1
|
Wang Y, Zhang M, Sun P, Zhao X, Zhang RX, Liang YK. RABC1-ABI1 module coordinates lipid droplet mobilization and post-germination growth arrest in Arabidopsis. Cell Rep 2025; 44:115655. [PMID: 40323720 DOI: 10.1016/j.celrep.2025.115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/19/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
Abscisic acid (ABA) promotes post-germination growth arrest (PGGA), thereby enhancing plant survival under adverse conditions such as high salinity. Lipid droplets (LDs) are universally conserved dynamic organelles that can store and mobilize neutral lipids for their multiple cellular roles. The molecular mechanism whereby a plant coordinates LD mobilization and PGGA in response to environmental stresses remains poorly understood. Here, we report that RABC1 deficiency enhances PGGA, which could be efficiently mitigated by either inhibiting ABA biosynthesis or promoting LD breakdown. ABI1 interacts with and dephosphorylates RABC1 and promotes the interactions between RABC1 and its effectors SEIPIN2 and SEIPIN3, consequently enhancing LD mobilization. Taken together, these results report a regulatory mechanism of LD mobilization for plant stress tolerance and highlight a concerted interplay between lipid metabolism and hormonal signaling.
Collapse
Affiliation(s)
- Yifei Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Min Zhang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Pengyue Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Zhao
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ruo-Xi Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Cai Y, Horn PJ. Packaging "vegetable oils": Insights into plant lipid droplet proteins. PLANT PHYSIOLOGY 2025; 197:kiae533. [PMID: 39566075 DOI: 10.1093/plphys/kiae533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/06/2024] [Indexed: 11/22/2024]
Abstract
Plant neutral lipids, also known as "vegetable oils", are synthesized within the endoplasmic reticulum (ER) membrane and packaged into subcellular compartments called lipid droplets (LDs) for stable storage in the cytoplasm. The biogenesis, modulation, and degradation of cytoplasmic LDs in plant cells are orchestrated by a variety of proteins localized to the ER, LDs, and peroxisomes. Recent studies of these LD-related proteins have greatly advanced our understanding of LDs not only as steady oil depots in seeds but also as dynamic cell organelles involved in numerous physiological processes in different tissues and developmental stages of plants. In the past 2 decades, technology advances in proteomics, transcriptomics, genome sequencing, cellular imaging and protein structural modeling have markedly expanded the inventory of LD-related proteins, provided unprecedented structural and functional insights into the protein machinery modulating LDs in plant cells, and shed new light on the functions of LDs in nonseed plant tissues as well as in unicellular algae. Here, we review critical advances in revealing new LD proteins in various plant tissues, point out structural and mechanistic insights into key proteins in LD biogenesis and dynamic modulation, and discuss future perspectives on bridging our knowledge gaps in plant LD biology.
Collapse
Affiliation(s)
- Yingqi Cai
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
3
|
Guzha A, Gautam B, Marchiafava D, Ver Sagun J, Garcia T, Jarvis BA, Barbaglia-Hurlock AM, Johnston C, Grotewold E, Sedbrook JC, Alonso AP, Chapman KD. Targeted modulation of pennycress lipid droplet proteins impacts droplet morphology and seed oil content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2151-2171. [PMID: 39467186 PMCID: PMC11629743 DOI: 10.1111/tpj.17109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Lipid droplets (LDs) are unusual organelles that have a phospholipid monolayer surface and a hydrophobic matrix. In oilseeds, this matrix is nearly always composed of triacylglycerols (TGs) for efficient storage of carbon and energy. Various proteins play a role in their assembly, stability and turnover, and even though the major structural oleosin proteins in seed LDs have been known for decades, the factors influencing LD formation and dynamics are still being uncovered mostly in the "model oilseed" Arabidopsis. Here we identified several key LD biogenesis proteins in the seeds of pennycress, a potential biofuel crop, that were correlated previously with seed oil content and characterized here for their participation in LD formation in transient expression assays and stable transgenics. One pennycress protein, the lipid droplet associated protein-interacting protein (LDIP), was able to functionally complement the Arabidopsis ldip mutant, emphasizing the close conservation of lipid storage among these two Brassicas. Moreover, loss-of-function ldip mutants in pennycress exhibited increased seed oil content without compromising plant growth, raising the possibility that LDIP or other LD biogenesis factors may be suitable targets for improving yields in oilseed crops more broadly.
Collapse
Affiliation(s)
- Athanas Guzha
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA
| | - Barsanti Gautam
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Damiano Marchiafava
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Julius Ver Sagun
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA
| | - Tatiana Garcia
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brice A Jarvis
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | | | - Christopher Johnston
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - John C Sedbrook
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Ana Paula Alonso
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA
| | - Kent D Chapman
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, 76203, Texas, USA
| |
Collapse
|
4
|
Amari C, Carletti M, Yan S, Michaud M, Salvaing J. Lipid droplets degradation mechanisms from microalgae to mammals, a comparative overview. Biochimie 2024; 227:19-34. [PMID: 39299537 DOI: 10.1016/j.biochi.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Lipid droplets (LDs) are organelles composed of a hydrophobic core (mostly triacylglycerols and steryl esters) delineated by a lipid monolayer and found throughout the tree of life. LDs were seen for a long time as simple energy storage organelles but recent works highlighted their versatile roles in several fundamental cellular processes, particularly during stress response. LDs biogenesis occurs in the ER and their number and size can be dynamically regulated depending on their function, e.g. during development or stress. Understanding their biogenesis and degradation mechanisms is thus essential to better apprehend their roles. LDs degradation can occur in the cytosol by lipolysis or after their internalization into lytic compartments (e.g. vacuoles or lysosomes) using diverse mechanisms that depend on the considered organism, tissue, developmental stage or environmental condition. In this review, we summarize our current knowledge on the different LDs degradation pathways in several main phyla of model organisms, unicellular or pluricellular, photosynthetic or not (budding yeast, mammals, land plants and microalgae). We highlight the conservation of the main degradation pathways throughout evolution, but also the differences between organisms, or inside an organism between different organs. Finally, we discuss how this comparison can help to shed light on relationships between LDs degradation pathways and LDs functions.
Collapse
Affiliation(s)
- Chems Amari
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France; Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Marta Carletti
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Siqi Yan
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Juliette Salvaing
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
5
|
Xiao C, Du S, Zhou S, Cheng H, Rao S, Wang Y, Cheng S, Lei M, Li L. Identification and functional characterization of ABC transporters for selenium accumulation and tolerance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108676. [PMID: 38714125 DOI: 10.1016/j.plaphy.2024.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/16/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
ATP-binding cassette (ABC) transporters were crucial for various physiological processes like nutrition, development, and environmental interactions. Selenium (Se) is an essential micronutrient for humans, and its role in plants depends on applied dosage. ABC transporters are considered to participate in Se translocation in plants, but detailed studies in soybean are still lacking. We identified 196 ABC genes in soybean transcriptome under Se exposure using next-generation sequencing and single-molecule real-time sequencing technology. These proteins fell into eight subfamilies: 8 GmABCA, 51 GmABCB, 39 GmABCC, 5 GmABCD, 1 GmABCE, 10 GmABCF, 74 GmABCG, and 8 GmABCI, with amino acid length 121-3022 aa, molecular weight 13.50-341.04 kDa, and isoelectric point 4.06-9.82. We predicted a total of 15 motifs, some of which were specific to certain subfamilies (especially GmABCB, GmABCC, and GmABCG). We also found predicted alternative splicing in GmABCs: 60 events in selenium nanoparticles (SeNPs)-treated, 37 in sodium selenite (Na2SeO3)-treated samples. The GmABC genes showed differential expression in leaves and roots under different application of Se species and Se levels, most of which are belonged to GmABCB, GmABCC, and GmABCG subfamilies with functions in auxin transport, barrier formation, and detoxification. Protein-protein interaction and weighted gene co-expression network analysis suggested functional gene networks with hub ABC genes, contributing to our understanding of their biological functions. Our results illuminate the contributions of GmABC genes to Se accumulation and tolerance in soybean and provide insight for a better understanding of their roles in soybean as well as in other plants.
Collapse
Affiliation(s)
- Chunmei Xiao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Sainan Du
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shengli Zhou
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hua Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shen Rao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuan Wang
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ming Lei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Li Li
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
6
|
Tao B, Ma Y, Wang L, He C, Chen J, Ge X, Zhao L, Wen J, Yi B, Tu J, Fu T, Shen J. Developmental pleiotropy of SDP1 from seedling to mature stages in B. napus. PLANT MOLECULAR BIOLOGY 2024; 114:49. [PMID: 38642182 DOI: 10.1007/s11103-024-01447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Rapeseed, an important oil crop, relies on robust seedling emergence for optimal yields. Seedling emergence in the field is vulnerable to various factors, among which inadequate self-supply of energy is crucial to limiting seedling growth in early stage. SUGAR-DEPENDENT1 (SDP1) initiates triacylglycerol (TAG) degradation, yet its detailed function has not been determined in B. napus. Here, we focused on the effects of plant growth during whole growth stages and energy mobilization during seedling establishment by mutation in BnSDP1. Protein sequence alignment and haplotypic analysis revealed the conservation of SDP1 among species, with a favorable haplotype enhancing oil content. Investigation of agronomic traits indicated bnsdp1 had a minor impact on vegetative growth and no obvious developmental defects when compared with wild type (WT) across growth stages. The seed oil content was improved by 2.0-2.37% in bnsdp1 lines, with slight reductions in silique length and seed number per silique. Furthermore, bnsdp1 resulted in lower seedling emergence, characterized by a shrunken hypocotyl and poor photosynthetic capacity in the early stages. Additionally, impaired seedling growth, especially in yellow seedlings, was not fully rescued in medium supplemented with exogenous sucrose. The limited lipid turnover in bnsdp1 was accompanied by induced amino acid degradation and PPDK-dependent gluconeogenesis pathway. Analysis of the metabolites in cotyledons revealed active amino acid metabolism and suppressed lipid degradation, consistent with the RNA-seq results. Finally, we proposed strategies for applying BnSDP1 in molecular breeding. Our study provides theoretical guidance for understanding trade-off between oil accumulation and seedling energy mobilization in B. napus.
