1
|
Soviguidi DRJ, Duan Z, Pan B, Lei R, Liang G. Function, structure, and regulation of Iron Regulated Transporter 1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109457. [PMID: 39733729 DOI: 10.1016/j.plaphy.2024.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Iron (Fe) is an essential mineral for the growth and development of plants, as it serves as a vital co-factor for a multitude of enzymes that participate in a variety of physiological processes. Plants obtain Fe from the soil through their Fe uptake systems. Non-graminaceous plants utilize a reduction-based system for Fe uptake, which involves the conversion of Fe(III) to Fe(II) and subsequent absorption of Fe(II). Iron-Regulated Transporter 1 (IRT1), a predominant transporter of Fe(II), is a central element of the Fe uptake mechanism in plants. In Arabidopsis thaliana, IRT1 exhibits a broad-spectrum of substrate specificity and functions as a transceptor, capable of sensing the levels of its non-Fe metal substrates. Over the past two decades, significant advancements have been achieved in understanding the functions and regulatory mechanisms of IRT1 and its orthologs across various plant species. This review provides a systematic overview of the functional attributes of IRT1, with a particular focus on the intricate regulatory mechanisms at the transcriptional, post-transcriptional, and post-translational levels that are pivotal in modulating the expression and activity of IRT1. Moreover, we offer insights and directions for future research on this important transporter.
Collapse
Affiliation(s)
- Deka Reine Judesse Soviguidi
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China
| | - Zhijie Duan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China; The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bangzhen Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China
| | - Rihua Lei
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China
| | - Gang Liang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China.
| |
Collapse
|
2
|
Sloan MA, Scott A, Aghabi D, Mrvova L, Harding CR. Iron-mediated post-transcriptional regulation in Toxoplasma gondii. PLoS Pathog 2025; 21:e1012857. [PMID: 39899594 PMCID: PMC11801735 DOI: 10.1371/journal.ppat.1012857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2025] [Accepted: 12/21/2024] [Indexed: 02/05/2025] Open
Abstract
Iron is required to support almost all life; however, levels must be carefully regulated to maintain homeostasis. Although the obligate parasite Toxoplasma gondii requires iron, how it responds upon iron limitation has not been investigated. Here, we show that iron depletion triggers significant transcriptional changes in the parasite, including in iron-dependent pathways. We find that a subset of T. gondii transcripts contain stem-loop structures, which have been associated with post-transcriptional iron-mediated regulation in other cellular systems. We validate one of these (found in the 3' UTR of TGME49_261720) using a reporter cell line. We show that the presence of the stem-loop-containing UTR is sufficient to confer accumulation at the transcript and protein levels under low iron. This response is dose and time-dependent and is specific for iron. The accumulation of transcript is likely driven by an increased reporter mRNA stability under low iron. Interestingly, we find iron-mediated changes in mRNA stability in around 400 genes. To examine the potential mechanism of this stability, we tested aconitase interaction with mRNA in low iron and found 43 enriched transcripts, but no specific interaction with our reporter UTR. However, the endogenous UTR led to maintenance of protein levels and increased survival of the parasite under low iron. Our data demonstrate the existence of iron-mediated post-transcriptional regulation in Toxoplasma for the first time; and suggests iron-mediated regulation may be important to the parasite in low iron environments.
Collapse
Affiliation(s)
- Megan A. Sloan
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Adam Scott
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Dana Aghabi
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Lucia Mrvova
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Clare R. Harding
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Hasegawa Y, Luo Y, Sato T. Recent Advances in Ubiquitin Signals Regulating Plant Membrane Trafficking. PLANT & CELL PHYSIOLOGY 2024; 65:1907-1924. [PMID: 39446594 DOI: 10.1093/pcp/pcae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Ubiquitination is a reversible post-translational modification involving the attachment of ubiquitin, a 76-amino acid protein conserved among eukaryotes. The protein 'ubiquitin' was named after it was found to be ubiquitously expressed in cells. Ubiquitination was first identified as a post-translational modification that mediates energy-consuming protein degradation by the proteasome. After half a century, the manifold functions of ubiquitin are widely recognized to play key roles in diverse molecular pathways and physiological processes. Compared to humans, the number of enzymes related to ubiquitination is almost twice as high in plant species, such as Arabidopsis and rice, suggesting that this modification plays a critical role in many aspects of plant physiology including development and environmental stress responses. Here, we summarize and discuss recent knowledge of ubiquitination focusing on the regulation of membrane trafficking in plants. Ubiquitination of plasma membrane-localized proteins often leads to endocytosis and vacuolar targeting. In addition to cargo proteins, ubiquitination of membrane trafficking regulators regulates the morphodynamics of the endomembrane system. Thus, throughout this review, we focus on the physiological responses regulated by ubiquitination and their underlying mechanisms to clarify what is already known and what would be interesting to investigate in the future.
Collapse
Affiliation(s)
- Yoko Hasegawa
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | - Yongming Luo
- Faculty of Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810 Japan
| | - Takeo Sato
- Faculty of Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810 Japan
| |
Collapse
|
4
|
Mohr I, Eutebach M, Knopf MC, Schommen N, Gratz R, Angrand K, Genders L, Brumbarova T, Bauer P, Ivanov R. The small ARF-like 2 GTPase TITAN5 is linked with the dynamic regulation of IRON-REGULATED TRANSPORTER 1. J Cell Sci 2024; 137:jcs263645. [PMID: 39544154 DOI: 10.1242/jcs.263645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Iron acquisition is crucial for plants. The abundance of IRON-REGULATED TRANSPORTER 1 (IRT1) is controlled through endomembrane trafficking, a process that requires small ARF-like GTPases. Only few components that are involved in the vesicular trafficking of specific cargo are known. Here, we report that the ARF-like GTPase TITAN5 (TTN5) interacts with the large cytoplasmic variable region and protein-regulatory platform of IRT1. Heterozygous ttn5-1 plants can display reduced root iron reductase activity. This activity is needed for iron uptake via IRT1. Fluorescent fusion proteins of TTN5 and IRT1 colocalize at locations where IRT1 sorting and cycling between the plasma membrane and the vacuole are coordinated. TTN5 can also interact with peripheral membrane proteins that are components of the IRT1 regulation machinery, like the trafficking factor SNX1, the C2 domain protein EHB1 and the SEC14-GOLD protein PATL2. Hence, the link between iron acquisition and vesicular trafficking involving a small GTPase of the ARF family opens up the possibility to study the involvement of TTN5 in nutritional cell biology and the endomembrane system.
