoyltransferases (NMTs) that is likely to have appeared over 2 billion years ago. Proteome-wide approaches have now delivered an exhaustive list of substrates undergoing MYR across approximately 2% of any proteome, with constituents, several unexpected, associated with different membrane compartments. A set of <10 proteins conserved in eukaryotes probably represents the original set of N-myristoylated targets, marking major changes occurring throughout eukaryogenesis. Recent findings have revealed unexpected mechanisms and reactivity, suggesting competition with other acylations that are likely to influence cellular homeostasis and the steady state of the modification landscape. Here, we review recent advances in NMT catalysis, substrate specificity, and MYR proteomics, and discuss concepts regarding MYR during evolution.
Collapse
Affiliation(s)
- Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Cyril Dian
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Cao P, Kim SJ, Xing A, Schenck CA, Liu L, Jiang N, Wang J, Last RL, Brandizzi F. Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in Arabidopsis. eLife 2019; 8:e50747. [PMID: 31808741 PMCID: PMC6937141 DOI: 10.7554/elife.50747] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/05/2019] [Indexed: 01/11/2023] Open
Abstract
The target of rapamycin (TOR) kinase is an evolutionarily conserved hub of nutrient sensing and metabolic signaling. In plants, a functional connection of TOR activation with glucose availability was demonstrated, while it is yet unclear whether branched-chain amino acids (BCAAs) are a primary input of TOR signaling as they are in yeast and mammalian cells. Here, we report on the characterization of an Arabidopsis mutant over-accumulating BCAAs. Through chemical interventions targeting TOR and by examining mutants of BCAA biosynthesis and TOR signaling, we found that BCAA over-accumulation leads to up-regulation of TOR activity, which causes reorganization of the actin cytoskeleton and actin-associated endomembranes. Finally, we show that activation of TOR is concomitant with alteration of cell expansion, proliferation and specialized metabolism, leading to pleiotropic effects on plant growth and development. These results demonstrate that BCAAs contribute to plant TOR activation and reveal previously uncharted downstream subcellular processes of TOR signaling.
Collapse
Affiliation(s)
- Pengfei Cao
- MSU-DOE Plant Research LabMichigan State UniversityEast LansingUnited States
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
| | - Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast LansingUnited States
| | - Anqi Xing
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Craig A Schenck
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Lu Liu
- MSU-DOE Plant Research LabMichigan State UniversityEast LansingUnited States
| | - Nan Jiang
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Jie Wang
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
| | - Robert L Last
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Federica Brandizzi
- MSU-DOE Plant Research LabMichigan State UniversityEast LansingUnited States
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
11
|
Stefano G, Renna L, Wormsbaecher C, Gamble J, Zienkiewicz K, Brandizzi F. Plant Endocytosis Requires the ER Membrane-Anchored Proteins VAP27-1 and VAP27-3. Cell Rep 2019; 23:2299-2307. [PMID: 29791842 DOI: 10.1016/j.celrep.2018.04.091] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 03/26/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022] Open
Abstract
Through yet-undefined mechanisms, the plant endoplasmic reticulum (ER) has a critical role in endocytosis. The plant ER establishes a close association with endosomes and contacts the plasma membrane (PM) at ER-PM contact sites (EPCSs) demarcated by the ER membrane-associated VAMP-associated-proteins (VAP). Here, we investigated two plant VAPs, VAP27-1 and VAP27-3, and found an interaction with clathrin and a requirement for the homeostasis of clathrin dynamics at endocytic membranes and endocytosis. We also demonstrated direct interaction of VAP27-proteins with phosphatidylinositol-phosphate lipids (PIPs) that populate endocytic membranes. These results support that, through interaction with PIPs, VAP27-proteins bridge the ER with endocytic membranes and maintain endocytic traffic, likely through their interaction with clathrin.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA; Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | | | - Jessie Gamble
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | | | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA; Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
12
|
Baba AI, Andrási N, Valkai I, Gorcsa T, Koczka L, Darula Z, Medzihradszky KF, Szabados L, Fehér A, Rigó G, Cséplő Á. AtCRK5 Protein Kinase Exhibits a Regulatory Role in Hypocotyl Hook Development during Skotomorphogenesis. Int J Mol Sci 2019; 20:ijms20143432. [PMID: 31336871 PMCID: PMC6678082 DOI: 10.3390/ijms20143432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Seedling establishment following germination requires the fine tuning of plant hormone levels including that of auxin. Directional movement of auxin has a central role in the associated processes, among others, in hypocotyl hook development. Regulated auxin transport is ensured by several transporters (PINs, AUX1, ABCB) and their tight cooperation. Here we describe the regulatory role of the Arabidopsis thaliana CRK5 protein kinase during hypocotyl hook formation/opening influencing auxin transport and the auxin-ethylene-GA hormonal crosstalk. It was found that the Atcrk5-1 mutant exhibits an impaired hypocotyl hook establishment phenotype resulting only in limited bending in the dark. The Atcrk5-1 mutant proved to be deficient in the maintenance of local auxin accumulation at the concave side of the hypocotyl hook as demonstrated by decreased fluorescence of the auxin sensor DR5::GFP. Abundance of the polar auxin transport (PAT) proteins PIN3, PIN7, and AUX1 were also decreased in the Atcrk5-1 hypocotyl hook. The AtCRK5 protein kinase was reported to regulate PIN2 protein activity by phosphorylation during the root gravitropic response. Here it is shown that AtCRK5 can also phosphorylate in vitro the hydrophilic loops of PIN3. We propose that AtCRK5 may regulate hypocotyl hook formation in Arabidopsis thaliana through the phosphorylation of polar auxin transport (PAT) proteins, the fine tuning of auxin transport, and consequently the coordination of auxin-ethylene-GA levels.