Collapse
Affiliation(s)
- Baolong Tao
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Yina Ma
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Liqin Wang
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Chao He
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Junlin Chen
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Xiaoyu Ge
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Lun Zhao
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Jing Wen
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Bin Yi
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Jinxing Tu
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Tingdong Fu
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Jinxiong Shen
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China.
| |
Collapse
|
7
|
Archer L, Mondal HA, Behera S, Twayana M, Patel M, Louis J, Nalam VJ, Keereetaweep J, Chowdhury Z, Shah J. Interplay between MYZUS PERSICAE-INDUCED LIPASE 1 and OPDA signaling in limiting green peach aphid infestation on Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6860-6873. [PMID: 37696760 DOI: 10.1093/jxb/erad355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/09/2023] [Indexed: 09/13/2023]
Abstract
MYZUS PERSICAE-INDUCED LIPASE1 (MPL1) encodes a lipase in Arabidopsis thaliana that is required for limiting infestation by the green peach aphid (GPA; Myzus persicae), an important phloem sap-consuming insect pest. Previously, we demonstrated that MPL1 expression was up-regulated in response to GPA infestation, and GPA fecundity was higher on the mpl1 mutant, compared with the wild-type (WT), and lower on 35S:MPL1 plants that constitutively expressed MPL1 from the 35S promoter. Here, we show that the MPL1 promoter is active in the phloem and expression of the MPL1 coding sequence from the phloem-specific SUC2 promoter in mpl1 is sufficient to restore resistance to GPA. The GPA infestation-associated up-regulation of MPL1 requires CYCLOPHILIN 20-3 (CYP20-3), which encodes a 12-oxo-phytodienoic acid (OPDA)-binding protein that is involved in OPDA signaling, and is required for limiting GPA infestation. OPDA promotes MPL1 expression to limit GPA fecundity, a process that requires CYP20-3 function. These results along with our observation that constitutive expression of MPL1 from the 35S promoter restores resistance to GPA in the cyp20-3 mutant, and MPL1 acts in a feedback loop to limit OPDA levels in GPA-infested plants, suggest that an interplay between MPL1, OPDA, and CYP20-3 contributes to resistance to GPA.
Collapse
Affiliation(s)
- Lani Archer
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Hossain A Mondal
- College of Post Graduate Studies in Agricultural Sciences (CPGS-AS, under Central Agricultural University, Imphal, Manipur), Meghalaya 793103, India
| | - Sumita Behera
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Moon Twayana
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Monika Patel
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Joe Louis
- Department of Entomology and Department of Biochemistry, University of Nebraska, Lincoln, NE 68583, USA
| | - Vamsi J Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Zulkarnain Chowdhury
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Jyoti Shah
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
8
|
Qin Z, Wang T, Zhao Y, Ma C, Shao Q. Molecular Machinery of Lipid Droplet Degradation and Turnover in Plants. Int J Mol Sci 2023; 24:16039. [PMID: 38003229 PMCID: PMC10671748 DOI: 10.3390/ijms242216039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Lipid droplets (LDs) are important organelles conserved across eukaryotes with a fascinating biogenesis and consumption cycle. Recent intensive research has focused on uncovering the cellular biology of LDs, with emphasis on their degradation. Briefly, two major pathways for LD degradation have been recognized: (1) lipolysis, in which lipid degradation is catalyzed by lipases on the LD surface, and (2) lipophagy, in which LDs are degraded by autophagy. Both of these pathways require the collective actions of several lipolytic and proteolytic enzymes, some of which have been purified and analyzed for their in vitro activities. Furthermore, several genes encoding these proteins have been cloned and characterized. In seed plants, seed germination is initiated by the hydrolysis of stored lipids in LDs to provide energy and carbon equivalents for the germinating seedling. However, little is known about the mechanism regulating the LD mobilization. In this review, we focus on recent progress toward understanding how lipids are degraded and the specific pathways that coordinate LD mobilization in plants, aiming to provide an accurate and detailed outline of the process. This will set the stage for future studies of LD dynamics and help to utilize LDs to their full potential.
Collapse
Affiliation(s)
| | | | | | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
9
|
Bansal S, Sundararajan S, Shekhawat PK, Singh S, Soni P, Tripathy MK, Ram H. Rice lipases: a conundrum in rice bran stabilization: a review on their impact and biotechnological interventions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:985-1003. [PMID: 37649880 PMCID: PMC10462582 DOI: 10.1007/s12298-023-01343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Rice is a primary food and is one of the most important constituents of diets all around the world. Rice bran is a valuable component of rice, containing many oil-soluble vitamins, minerals, and oil. It is known for its ability to improve the economic value of rice. Further, it contains substantial quantities of minerals like potassium, calcium, magnesium, iron and antioxidants like tocopherols, tocotrienols, and γ-oryzanol, indicating that rice bran can be utilized effectively against several life-threatening disorders. It is difficult to fully utilize the necessary nutrients due to the presence of lipases in rice bran. These lipases break down lipids, specifically Triacylglycerol, into free fatty acids and glycerol. This review discusses physicochemical properties, mechanism of action, distribution, and activity of lipases in various components of rice seeds. The phylogenetic and gene expression analysis helped to understand the differential expression pattern of lipase genes at different growth phases of rice plant. Further, this review discusses various genetic and biotechnological approaches to decrease lipase activity in rice and other plants, which could potentially prevent the degradation of bran oil. The goal is to establish whether lipases are a major contributor to this issue and to develop rice varieties with improved bran stability. This information sets the stage for upcoming molecular research in this area. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01343-3.
Collapse
Affiliation(s)
- Sakshi Bansal
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306 India
| | - Sathish Sundararajan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | | - Shivangi Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Praveen Soni
- Department of Botany, University of Rajasthan, JLN Marg, Jaipur, 302004 India
| | - Manas K. Tripathy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
10
|
Bouchnak I, Coulon D, Salis V, D’Andréa S, Bréhélin C. Lipid droplets are versatile organelles involved in plant development and plant response to environmental changes. FRONTIERS IN PLANT SCIENCE 2023; 14:1193905. [PMID: 37426978 PMCID: PMC10327486 DOI: 10.3389/fpls.2023.1193905] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Since decades plant lipid droplets (LDs) are described as storage organelles accumulated in seeds to provide energy for seedling growth after germination. Indeed, LDs are the site of accumulation for neutral lipids, predominantly triacylglycerols (TAGs), one of the most energy-dense molecules, and sterol esters. Such organelles are present in the whole plant kingdom, from microalgae to perennial trees, and can probably be found in all plant tissues. Several studies over the past decade have revealed that LDs are not merely simple energy storage compartments, but also dynamic structures involved in diverse cellular processes like membrane remodeling, regulation of energy homeostasis and stress responses. In this review, we aim to highlight the functions of LDs in plant development and response to environmental changes. In particular, we tackle the fate and roles of LDs during the plant post-stress recovery phase.
Collapse
Affiliation(s)
- Imen Bouchnak
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Denis Coulon
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Vincent Salis
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sabine D’Andréa
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Claire Bréhélin
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| |
Collapse
|
11
|
Xu K, Zou W, Peng B, Guo C, Zou X. Lipid Droplets from Plants and Microalgae: Characteristics, Extractions, and Applications. BIOLOGY 2023; 12:biology12040594. [PMID: 37106794 PMCID: PMC10135979 DOI: 10.3390/biology12040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Plant and algal LDs are gaining popularity as a promising non-chemical technology for the production of lipids and oils. In general, these organelles are composed of a neutral lipid core surrounded by a phospholipid monolayer and various surface-associated proteins. Many studies have shown that LDs are involved in numerous biological processes such as lipid trafficking and signaling, membrane remodeling, and intercellular organelle communications. To fully exploit the potential of LDs for scientific research and commercial applications, it is important to develop suitable extraction processes that preserve their properties and functions. However, research on LD extraction strategies is limited. This review first describes recent progress in understanding the characteristics of LDs, and then systematically introduces LD extraction strategies. Finally, the potential functions and applications of LDs in various fields are discussed. Overall, this review provides valuable insights into the properties and functions of LDs, as well as potential approaches for their extraction and utilization. It is hoped that these findings will inspire further research and innovation in the field of LD-based technology.