Collapse
Affiliation(s)
- Inga Mohr
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Monique Eutebach
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marie C Knopf
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Naima Schommen
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Regina Gratz
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kalina Angrand
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lara Genders
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Nanda K, Singh M, Yadav T, Tiwari VK, Singh V, Singh VP, Sawant SV, Singh SP. Genome-wide identification and expression analysis of ferric reductase oxidase (FRO) genes in Gossypium spp. reveal their crucial role in iron homeostasis under abiotic and biotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109281. [PMID: 39561681 DOI: 10.1016/j.plaphy.2024.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Ferric Reductase Oxidase (FRO) genes are pivotal in iron uptake and homeostasis in plants, yet they are not studied in cotton. Here, we identify and analyze 65 FRO homologs (21 GhFRO, 21 GbFRO, 11 GaFRO, 12 GrFRO) across four Gossypium species (G. hirsutum, G. barbadense, G. arboreum, G. raimondii). FRO exhibit conserved ferric reductase activity and conserved domain structures; Ferric_reduct (PF01794), FAD_binding_8 (PF08022), and NAD_binding_6 (PF08030) across species. Physicochemical properties and subcellular localization analysis provided insights into FRO proteins' functional characteristics, mainly localized to the plasma membrane. Phylogenetic analysis delineates 11 groups, indicating both conserved and divergent evolutionary patterns. Gene structure analysis unveils varying exon-intron compositions. Chromosomal localization shows distribution across A and D genomes, suggesting evolutionary dynamics. Synteny analysis reveals paralogous and orthologous gene pairs subjected to purifying selection. The cis-regulatory elements analysis implicates diverse regulatory mechanisms. Expression profiling highlights dynamic regulation across developmental stages, abiotic and biotic stress conditions. GhFRO interacts with Ca++-dependent protein kinases-10/28-like (CDPKs10/28-like) and metal transporter Natural resistance-associated macrophage protein 6 (Nramp6) to regulate metal ion transport and iron homeostasis. The three-dimensional protein structure prediction suggests potential ligand-binding sites in FRO proteins. Moreover, qRT-PCR analysis of selected eight GhFROs in leaves treated with stress elicitors, MeJA, SA, NaCl, and PEG for 1h, 2h, 4h, and 6h revealed significant downregulation. Overall, this comprehensive study provides insights into FRO gene diversity, evolution, structure, regulation, and function in cotton, with implications for understanding plant iron homeostasis and stress responses.
Collapse
Affiliation(s)
- Kavita Nanda
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Maninder Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Tikshana Yadav
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Vipin Kumar Tiwari
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Varsha Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| | - Samir V Sawant
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| |
Collapse
|
6
|
Gong Q, Zhou M, Li X, Guo Y. Transcription factor MYB8 regulates iron deficiency stress response in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111973. [PMID: 38211736 DOI: 10.1016/j.plantsci.2023.111973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
Iron (Fe) is a crucial microelement for humans, animals, and plants. Insufficient Fe levels in plants impede growth and diminish photosynthesis, thus decreasing crop production. Notably, approximately one-third of the soil worldwide is alkaline and prone to Fe deficiency. Therefore, understanding the mechanisms underlying Fe absorption and transportation in plants can enhance Fe bioavailability in crops. In this study, the role of the transcription factor MYB8 in plant response to Fe deficiency in Arabidopsis was investigated via reverse genetics. Phenotype analysis revealed that the functional deletion mutant of MYB8 gene exhibited sensitivity to Fe deficiency stress, as indicated by shorter root length, lower chlorophyll content, and Fe concentration. Conversely, MYB8 overexpression strain showed a tolerant phenotype. Furthermore, qRT-PCR identified possible downstream MYB8-regulated genes. Moreover, MYB8 regulated the expression of iron-regulated transporter 1 (IRT1) by binding to the MYB binding sites motif ('AACAAAC') in its promoter.
Collapse
Affiliation(s)
- Qianyuan Gong
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Mengjie Zhou
- Affiliated Sport Hospital of Chengdu Sport University, Chengdu 610041, Sichuan, China
| | - Xiao Li
- Nuclear Medicine, 363 Hospital, Chengdu 610041, Sichuan, China
| | - Yuanbiao Guo
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| |
Collapse
|
7
|
Vogel K, Isono E. Deubiquitylating enzymes in Arabidopsis thaliana endocytic protein degradation. Biochem Soc Trans 2024; 52:291-299. [PMID: 38174770 DOI: 10.1042/bst20230561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
The regulation of ubiquitylation is key for plant growth and development, in which the activities of ubiquitylating enzymes as well as deubiquitylating enzymes (DUBs) determine the stability or function of the modified proteins. In contrast with ubiquitylating enzymes, there are less numbers of DUBs. DUBs can be classified into seven protein families according to the amino acid sequence of their catalytic domains. The catalytic domains of animal and plant DUB families show high homology, whereas the regions outside of the catalytic site can vary a lot. By hydrolyzing the ubiquitin molecules from ubiquitylated proteins, DUBs control ubiquitin-dependent selective protein degradation pathways such as the proteasomal-, autophagic-, and endocytic degradation pathways. In the endocytic degradation pathway, DUBs can modulate the endocytic trafficking and thus the stability of plasma membrane proteins including receptors and transporters. To date, three DUB families were shown to control the endocytic degradation pathway namely associated molecule with the SH3 domain of STAM (AMSH) 3, ubiquitin-specific protease (UBP) 12 and UBP13, and ovarian tumor protease (OTU) 11 and OTU12. In this review we will summarize the activity, molecular functions, and target protein of these DUBs and how they contribute to the environmental response of plants.
Collapse
Affiliation(s)
- Karin Vogel
- Department of Biology, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| | - Erika Isono
- Department of Biology, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| |
Collapse
|
8
|
Wu M, Musazade E, Yang X, Yin L, Zhao Z, Zhang Y, Lu J, Guo L. ATL Protein Family: Novel Regulators in Plant Response to Environmental Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20419-20440. [PMID: 38100516 DOI: 10.1021/acs.jafc.3c05603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Plants actively develop intricate regulatory mechanisms to counteract the harmful effects of environmental stresses. The ubiquitin-proteasome pathway, a crucial mechanism, employs E3 ligases (E3s) to facilitate the conjugation of ubiquitin to specific target substrates, effectively marking them for proteolytic degradation. E3s play critical roles in many biological processes, including phytohormonal signaling and adaptation to environmental stresses. Arabidopsis Toxicosa en Levadura (ATL) proteins, belonging to a subfamily of RING-H2 E3s, actively modulate diverse physiological processes and plant responses to environmental stresses. Despite studies on the functions of certain ATL family members in rice and Arabidopsis, most ATLs still need more comprehensive study. This review presents an overview of the ubiquitin-proteasome system (UPS), specifically focusing on the pivotal role of E3s and associated enzymes in plant development and environmental adaptation. Our study seeks to unveil the active modulation of plant responses to environmental stresses by E3s and ATLs, emphasizing the significance of ATLs within this intricate process. By emphasizing the importance of studying the roles of E3s and ATLs, our review contributes to developing more resilient plant varieties and promoting sustainable agricultural practices while establishing a research roadmap for the future.
Collapse
Affiliation(s)
- Ming Wu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Elshan Musazade
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Xiao Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Le Yin
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Zizhu Zhao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Yu Zhang
- Land Requisition Affairs Center of Jilin Province, Changchun 130062, P.R. China
| | - Jingmei Lu
- School of Life Sciences, Northeast Normal University, Changchun 130024, P.R. China
| | - Liquan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P.R. China
| |
Collapse
|
9
|
Vetal PV, Poirier Y. The Arabidopsis PHOSPHATE 1 exporter undergoes constitutive internalization via clathrin-mediated endocytosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1477-1491. [PMID: 37638714 DOI: 10.1111/tpj.16441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
SUMMARYInorganic phosphate (Pi) homeostasis is essential for plant growth and depends on the transport of Pi across cells. In Arabidopsis thaliana, PHOSPHATE 1 (PHO1) is present in the root pericycle and xylem parenchyma where it exports Pi into the xylem apoplast for its transfer to shoots. PHO1 consists of a cytosolic SPX domain followed by membrane‐spanning α‐helices and ends with the EXS domain, which participates in the steady‐state localization of PHO1 to the Golgi and trans‐Golgi network (TGN). However, PHO1 exports Pi across the plasma membrane (PM), making its localization difficult to reconcile with its function. To investigate whether PHO1 transiently associates with the PM, we inhibited clathrin‐mediated endocytosis (CME) by overexpressing AUXILIN‐LIKE 2 or HUB1. Inhibiting CME resulted in PHO1 re‐localization from the Golgi/TGN to the PM when PHO1 was expressed in Arabidopsis root pericycle or epidermis or Nicotiana benthamiana leaf epidermal cells. A fusion protein between the PHO1 EXS region and GFP was stabilized at the PM by CME inhibition, indicating that the EXS domain plays an important role in sorting PHO1 to/from the PM. PHO1 internalization from the PM occurred independently of AP2 and was not influenced by Pi deficiency, the ubiquitin‐conjugating E2 PHO2, or the potential ubiquitination of cytosolic lysines in the EXS domain. PM‐stabilized PHO1 showed reduced root‐to‐shoot Pi export activity, indicating that CME of PHO1 may be important for its optimal Pi export activity and plant Pi homeostasis.