Collapse
Affiliation(s)
- Abu Imran Baba
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Norbert Andrási
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Ildikó Valkai
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Teréz Gorcsa
- Agricultural Biotechnology Institute, Szent-Györgyi Albert u. 4, H-2100 Gödöllő, Hungary
| | - Lilla Koczka
- Developmental and Cell Biology of Plants, CEITEC Masaryk University, 62500 Brno, Czech Republic
| | - Zsuzsanna Darula
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Katalin F Medzihradszky
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
| | - Gábor Rigó
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary.
| | - Ágnes Cséplő
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| |
Collapse
|
13
|
Chang SJ, Jin SC, Jiao X, Galán JE. Unique features in the intracellular transport of typhoid toxin revealed by a genome-wide screen. PLoS Pathog 2019; 15:e1007704. [PMID: 30951565 PMCID: PMC6469816 DOI: 10.1371/journal.ppat.1007704] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022] Open
Abstract
Typhoid toxin is a virulence factor for Salmonella Typhi and Paratyphi, the cause of typhoid fever in humans. This toxin has a unique architecture in that its pentameric B subunit, made of PltB, is linked to two enzymatic A subunits, the ADP ribosyl transferase PltA and the deoxyribonuclease CdtB. Typhoid toxin is uniquely adapted to humans, recognizing surface glycoprotein sialoglycans terminated in acetyl neuraminic acid, which are preferentially expressed by human cells. The transport pathway to its cellular targets followed by typhoid toxin after receptor binding is currently unknown. Through a genome-wide CRISPR/Cas9-mediated screen we have characterized the mechanisms by which typhoid toxin is transported within human cells. We found that typhoid toxin hijacks specific elements of the retrograde transport and endoplasmic reticulum-associated degradation machineries to reach its subcellular destination within target cells. Our study reveals unique and common features in the transport mechanisms of bacterial toxins that could serve as the bases for the development of novel anti-toxin therapeutic strategies.
Collapse
Affiliation(s)
- Shu-Jung Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Xuyao Jiao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
14
|
Renna L, Stefano G, Slabaugh E, Wormsbaecher C, Sulpizio A, Zienkiewicz K, Brandizzi F. TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network. Nat Commun 2018. [PMID: 30552321 DOI: 10.1038/s41467-018-07662-7664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Defining convergent and divergent mechanisms underlying the biogenesis and function of endomembrane organelles is fundamentally important in cell biology. In all eukaryotes, the Trans-Golgi Network (TGN) is the hub where the exocytic and endocytic pathways converge. To gain knowledge in the mechanisms underlying TGN biogenesis and function, we characterized TGNap1, a protein encoded by a plant gene of unknown function conserved with metazoans. We demonstrate that TGNap1 is a TGN protein required for the homeostasis of biosynthetic and endocytic traffic pathways. We also show that TGNap1 binds Rab6, YIP4 and microtubules. Finally, we establish that TGNap1 contributes to microtubule-dependent biogenesis, tracking and function of a TGN subset, likely through interaction with Rab6 and YIP4. Our results identify an important trafficking determinant at the plant TGN and reveal an unexpected reliance of post-Golgi traffic homeostasis and organelle biogenesis on microtubules in plants.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erin Slabaugh
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Clarissa Wormsbaecher
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Alan Sulpizio
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Krzysztof Zienkiewicz
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37073, Göttingen, Germany
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
15
|
Renna L, Stefano G, Slabaugh E, Wormsbaecher C, Sulpizio A, Zienkiewicz K, Brandizzi F. TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network. Nat Commun 2018; 9:5313. [PMID: 30552321 PMCID: PMC6294250 DOI: 10.1038/s41467-018-07662-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
Defining convergent and divergent mechanisms underlying the biogenesis and function of endomembrane organelles is fundamentally important in cell biology. In all eukaryotes, the Trans-Golgi Network (TGN) is the hub where the exocytic and endocytic pathways converge. To gain knowledge in the mechanisms underlying TGN biogenesis and function, we characterized TGNap1, a protein encoded by a plant gene of unknown function conserved with metazoans. We demonstrate that TGNap1 is a TGN protein required for the homeostasis of biosynthetic and endocytic traffic pathways. We also show that TGNap1 binds Rab6, YIP4 and microtubules. Finally, we establish that TGNap1 contributes to microtubule-dependent biogenesis, tracking and function of a TGN subset, likely through interaction with Rab6 and YIP4. Our results identify an important trafficking determinant at the plant TGN and reveal an unexpected reliance of post-Golgi traffic homeostasis and organelle biogenesis on microtubules in plants.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erin Slabaugh
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Clarissa Wormsbaecher
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Alan Sulpizio
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Krzysztof Zienkiewicz
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37073, Göttingen, Germany
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
16
|
Jacquier M, Kuriakose S, Bhardwaj A, Zhang Y, Shrivastav A, Portet S, Varma Shrivastav S. Investigation of Novel Regulation of N-myristoyltransferase by Mammalian Target of Rapamycin in Breast Cancer Cells. Sci Rep 2018; 8:12969. [PMID: 30154572 PMCID: PMC6113272 DOI: 10.1038/s41598-018-30447-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/16/2018] [Indexed: 01/02/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Hormone receptor breast cancers are the most common ones and, about 2 out of every 3 cases of breast cancer are estrogen receptor (ER) positive. Selective ER modulators, such as tamoxifen, are the first line of endocrine treatment of breast cancer. Despite the expression of hormone receptors some patients develop tamoxifen resistance and 50% present de novo tamoxifen resistance. Recently, we have demonstrated that activated mammalian target of rapamycin (mTOR) is positively associated with overall survival and recurrence free survival in ER positive breast cancer patients who were later treated with tamoxifen. Since altered expression of protein kinase B (PKB)/Akt in breast cancer cells affect N-myristoyltransferase 1 (NMT1) expression and activity, we investigated whether mTOR, a downstream target of PKB/Akt, regulates NMT1 in ER positive breast cancer cells (MCF7 cells). We inhibited mTOR by treating MCF7 cells with rapamycin and observed that the expression of NMT1 increased with rapamycin treatment over the period of time with a concomitant decrease in mTOR phosphorylation. We further employed mathematical modelling to investigate hitherto not known relationship of mTOR with NMT1. We report here for the first time a collection of models and data validating regulation of NMT1 by mTOR.