Collapse
Affiliation(s)
- Kaiwei Xu
- Institute of Systems Security and Control, College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
- Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710074, China
| | - Wen Zou
- State Owned SIDA Machinery Manufacturing, Xianyang 712201, China
| | - Biao Peng
- Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710074, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710021, China
| | - Chao Guo
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710021, China
| | - Xiaotong Zou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
12
|
Shu Q, Pan Y, Hu H. CGI-58 Protein Acts as a Positive Regulator of Triacylglycerol Accumulation in Phaeodactylum tricornutum. J Microbiol Biotechnol 2023; 33:242-250. [PMID: 36524337 PMCID: PMC9998212 DOI: 10.4014/jmb.2209.09029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Comparative gene identification-58 (CGI-58) is an activating protein of triacylglycerol (TAG) lipase. It has a variety of catalytic activities whereby it may play different roles in diverse organisms. In this study, a homolog of CGI-58 in Phaeodactylum tricornutum (PtCGI-58) was identified. PtCGI-58 was localized in mitochondria by GFP fusion protein analysis, which is different from the reported subcellular localization of CGI-58 in animals and plants. Respectively, PtCGI-58 overexpression resulted in increased neutral lipid content and TAG accumulation by 42-46% and 21-32%. Likewise, it also increased the relative content of eicosapentaenoic acid (EPA), and in particular, the EPA content in TAGs almost doubled. Transcript levels of genes involved in de novo fatty acid synthesis and mitochondrial β-oxidation were significantly upregulated in PtCGI-58 overexpression strains compared with wild-type cells. Our findings suggest that PtCGI-58 may mediate the breakdown of lipids in mitochondria and the recycling of acyl chains derived from mitochondrial β-oxidation into TAG biosynthesis. Moreover, this study potentially illuminates new functions for CGI-58 in lipid homeostasis and provides a strategy to enrich EPA in algal TAGs.
Collapse
Affiliation(s)
- Qin Shu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yufang Pan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| |
Collapse
|
13
|
Cai Y, Yu XH, Shanklin J. A toolkit for plant lipid engineering: Surveying the efficacies of lipogenic factors for accumulating specialty lipids. FRONTIERS IN PLANT SCIENCE 2022; 13:1064176. [PMID: 36589075 PMCID: PMC9795026 DOI: 10.3389/fpls.2022.1064176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Plants produce energy-dense lipids from carbohydrates using energy acquired via photosynthesis, making plant oils an economically and sustainably attractive feedstock for conversion to biofuels and value-added bioproducts. A growing number of strategies have been developed and optimized in model plants, oilseed crops and high-biomass crops to enhance the accumulation of storage lipids (mostly triacylglycerols, TAGs) for bioenergy applications and to produce specialty lipids with increased uses and value for chemical feedstock and nutritional applications. Most successful metabolic engineering strategies involve heterologous expression of lipogenic factors that outperform those from other sources or exhibit specialized functionality. In this review, we summarize recent progress in engineering the accumulation of triacylglycerols containing - specialized fatty acids in various plant species and tissues. We also provide an inventory of specific lipogenic factors (including accession numbers) derived from a wide variety of organisms, along with their reported efficacy in supporting the accumulation of desired lipids. A review of previously obtained results serves as a foundation to guide future efforts to optimize combinations of factors to achieve further enhancements to the production and accumulation of desired lipids in a variety of plant tissues and species.
Collapse
Affiliation(s)
- Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Xiao-Hong Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| |
Collapse
|
14
|
Cai Y, Zhai Z, Blanford J, Liu H, Shi H, Schwender J, Xu C, Shanklin J. Purple acid phosphatase2 stimulates a futile cycle of lipid synthesis and degradation, and mitigates the negative growth effects of triacylglycerol accumulation in vegetative tissues. THE NEW PHYTOLOGIST 2022; 236:1128-1139. [PMID: 35851483 DOI: 10.1111/nph.18392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Storage lipids (mostly triacylglycerols, TAGs) serve as an important energy and carbon reserve in plants, and hyperaccumulation of TAG in vegetative tissues can have negative effects on plant growth. Purple acid phosphatase2 (PAP2) was previously shown to affect carbon metabolism and boost plant growth. However, the effects of PAP2 on lipid metabolism remain unknown. Here, we demonstrated that PAP2 can stimulate a futile cycle of fatty acid (FA) synthesis and degradation, and mitigate negative growth effects associated with high accumulation of TAG in vegetative tissues. Constitutive expression of PAP2 in Arabidopsis thaliana enhanced both lipid synthesis and degradation in leaves and led to a substantial increase in seed oil yield. Suppressing lipid degradation in a PAP2-overexpressing line by disrupting sugar-dependent1 (SDP1), a predominant TAG lipase, significantly elevated vegetative TAG content and improved plant growth. Diverting FAs from membrane lipids to TAGs in PAP2-overexpressing plants by constitutively expressing phospholipid:diacylglycerol acyltransferase1 (PDAT1) greatly increased TAG content in vegetative tissues without compromising biomass yield. These results highlight the potential of combining PAP2 with TAG-promoting factors to enhance carbon assimilation, FA synthesis and allocation to TAGs for optimized plant growth and storage lipid accumulation in vegetative tissues.
Collapse
Affiliation(s)
- Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Zhiyang Zhai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hai Shi
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jorg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
15
|
Choi YJ, Zaikova K, Yeom SJ, Kim YS, Lee DW. Biogenesis and Lipase-Mediated Mobilization of Lipid Droplets in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:1243. [PMID: 35567244 PMCID: PMC9105935 DOI: 10.3390/plants11091243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Cytosolic lipid droplets (LDs) derived from the endoplasmic reticulum (ER) mainly contain neutral lipids, such as triacylglycerols (TAGs) and sterol esters, which are considered energy reserves. The metabolic pathways associated with LDs in eukaryotic species are involved in diverse cellular functions. TAG synthesis in plants is mediated by the sequential involvement of two subcellular organelles, i.e., plastids - plant-specific organelles, which serve as the site of lipid synthesis, and the ER. TAGs and sterol esters synthesized in the ER are sequestered to form LDs through the cooperative action of several proteins, such as SEIPINs, LD-associated proteins, LDAP-interacting proteins, and plant-specific proteins such as oleosins. The integrity and stability of LDs are highly dependent on oleosins, especially in the seeds, and oleosin degradation is critical for efficient mobilization of the TAGs of plant LDs. As the TAGs mobilize in LDs during germination and post-germinative growth, a plant-specific lipase-sugar-dependent 1 (SDP1)-plays a major role, through the inter-organellar communication between the ER and peroxisomes. In this review, we briefly recapitulate the different processes involved in the biogenesis and degradation of plant LDs, followed by a discussion of future perspectives in this field.
Collapse
Affiliation(s)
- Yun Ju Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
| | - Kseniia Zaikova
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Yeong-Su Kim
- Wild Plants Industrialization Research Division, Baekdudaegan National Arboretum, Bonghwa 36209, Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
16
|
Laloum D, Magen S, Soroka Y, Avin-Wittenberg T. Exploring the Contribution of Autophagy to the Excess-Sucrose Response in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23073891. [PMID: 35409249 PMCID: PMC8999498 DOI: 10.3390/ijms23073891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an essential intracellular eukaryotic recycling mechanism, functioning in, among others, carbon starvation. Surprisingly, although autophagy-deficient plants (atg mutants) are hypersensitive to carbon starvation, metabolic analysis revealed that they accumulate sugars under such conditions. In plants, sugars serve as both an energy source and as signaling molecules, affecting many developmental processes, including root and shoot formation. We thus set out to understand the interplay between autophagy and sucrose excess, comparing wild-type and atg mutant seedlings. The presented work showed that autophagy contributes to primary root elongation arrest under conditions of exogenous sucrose and glucose excess but not during fructose or mannitol treatment. Minor or no alterations in starch and primary metabolites were observed between atg mutants and wild-type plants, indicating that the sucrose response relates to its signaling and not its metabolic role. Extensive proteomic analysis of roots performed to further understand the mechanism found an accumulation of proteins essential for ROS reduction and auxin maintenance, which are necessary for root elongation, in atg plants under sucrose excess. The analysis also suggested mitochondrial and peroxisomal involvement in the autophagy-mediated sucrose response. This research increases our knowledge of the complex interplay between autophagy and sugar signaling in plants.
Collapse
|
17
|
Overexpression of Peroxisome-Localized GmABCA7 Promotes Seed Germination in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23042389. [PMID: 35216505 PMCID: PMC8879324 DOI: 10.3390/ijms23042389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Peroxisome is one of the important organelles for intracellular lipid metabolism in plant cells and β-oxidation of fatty acids in peroxisomes provides the energy for oil-containing seed germination. In this study, we identified an ATP-binding cassette (ABC) transporter gene, GmABCA7 from soybean, which is highly expressed in the different developmental stages of seeds. Transient expression of GmABCA7 in tobacco epidermal cells showed that GmABCA7 was specifically localized at the peroxisomes. Overexpression of GmABCA7 in Arabidopsis does not change seed phenotypes, or the overall levels of lipid, protein and sugar stored in the seeds; however, the transgenic seeds produced more gluconeogenic pathway precursors such as succinate and malate and germinated earlier compared to the wild type seeds. These results suggest that GmABCA7 may affect the β-oxidation of fatty acids and play an important role in seed germination.