Collapse
Affiliation(s)
- Pallavi V Vetal
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
10
|
Wang Z, Zhang Y, Liu Y, Fu D, You Z, Huang P, Gao H, Zhang Z, Wang C. Calcium-dependent protein kinases CPK21 and CPK23 phosphorylate and activate the iron-regulated transporter IRT1 to regulate iron deficiency in Arabidopsis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2646-2662. [PMID: 37286859 DOI: 10.1007/s11427-022-2330-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/15/2023] [Indexed: 06/09/2023]
Abstract
Iron (Fe) is an essential micronutrient for all organisms. Fe availability in the soil is usually much lower than that required for plant growth, and Fe deficiencies seriously restrict crop growth and yield. Calcium (Ca2+) is a second messenger in all eukaryotes; however, it remains largely unknown how Ca2+ regulates Fe deficiency. In this study, mutations in CPK21 and CPK23, which are two highly homologous calcium-dependent protein kinases, conferredimpaired growth and rootdevelopment under Fe-deficient conditions, whereas constitutively active CPK21 and CPK23 enhanced plant tolerance to Fe-deficient conditions. Furthermore, we found that CPK21 and CPK23 interacted with and phosphorylated the Fe transporter IRON-REGULATED TRANSPORTER1 (IRT1) at the Ser149 residue. Biochemical analyses and complementation of Fe transport in yeast and plants indicated that IRT1 Ser149 is critical for IRT1 transport activity. Taken together, these findings suggest that the CPK21/23-IRT1 signaling pathway is critical for Fe homeostasis in plants and provides targets for improving Fe-deficient environments and breeding crops resistant to Fe-deficient conditions.
Collapse
Affiliation(s)
- Zhangqing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yanting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yisong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Dali Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Zhang You
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Huiling Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Zhenqian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Cun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
- Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| |
Collapse
|
11
|
De Meyer A, Grones P, Van Damme D. How will I recognize you? Insights into endocytic cargo recognition in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102429. [PMID: 37523901 DOI: 10.1016/j.pbi.2023.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023]
Abstract
The plasma membrane (PM) houses a wide variety of proteins, facilitating interactions between the cell and its surroundings. Perception of external stimuli leads to selective internalization of membrane proteins via endocytosis. A multitude of endocytic signals affect protein internalization; however, their coordination and the exact mechanism of their recognition still remain elusive. In this review, we summarized the up-to-date knowledge of different internalization signals in PM cargo proteins and their involvement during protein trafficking.
Collapse
Affiliation(s)
- Andreas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Peter Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
12
|
Spielmann J, Fanara S, Cotelle V, Vert G. Multilayered regulation of iron homeostasis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1250588. [PMID: 37841618 PMCID: PMC10570522 DOI: 10.3389/fpls.2023.1250588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development due to its role in crucial processes such as photosynthesis and modulation of the redox state as an electron donor. While Fe is one of the five most abundant metals in the Earth's crust, it is poorly accessible to plants in alkaline soils due to the formation of insoluble complexes. To limit Fe deficiency symptoms, plant have developed a highly sophisticated regulation network including Fe sensing, transcriptional regulation of Fe-deficiency responsive genes, and post-translational modifications of Fe transporters. In this mini-review, we detail how plants perceive intracellular Fe status and how they regulate transporters involved in Fe uptake through a complex cascade of transcription factors. We also describe the current knowledge about intracellular trafficking, including secretion to the plasma membrane, endocytosis, recycling, and degradation of the two main Fe transporters, IRON-REGULATED TRANSPORTER 1 (IRT1) and NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1). Regulation of these transporters by their non-Fe substrates is discussed in relation to their functional role to avoid accumulation of these toxic metals during Fe limitation.
Collapse
Affiliation(s)
- Julien Spielmann
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Steven Fanara
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Valérie Cotelle
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| |
Collapse
|
13
|
Radani Y, Li R, Korboe HM, Ma H, Yang L. Transcriptional and Post-Translational Regulation of Plant bHLH Transcription Factors during the Response to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112113. [PMID: 37299095 DOI: 10.3390/plants12112113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Over the past decades, extensive research has been conducted to identify and characterize various plant transcription factors involved in abiotic stress responses. Therefore, numerous efforts have been made to improve plant stress tolerance by engineering these transcription factor genes. The plant basic Helix-Loop-Helix (bHLH) transcription factor family represents one of the most prominent gene families and contains a bHLH motif that is highly conserved in eukaryotic organisms. By binding to specific positions in promoters, they activate or repress the transcription of specific response genes and thus affect multiple variables in plant physiology such as the response to abiotic stresses, which include drought, climatic variations, mineral deficiencies, excessive salinity, and water stress. The regulation of bHLH transcription factors is crucial to better control their activity. On the one hand, they are regulated at the transcriptional level by other upstream components; on the other hand, they undergo various modifications such as ubiquitination, phosphorylation, and glycosylation at the post-translational level. Modified bHLH transcription factors can form a complex regulatory network to regulate the expression of stress response genes and thus determine the activation of physiological and metabolic reactions. This review article focuses on the structural characteristics, classification, function, and regulatory mechanism of bHLH transcription factor expression at the transcriptional and post-translational levels during their responses to various abiotic stress conditions.