Collapse
Affiliation(s)
- Marine Jacquier
- Department of Mathematics, University of Manitoba, Winnipeg, Canada
| | - Shiby Kuriakose
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Apurva Bhardwaj
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Yang Zhang
- Department of Mathematics, University of Manitoba, Winnipeg, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada.,Research Institute of Hematology and Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Stéphanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
17
|
Salicylic acid-independent role of NPR1 is required for protection from proteotoxic stress in the plant endoplasmic reticulum. Proc Natl Acad Sci U S A 2018; 115:E5203-E5212. [PMID: 29760094 DOI: 10.1073/pnas.1802254115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The unfolded protein response (UPR) is an ancient signaling pathway designed to protect cells from the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER). Because misregulation of the UPR is potentially lethal, a stringent surveillance signaling system must be in place to modulate the UPR. The major signaling arms of the plant UPR have been discovered and rely on the transcriptional activity of the transcription factors bZIP60 and bZIP28 and on the kinase and ribonuclease activity of IRE1, which splices mRNA to activate bZIP60. Both bZIP28 and bZIP60 modulate UPR gene expression to overcome ER stress. In this study, we demonstrate at a genetic level that the transcriptional role of bZIP28 and bZIP60 in ER-stress responses is antagonized by nonexpressor of PR1 genes 1 (NPR1), a critical redox-regulated master regulator of salicylic acid (SA)-dependent responses to pathogens, independently of its role in SA defense. We also establish that the function of NPR1 in the UPR is concomitant with ER stress-induced reduction of the cytosol and translocation of NPR1 to the nucleus where it interacts with bZIP28 and bZIP60. Our results support a cellular role for NPR1 as well as a model for plant UPR regulation whereby SA-independent ER stress-induced redox activation of NPR1 suppresses the transcriptional role of bZIP28 and bZIP60 in the UPR.
Collapse
|
18
|
Baba AI, Rigó G, Ayaydin F, Rehman AU, Andrási N, Zsigmond L, Valkai I, Urbancsok J, Vass I, Pasternak T, Palme K, Szabados L, Cséplő Á. Functional Analysis of the Arabidopsis thaliana CDPK-Related Kinase Family: At CRK1 Regulates Responses to Continuous Light. Int J Mol Sci 2018; 19:ijms19051282. [PMID: 29693594 PMCID: PMC5983578 DOI: 10.3390/ijms19051282] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/22/2018] [Indexed: 12/24/2022] Open
Abstract
The Calcium-Dependent Protein Kinase (CDPK)-Related Kinase family (CRKs) consists of eight members in Arabidopsis. Recently, AtCRK5 was shown to play a direct role in the regulation of root gravitropic response involving polar auxin transport (PAT). However, limited information is available about the function of the other AtCRK genes. Here, we report a comparative analysis of the Arabidopsis CRK genes, including transcription regulation, intracellular localization, and biological function. AtCRK transcripts were detectable in all organs tested and a considerable variation in transcript levels was detected among them. Most AtCRK proteins localized at the plasma membrane as revealed by microscopic analysis of 35S::cCRK-GFP (Green Fluorescence Protein) expressing plants or protoplasts. Interestingly, 35S::cCRK1-GFP and 35S::cCRK7-GFP had a dual localization pattern which was associated with plasma membrane and endomembrane structures, as well. Analysis of T-DNA insertion mutants revealed that AtCRK genes are important for root growth and control of gravitropic responses in roots and hypocotyls. While Atcrk mutants were indistinguishable from wild type plants in short days, Atcrk1-1 mutant had serious growth defects under continuous illumination. Semi-dwarf phenotype of Atcrk1-1 was accompanied with chlorophyll depletion, disturbed photosynthesis, accumulation of singlet oxygen, and enhanced cell death in photosynthetic tissues. AtCRK1 is therefore important to maintain cellular homeostasis during continuous illumination.
Collapse
Affiliation(s)
- Abu Imran Baba
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary.