Collapse
|
18
|
Doner NM, Seay D, Mehling M, Sun S, Gidda SK, Schmitt K, Braus GH, Ischebeck T, Chapman KD, Dyer JM, Mullen RT. Arabidopsis thaliana EARLY RESPONSIVE TO DEHYDRATION 7 Localizes to Lipid Droplets via Its Senescence Domain. FRONTIERS IN PLANT SCIENCE 2021; 12:658961. [PMID: 33936146 PMCID: PMC8079945 DOI: 10.3389/fpls.2021.658961] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 05/09/2023]
Abstract
Lipid droplets (LDs) are neutral-lipid-containing organelles found in all kingdoms of life and are coated with proteins that carry out a vast array of functions. Compared to mammals and yeast, relatively few LD proteins have been identified in plants, particularly those associated with LDs in vegetative (non-seed) cell types. Thus, to better understand the cellular roles of LDs in plants, a more comprehensive inventory and characterization of LD proteins is required. Here, we performed a proteomics analysis of LDs isolated from drought-stressed Arabidopsis leaves and identified EARLY RESPONSIVE TO DEHYDRATION 7 (ERD7) as a putative LD protein. mCherry-tagged ERD7 localized to both LDs and the cytosol when ectopically expressed in plant cells, and the protein's C-terminal senescence domain (SD) was both necessary and sufficient for LD targeting. Phylogenetic analysis revealed that ERD7 belongs to a six-member family in Arabidopsis that, along with homologs in other plant species, is separated into two distinct subfamilies. Notably, the SDs of proteins from each subfamily conferred targeting to either LDs or mitochondria. Further, the SD from the ERD7 homolog in humans, spartin, localized to LDs in plant cells, similar to its localization in mammals; although, in mammalian cells, spartin also conditionally localizes to other subcellular compartments, including mitochondria. Disruption of ERD7 gene expression in Arabidopsis revealed no obvious changes in LD numbers or morphology under normal growth conditions, although this does not preclude a role for ERD7 in stress-induced LD dynamics. Consistent with this possibility, a yeast two-hybrid screen using ERD7 as bait identified numerous proteins involved in stress responses, including some that have been identified in other LD proteomes. Collectively, these observations provide new insight to ERD7 and the SD-containing family of proteins in plants and suggest that ERD7 may be involved in functional aspects of plant stress response that also include localization to the LD surface.
Collapse
Affiliation(s)
- Nathan M. Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Damien Seay
- United States Department of Agriculture, US Arid-Land Agricultural Research Center, Agriculture Research Service, Maricopa, AZ, United States
| | - Marina Mehling
- United States Department of Agriculture, US Arid-Land Agricultural Research Center, Agriculture Research Service, Maricopa, AZ, United States
| | - Siqi Sun
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Satinder K. Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Kent D. Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - John M. Dyer
- United States Department of Agriculture, US Arid-Land Agricultural Research Center, Agriculture Research Service, Maricopa, AZ, United States
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- *Correspondence: Robert T. Mullen,
| |
Collapse
|
19
|
Xu C, Fan J, Shanklin J. Metabolic and functional connections between cytoplasmic and chloroplast triacylglycerol storage. Prog Lipid Res 2020; 80:101069. [DOI: 10.1016/j.plipres.2020.101069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
|
20
|
Lu M, Tian X, Tian AL, Li C, Yan R, Xu L, Song X, Li X. A Novel α/β Hydrolase Domain Protein Derived From Haemonchus contortus Acts at the Parasite-Host Interface. Front Immunol 2020; 11:1388. [PMID: 32695121 PMCID: PMC7338770 DOI: 10.3389/fimmu.2020.01388] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
The α/β-hydrolase domain (ABHD) proteins belonging to α/β-hydrolase (ABH) superfamily are ubiquitously distributed throughout all the organisms, and their functional roles have been implicated in energy metabolism, cell signaling, growth and development. In our preliminary work, we identified a novel ABHD protein derived from Haemonchus contortus excretory-secretory (ES) proteins (HcESPs) that interacted with host T cells. Here, we demonstrated that H. contortus ABHD (HcABHD) protein, expressed in all life-cycle stages of H. contortus, is a mammalian ABHD17 homolog with immunodiagnostic utility and lipase activity. Given its catalytic activities and immunomodulatory potentials, we further investigated the functional diversity of HcABHD as an individual ES protein in parasite-host interactions. HcABHD protein may serve as depalmitoylase or thioesterase to suppress cell viability, inhibit cell proliferation, induce intrinsic and extrinsic T cell apoptosis, and cause cell cycle arrested at G1 phase. Moreover, recombinant HcABHD stimuli exerted critical controls on T cell cytokine production profiles, predominantly by inhibiting the secretions of interleukin (IL)-4, interferon-gamma (IFN-γ) and transforming growth factor-beta (TGF-β) 1, and promoting IL-10 production. As the immunomodulator acting at the parasite-host interface, HcABHD protein may have potential applications for the vaccine development of therapeutic intervention. Together, these findings may help illuminate the molecular and particularly immunomodulatory aspects of ES proteins and contribute to an enhanced understanding of parasite immune evasion in H. contortus-host biology.
Collapse
Affiliation(s)
- Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaowei Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, United States
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Julião MHM, Silva SR, Ferro JA, Varani AM. A Genomic and Transcriptomic Overview of MATE, ABC, and MFS Transporters in Citrus sinensis Interaction with Xanthomonas citri subsp. citri. PLANTS (BASEL, SWITZERLAND) 2020; 9:E794. [PMID: 32630416 PMCID: PMC7356318 DOI: 10.3390/plants9060794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
The multi-antimicrobial extrusion (MATE), ATP-binding cassette (ABC), and major facilitator superfamily (MFS) are the main plant transporters families, playing an essential role in the membrane-trafficking network and plant-defense mechanism. The citrus canker type A (CC), is a devastating disease caused by Xanthomonas citri subsp. citri (Xac), affecting all citrus species. In this work, we performed an in silico analysis of genes and transcripts from MATE, ABC, and MFS families to infer the role of membrane transporters in Citrus-Xac interaction. Using as reference, the available Citrus sinensis genome and the citrus reference transcriptome from CitrusKB database, 67 MATE, 91 MFS, and 143 ABC genes and 82 MATE, 139 MFS, and 226 ABC transcripts were identified and classified into subfamilies. Duplications, alternative-splicing, and potentially non-transcribed transporters' genes were revealed. Interestingly, MATE I and ABC G subfamilies appear differently regulated during Xac infection. Furthermore, Citrus spp. showing distinct levels of CC susceptibility exhibited different sets of transporters transcripts, supporting dissimilar molecular patterns of membrane transporters in Citrus-Xac interaction. According to our findings, 4 MATE, 10 ABC, and 3 MFS are potentially related to plant-defense mechanisms. Overall, this work provides an extensive analysis of MATE, ABC, and MFS transporters' in Citrus-Xac interaction, bringing new insights on membrane transporters in plant-pathogen interactions.
Collapse
Affiliation(s)
| | | | | | - Alessandro M. Varani
- Department of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil; (M.H.M.J.); (S.R.S.); (J.A.F.)
| |
Collapse
|
22
|
Lundquist PK, Shivaiah KK, Espinoza-Corral R. Lipid droplets throughout the evolutionary tree. Prog Lipid Res 2020; 78:101029. [PMID: 32348789 DOI: 10.1016/j.plipres.2020.101029] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Intracellular lipid droplets are utilized for lipid storage and metabolism in organisms as evolutionarily diverse as animals, fungi, plants, bacteria, and archaea. These lipid droplets demonstrate great diversity in biological functions and protein and lipid compositions, yet fundamentally share common molecular and ultrastructural characteristics. Lipid droplet research has been largely fragmented across the diversity of lipid droplet classes and sub-classes. However, we suggest that there is great potential benefit to the lipid community in better integrating the lipid droplet research fields. To facilitate such integration, we survey the protein and lipid compositions, functional roles, and mechanisms of biogenesis across the breadth of lipid droplets studied throughout the natural world. We depict the big picture of lipid droplet biology, emphasizing shared characteristics and unique differences seen between different classes. In presenting the known diversity of lipid droplets side-by-side it becomes necessary to offer for the first time a consistent system of categorization and nomenclature. We propose a division into three primary classes that reflect their sub-cellular location: i) cytoplasmic lipid droplets (CYTO-LDs), that are present in the eukaryotic cytoplasm, ii) prokaryotic lipid droplets (PRO-LDs), that exist in the prokaryotic cytoplasm, and iii) plastid lipid droplets (PL-LDs), that are found in plant plastids, organelles of photosynthetic eukaryotes. Within each class there is a remarkable array of sub-classes displaying various sizes, shapes and compositions. A more integrated lipid droplet research field will provide opportunities to better build on discoveries and accelerate the pace of research in ways that have not been possible.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Roberto Espinoza-Corral
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
23
|
Price AM, Doner NM, Gidda SK, Jambunathan S, James CN, Schami A, Yurchenko O, Mullen RT, Dyer JM, Puri V, Chapman KD. Mouse Fat-Specific Protein 27 (FSP27) expressed in plant cells localizes to lipid droplets and promotes lipid droplet accumulation and fusion. Biochimie 2020; 169:41-53. [PMID: 31400447 DOI: 10.1016/j.biochi.2019.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Fat-Specific Protein 27 (FSP27) belongs to a small group of vertebrate proteins containing a Cell-death Inducing DNA fragmentation factor-α-like Effector (CIDE)-C domain and is involved in lipid droplet (LD) accumulation and energy homeostasis. FSP27 is predominantly expressed in white and brown adipose tissues, as well as liver, and plays a key role in mediating LD-LD fusion. No orthologs have been identified in invertebrates or plants. In this study, we tested the function of mouse FSP27 in stably-transformed Arabidopsis thaliana leaves and seeds, as well as through transient expression in Nicotiana tabacum suspension-cultured cells and N. benthamiana leaves. Confocal microscopic analysis of plant cells revealed that, similar to ectopic expression in mammalian cells, FSP27 produced in plants 1) correctly localized to LDs, 2) accumulated at LD-LD contact sites, and 3) induced an increase in the number and size of LDs and also promoted LD clustering and fusion. Furthermore, FSP27 increased oil content in transgenic A. thaliana seeds. Given that plant oils have uses in human and animal nutrition as well as industrial uses such as biofuels and bioplastics, our results suggest that ectopic expression of FSP27 in plants represents a potential strategy for increasing oil content and energy density in bioenergy or oilseed crops.