Collapse
Affiliation(s)
- Yasmina Radani
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Rongxue Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Harriet Mateko Korboe
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Li J, Nie K, Wang L, Zhao Y, Qu M, Yang D, Guan X. The Molecular Mechanism of GhbHLH121 in Response to Iron Deficiency in Cotton Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:1955. [PMID: 37653872 PMCID: PMC10224022 DOI: 10.3390/plants12101955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Iron deficiency caused by high pH of saline-alkali soil is a major source of abiotic stress affecting plant growth. However, the molecular mechanism underlying the iron deficiency response in cotton (Gossypium hirsutum) is poorly understood. In this study, we investigated the impacts of iron deficiency at the cotton seedling stage and elucidated the corresponding molecular regulation network, which centered on a hub gene GhbHLH121. Iron deficiency induced the expression of genes with roles in the response to iron deficiency, especially GhbHLH121. The suppression of GhbHLH121 with virus-induced gene silence technology reduced seedlings' tolerance to iron deficiency, with low photosynthetic efficiency and severe damage to the structure of the chloroplast. Contrarily, ectopic expression of GhbHLH121 in Arabidopsis enhanced tolerance to iron deficiency. Further analysis of protein/protein interactions revealed that GhbHLH121 can interact with GhbHLH IVc and GhPYE. In addition, GhbHLH121 can directly activate the expression of GhbHLH38, GhFIT, and GhPYE independent of GhbHLH IVc. All told, GhbHLH121 is a positive regulator of the response to iron deficiency in cotton, directly regulating iron uptake as the upstream gene of GhFIT. Our results provide insight into the complex network of the iron deficiency response in cotton.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
| | - Ke Nie
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Luyao Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Yongyan Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
| | - Mingnan Qu
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China;
| | - Donglei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Xueying Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China;
| |
Collapse
|
15
|
Hornbergs J, Montag K, Loschwitz J, Mohr I, Poschmann G, Schnake A, Gratz R, Brumbarova T, Eutebach M, Angrand K, Fink-Straube C, Stühler K, Zeier J, Hartmann L, Strodel B, Ivanov R, Bauer P. SEC14-GOLD protein PATELLIN2 binds IRON-REGULATED TRANSPORTER1 linking root iron uptake to vitamin E. PLANT PHYSIOLOGY 2023; 192:504-526. [PMID: 36493393 PMCID: PMC10152663 DOI: 10.1093/plphys/kiac563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/23/2022] [Accepted: 12/07/2022] [Indexed: 05/03/2023]
Abstract
Organisms require micronutrients, and Arabidopsis (Arabidopsis thaliana) IRON-REGULATED TRANSPORTER1 (IRT1) is essential for iron (Fe2+) acquisition into root cells. Uptake of reactive Fe2+ exposes cells to the risk of membrane lipid peroxidation. Surprisingly little is known about how this is avoided. IRT1 activity is controlled by an intracellular variable region (IRT1vr) that acts as a regulatory protein interaction platform. Here, we describe that IRT1vr interacted with peripheral plasma membrane SEC14-Golgi dynamics (SEC14-GOLD) protein PATELLIN2 (PATL2). SEC14 proteins bind lipophilic substrates and transport or present them at the membrane. To date, no direct roles have been attributed to SEC14 proteins in Fe import. PATL2 affected root Fe acquisition responses, interacted with ROS response proteins in roots, and alleviated root lipid peroxidation. PATL2 had high affinity in vitro for the major lipophilic antioxidant vitamin E compound α-tocopherol. Molecular dynamics simulations provided insight into energetic constraints and the orientation and stability of the PATL2-ligand interaction in atomic detail. Hence, this work highlights a compelling mechanism connecting vitamin E with root metal ion transport at the plasma membrane with the participation of an IRT1-interacting and α-tocopherol-binding SEC14 protein.
Collapse
Affiliation(s)
- Jannik Hornbergs
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Karolin Montag
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Jennifer Loschwitz
- Institute of Theoretical Chemistry and Computer Chemistry, Heinrich Heine University, Düsseldorf 40225, Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Inga Mohr
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Anika Schnake
- Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Regina Gratz
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | | | - Monique Eutebach
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Kalina Angrand
- Department of Biosciences-Plant Biology, Saarland University, Campus A2.4, D-66123 Saarbrücken, Germany
| | | | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Molecular Proteomics Laboratory, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Laura Hartmann
- Institute of Macromolecular Chemistry, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Birgit Strodel
- Institute of Theoretical Chemistry and Computer Chemistry, Heinrich Heine University, Düsseldorf 40225, Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
16
|
Zhang C, Tong C, Cao L, Zheng P, Tang X, Wang L, Miao M, Liu Y, Cao S. Regulatory module WRKY33-ATL31-IRT1 mediates cadmium tolerance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2023; 46:1653-1670. [PMID: 36738191 DOI: 10.1111/pce.14558] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) is one of the most dangerous environmental pollutants among heavy metals, and threatens food safety and human health by accumulating in plant sink tissues. Here, we report a novel regulatory cascade that profoundly influences Cd tolerance in Arabidopsis. Phenotypic analysis showed that an insertional knockdown mutation at the Arabidopsis Tóxicos en Levadura 31 (ATL31) locus resulted in hypersensitivity to Cd stress, most likely due to a significant increase in Cd accumulation. Consistently, ATL31-overexpressing lines exhibited enhanced Cd stress tolerance and reduced Cd accumulation. Further, IRON-REGULATED TRANSPORTER 1 (IRT1) was identified, and yeast two-hybrid, co-immunoprecipitation and bimolecular fluorescence complementation assays demonstrated its interaction with ATL31. Biochemical, molecular, and genetic analyses showed that IRT1 is targeted by ATL31 for ubiquitin-conjugated degradation in response to Cd stress. Intriguingly, transcription of ATL31 was strongly induced by Cd stress. In addition, transgenic and molecular analyses showed that WRKY33 directly activated the transcription of ATL31 in response to Cd stress and positively regulated Cd tolerance. Genetic analysis indicated that ATL31 acts upstream of IRT1 and downstream of WRKY33 to regulate Cd tolerance. Our study revealed that the WRKY33-ATL31-IRT1 module plays a crucial role in timely blocking Cd absorption to prevent metal toxicity in Arabidopsis.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Chenchen Tong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Lei Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Pengpeng Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Xiaofeng Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Lihuan Wang
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Min Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
17
|
Ahmad I, Rawoof A, Islam K, Momo J, Anju T, Kumar A, Ramchiary N. Diversity and expression analysis of ZIP transporters and associated metabolites under zinc and iron stress in Capsicum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:415-430. [PMID: 36758289 DOI: 10.1016/j.plaphy.2023.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
The members of ZRT, IRT-like protein (ZIP) family are involved in the uptake and transportation of several metal ions. Here, we report a comprehensive identification of ZIP transporter genes from Capsicum annuum, C. chinense, and C. baccatum, and their expression analysis under Zn and Fe stress. Changes in root morphology and differential accumulation of several metabolites from sugars, amino acids, carboxylic acids, and fatty acids in root and leaf tissues of plants in the absence of Zn and Fe were observed. Further, metabolites such as L-aspartic acid, 2-ketoglutaric acids, β-L-fucopyranose, quininic acid, chlorogenic acid, and aucubin were significantly upregulated in root and leaf tissues under Zn/Fe deprived conditions. qRT-PCR analysis of 17 CaZIPs in different tissues revealed tissue-specific expression of CaZIP1-2, CaZIP4-8, CaZIP13, and CaZIP16-17 under normal conditions. However, the absence of Zn and Fe significantly induced the expression of CaZIP4-5, CaZIP7-9, and CaZIP14 genes in root and leaf tissues. Additionally, in the absence of Fe, upregulation of CaZIP4-5 and CaZIP8 and increased uptake of mineral elements Cu, Zn, Mg, P, and S were observed in roots, suggesting their potential role in metal-ion uptake in Capsicum. The identified genes provide the basis for future studies of mineral uptake and their biofortification to increase the nutritional values in Capsicum.
Collapse
Affiliation(s)
- Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khushbu Islam
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - John Momo
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Thattantavide Anju
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
18
|
Ren Y, Li X, Liang J, Wang S, Wang Z, Chen H, Tang M. Brassinosteroids and gibberellic acid actively regulate the zinc detoxification mechanism of Medicago sativa L. seedlings. BMC PLANT BIOLOGY 2023; 23:75. [PMID: 36737680 PMCID: PMC9898925 DOI: 10.1186/s12870-023-04091-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/27/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Zinc is one of the essential trace elements in plants. There are few studies on the phytohormone to rescue the toxicity of excessive zinc to plants. The aim of this research was to evaluate the alleviating effects of brassinosteroids (BR) and gibberellic acid (GA) on the toxicity of Medicago sativa L. (M. sativa) induced by excessive zinc. RESULTS After zinc, BR and GA were applied to M. sativa seedlings for 7 weeks, their physiological and biochemical properties and gene expression patterns were evaluated. BR and GA significantly weakened the inhibition effect of zinc stress on growth and biomass of M. sativa. Under zinc stress, the zinc accumulation in M. sativa roots was over 5 times that in shoots. Application of BR and GA reduced zinc accumulation in roots. The content of lipid peroxides in M. sativa decreased and the activity of antioxidant enzymes increased under BR and GA treatments. In addition, BR and GA treatment down-regulated the transcription level of MsZIP1/3/5, the transporters of zinc uptake in root cells. And BR and GA up-regulated the expressions of zinc efflux, chelation, vacuolar storage and long-distance transport related genes: MsZIP7, MsHMA1, MsZIF1, MsMTP1, MsYSL1 and MsNAS1. CONCLUSIONS Our findings further showed that BR and GA application to M. sativa under zinc stress can reduce zinc accumulation, promote the response of the antioxidant defense system, and actively regulate the mechanism of heavy metal detoxification. Notably, 100 nM BR performed slightly better than 100 nM GA in all aspects of the detoxification of M. sativa by excessive zinc.