| | - Gábor Rigó
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| | - Ferhan Ayaydin
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Ateeq Ur Rehman
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Norbert Andrási
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Laura Zsigmond
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Ildikó Valkai
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - János Urbancsok
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | - Imre Vass
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Taras Pasternak
- Faculty of Biologie II, Albert-Ludwigs Universität, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - Klaus Palme
- Faculty of Biologie II, Albert-Ludwigs Universität, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - László Szabados
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Ágnes Cséplő
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| |
Collapse
|
19
|
Kim SJ, Zemelis-Durfee S, Jensen JK, Wilkerson CG, Keegstra K, Brandizzi F. In the grass species Brachypodium distachyon, the production of mixed-linkage (1,3;1,4)-β-glucan (MLG) occurs in the Golgi apparatus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1062-1075. [PMID: 29377449 DOI: 10.1111/tpj.13830] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 05/27/2023]
Abstract
Mixed-linkage (1,3;1,4)-β-glucan (MLG) is a glucose polymer with beneficial effects on human health and high potential for the agricultural industry. MLG is present predominantly in the cell wall of grasses and is synthesized by cellulose synthase-like F or H families of proteins, with CSLF6 being the best-characterized MLG synthase. Although the function of this enzyme in MLG production has been established, the site of MLG synthesis in the cell is debated. It has been proposed that MLG is synthesized at the plasma membrane, as occurs for cellulose and callose; in contrast, it has also been proposed that MLG is synthesized in the Golgi apparatus, as occurs for other matrix polysaccharides of the cell wall. Testing these conflicting possibilities is fundamentally important in the general understanding of the biosynthesis of the plant cell wall. Using immuno-localization analyses with MLG-specific antibody in Brachypodium and in barley, we found MLG present in the Golgi, in post-Golgi structures and in the cell wall. Accordingly, analyses of a functional fluorescent protein fusion of CSLF6 stably expressed in Brachypodium demonstrated that the enzyme is localized in the Golgi. We also established that overproduction of MLG causes developmental and growth defects in Brachypodium as also occur in barley. Our results indicated that MLG production occurs in the Golgi similarly to other cell wall matrix polysaccharides, and supports the broadly applicable model in grasses that tight mechanisms control optimal MLG accumulation in the cell wall during development and growth. This work addresses the fundamental question of where mixed linkage (1,3;1,4)-β-glucan (MLG) is synthesized in plant cells. By analyzing the subcellular localization of MLG and MLG synthase in an endogenous system, we demonstrated that MLG synthesis occurs at the Golgi in Brachypodium and barley. A growth inhibition due to overproduced MLG in Brachypodium supports the general applicability of the model that a tight control of the cell wall polysaccharides accumulation is needed to maintain growth homeostasis during development.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 4882, USA
| | - Starla Zemelis-Durfee
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 4882, USA
| | - Jacob Krüger Jensen
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 4882, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Curtis G Wilkerson
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 4882, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kenneth Keegstra
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 4882, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 4882, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
20
|
Majeran W, Le Caer JP, Ponnala L, Meinnel T, Giglione C. Targeted Profiling of Arabidopsis thaliana Subproteomes Illuminates Co- and Posttranslationally N-Terminal Myristoylated Proteins. THE PLANT CELL 2018; 30:543-562. [PMID: 29453228 PMCID: PMC5894833 DOI: 10.1105/tpc.17.00523] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/02/2018] [Accepted: 02/15/2018] [Indexed: 05/05/2023]
Abstract
N-terminal myristoylation, a major eukaryotic protein lipid modification, is difficult to detect in vivo and challenging to predict in silico. We developed a proteomics strategy involving subfractionation of cellular membranes, combined with separation of hydrophobic peptides by mass spectrometry-coupled liquid chromatography to identify the Arabidopsis thaliana myristoylated proteome. This approach identified a starting pool of 8837 proteins in all analyzed cellular fractions, comprising 32% of the Arabidopsis proteome. Of these, 906 proteins contain an N-terminal Gly at position 2, a prerequisite for myristoylation, and 214 belong to the predicted myristoylome (comprising 51% of the predicted myristoylome of 421 proteins). We further show direct evidence of myristoylation in 72 proteins; 18 of these myristoylated proteins were not previously predicted. We found one myristoylation site downstream of a predicted initiation codon, indicating that posttranslational myristoylation occurs in plants. Over half of the identified proteins could be quantified and assigned to a subcellular compartment. Hierarchical clustering of protein accumulation combined with myristoylation and S-acylation data revealed that N-terminal double acylation influences redirection to the plasma membrane. In a few cases, MYR function extended beyond simple membrane association. This study identified hundreds of N-acylated proteins for which lipid modifications could control protein localization and expand protein function.
Collapse
Affiliation(s)
- Wojciech Majeran
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Jean-Pierre Le Caer
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14850
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
21
|
Barozzi F, Papadia P, Stefano G, Renna L, Brandizzi F, Migoni D, Fanizzi FP, Piro G, Di Sansebastiano GP. Variation in Membrane Trafficking Linked to SNARE AtSYP51 Interaction With Aquaporin NIP1;1. FRONTIERS IN PLANT SCIENCE 2018; 9:1949. [PMID: 30687352 PMCID: PMC6334215 DOI: 10.3389/fpls.2018.01949] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/14/2018] [Indexed: 05/20/2023]
Abstract
SYP51 and 52 are the two members of the SYP5 Qc-SNARE gene family in Arabidopsis thaliana. These two proteins, besides their high level of sequence identity (85%), have shown to have differential functional specificity and possess a different interactome. Here we describe a unique and specific interaction of SYP51 with an ER aquaporin, AtNIP1;1 (also known as NLM1) indicated to be able to transport arsenite [As(III)] and previously localized on PM. In the present work we investigate in detail such localization in vivo and characterize the interaction with SYP51. We suggest that this interaction may reveal a new mechanism regulating tonoplast invagination and recycling. We propose this interaction to be part of a regulatory mechanism associated with direct membrane transport from ER to tonoplast and Golgi mediated vesicle trafficking. We also demonstrate that NIP1;1 is important for plant tolerance to arsenite but does not alter its uptake or translocation. To explain such phenomenon the hypothesis that SYP51/NIP1;1 interaction modifies ER and vacuole ability to accumulate arsenite is discussed.