Collapse
Affiliation(s)
- Ann M Price
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Nathan M Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Srikarthika Jambunathan
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, MA, USA
| | - Christopher N James
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Alyssa Schami
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Olga Yurchenko
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - John M Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Vishwajeet Puri
- Department of Biomedical Sciences and the Diabetes Institute, Ohio University, Athens, OH, USA
| | - Kent D Chapman
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| |
Collapse
|
24
|
Pan R, Liu J, Wang S, Hu J. Peroxisomes: versatile organelles with diverse roles in plants. THE NEW PHYTOLOGIST 2020; 225:1410-1427. [PMID: 31442305 DOI: 10.1111/nph.16134] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 05/18/2023]
Abstract
Peroxisomes are small, ubiquitous organelles that are delimited by a single membrane and lack genetic material. However, these simple-structured organelles are highly versatile in morphology, abundance and protein content in response to various developmental and environmental cues. In plants, peroxisomes are essential for growth and development and perform diverse metabolic functions, many of which are carried out coordinately by peroxisomes and other organelles physically interacting with peroxisomes. Recent studies have added greatly to our knowledge of peroxisomes, addressing areas such as the diverse proteome, regulation of division and protein import, pexophagy, matrix protein degradation, solute transport, signaling, redox homeostasis and various metabolic and physiological functions. This review summarizes our current understanding of plant peroxisomes, focusing on recent discoveries. Current problems and future efforts required to better understand these organelles are also discussed. An improved understanding of peroxisomes will be important not only to the understanding of eukaryotic cell biology and metabolism, but also to agricultural efforts aimed at improving crop performance and defense.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Saisai Wang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
25
|
Bai Y, Jing G, Zhou J, Li S, Bi R, Zhao J, Jia Q, Zhang Q, Zhang W. Overexpression of soybean GmPLDγ enhances seed oil content and modulates fatty acid composition in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110298. [PMID: 31779909 DOI: 10.1016/j.plantsci.2019.110298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 05/26/2023]
Abstract
Phospholipase D (PLD) hydrolyzes the phosphodiester bond of glycerophospholipids to yield phosphatidic acid (PA) and a free headgroup. PLDs are important for plant growth, development, and responses to external stresses. However, their roles in triacylglycerol (TAG) synthesis are still unclear. Here, we report that a soybean (Glycine max) PLDγ (GmPLDγ) is involved in glycerolipid turnover and seed oil production. GmPLDγ was targeted to mitochondria and exhibited PLD activity that was activated by oleate and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. Overexpression of GmPLDγ (abbreviated GmPLDγ-OE) in Arabidopsis thaliana resulted in enhanced seed weight, elevated levels of TAGs with 18-, 20-, and 22-carbon fatty acids (FAs), and altered oil-body morphology. Furthermore, the levels of membrane lipids in vegetative tissues decreased significantly, whereas no overt changes were found in mature seeds except for a decrease in the digalactosyldiacylglycerol (DGDG) level in the GmPLDγ-OE lines. Additionally, the expression of genes involved in glycerolipid metabolism was significantly upregulated in developing siliques in GmPLDγ-OE lines. Together, our data indicate a regulatory role for GmPLDγ in TAG synthesis and fatty-acid remodeling, highlighting the importance of mitochondria-directed glycerophospholipid homeostasis in seed oil accumulation.
Collapse
Affiliation(s)
- Yang Bai
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Guangqin Jing
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jing Zhou
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shuxiang Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Rongrong Bi
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jiangzhe Zhao
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qianru Jia
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
26
|
Zienkiewicz K, Zienkiewicz A. Degradation of Lipid Droplets in Plants and Algae-Right Time, Many Paths, One Goal. FRONTIERS IN PLANT SCIENCE 2020; 11:579019. [PMID: 33014002 PMCID: PMC7509404 DOI: 10.3389/fpls.2020.579019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 05/05/2023]
Abstract
In eukaryotic cells, lipids in the form of triacylglycerols (TAGs) are the major reservoir of cellular carbon and energy. These TAGs are packed into specialized organelles called lipid droplets (LDs). They can be found in most, if not all, types of cells, from bacteria to human. Recent data suggest that rather than being simple storage organelles, LDs are very dynamic structures at the center of cellular metabolism. This is also true in plants and algae, where LDs have been implicated in many processes including energy supply; membrane structure, function, trafficking; and signal transduction. Plant and algal LDs also play a vital role in human life, providing multiple sources of food and fuel. Thus, a lot of attention has been paid to metabolism and function of these organelles in recent years. This review summarizes the most recent advances on LDs degradation as a key process for TAGs release. While the initial knowledge on this process came from studies in oilseeds, the findings of the last decade revealed high complexity and specific mechanisms of LDs degradation in plants and algae. This includes identification of numerous novel proteins associated with LDs as well as a prominent role for autophagy in this process. This review outlines, systemizes, and discusses the most current data on LDs catabolism in plants and algae.
Collapse
|
27
|
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results Probl Cell Differ 2020; 69:281-334. [PMID: 33263877 DOI: 10.1007/978-3-030-51849-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
Collapse
|
28
|
WITHDRAWN: Functional diversity of glycerolipid acylhydrolases in plant metabolism and physiology. Prog Lipid Res 2019. [DOI: 10.1016/j.plipres.2019.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Li L, Du Y, He C, Dietrich CR, Li J, Ma X, Wang R, Liu Q, Liu S, Wang G, Schnable PS, Zheng J. Maize glossy6 is involved in cuticular wax deposition and drought tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3089-3099. [PMID: 30919902 PMCID: PMC6598097 DOI: 10.1093/jxb/erz131] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/04/2019] [Indexed: 05/20/2023]
Abstract
Cuticular waxes, long-chain hydrocarbon compounds, form the outermost layer of plant surfaces in most terrestrial plants. The presence of cuticular waxes protects plants from water loss and other environmental stresses. Cloning and characterization of genes involved in the regulation, biosynthesis, and extracellular transport of cuticular waxes onto the surface of epidermal cells have revealed the molecular basis of cuticular wax accumulation. However, intracellular trafficking of synthesized waxes to the plasma membrane for cellular secretion is poorly understood. Here, we characterized a maize glossy (gl6) mutant that exhibited decreased epicuticular wax load, increased cuticle permeability, and reduced seedling drought tolerance relative to wild-type. We combined an RNA-sequencing-based mapping approach (BSR-Seq) and chromosome walking to identify the gl6 candidate gene, which was confirmed via the analysis of multiple independent mutant alleles. The gl6 gene represents a novel maize glossy gene containing a conserved, but uncharacterized, DUF538 domain. This study suggests that the GL6 protein may be involved in the intracellular trafficking of cuticular waxes, opening the door to elucidating the poorly understood process by which cuticular wax is transported from its site of biosynthesis to the plasma membrane.
Collapse
Affiliation(s)
- Li Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Department of Agronomy, Iowa State University, Ames, IA, USA
- Seed Science and Technology Research Center, Beijing Innovation Research Center on the Whole Process of Crop Seeds, China Agricultural University, Beijing, P. R. China
| | - Yicong Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Cheng He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Charles R Dietrich
- Department of Agronomy, Iowa State University, Ames, IA, USA
- Present address: Monsanto, Chesterfield, MO 63005-63017, USA
| | - Jiankun Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaoli Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Present address: Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Rui Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qiang Liu
- Department of Agronomy, Iowa State University, Ames, IA, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
| | - Sanzhen Liu
- Department of Agronomy, Iowa State University, Ames, IA, USA
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, IA, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Correspondence: or
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Correspondence: or
| |
Collapse
|
30
|
Functional diversity of glycerolipid acylhydrolases in plant metabolism and physiology. Prog Lipid Res 2019; 75:100987. [PMID: 31078649 DOI: 10.1016/j.plipres.2019.100987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/22/2022]
Abstract
Most current knowledge about plant lipid metabolism has focused on the biosynthesis of lipids and their transport between different organelles. However, lipid composition changes during development and in response to environmental cues often go beyond adjustments of lipid biosynthesis. When lipids have to be removed to adjust the extent of membranes during down regulation of photosynthesis, or lipid composition has to be adjusted to alter the biophysical properties of membranes, or lipid derived chemical signals have to be produced, lipid-degrading enzymes come into play. This review focuses on glycerolipid acylhydrolases that remove acyl groups from glycerolipids and will highlight their roles in lipid remodeling and lipid-derived signal generation. One emerging theme is that these enzymes are involved in the dynamic movement of acyl groups through different lipid pools, for example from polar membrane lipids to neutral lipids sequestered in lipid droplets during de novo triacylglycerol synthesis. Another example of acyl group sequestration in the form of triacylglycerols in lipid droplets is membrane lipid remodeling in response to abiotic stresses. Fatty acids released for membrane lipids can also give rise to potent signaling molecules and acylhydrolases are therefore often the first step in initiating the formation of these lipid signals.