Collapse
Affiliation(s)
- Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Xue Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Jingwei Liang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
19
|
Kermeur N, Pédrot M, Cabello-Hurtado F. Iron Availability and Homeostasis in Plants: A Review of Responses, Adaptive Mechanisms, and Signaling. Methods Mol Biol 2023; 2642:49-81. [PMID: 36944872 DOI: 10.1007/978-1-0716-3044-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Iron is an essential element for all living organisms, playing a major role in plant biochemistry as a redox catalyst based on iron redox properties. Iron is the fourth most abundant element of the Earth's crust, but its uptake by plants is complex because it is often in insoluble forms that are not easily accessible for plants to use. The physical and chemical speciation of iron, as well as rhizosphere activity, are key factors controlling the bioavailability of Fe. Iron can be under reduced (Fe2+) or oxidized (Fe3+) ionic forms, adsorbed onto mineral surfaces, forming complexes with organic molecules, precipitated to form poorly crystalline hydroxides to highly crystalline iron oxides, or included in crystalline Fe-rich mineral phases. Plants must thus adapt to a complex and changing iron environment, and their response is finely regulated by multiple signaling pathways initiated by a diversity of stimulus perceptions. Higher plants possess two separate strategies to uptake iron from rhizosphere soil: the chelation strategy and the reduction strategy in grass and non-grass plants, respectively. Molecular actors involved in iron uptake and mobilization through the plant have been characterized for both strategies. All these processes that contribute to iron homeostasis in plants are highly regulated in response to iron availability by downstream signaling responses, some of which are characteristic signaling signatures of iron dynamics, while others are shared with other environmental stimuli. Recent research has thus revealed key transcription factors, cis-acting elements, post-translational regulators, and other molecular mechanisms controlling these genes or their encoded proteins in response to iron availability. In addition, the most recent research is increasingly highlighting the crosstalk between iron homeostasis and nutrient response regulation. These regulatory processes help to avoid plant iron concentrations building up to potential cell functioning disruptions that could adversely affect plant fitness. Indeed, when iron is in excess in the plant, it can lead to the production and accumulation of dangerous reactive oxygen species and free radicals (H2O2, HO•, O2•-, HO•2) that can cause considerable damages to most cellular components. To cope with iron oxidative stress, plants have developed defense systems involving the complementary action of antioxidant enzymes and molecular antioxidants, safe iron-storage mechanisms, and appropriate morphological adaptations.
Collapse
Affiliation(s)
- Nolenn Kermeur
- University of Rennes, CNRS, Ecobio, UMR 6553, Rennes, France
- University of Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | - Mathieu Pédrot
- University of Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | | |
Collapse
|
20
|
Tan S, Li S, Zhang XY, Li YM, Zhang P, Yin LP. Monoubiquitinated MxIRT1 acts as an iron receptor to determine MxIRT1 vacuole degradation or plasma membrane recycling via endocytosis. PLANT SIGNALING & BEHAVIOR 2022; 17:2095141. [PMID: 35775587 PMCID: PMC9255258 DOI: 10.1080/15592324.2022.2095141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
IRON-REGULATED TRANSPORTER 1 (IRT1) is critical for iron uptake in roots, and its exocytosis to the plasma membrane (PM) is regulated by the iron status sensed by the histidine-rich domain (HRM). However, studies on the fate of IRT1 after fusion with PM in response to iron conditions are still limited. In this study, we found that K165 and K196 regulate the monoubiquitination of MxIRT1 (mUb-MxIRT1), which acts as a receptor delivering signals from HRM to downstream effectors such as clathrin to determine the fate of MxIRT1. Iron supply led MxIRT1 in the PM to monoubiquitin-dependent endocytosis which could be inhibited by endocytosis inhibitor TyrA23 or in the double site-directed mutant K165/K196R. Subsequently, the endocytosis pathway to the vacuole was inhibited by vacuolar protease inhibitor Leupeptin in excessive iron conditions and the inability of being able to respond to iron change, indicated by the protein accumulating in the PM, contributed to iron toxicity in K165/K196R transgenic Arabidopsis. With iron availability decreasing again, MxIRT1 could dock close to the PM waiting for to be recycled. Another monoubiquitination site, K26, was necessary for MxIRT1 Endoplasmic Reticulum (ER) export as site-directed mutant K26R lost the ability of PM targeting, and co-localized with the COPII subunit of the coat protein OsSec24. Therefore, after K26-directed ER export and iron-induced PM fusion, mUb-MxIRT1 determines subsequent vacuolar degradation or recycling to the PM via endocytosis for maintaining iron homeostasis.
Collapse
Affiliation(s)
- Song Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Life Science, Capital Normal University, Beijing, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui, China
| | - Shuang Li
- College of Life Science, Capital Normal University, Beijing, China
| | - Xiu-Yue Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Yu-Meng Li
- College of Life Science, Capital Normal University, Beijing, China
| | - Peng Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Li-Ping Yin
- College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
21
|
Tan S, Zhang X, Zhang Q, Li YM, Zhang P, Yin LP. HRM and CRAC in MxIRT1 act as iron sensors to determine MxIRT1 vesicle-PM fusion and metal transport. PLANT SIGNALING & BEHAVIOR 2022; 17:2005881. [PMID: 34809535 PMCID: PMC8928839 DOI: 10.1080/15592324.2021.2005881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The IRON-REGULATED TRANSPORTER1 (IRT1) is critical for iron uptake in roots, and its exocytosis to the plasma membrane (PM) is regulated by detergent-resistant membranes. However, studies on IRT1 exocytosis and function in response to iron status are limited. Presently, we found that the histidine-rich motif (HRM) of MxIRT1 could bind to iron directly and HRM determined the delivery of MxIRT1 to the PM, after which the cholesterol recognition amino acid consensus (CRAC) motif-regulated MxIRT1 mediated metal transport. IMAC assay revealed that H192 was the vital site for HRM binding to Fe2+, and metal-binding activity was stopped after the deletion of HRM (MxIRT1∆HM) or in H192 site-directed mutants (H192A). MxIRT1∆HM or H192A in transgenic yeast and Arabidopsis failed to localize in the PM and displayed impaired iron absorption. In the PM, Y266 in CRAC was required for metal transport; Y266A transgenic Arabidopsis displayed the same root length, Cd2+ flux, and Fe concentration as Arabidopsis mutant irt1 under iron-deficient conditions. Therefore, H192 in HRM may be an iron sensor to regulate delivery of MxIRT1 vesicles to the PM after binding with iron; Y266 in CRAC acts as an iron sensor for active metal transport under iron-deficient conditions.
Collapse
Affiliation(s)
- Song Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- College of Life Science, Capital Normal University, Beijing, China
| | - Xi Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Qi Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Yu-Meng Li
- College of Life Science, Capital Normal University, Beijing, China
| | - Peng Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Li-Ping Yin
- College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
22
|
Gao YQ, Chao DY. Localization and circulation: vesicle trafficking in regulating plant nutrient homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1350-1363. [PMID: 36321185 DOI: 10.1111/tpj.16020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nutrient homeostasis is essential for plant growth and reproduction. Plants, therefore, have evolved tightly regulated mechanisms for the uptake, translocation, distribution, and storage of mineral nutrients. Considering that inorganic nutrient transport relies on membrane-based transporters and channels, vesicle trafficking, one of the fundamental cell biological processes, has become a hotspot of plant nutrition studies. In this review, we summarize recent advances in the study of how vesicle trafficking regulates nutrient homeostasis to contribute to the adaptation of plants to heterogeneous environments. We also discuss new perspectives on future studies, which may inspire researchers to investigate new approaches to improve the human diet and health by changing the nutrient quality of crops.