Collapse
Affiliation(s)
- Fabrizio Barozzi
- Laboratory of Botany, DISTEBA (Diartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
| | - Paride Papadia
- Laboratory of General and Inorganic Chemistry, DISTEBA (Dipartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
- *Correspondence: Paride Papadia
| | - Giovanni Stefano
- MSU DOE-Plant Biology Lab, Michigan State University, East Lansing, MI, United States
| | - Luciana Renna
- MSU DOE-Plant Biology Lab, Michigan State University, East Lansing, MI, United States
| | - Federica Brandizzi
- MSU DOE-Plant Biology Lab, Michigan State University, East Lansing, MI, United States
| | - Danilo Migoni
- Laboratory of General and Inorganic Chemistry, DISTEBA (Dipartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
| | - Francesco Paolo Fanizzi
- Laboratory of General and Inorganic Chemistry, DISTEBA (Dipartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
| | - Gabriella Piro
- Laboratory of Botany, DISTEBA (Diartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
| | - Gian-Pietro Di Sansebastiano
- Laboratory of Botany, DISTEBA (Diartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
- Gian-Pietro Di Sansebastiano
| |
Collapse
|
22
|
Abstract
The availability of more specific dyes for a subset of endomembrane compartments, combined with the development of genetically encoded probes and advanced microscopy technologies, makes live cell imaging an approach that goes beyond the microscopically observation of cell structure. Here we describe the latest improved techniques to investigate protein-protein interaction, protein topology, and protein dynamics.Furthermore, we depict new technical approaches to identify mutants for chloroplast morphology and distribution through the tracking of chlorophyll fluorescence, as well as mutants for chloroplast movement.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
23
|
Stefano G, Brandizzi F. Advances in Plant ER Architecture and Dynamics. PLANT PHYSIOLOGY 2018; 176:178-186. [PMID: 28986423 PMCID: PMC5761816 DOI: 10.1104/pp.17.01261] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/01/2017] [Indexed: 05/18/2023]
Abstract
Recent advances highlight mechanisms that enable the morphological integrity of the plant ER in relation to the other organelles and the cytoskeleton.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, Michigan 48824
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
24
|
Turnbull D, Hemsley PA. Fats and function: protein lipid modifications in plant cell signalling. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:63-70. [PMID: 28772175 DOI: 10.1016/j.pbi.2017.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 05/12/2023]
Abstract
The post-translational lipid modifications N-myristoylation, prenylation and S-acylation are traditionally associated with increasing protein membrane affinity and localisation. However this is an over-simplification, with evidence now implicating these modifications in a variety of roles such as membrane microdomain partitioning, protein trafficking, protein complex assembly and polarity maintenance. Evidence for a regulatory role is also emerging, with changes or manipulation of lipid modifications offering a means of directly controlling various aspects of protein function. Proteomics advances have revealed an enrichment of signalling proteins in the lipid-modified proteome, potentially indicating an important role for these modifications in responding to stimuli. This review highlights some of the key themes and possible functions of lipid modification during signalling processes in plants.
Collapse
Affiliation(s)
- Dionne Turnbull
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Piers A Hemsley
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK; Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK.
| |
Collapse
|
25
|
Cao P, Renna L, Stefano G, Brandizzi F. SYP73 Anchors the ER to the Actin Cytoskeleton for Maintenance of ER Integrity and Streaming in Arabidopsis. Curr Biol 2016; 26:3245-3254. [DOI: 10.1016/j.cub.2016.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
|
26
|
Sparks JA, Kwon T, Renna L, Liao F, Brandizzi F, Blancaflor EB. HLB1 Is a Tetratricopeptide Repeat Domain-Containing Protein That Operates at the Intersection of the Exocytic and Endocytic Pathways at the TGN/EE in Arabidopsis. THE PLANT CELL 2016; 28:746-69. [PMID: 26941089 PMCID: PMC4826010 DOI: 10.1105/tpc.15.00794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 05/26/2023]
Abstract
The endomembrane system plays essential roles in plant development, but the proteome responsible for its function and organization remains largely uncharacterized in plants. Here, we identified and characterized the HYPERSENSITIVE TO LATRUNCULIN B1 (HLB1) protein isolated through a forward-genetic screen in Arabidopsis thaliana for mutants with heightened sensitivity to actin-disrupting drugs. HLB1 is a plant-specific tetratricopeptide repeat domain-containing protein of unknown function encoded by a single Arabidopsis gene. HLB1 associated with the trans-Golgi network (TGN)/early endosome (EE) and tracked along filamentous actin, indicating that it could link post-Golgi traffic with the actin cytoskeleton in plants. HLB1 was found to interact with the ADP-ribosylation-factor guanine nucleotide exchange factor, MIN7/BEN1 (HOPM INTERACTOR7/BREFELDIN A-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1) by coimmunoprecipitation. The min7/ben1 mutant phenocopied the mild root developmental defects and latrunculin B hypersensitivity of hlb1, and analyses of ahlb1/ min7/ben1 double mutant showed that hlb1 and min7/ben1 operate in common genetic pathways. Based on these data, we propose that HLB1 together with MIN7/BEN1 form a complex with actin to modulate the function of the TGN/EE at the intersection of the exocytic and endocytic pathways in plants.