Collapse
|
31
|
|
32
|
Vanhercke T, Dyer JM, Mullen RT, Kilaru A, Rahman MM, Petrie JR, Green AG, Yurchenko O, Singh SP. Metabolic engineering for enhanced oil in biomass. Prog Lipid Res 2019; 74:103-129. [PMID: 30822461 DOI: 10.1016/j.plipres.2019.02.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
The world is hungry for energy. Plant oils in the form of triacylglycerol (TAG) are one of the most reduced storage forms of carbon found in nature and hence represent an excellent source of energy. The myriad of applications for plant oils range across foods, feeds, biofuels, and chemical feedstocks as a unique substitute for petroleum derivatives. Traditionally, plant oils are sourced either from oilseeds or tissues surrounding the seed (mesocarp). Most vegetative tissues, such as leaves and stems, however, accumulate relatively low levels of TAG. Since non-seed tissues constitute the majority of the plant biomass, metabolic engineering to improve their low-intrinsic TAG-biosynthetic capacity has recently attracted significant attention as a novel, sustainable and potentially high-yielding oil production platform. While initial attempts predominantly targeted single genes, recent combinatorial metabolic engineering strategies have focused on the simultaneous optimization of oil synthesis, packaging and degradation pathways (i.e., 'push, pull, package and protect'). This holistic approach has resulted in dramatic, seed-like TAG levels in vegetative tissues. With the first proof of concept hurdle addressed, new challenges and opportunities emerge, including engineering fatty acid profile, translation into agronomic crops, extraction, and downstream processing to deliver accessible and sustainable bioenergy.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia.
| | - John M Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - James R Petrie
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia; Folear, Goulburn, NSW, Australia
| | - Allan G Green
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Olga Yurchenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Surinder P Singh
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
33
|
Huang L, Yu LJ, Zhang X, Fan B, Wang FZ, Dai YS, Qi H, Zhou Y, Xie LJ, Xiao S. Autophagy regulates glucose-mediated root meristem activity by modulating ROS production in Arabidopsis. Autophagy 2018; 15:407-422. [PMID: 30208757 PMCID: PMC6351127 DOI: 10.1080/15548627.2018.1520547] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glucose produced from photosynthesis is a key nutrient signal regulating root meristem activity in plants; however, the underlying mechanisms remain poorly understood. Here, we show that, by modulating reactive oxygen species (ROS) levels, the conserved macroautophagy/autophagy degradation pathway contributes to glucose-regulated root meristem maintenance. In Arabidopsis thaliana roots, a short exposure to elevated glucose temporarily suppresses constitutive autophagosome formation. The autophagy-defective autophagy-related gene (atg) mutants have enhanced tolerance to glucose, established downstream of the glucose sensors, and accumulate less glucose-induced ROS in the root tips. Moreover, the enhanced root meristem activities in the atg mutants are associated with improved auxin gradients and auxin responses. By acting with AT4G39850/ABCD1 (ATP-binding cassette D1; Formerly PXA1/peroxisomal ABC transporter 1), autophagy plays an indispensable role in the glucose-promoted degradation of root peroxisomes, and the atg mutant phenotype is partially rescued by the overexpression of ABCD1. Together, our findings suggest that autophagy is an essential mechanism for glucose-mediated maintenance of the root meristem. Abbreviation: ABA: abscisic acid; ABCD1: ATP-binding cassette D1; ABO: ABA overly sensitive; AsA: ascorbic acid; ATG: autophagy related; CFP: cyan fluorescent protein; Co-IP: co-immunoprecipitation; DAB: 3’,3’-diaininobenzidine; DCFH-DA: 2’,7’-dichlorodihydrofluorescin diacetate; DR5: a synthetic auxin response element consists of tandem direct repeats of 11 bp that included the auxin-responsive TGTCTC element; DZ: differentiation zone; EZ, elongation zone; GFP, green fluorescent protein; GSH, glutathione; GUS: β-glucuronidase; HXK1: hexokinase 1; H2O2: hydrogen peroxide; IAA: indole-3-acetic acid; IBA: indole-3-butyric acid; KIN10/11: SNF1 kinase homolog 10/11; MDC: monodansylcadaverine; MS: Murashige and Skoog; MZ: meristem zone; NBT: nitroblue tetrazolium; NPA: 1-N-naphtylphthalamic acid; OxIAA: 2-oxindole-3-acetic acid; PIN: PIN-FORMED; PLT: PLETHORA; QC: quiescent center; RGS1: Regulator of G-protein signaling 1; ROS: reactive oxygen species; SCR: SCARECROW; SHR, SHORT-ROOT; SKL: Ser-Lys-Leu; SnRK1: SNF1-related kinase 1; TOR: target of rapamycin; UPB1: UPBEAT1; WOX5: WUSCHEL related homeobox 5; Y2H: yeast two-hybrid; YFP: yellow fluorescent protein
Collapse
Affiliation(s)
- Li Huang
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Lu-Jun Yu
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Xue Zhang
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Biao Fan
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Feng-Zhu Wang
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Yang-Shuo Dai
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Hua Qi
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Ying Zhou
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Li-Juan Xie
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Shi Xiao
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
34
|
Lefèvre F, Boutry M. Towards Identification of the Substrates of ATP-Binding Cassette Transporters. PLANT PHYSIOLOGY 2018; 178:18-39. [PMID: 29987003 PMCID: PMC6130012 DOI: 10.1104/pp.18.00325] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/08/2018] [Indexed: 05/05/2023]
Abstract
Most ATP-binding cassette (ABC) proteins function in transmembrane transport, and plant genomes encode a large number of ABC transporters compared with animal or fungal genomes. These transporters have been classified into eight subfamilies according to their topology and phylogenetic relationships. Transgenic plants and mutants with altered ABC transporter expression or function have contributed to deciphering the physiological roles of these proteins, such as in plant development, responses to biotic and abiotic stress, or detoxification activities within the cell. In agreement with the diversity of these functions, a large range of substrates (e.g. hormones and primary and secondary metabolites) have been identified. We review in detail transporters for which substrates have been unambiguously identified. However, some cases are far from clear, because some ABC transporters have the ability to transport several structurally unrelated substrates or because the identification of their substrates was performed indirectly without any flux measurement. Various heterologous or homologous expression systems have been used to better characterize the transport activity and other biochemical properties of ABC transporters, opening the way to addressing new issues such as the particular structural features of plant ABC transporters, the bidirectionality of transport, or the role of posttranslational modifications.
Collapse
Affiliation(s)
- François Lefèvre
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Marc Boutry
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
35
|
Dube G, Kadoo N, Prashant R. Exploring the biological roles of Dothideomycetes ABC proteins: Leads from their phylogenetic relationships with functionally-characterized Ascomycetes homologs. PLoS One 2018; 13:e0197447. [PMID: 30071023 PMCID: PMC6071951 DOI: 10.1371/journal.pone.0197447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The ATP-binding cassette (ABC) superfamily is one of the largest, ubiquitous and diverse protein families in nature. Categorized into nine subfamilies, its members are important to most organisms including fungi, where they play varied roles in fundamental cellular processes, plant pathogenesis or fungicide tolerance. However, these proteins are not yet well-understood in the class Dothideomycetes, which includes several phytopathogens that infect a wide range of food crops including wheat, barley and maize and cause major economic losses. RESULTS We analyzed the genomes of 14 Dothideomycetes fungi (Test set) and seven well-known Ascomycetes fungi (Model set- that possessed gene expression/ functional analysis data about the ABC genes) and predicted 578 and 338 ABC proteins from each set respectively. These proteins were classified into subfamilies A to I, which revealed the distribution of the subfamily members across the Dothideomycetes and Ascomycetes genomes. Phylogenetic analysis of Dothideomycetes ABC proteins indicated evolutionary relationships among the subfamilies within this class. Further, phylogenetic relationships among the ABC proteins from the Model and the Test fungi within each subfamily were analyzed, which aided in classifying these proteins into subgroups. We compiled and curated functional and gene expression information from the previous literature for 118 ABC genes and mapped them on the phylogenetic trees, which suggested possible roles in pathogenesis and/or fungicide tolerance for the newly identified Dothideomycetes ABC proteins. CONCLUSIONS The present analysis is one of the firsts to extensively analyze ABC proteins from Dothideomycetes fungi. Their phylogenetic analysis and annotating the clades with functional information indicated a subset of Dothideomycetes ABC genes that could be considered for experimental validation for their roles in plant pathogenesis and/or fungicide tolerance.
Collapse
Affiliation(s)
- Gaurav Dube
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Narendra Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ramya Prashant
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- MIT School of Bioengineering Sciences & Research, MIT-Art, Design and Technology University, Pune, India
| |
Collapse
|
36
|
Chen W, Salari H, Taylor MC, Jost R, Berkowitz O, Barrow R, Qiu D, Branco R, Masle J. NMT1 and NMT3 N-Methyltransferase Activity Is Critical to Lipid Homeostasis, Morphogenesis, and Reproduction. PLANT PHYSIOLOGY 2018; 177:1605-1628. [PMID: 29777000 PMCID: PMC6084668 DOI: 10.1104/pp.18.00457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 05/24/2023]
Abstract
Phosphatidylcholine (PC) is a major membrane phospholipid and a precursor for major signaling molecules. Understanding its synthesis is important for improving plant growth, nutritional value, and resistance to stress. PC synthesis is complex, involving several interconnected pathways, one of which proceeds from serine-derived phosphoethanolamine to form phosphocholine through three sequential phospho-base methylations catalyzed by phosphoethanolamine N-methyltransferases (PEAMTs). The contribution of this pathway to the production of PC and plant growth has been a matter of some debate. Although a handful of individual PEAMTs have been described, there has not been any in planta investigation of a PEAMT family. Here, we provide a comparative functional analysis of two Arabidopsis (Arabidopsis thaliana) PEAMTs, NMT1 and the little known NMT3. Analysis of loss-of-function mutants demonstrates that NMT1 and NMT3 synergistically regulate PC homeostasis, phase transition at the shoot apex, coordinated organ development, and fertility through overlapping but also specific functions. The nmt1 nmt3 double mutant shows extensive sterility, drastically reduced PC concentrations, and altered lipid profiles. These findings demonstrate that the phospho-base methylation pathway makes a major contribution to PC synthesis in Arabidopsis and that NMT1 and NMT3 play major roles in its catalysis and the regulation of PC homeostasis as well as in plant growth and reproduction.