Collapse
Affiliation(s)
- Yi-Qun Gao
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
23
|
Vogel K, Bläske T, Nagel MK, Globisch C, Maguire S, Mattes L, Gude C, Kovermann M, Hauser K, Peter C, Isono E. Lipid-mediated activation of plasma membrane-localized deubiquitylating enzymes modulate endosomal trafficking. Nat Commun 2022; 13:6897. [PMID: 36371501 PMCID: PMC9653390 DOI: 10.1038/s41467-022-34637-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
The abundance of plasma membrane-resident receptors and transporters has to be tightly regulated by ubiquitin-mediated endosomal degradation for the proper coordination of environmental stimuli and intracellular signaling. Arabidopsis OVARIAN TUMOR PROTEASE (OTU) 11 and OTU12 are plasma membrane-localized deubiquitylating enzymes (DUBs) that bind to phospholipids through a polybasic motif in the OTU domain. Here we show that the DUB activity of OTU11 and OTU12 towards K63-linked ubiquitin is stimulated by binding to lipid membranes containing anionic lipids. In addition, we show that the DUB activity of OTU11 against K6- and K11-linkages is also stimulated by anionic lipids, and that OTU11 and OTU12 can modulate the endosomal degradation of a model cargo and the auxin efflux transporter PIN2-GFP in vivo. Our results suggest that the catalytic activity of OTU11 and OTU12 is tightly connected to their ability to bind membranes and that OTU11 and OTU12 are involved in the fine-tuning of plasma membrane proteins in Arabidopsis.
Collapse
Affiliation(s)
- Karin Vogel
- grid.9811.10000 0001 0658 7699Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Tobias Bläske
- grid.9811.10000 0001 0658 7699Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Marie-Kristin Nagel
- grid.9811.10000 0001 0658 7699Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Christoph Globisch
- grid.9811.10000 0001 0658 7699Computational and Theoretical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Shane Maguire
- grid.9811.10000 0001 0658 7699Biophysical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| | - Lorenz Mattes
- grid.9811.10000 0001 0658 7699Biophysical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| | - Christian Gude
- grid.6936.a0000000123222966School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Michael Kovermann
- grid.9811.10000 0001 0658 7699NMR, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Karin Hauser
- grid.9811.10000 0001 0658 7699Biophysical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| | - Christine Peter
- grid.9811.10000 0001 0658 7699Computational and Theoretical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Erika Isono
- grid.9811.10000 0001 0658 7699Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
24
|
Deubiquitinating enzymes UBP12 and UBP13 regulate carbon/nitrogen-nutrient stress responses by interacting with the membrane-localized ubiquitin ligase ATL31 in Arabidopsis. Biochem Biophys Res Commun 2022; 636:55-61. [DOI: 10.1016/j.bbrc.2022.10.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
|
25
|
Li W, Han X, Lan P. Emerging roles of protein phosphorylation in plant iron homeostasis. TRENDS IN PLANT SCIENCE 2022; 27:908-921. [PMID: 35414480 DOI: 10.1016/j.tplants.2022.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Remarkable progress has been made in dissecting the molecular mechanisms involved in iron (Fe) homeostasis in plants, especially the identification of key transporter and transcriptional regulatory networks. But how the protein activity of these master players is regulated by Fe status remains underexplored. Recent studies show that major players toggle switch their properties by protein phosphorylation under different Fe conditions and consequently control the signaling cascade and metabolic adjustment. Moreover, Fe deficiency causes changes of multiple kinases and phosphatases. Here, we discuss how these findings highlight the emergence of the protein phosphorylation-dependent regulation for rapid and precise responses to Fe status to attain Fe homeostasis. Further studies will be needed to fully understand the regulation of these intricate networks.
Collapse
Affiliation(s)
- Wenfeng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xiuwen Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Retzer K, Moulinier-Anzola J, Lugsteiner R, Konstantinova N, Schwihla M, Korbei B, Luschnig C. Endosomally Localized RGLG-Type E3 RING-Finger Ligases Modulate Sorting of Ubiquitylation-Mimic PIN2. Int J Mol Sci 2022; 23:6767. [PMID: 35743207 PMCID: PMC9224344 DOI: 10.3390/ijms23126767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022] Open
Abstract
Intracellular sorting and the abundance of sessile plant plasma membrane proteins are imperative for sensing and responding to environmental inputs. A key determinant for inducing adjustments in protein localization and hence functionality is their reversible covalent modification by the small protein modifier ubiquitin, which is for example responsible for guiding proteins from the plasma membrane to endosomal compartments. This mode of membrane protein sorting control requires the catalytic activity of E3 ubiquitin ligases, amongst which members of the RING DOMAIN LIGASE (RGLG) family have been implicated in the formation of lysine 63-linked polyubiquitin chains, serving as a prime signal for endocytic vacuolar cargo sorting. Nevertheless, except from some indirect implications for such RGLG activity, no further evidence for their role in plasma membrane protein sorting has been provided so far. Here, by employing RGLG1 reporter proteins combined with assessment of plasma membrane protein localization in a rglg1 rglg2 loss-of-function mutant, we demonstrate a role for RGLGs in cargo trafficking between plasma membrane and endosomal compartments. Specifically, our findings unveil a requirement for RGLG1 association with endosomal sorting compartments for fundamental aspects of plant morphogenesis, underlining a vital importance for ubiquitylation-controlled intracellular sorting processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Barbara Korbei
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (K.R.); (J.M.-A.); (R.L.); (N.K.); (M.S.)
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (K.R.); (J.M.-A.); (R.L.); (N.K.); (M.S.)