Collapse
Affiliation(s)
- J Alan Sparks
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Taegun Kwon
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Luciana Renna
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Fuqi Liao
- Computing Services Department, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Federica Brandizzi
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Elison B Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| |
Collapse
|
27
|
Provart NJ, Alonso J, Assmann SM, Bergmann D, Brady SM, Brkljacic J, Browse J, Chapple C, Colot V, Cutler S, Dangl J, Ehrhardt D, Friesner JD, Frommer WB, Grotewold E, Meyerowitz E, Nemhauser J, Nordborg M, Pikaard C, Shanklin J, Somerville C, Stitt M, Torii KU, Waese J, Wagner D, McCourt P. 50 years of Arabidopsis research: highlights and future directions. THE NEW PHYTOLOGIST 2016; 209:921-44. [PMID: 26465351 DOI: 10.1111/nph.13687] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/24/2015] [Indexed: 05/14/2023]
Abstract
922 I. 922 II. 922 III. 925 IV. 925 V. 926 VI. 927 VII. 928 VIII. 929 IX. 930 X. 931 XI. 932 XII. 933 XIII. Natural variation and genome-wide association studies 934 XIV. 934 XV. 935 XVI. 936 XVII. 937 937 References 937 SUMMARY: The year 2014 marked the 25(th) International Conference on Arabidopsis Research. In the 50 yr since the first International Conference on Arabidopsis Research, held in 1965 in Göttingen, Germany, > 54 000 papers that mention Arabidopsis thaliana in the title, abstract or keywords have been published. We present herein a citational network analysis of these papers, and touch on some of the important discoveries in plant biology that have been made in this powerful model system, and highlight how these discoveries have then had an impact in crop species. We also look to the future, highlighting some outstanding questions that can be readily addressed in Arabidopsis. Topics that are discussed include Arabidopsis reverse genetic resources, stock centers, databases and online tools, cell biology, development, hormones, plant immunity, signaling in response to abiotic stress, transporters, biosynthesis of cells walls and macromolecules such as starch and lipids, epigenetics and epigenomics, genome-wide association studies and natural variation, gene regulatory networks, modeling and systems biology, and synthetic biology.
Collapse
Affiliation(s)
- Nicholas J Provart
- Department of Cell & Systems Biology/CAGEF, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Jose Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Siobhan M Brady
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Jelena Brkljacic
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, 43210, USA
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Vincent Colot
- Departement de Biologie École Normale Supérieure, Biologie Moleculaire des Organismes Photosynthetiques, F-75230, Paris, France
| | - Sean Cutler
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92507, USA
| | - Jeff Dangl
- Department of Biology and Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Joanna D Friesner
- Department of Plant Biology, Agricultural Sustainability Institute, University of California, Davis, CA, 95616, USA
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Erich Grotewold
- Center for Applied Plant Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Elliot Meyerowitz
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jennifer Nemhauser
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Magnus Nordborg
- Gregor Mendel Institute of Molecular Plant Biology, A-1030, Vienna, Austria
| | - Craig Pikaard
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chris Somerville
- Energy Biosciences Institute, University of California, Berkeley, CA, 94704, USA
| | - Mark Stitt
- Metabolic Networks Department, Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Keiko U Torii
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Jamie Waese
- Department of Cell & Systems Biology/CAGEF, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter McCourt
- Department of Cell & Systems Biology/CAGEF, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
28
|
Boyle PC, Schwizer S, Hind SR, Kraus CM, De la Torre Diaz S, He B, Martin GB. Detecting N-myristoylation and S-acylation of host and pathogen proteins in plants using click chemistry. PLANT METHODS 2016; 12:38. [PMID: 27493678 PMCID: PMC4972946 DOI: 10.1186/s13007-016-0138-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/20/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND The plant plasma membrane is a key battleground in the war between plants and their pathogens. Plants detect the presence of pathogens at the plasma membrane using sensor proteins, many of which are targeted to this lipophilic locale by way of fatty acid modifications. Pathogens secrete effector proteins into the plant cell to suppress the plant's defense mechanisms. These effectors are able to access and interfere with the surveillance machinery at the plant plasma membrane by hijacking the host's fatty acylation apparatus. Despite the important involvement of protein fatty acylation in both plant immunity and pathogen virulence mechanisms, relatively little is known about the role of this modification during plant-pathogen interactions. This dearth in our understanding is due largely to the lack of methods to monitor protein fatty acid modifications in the plant cell. RESULTS We describe a rapid method to detect two major forms of fatty acylation, N-myristoylation and S-acylation, of candidate proteins using alkyne fatty acid analogs coupled with click chemistry. We applied our approach to confirm and decisively demonstrate that the archetypal pattern recognition receptor FLS2, the well-characterized pathogen effector AvrPto, and one of the best-studied intracellular resistance proteins, Pto, all undergo plant-mediated fatty acylation. In addition to providing a means to readily determine fatty acylation, particularly myristoylation, of candidate proteins, this method is amenable to a variety of expression systems. We demonstrate this using both Arabidopsis protoplasts and stable transgenic Arabidopsis plants and we leverage Agrobacterium-mediated transient expression in Nicotiana benthamiana leaves as a means for high-throughput evaluation of candidate proteins. CONCLUSIONS Protein fatty acylation is a targeting tactic employed by both plants and their pathogens. The metabolic labeling approach leveraging alkyne fatty acid analogs and click chemistry described here has the potential to provide mechanistic details of the molecular tactics used at the host plasma membrane in the battle between plants and pathogens.
Collapse
Affiliation(s)
- Patrick C. Boyle
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853 USA
- Monsanto Company, St. Louis, MO 63141 USA
| | - Simon Schwizer
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853 USA
- Plant Pathology and Plant–Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Sarah R. Hind
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853 USA
| | - Christine M. Kraus
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853 USA
- Plant Pathology and Plant–Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | | | - Bin He
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
- College of Pharmacy, Guiyang Medical University, Guiyang, 550004 Guizhou China
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853 USA
- Plant Pathology and Plant–Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
29
|
Breiman A, Fieulaine S, Meinnel T, Giglione C. The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:531-50. [PMID: 26555180 DOI: 10.1016/j.bbapap.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
The ribosome is the cell's protein-making factory, a huge protein-RNA complex, that is essential to life. Determining the high-resolution structures of the stable "core" of this factory was among the major breakthroughs of the past decades, and was awarded the Nobel Prize in 2009. Now that the mysteries of the ribosome appear to be more traceable, detailed understanding of the mechanisms that regulate protein synthesis includes not only the well-known steps of initiation, elongation, and termination but also the less comprehended features of the co-translational events associated with the maturation of the nascent chains. The ribosome is a platform for co-translational events affecting the nascent polypeptide, including protein modifications, folding, targeting to various cellular compartments for integration into membrane or translocation, and proteolysis. These events are orchestrated by ribosome-associated protein biogenesis factors (RPBs), a group of a dozen or more factors that act as the "welcoming committee" for the nascent chain as it emerges from the ribosome. In plants these factors have evolved to fit the specificity of different cellular compartments: cytoplasm, mitochondria and chloroplast. This review focuses on the current state of knowledge of these factors and their interaction around the exit tunnel of dedicated ribosomes. Particular attention has been accorded to the plant system, highlighting the similarities and differences with other organisms.