Collapse
Affiliation(s)
- Weihua Chen
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hooman Salari
- Agronomy and Plant Breeding Department, Razi University, Kermanshah 67155, Iran
| | - Matthew C Taylor
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory 2601, Australia
| | - Ricarda Jost
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Oliver Berkowitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Russell Barrow
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Deyun Qiu
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Rémi Branco
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Josette Masle
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
37
|
Lunn D, Smith GA, Wallis JG, Browse J. Development Defects of Hydroxy-Fatty Acid-Accumulating Seeds Are Reduced by Castor Acyltransferases. PLANT PHYSIOLOGY 2018; 177:553-564. [PMID: 29678860 PMCID: PMC6001331 DOI: 10.1104/pp.17.01805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/02/2018] [Indexed: 05/05/2023]
Abstract
Researchers have long endeavored to produce modified fatty acids in easily managed crop plants where they are not natively found. An important step toward this goal has been the biosynthesis of these valuable products in model oilseeds. The successful production of such fatty acids has revealed barriers to the broad application of this technology, including low seed oil and low proportion of the introduced fatty acid and reduced seed vigor. Here, we analyze the impact of producing hydroxy-fatty acids on seedling development. We show that germinating seeds of a hydroxy-fatty acid-accumulating Arabidopsis (Arabidopsis thaliana) line produce chlorotic cotyledons and suffer reduced photosynthetic capacity. These seedlings retain hydroxy-fatty acids in polar lipids, including chloroplast lipids, and exhibit decreased fatty acid synthesis. Triacylglycerol mobilization in seedling development also is reduced, especially for lipids that include hydroxy-fatty acid moieties. These developmental defects are ameliorated by increased flux of hydroxy-fatty acids into seed triacylglycerol created through the expression of either castor (Ricinus communis) acyltransferase enzyme ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE2 or PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1A. Such expression increases both the level of total stored triacylglycerol and the rate at which it is mobilized, fueling fatty acid synthesis and restoring photosynthetic capacity. Our results suggest that further improvements in seedling development may require the specific mobilization of triacylglycerol-containing hydroxy-fatty acids. Understanding the defects in early development caused by the accumulation of modified fatty acids and providing mechanisms to circumvent these defects are vital steps in the development of tailored oil crops.
Collapse
Affiliation(s)
- Daniel Lunn
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Gracen A Smith
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - James G Wallis
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
38
|
Kao YT, Gonzalez KL, Bartel B. Peroxisome Function, Biogenesis, and Dynamics in Plants. PLANT PHYSIOLOGY 2018; 176:162-177. [PMID: 29021223 PMCID: PMC5761812 DOI: 10.1104/pp.17.01050] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/09/2017] [Indexed: 05/19/2023]
Abstract
Recent advances highlight understanding of the diversity of peroxisome contributions to plant biology and the mechanisms through which these essential organelles are generated.
Collapse
Affiliation(s)
- Yun-Ting Kao
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Kim L Gonzalez
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Bonnie Bartel
- Department of Biosciences, Rice University, Houston, Texas 77005
| |
Collapse
|
39
|
Abstract
Plant peroxisomes are required for a number of fundamental physiological processes, such as primary and secondary metabolism, development and stress response. Indexing the dynamic peroxisome proteome is prerequisite to fully understanding the importance of these organelles. Mass Spectrometry (MS)-based proteome analysis has allowed the identification of novel peroxisomal proteins and pathways in a relatively high-throughput fashion and significantly expanded the list of proteins and biochemical reactions in plant peroxisomes. In this chapter, we summarize the experimental proteomic studies performed in plants, compile a list of ~200 confirmed Arabidopsis peroxisomal proteins, and discuss the diverse plant peroxisome functions with an emphasis on the role of Arabidopsis MS-based proteomics in discovering new peroxisome functions. Many plant peroxisome proteins and biochemical pathways are specific to plants, substantiating the complexity, plasticity and uniqueness of plant peroxisomes. Mapping the full plant peroxisome proteome will provide a knowledge base for the improvement of crop production, quality and stress tolerance.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
40
|
Park J, Lee Y, Martinoia E, Geisler M. Plant hormone transporters: what we know and what we would like to know. BMC Biol 2017; 15:93. [PMID: 29070024 PMCID: PMC5655956 DOI: 10.1186/s12915-017-0443-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hormone transporters are crucial for plant hormone action, which is underlined by severe developmental and physiological impacts caused by their loss-of-function mutations. Here, we summarize recent knowledge on the individual roles of plant hormone transporters in local and long-distance transport. Our inventory reveals that many hormones are transported by members of distinct transporter classes, with an apparent dominance of the ATP-binding cassette (ABC) family and of the Nitrate transport1/Peptide transporter family (NPF). The current need to explore further hormone transporter regulation, their functional interaction, transport directionalities, and substrate specificities is briefly reviewed.
Collapse
Affiliation(s)
- Jiyoung Park
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0116, USA.
| | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
| | - Enrico Martinoia
- Institute for Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Markus Geisler
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
41
|
Critical roles for α/β hydrolase domain 5 (ABHD5)/comparative gene identification-58 (CGI-58) at the lipid droplet interface and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1233-1241. [PMID: 28827091 DOI: 10.1016/j.bbalip.2017.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023]
Abstract
Mutations in the gene encoding comparative gene identification 58 (CGI-58), also known as α β hydrolase domain-containing 5 (ABHD5), cause neutral lipid storage disorder with ichthyosis (NLSDI). This inborn error in metabolism is characterized by ectopic accumulation of triacylglycerols (TAG) within cytoplasmic lipid droplets in multiple cell types. Studies over the past decade have clearly demonstrated that CGI-58 is a potent regulator of TAG hydrolysis in the disease-relevant cell types. However, despite the reproducible genetic link between CGI-58 mutations and TAG storage, the molecular mechanisms by which CGI-58 regulates TAG hydrolysis are still incompletely understood. It is clear that CGI-58 can regulate TAG hydrolysis by activating the major TAG hydrolase adipose triglyceride lipase (ATGL), yet CGI-58 can also regulate lipid metabolism via mechanisms that do not involve ATGL. This review highlights recent progress made in defining the physiologic and biochemical function of CGI-58, and its broader role in energy homeostasis. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
|
42
|
Yurchenko O, Shockey JM, Gidda SK, Silver MI, Chapman KD, Mullen RT, Dyer JM. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1010-1023. [PMID: 28083898 PMCID: PMC5506653 DOI: 10.1111/pbi.12695] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 05/23/2023]
Abstract
The seeds of many nondomesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered seeds remains low and is often hampered by their inefficient exclusion from phospholipids. Recent studies have established the feasibility of increasing triacylglycerol content in plant leaves, which provides a novel approach for increasing energy density of biomass crops. Here, we determined whether the fatty acid composition of leaf oil could be engineered to accumulate unusual fatty acids. Eleostearic acid (ESA) is a conjugated fatty acid produced in seeds of the tung tree (Vernicia fordii) and has both industrial and nutritional end-uses. Arabidopsis thaliana lines with elevated leaf oil were first generated by transforming wild-type, cgi-58 or pxa1 mutants (the latter two of which contain mutations disrupting fatty acid breakdown) with the diacylglycerol acyltransferases (DGAT1 or DGAT2) and/or oleosin genes from tung. High-leaf-oil plant lines were then transformed with tung FADX, which encodes the fatty acid desaturase/conjugase responsible for ESA synthesis. Analysis of lipids in leaves revealed that ESA was efficiently excluded from phospholipids, and co-expression of tung FADX and DGAT2 promoted a synergistic increase in leaf oil content and ESA accumulation. Taken together, these results provide a new approach for increasing leaf oil content that is coupled with accumulation of unusual fatty acids. Implications for production of biofuels, bioproducts, and plant-pest interactions are discussed.
Collapse
Affiliation(s)
- Olga Yurchenko
- USDA‐ARSUS Arid‐Land Agricultural Research CenterMaricopaAZUSA
| | - Jay M. Shockey
- USDA‐ARSSouthern Regional Research CenterNew OrleansLAUSA
| | - Satinder K. Gidda
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Maxwell I. Silver
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Kent D. Chapman
- Department of Biological SciencesUniversity of North TexasDentonTXUSA
| | - Robert T. Mullen
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - John M. Dyer
- USDA‐ARSUS Arid‐Land Agricultural Research CenterMaricopaAZUSA
| |
Collapse
|
43
|
Pyc M, Cai Y, Greer MS, Yurchenko O, Chapman KD, Dyer JM, Mullen RT. Turning Over a New Leaf in Lipid Droplet Biology. TRENDS IN PLANT SCIENCE 2017; 22:596-609. [PMID: 28454678 DOI: 10.1016/j.tplants.2017.03.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 05/08/2023]
Abstract
Lipid droplets (LDs) in plants have long been viewed as storage depots for neutral lipids that serve as sources of carbon, energy, and lipids for membrane biosynthesis. While much of our knowledge of LD function in plants comes from studies of oilseeds, a recent surge in research on LDs in non-seed cell types has led to an array of new discoveries. It is now clear that both evolutionarily conserved and kingdom-specific mechanisms underlie the biogenesis of LDs in eukaryotes, and proteomics and homology-based approaches have identified new protein players. This review highlights some of these recent discoveries and other new areas of plant LD research, including their role in stress responses and as targets of metabolic engineering strategies aimed at increasing oil content in bioenergy crops.