| |
Collapse
|
27
|
Sathee L, Jagadhesan B, Pandesha PH, Barman D, Adavi B S, Nagar S, Krishna GK, Tripathi S, Jha SK, Chinnusamy V. Genome Editing Targets for Improving Nutrient Use Efficiency and Nutrient Stress Adaptation. Front Genet 2022; 13:900897. [PMID: 35774509 PMCID: PMC9237392 DOI: 10.3389/fgene.2022.900897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, the development of RNA-guided genome editing (CRISPR-Cas9 technology) has revolutionized plant genome editing. Under nutrient deficiency conditions, different transcription factors and regulatory gene networks work together to maintain nutrient homeostasis. Improvement in the use efficiency of nitrogen (N), phosphorus (P) and potassium (K) is essential to ensure sustainable yield with enhanced quality and tolerance to stresses. This review outlines potential targets suitable for genome editing for understanding and improving nutrient use (NtUE) efficiency and nutrient stress tolerance. The different genome editing strategies for employing crucial negative and positive regulators are also described. Negative regulators of nutrient signalling are the potential targets for genome editing, that may improve nutrient uptake and stress signalling under resource-poor conditions. The promoter engineering by CRISPR/dead (d) Cas9 (dCas9) cytosine and adenine base editing and prime editing is a successful strategy to generate precise changes. CRISPR/dCas9 system also offers the added advantage of exploiting transcriptional activators/repressors for overexpression of genes of interest in a targeted manner. CRISPR activation (CRISPRa) and CRISPR interference (CRISPRi) are variants of CRISPR in which a dCas9 dependent transcription activation or interference is achieved. dCas9-SunTag system can be employed to engineer targeted gene activation and DNA methylation in plants. The development of nutrient use efficient plants through CRISPR-Cas technology will enhance the pace of genetic improvement for nutrient stress tolerance of crops and improve the sustainability of agriculture.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - B. Jagadhesan
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pratheek H. Pandesha
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Dipankar Barman
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sandeep Adavi B
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shivani Nagar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - G. K. Krishna
- Department of Plant Physiology, College of Agriculture, KAU, Thrissur, India
| | - Shailesh Tripathi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra K. Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
28
|
Du Q, Lv W, Guo Y, Yang J, Wang S, Li WX. MIR164b represses iron uptake by regulating the NAC domain transcription factor5-Nuclear Factor Y, Subunit A8 module in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:1095-1109. [PMID: 35285505 PMCID: PMC9157116 DOI: 10.1093/plphys/kiac114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Recent findings have revealed the important roles of microRNAs (miRNAs) in the secondary responses to oxidative damage caused by iron (Fe) excess. However, the functional importance of miRNAs in plant responses to Fe deficiency remains to be explored. Here, we show that the expression level of miR164 in Arabidopsis (Arabidopsis thaliana) roots was repressed by Fe deficiency. Primary root length, lateral root number, ferric reductase activity, and mRNA abundance of IRON-REGULATED TRANSPORTER1 (IRT1) and FERRIC REDUCTION OXIDASE2 (FRO2) were higher in the mir164b mutant than in the wild-type (WT) under Fe-deficient conditions. Analysis of the Fe concentrations and ferric reductase activities in the roots of miR164 knockdown transgenic plants showed that members of the miR164 family had different functions in Fe-deficiency responses. Promoter::GUS analysis showed that NAM/ATAF/CUC (NAC) domain transcription factor5 (NAC5) is regulated at both transcriptional and posttranscriptional levels under Fe-deficient conditions. Transgenic Arabidopsis plants overexpressing NAC5 were more tolerant of Fe deficiency than the WT. NAC5 has transactivation activity and directly transactivates the expression of Nuclear Factor Y, Subunit A8 (NFYA8), as demonstrated by chromatin immunoprecipitation followed by quantitative polymerase chain reaction, electrophoretic mobility shift assay (EMSA), and dual-luciferase reporter assay. Like overexpression of NAC5, overexpression of NFYA8 increases primary root length, lateral root number, ferric reductase activity, and mRNA abundance of IRT1 and FRO2 under Fe-deficient conditions. Thus, MIR164b is important for Fe-deficiency responses by its regulation of the NAC5-NFYA8 module.
Collapse
Affiliation(s)
- Qingguo Du
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenshuai Lv
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Guo
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juan Yang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shanhong Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen-Xue Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
29
|
Mackinnon E, Stone SL. The Ubiquitin Proteasome System and Nutrient Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:867419. [PMID: 35665152 PMCID: PMC9161090 DOI: 10.3389/fpls.2022.867419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Plants utilize different molecular mechanisms, including the Ubiquitin Proteasome System (UPS) that facilitates changes to the proteome, to mitigate the impact of abiotic stresses on growth and development. The UPS encompasses the ubiquitination of selected substrates followed by the proteasomal degradation of the modified proteins. Ubiquitin ligases, or E3s, are central to the UPS as they govern specificity and facilitate the attachment of one or more ubiquitin molecules to the substrate protein. From recent studies, the UPS has emerged as an important regulator of the uptake and translocation of essential macronutrients and micronutrients. In this review, we discuss select E3s that are involved in regulating nutrient uptake and responses to stress conditions, including limited or excess levels of nitrogen, phosphorus, iron, and copper.
Collapse
|
30
|
Hao P, Lv X, Fu M, Xu Z, Tian J, Wang Y, Zhang X, Xu X, Wu T, Han Z. Long-distance mobile mRNA CAX3 modulates iron uptake and zinc compartmentalization. EMBO Rep 2022; 23:e53698. [PMID: 35254714 PMCID: PMC9066076 DOI: 10.15252/embr.202153698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Iron deficiency in plants can lead to excessive absorption of zinc; however, important details of this mechanism have yet to be elucidated. Here, we report that MdCAX3 mRNA is transported from the leaf to the root, and that MdCAX3 is then activated by MdCXIP1. Suppression of MdCAX3 expression leads to an increase in the root apoplastic pH, which is associated with the iron deficiency response. Notably, overexpression of MdCAX3 does not affect the apoplastic pH in a MdCXIP1 loss-of-function Malus baccata (Mb) mutant that has a deletion in the MdCXIP1 promoter. This deletion in Mb weakens MdCXIP1 expression. Co-expression of MdCAX3 and MdCXIP1 in Mb causes a decrease in the root apoplastic pH. Furthermore, suppressing MdCAX3 in Malus significantly reduces zinc vacuole compartmentalization. We also show that MdCAX3 activated by MdCXIP1 is not only involved in iron uptake, but also in regulating zinc detoxification by compartmentalizing zinc in vacuoles to avoid iron starvation-induced zinc toxicity. Thus, mobile MdCAX3 mRNA is involved in the regulation of iron and zinc homeostasis in response to iron starvation.
Collapse
Affiliation(s)
- Pengbo Hao
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xinmin Lv
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Mengmeng Fu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhen Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Ji Tian
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Abstract
Nutrients are scarce and valuable resources, so plants developed sophisticated mechanisms to optimize nutrient use efficiency. A crucial part of this is monitoring external and internal nutrient levels to adjust processes such as uptake, redistribution, and cellular compartmentation. Measurement of nutrient levels is carried out by primary sensors that typically involve either transceptors or transcription factors. Primary sensors are only now starting to be identified in plants for some nutrients. In particular, for nitrate, there is detailed insight concerning how the external nitrate status is sensed by members of the nitrate transporter 1 (NRT1) family. Potential sensors for other macronutrients such as potassium and sodium have also been identified recently, whereas for micronutrients such as zinc and iron, transcription factor type sensors have been reported. This review provides an overview that interprets and evaluates our current understanding of how plants sense macro and micronutrients in the rhizosphere and root symplast.
Collapse
|
32
|
Lešková A, Javot H, Giehl RFH. Metal crossroads in plants: modulation of nutrient acquisition and root development by essential trace metals. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1751-1765. [PMID: 34791130 DOI: 10.1093/jxb/erab483] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The metals iron, zinc, manganese, copper, molybdenum, and nickel are essential for the growth and development of virtually all plant species. Although these elements are required at relatively low amounts, natural factors and anthropogenic activities can significantly affect their availability in soils, inducing deficiencies or toxicities in plants. Because essential trace metals can shape root systems and interfere with the uptake and signaling mechanisms of other nutrients, the non-optimal availability of any of them can induce multi-element changes in plants. Interference by one essential trace metal with the acquisition of another metal or a non-metal nutrient can occur prior to or during root uptake. Essential trace metals can also indirectly impact the plant's ability to capture soil nutrients by targeting distinct root developmental programs and hormone-related processes, consequently inducing largely metal-specific changes in root systems. The presence of metal binding domains in many regulatory proteins also enables essential trace metals to coordinate nutrient uptake by acting at high levels in hierarchical signaling cascades. Here, we summarize the known molecular and cellular mechanisms underlying trace metal-dependent modulation of nutrient acquisition and root development, and highlight the importance of considering multi-element interactions to breed crops better adapted to non-optimal trace metal availabilities.