Collapse
Affiliation(s)
- Adina Breiman
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France; Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sonia Fieulaine
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
30
|
Giglione C, Fieulaine S, Meinnel T. N-terminal protein modifications: Bringing back into play the ribosome. Biochimie 2015; 114:134-46. [PMID: 25450248 DOI: 10.1016/j.biochi.2014.11.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
N-terminal protein modifications correspond to the first modifications which in principle any protein may undergo, before translation is completed by the ribosome. This class of essential modifications can have different nature or function and be catalyzed by a variety of dedicated enzymes. Here, we review the current state of the major N-terminal co-translational modifications, with a particular emphasis to their catalysts, which belong to metalloprotease and acyltransferase clans. The earliest of these modifications corresponds to the N-terminal methionine excision, an ubiquitous and essential process leading to the removal of the first methionine. N-alpha acetylation occurs also in all Kingdoms although its extent appears to be significantly increased in higher eukaryotes. Finally, N-myristoylation is a crucial pathway existing only in eukaryotes. Recent studies dealing on how some of these co-translational modifiers might work in close vicinity of the ribosome is starting to provide new information on when these modifications exactly take place on the elongating nascent chain and the interplay with other ribosome biogenesis factors taking in charge the nascent chains. Here a comprehensive overview of the recent advances in the field of N-terminal protein modifications is given.
Collapse
Affiliation(s)
- Carmela Giglione
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| | - Sonia Fieulaine
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
31
|
Boyle PC, Martin GB. Greasy tactics in the plant-pathogen molecular arms race. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1607-16. [PMID: 25725095 DOI: 10.1093/jxb/erv059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The modification of proteins by the attachment of fatty acids is a targeting tactic involved in mechanisms of both plant immunity and bacterial pathogenesis. The plant plasma membrane (PM) is a key battleground in the war against disease-causing microbes. This membrane is armed with an array of sensor proteins that function as a surveillance system to detect invading pathogens. Several of these sensor proteins are directed to the plasma membrane through the covalent addition of fatty acids, a process termed fatty acylation. Phytopathogens secrete effector proteins into the plant cell to subvert these surveillance mechanisms, rendering the host susceptible to infection. The targeting of effectors to specific locales within plant cells, particularly the internal face of the host PM, is critical for their virulence function. Several bacterial effectors hijack the host fatty acylation machinery to be modified and directed to this contested locale. To find and fight these fatty acylated effectors the plant leverages lipid-modified intracellular sensors. This review provides examples featuring how fatty acylation is a battle tactic used by both combatants in the molecular arms race between plants and pathogens. Also highlighted is the exploitation of a specific form of host-mediated fatty acid modification, which appears to be exclusively employed by phytopathogenic effector proteins.
Collapse
Affiliation(s)
- Patrick C Boyle
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
32
|
Kapos P, Xu F, Meinnel T, Giglione C, Li X. N-terminal modifications contribute to flowering time and immune response regulations. PLANT SIGNALING & BEHAVIOR 2015; 10:e1073874. [PMID: 26361095 PMCID: PMC4883885 DOI: 10.1080/15592324.2015.1073874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/13/2015] [Indexed: 05/26/2023]
Abstract
A variety of N-terminal co-translational modifications play crucial roles in many cellular processes across eukaryotic organisms. Recently, N-terminal acetylation has been proposed as a regulatory mechanism for the control of plant immunity. Analysis of an N-terminal acetyltransferase complex A (NatA) mutant, naa15-1, revealed that NatA controls the stability of immune receptor Suppressor of NPR1, Constitutive 1 (SNC1) in an antagonistic fashion with NatB. Here, we further report on an antagonistic regulation of flowering time by NatA and NatB, where naa15-1 plants exhibit late flowering, opposite of the early flowering phenotype previously observed in natB mutants. In addition, we provide evidence for the involvement of another N-terminal modification, N-myristoylation, in controlling pathogen-associated molecular pattern (PAMP) triggered immunity (PTI) through the characterization of N-myristoyltransferase 1 (NMT1) defective mutants, which express a low level of NMT1 protein. The mutant line lacks induced production of reactive oxygen species and MAP kinase phosphorylation in response to treatment with the known immune elicitor flg22. NMT1 deficient plants also exhibit increased susceptibility to Pst hrcC, a non-pathogenic Pseudomonas syringae tomato strain lacking a functional type-III secretion system. The potential for the NatA-NatB antagonistic relationship to exist outside of the regulation of SNC1 as well as the disclosing of NMT1s role in PTI further supports the significant contribution of N-terminal co-translational modifications in the regulation of biological processes in plants, and present interesting areas for further exploration.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories; University of British Columbia; British Columbia, Canada
- Department of Botany; University of British Columbia; British Columbia, Canada
| | - Fang Xu
- Michael Smith Laboratories; University of British Columbia; British Columbia, Canada
- Department of Botany; University of British Columbia; British Columbia, Canada
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC); CEA, CNRS, University Paris-Sud; Gif sur Yvette, France
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC); CEA, CNRS, University Paris-Sud; Gif sur Yvette, France
| | - Xin Li
- Michael Smith Laboratories; University of British Columbia; British Columbia, Canada
- Department of Botany; University of British Columbia; British Columbia, Canada
| |
Collapse
|
33
|
Hemsley PA. The importance of lipid modified proteins in plants. THE NEW PHYTOLOGIST 2015; 205:476-89. [PMID: 25283240 DOI: 10.1111/nph.13085] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/22/2014] [Indexed: 05/18/2023]
Abstract
Membranes have long been known to act as more than physical barriers within and between plant cells. Trafficking of membrane proteins, signalling from and across membranes, organisation of membranes and transport through membranes are all essential processes for plant cellular function. These processes rely on a myriad array of proteins regulated in a variety of manners and are frequently required to be directly associated with membranes. For integral membrane proteins, the mode of membrane association is readily apparent, but many peripherally associated membrane proteins are outwardly soluble proteins. In these cases the proteins are frequently modified by the addition of lipids allowing direct interaction with the hydrophobic core of membranes. These modifications include N-myristoylation, S-acylation (palmitoylation), prenylation and GPI anchors but until recently little was truly known about their function in plants. New data suggest that these modifications are able to act as more than just membrane anchors, and dynamic S-acylation in particular is emerging as a means of regulating protein function in a similar manner to phosphorylation. This review discusses how these modifications occur, their impact on protein function, how they are regulated, recent advances in the field and technical approaches for studying these modifications.