Collapse
Affiliation(s)
- Michal Pyc
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yingqi Cai
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX 76203, USA
| | - Michael S Greer
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX 76203, USA
| | - Olga Yurchenko
- US Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Kent D Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX 76203, USA
| | - John M Dyer
- US Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ 85138, USA.
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
44
|
Bjornson M, Balcke GU, Xiao Y, de Souza A, Wang JZ, Zhabinskaya D, Tagkopoulos I, Tissier A, Dehesh K. Integrated omics analyses of retrograde signaling mutant delineate interrelated stress-response strata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:70-84. [PMID: 28370892 PMCID: PMC5488868 DOI: 10.1111/tpj.13547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 05/19/2023]
Abstract
To maintain homeostasis in the face of intrinsic and extrinsic insults, cells have evolved elaborate quality control networks to resolve damage at multiple levels. Interorganellar communication is a key requirement for this maintenance, however the underlying mechanisms of this communication have remained an enigma. Here we integrate the outcome of transcriptomic, proteomic, and metabolomics analyses of genotypes including ceh1, a mutant with constitutively elevated levels of both the stress-specific plastidial retrograde signaling metabolite methyl-erythritol cyclodiphosphate (MEcPP) and the defense hormone salicylic acid (SA), as well as the high MEcPP but SA deficient genotype ceh1/eds16, along with corresponding controls. Integration of multi-omic analyses enabled us to delineate the function of MEcPP from SA, and expose the compartmentalized role of this retrograde signaling metabolite in induction of distinct but interdependent signaling cascades instrumental in adaptive responses. Specifically, here we identify strata of MEcPP-sensitive stress-response cascades, among which we focus on selected pathways including organelle-specific regulation of jasmonate biosynthesis; simultaneous induction of synthesis and breakdown of SA; and MEcPP-mediated alteration of cellular redox status in particular glutathione redox balance. Collectively, these integrated multi-omic analyses provided a vehicle to gain an in-depth knowledge of genome-metabolism interactions, and to further probe the extent of these interactions and delineate their functional contributions. Through this approach we were able to pinpoint stress-mediated transcriptional and metabolic signatures and identify the downstream processes modulated by the independent or overlapping functions of MEcPP and SA in adaptive responses.
Collapse
Affiliation(s)
- Marta Bjornson
- Dept. of Plant Biology, University of California, Davis, CA 95616
- Dept. of Plant Sciences, University of California, Davis, CA 95616
| | | | - Yanmei Xiao
- Dept. of Plant Biology, University of California, Davis, CA 95616
| | - Amancio de Souza
- Dept. of Plant Biology, University of California, Davis, CA 95616
| | - Jin-Zheng Wang
- Dept. of Plant Biology, University of California, Davis, CA 95616
| | - Dina Zhabinskaya
- Dept. of Computer Science, University of California, Davis, CA 95616
| | - Ilias Tagkopoulos
- Dept. of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Alain Tissier
- Dept. of Physics, University of California, Davis, CA 95616
| | - Katayoon Dehesh
- Dept. of Plant Biology, University of California, Davis, CA 95616
| |
Collapse
|
45
|
Cai Y, McClinchie E, Price A, Nguyen TN, Gidda SK, Watt SC, Yurchenko O, Park S, Sturtevant D, Mullen RT, Dyer JM, Chapman KD. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:824-836. [PMID: 27987528 PMCID: PMC5466434 DOI: 10.1111/pbi.12678] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 05/23/2023]
Abstract
Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids in leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. When expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ER-vesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. These results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.
Collapse
Affiliation(s)
- Yingqi Cai
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| | | | - Ann Price
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| | - Thuy N. Nguyen
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
- Present address: Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Satinder K. Gidda
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Samantha C. Watt
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Olga Yurchenko
- US Arid‐Land Agricultural Research CenterUSDA‐ARSMaricopaAZUSA
| | - Sunjung Park
- US Arid‐Land Agricultural Research CenterUSDA‐ARSMaricopaAZUSA
- Present address: Biology DepartmentCentral Arizona CollegeMaricopaAZ85138USA
| | - Drew Sturtevant
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| | - Robert T. Mullen
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - John M. Dyer
- US Arid‐Land Agricultural Research CenterUSDA‐ARSMaricopaAZUSA
| | - Kent D. Chapman
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| |
Collapse
|
46
|
Reumann S, Bartel B. Plant peroxisomes: recent discoveries in functional complexity, organelle homeostasis, and morphological dynamics. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:17-26. [PMID: 27500947 PMCID: PMC5161562 DOI: 10.1016/j.pbi.2016.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 05/20/2023]
Abstract
Peroxisomes are essential for life in plants. These organelles house a variety of metabolic processes that generate and inactivate reactive oxygen species. Our knowledge of pathways and mechanisms that depend on peroxisomes and their constituent enzymes continues to grow, and in this review we highlight recent advances in understanding the identity and biological functions of peroxisomal enzymes and metabolic processes. We also review how peroxisomal matrix and membrane proteins enter the organelle from their sites of synthesis. Peroxisome homeostasis is regulated by specific degradation mechanisms, and we discuss the contributions of specialized autophagy and a peroxisomal protease to the degradation of entire peroxisomes and peroxisomal enzymes that are damaged or superfluous. Finally, we review how peroxisomes can flexibly change their morphology to facilitate inter-organellar contacts.
Collapse
Affiliation(s)
- Sigrun Reumann
- Department of Plant Biochemistry and Infection Biology, Biocentre Klein Flottbek, University of Hamburg, D-22609 Hamburg, Germany; Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Bonnie Bartel
- Department of BioSciences, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
47
|
Manan S, Chen B, She G, Wan X, Zhao J. Transport and transcriptional regulation of oil production in plants. Crit Rev Biotechnol 2016; 37:641-655. [DOI: 10.1080/07388551.2016.1212185] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sehrish Manan
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Beibei Chen
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jian Zhao
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
48
|
Kelly AA, Feussner I. Oil is on the agenda: Lipid turnover in higher plants. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1253-1268. [PMID: 27155216 DOI: 10.1016/j.bbalip.2016.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Lipases hydrolyze ester bonds within lipids. This process is called lipolysis. They are key players in lipid turnover and involved in numerous metabolic pathways, many of which are shared between organisms like the mobilization of neutral or storage lipids or lipase-mediated membrane lipid homeostasis. Some reactions though are predominantly present in certain organisms, such as the production of signaling molecules (endocannabinoids) by diacylglycerol (DAG) and monoacylglycerol (MAG) lipases in mammals and plants or the jasmonate production in flowering plants. This review aims at giving an overview of the different functional classes of lipases and respective well-known activities, with a focus on the most recent findings in plant biology for selected classes. Here we will put an emphasis on the physiological role and contribution of lipases to the turnover of neutral lipids found in seed oil and other vegetative tissue as candidates for increasing the economical values of crop plants. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Amélie A Kelly
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ivo Feussner
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, International Center for Advanced Studies of Energy Conversion (ICASEC), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
49
|
Reumann S, Chowdhary G, Lingner T. Characterization, prediction and evolution of plant peroxisomal targeting signals type 1 (PTS1s). BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:790-803. [PMID: 26772785 DOI: 10.1016/j.bbamcr.2016.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 12/22/2022]
Abstract
Our knowledge of the proteome of plant peroxisomes and their functional plasticity is far from being complete, primarily due to major technical challenges in experimental proteome research of the fragile cell organelle. Several unexpected novel plant peroxisome functions, for instance in biotin and phylloquinone biosynthesis, have been uncovered recently. Nevertheless, very few regulatory and membrane proteins of plant peroxisomes have been identified and functionally described up to now. To define the matrix proteome of plant peroxisomes, computational methods have emerged as important powerful tools. Novel prediction approaches of high sensitivity and specificity have been developed for peroxisome targeting signals type 1 (PTS1) and have been validated by in vivo subcellular targeting analyses and thermodynamic binding studies with the cytosolic receptor, PEX5. Accordingly, the algorithms allow the correct prediction of many novel peroxisome-targeted proteins from plant genome sequences and the discovery of additional organelle functions. In this review, we provide an overview of methodologies, capabilities and accuracies of available prediction algorithms for PTS1 carrying proteins. We also summarize and discuss recent quantitative, structural and mechanistic information of the interaction of PEX5 with PTS1 carrying proteins in relation to in vivo import efficiency. With this knowledge, we develop a model of how proteins likely evolved peroxisomal targeting signals in the past and still nowadays, in which order the two import pathways might have evolved in the ancient eukaryotic cell, and how the secondary loss of the PTS2 pathway probably happened in specific organismal groups.
Collapse
Affiliation(s)
- S Reumann
- Department of Plant Biochemistry and Infection Biology, Biocentre Klein Flottbek, University of Hamburg, D-22609 Hamburg, Germany; Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway.
| | - G Chowdhary
- Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway; KIIT School of Biotechnology, Campus XI, KIIT University, I-751024 Bhubaneswar, India.
| | - T Lingner
- Department of Bioinformatics, Institute for Microbiology and Genetics, D-37077 Goettingen, Germany.
| |
Collapse
|
50
|
Xu C, Shanklin J. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:179-206. [PMID: 26845499 DOI: 10.1146/annurev-arplant-043015-111641] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oils in the form of triacylglycerols are the most abundant energy-dense storage compounds in eukaryotes, and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. Here, we review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| |
Collapse
|