Collapse
Affiliation(s)
- Piers A Hemsley
- Division of Plant Sciences, University of Dundee, Dundee, UK; Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
| |
Collapse
|
34
|
Jancowski S, Catching A, Pighin J, Kudo T, Foissner I, Wasteneys GO. Trafficking of the myrosinase-associated protein GLL23 requires NUC/MVP1/GOLD36/ERMO3 and the p24 protein CYB. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:497-510. [PMID: 24330158 DOI: 10.1111/tpj.12408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/22/2013] [Accepted: 11/28/2013] [Indexed: 05/08/2023]
Abstract
Proteins detrimental to endoplasmic reticulum (ER) morphology need to be efficiently exported. Here, we identify two mechanisms that control trafficking of Arabidopsis thalianaGLL23, a 43 kDa GDSL-like lipase implicated in glucosinolate metabolism through its association with the β-glucosidase myrosinase. Using immunofluorescence, we identified two mutants that showed aberrant accumulation of GLL23: large perinuclear ER aggregates in the nuclear cage (nuc) mutant; and small compartments contiguous with the peripheral ER in the cytoplasmic bodies (cyb) mutant. Live imaging of fluorescently tagged GLL23 confirmed its presence in the nuc and cyb compartments, but lack of fluorescent signals in the wild-type plants suggested that GLL23 is normally post-translationally modified for ER export. NUC encodes the MVP1/GOLD36/ERMO3 myrosinase-associated protein, previously shown to have vacuolar distribution. CYB is an ER and Golgi-localized p24 type I membrane protein component of coat protein complex (COP) vesicles, animal and yeast homologues of which are known to be involved in selective cargo sorting for ER-Golgi export. Without NUC, GLL23 accumulates in the ER this situation suggests that NUC is in fact active in the ER. Without CYB, both GLL23 and NUC were found to accumulate in cyb compartments, consistent with a role for NUC in GLL23 processing and indicated that GLL23 is the likely sorting target of the CYB p24 protein.
Collapse
Affiliation(s)
- Sylwia Jancowski
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Running MP. The role of lipid post-translational modification in plant developmental processes. FRONTIERS IN PLANT SCIENCE 2014; 5:50. [PMID: 24600462 PMCID: PMC3927097 DOI: 10.3389/fpls.2014.00050] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/01/2014] [Indexed: 05/06/2023]
Abstract
Most eukaryotic proteins are post-translationally modified, and modification has profound effects on protein function. One key modification is the attachment of a lipid group to certain amino acids; this typically facilitates subcellular targeting (association with a membrane) and protein-protein interactions (by virtue of the large hydrophobic moiety). Most widely recognized are lipid modifications of proteins involved in developmental signaling, but proteins with structural roles are also lipid-modified. The three known types of intracellular protein lipid modifications are S-acylation, N-myristoylation, and prenylation. In plants, genetic analysis of the enzymes involved, along with molecular analysis of select target proteins, has recently shed light on the roles of lipid modification in key developmental processes, such as meristem function, flower development, polar cell elongation, cell differentiation, and hormone responses. In addition, while lipid post-translational mechanisms are generally conserved among eukaryotes, plants differ in the nature and function of target proteins, the effects of lipid modification on target proteins, and the roles of lipid modification in developmental processes.
Collapse
Affiliation(s)
- Mark P. Running
- *Correspondence: Mark P. Running, Department of Biology, University of Louisville, Louisville, KY 40292, USA e-mail:
| |
Collapse
|
36
|
Abstract
Leaf epidermal cells make ideal specimens for the investigation of the plant secretory pathway in that it is relatively easy to tag with fluorescent proteins and visualize in vivo the various organelles of the pathway. A number of techniques can be employed to identify and study proteins within the endomembrane organelles and to study their dynamics and interactions. Here, we discuss the most commonly used approaches to express proteins within arabidopsis and tobacco leaves, the use of mutant screens to identify trafficking proteins, and the use of two in vivo techniques, Fluorescence recovery after photobleaching and Förster resonance energy transfer, to study protein dynamics in plant cells.
Collapse
Affiliation(s)
- Giovanni Stefano
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA; Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | | | | | | |
Collapse
|