Collapse
Affiliation(s)
- Alexandra Lešková
- Aix Marseille Univ, CEA, CNRS, Bioscience and Biotechnology Institut of Aix-Marseille (BIAM), SAVE, Saint Paul-Lez-Durance, F-13108, France
| | - Hélène Javot
- Aix Marseille Univ, CEA, CNRS, Bioscience and Biotechnology Institut of Aix-Marseille (BIAM), SAVE, Saint Paul-Lez-Durance, F-13108, France
| | - Ricardo F H Giehl
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| |
Collapse
|
33
|
Ju C, Zhang Z, Deng J, Miao C, Wang Z, Wallrad L, Javed L, Fu D, Zhang T, Kudla J, Gong Z, Wang C. Ca 2+-dependent successive phosphorylation of vacuolar transporter MTP8 by CBL2/3-CIPK3/9/26 and CPK5 is critical for manganese homeostasis in Arabidopsis. MOLECULAR PLANT 2022; 15:419-437. [PMID: 34848347 DOI: 10.1016/j.molp.2021.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/07/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Manganese (Mn) is an essential micronutrient for all living organisms. However, excess Mn supply that can occur in acid or waterlogged soils has toxic effects on plant physiology and development. Although a variety of Mn transporter families have been characterized, we have only a rudimentary understanding of how these transporters are regulated to uphold and adjust Mn homeostasis in plants. Here, we demonstrate that two calcineurin-B-like proteins, CBL2/3, and their interacting kinases, CIPK3/9/26, are key regulators of plant Mn homeostasis. Arabidopsis mutants lacking CBL2 and 3 or their interacting protein kinases CIPK3/9/26 exhibit remarkably high Mn tolerance. Intriguingly, CIPK3/9/26 interact with and phosphorylate the tonoplast-localized Mn and iron (Fe) transporter MTP8 primarily at Ser35, which is conserved among MTP8 proteins from various species. Mn transport complementation assays in yeast combined with multiple physiological assays indicate that CBL-CIPK-mediated phosphorylation of MTP8 negatively regulates its transport activity from the cytoplasm to the vacuole. Moreover, we show that sequential phosphorylation of MTP8, initially at Ser31/32 by the calcium-dependent protein kinase CPK5 and subsequently at Ser35 by CIPK26, provides an activation/deactivation fine-tuning mechanism for differential regulation of Mn transport. Collectively, our findings define a two-tiered calcium-controlled mechanism for dynamic regulation of Mn homeostasis under conditions of fluctuating Mn supply.
Collapse
Affiliation(s)
- Chuanfeng Ju
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, and Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Zhenqian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, and Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Jinping Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Cuicui Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, and Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Zhangqing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, and Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Lukas Wallrad
- Institut fur Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Laiba Javed
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, and Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Dali Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, and Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Ting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, and Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Jörg Kudla
- Institut fur Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; College of Life Sciences, Hebei University, Baoding, China
| | - Cun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, and Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
34
|
Huang S, Konishi N, Yamaji N, Shao JF, Mitani-Ueno N, Ma JF. Boron uptake in rice is regulated post-translationally via a clathrin-independent pathway. PLANT PHYSIOLOGY 2022; 188:1649-1664. [PMID: 34893892 PMCID: PMC8896639 DOI: 10.1093/plphys/kiab575] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 05/15/2023]
Abstract
Uptake of boron (B) in rice (Oryza sativa) is mediated by the Low silicon rice 1 (OsLsi1) channel, belonging to the NOD26-like intrinsic protein III subgroup, and the efflux transporter B transporter 1 (OsBOR1). However, it is unknown how these transporters cooperate for B uptake and how they are regulated in response to B fluctuations. Here, we examined the response of these two transporters to environmental B changes at the transcriptional and posttranslational level. OsBOR1 showed polar localization at the proximal side of both the exodermis and endodermis of mature root region, forming an efficient uptake system with OsLsi1 polarly localized at the distal side of the same cell layers. Expression of OsBOR1 and OsLsi1 was unaffected by B deficiency and excess. However, although OsLsi1 protein did not respond to high B at the protein level, OsBOR1 was degraded in response to high B within hours, which was accompanied with a significant decrease of total B uptake. The high B-induced degradation of OsBOR1 was inhibited in the presence of MG-132, a proteasome inhibitor, without disturbance of the polar localization. In contrast, neither the high B-induced degradation of OsBOR1 nor its polarity was affected by induced expression of dominant-negative mutated dynamin-related protein 1A (OsDRP1AK47A) or knockout of the mu subunit (AP2M) of adaptor protein-2 complex, suggesting that clathrin-mediated endocytosis is not involved in OsBOR1 degradation and polar localization. These results indicate that, in contrast to Arabidopsis thaliana, rice has a distinct regulatory mechanism for B uptake through clathrin-independent degradation of OsBOR1 in response to high B.
Collapse
Affiliation(s)
- Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Noriyuki Konishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Ji Feng Shao
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang 311300, China
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
- Author for communication:
| |
Collapse
|
35
|
Liu CX, Yang T, Zhou H, Ahammed GJ, Qi ZY, Zhou J. The E3 Ubiquitin Ligase Gene Sl1 Is Critical for Cadmium Tolerance in Solanum lycopersicum L. Antioxidants (Basel) 2022; 11:antiox11030456. [PMID: 35326106 PMCID: PMC8944816 DOI: 10.3390/antiox11030456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Heavy metal cadmium (Cd) at high concentrations severely disturbs plant growth and development. The E3 ubiquitin ligase involved in protein degradation is critical for plant tolerance to abiotic stress, but the role of E3 ubiquitin ligases in Cd tolerance is largely unknown in tomato. Here, we characterized an E3 ubiquitin ligase gene Sl1, which was highly expressed in roots under Cd stress in our previous study. The subcellular localization of Sl1 revealed that it was located in plasma membranes. In vitro ubiquitination assays confirmed that Sl1 had E3 ubiquitin ligase activity. Knockout of the Sl1 gene by CRISPR/Cas9 genome editing technology reduced while its overexpression increased Cd tolerance as reflected by the changes in the actual quantum efficiency of PSII photochemistry (ΦPSII) and hydrogen peroxide (H2O2) accumulation. Cd-induced increased activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were compromised in sl1 mutants but were enhanced in Sl1 overexpressing lines. Furthermore, the content of Cd in both shoots and roots increased in sl1 mutants while reduced in Sl1 overexpressing plants. Gene expression assays revealed that Sl1 regulated the transcript levels of heavy metal transport-related genes to inhibit Cd accumulation. These findings demonstrate that Sl1 plays a critical role in regulating Cd tolerance by relieving oxidative stress and resisting heavy metal transportation in tomato. The study provides a new understanding of the mechanism of plant tolerance to heavy metal stress.
Collapse
Affiliation(s)
- Chen-Xu Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.-X.L.); (T.Y.); (H.Z.)
| | - Ting Yang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.-X.L.); (T.Y.); (H.Z.)
| | - Hui Zhou
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.-X.L.); (T.Y.); (H.Z.)
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Correspondence: (G.J.A.); (J.Z.)
| | - Zhen-Yu Qi
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China;
| | - Jie Zhou
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.-X.L.); (T.Y.); (H.Z.)
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence: (G.J.A.); (J.Z.)
| |
Collapse
|
36
|
Liu S, Li L, Deng Y, Bai Y, Sun C, Huang S, Zhou J, Shi L, Yang X, Li L, Chen X, Tang Y. BrpNAC895 and BrpABI449 coregulate the transcription of the afflux-type Cd transporter BrpHMA2 in Brassica parachinensis. HORTICULTURE RESEARCH 2022; 9:uhac044. [PMID: 35184182 PMCID: PMC9045254 DOI: 10.1093/hr/uhac044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Brassica parachinensis is a popular leafy vegetable. It is able to accumulate high concentration of Cd, however, the molecular mechanism of Cd accumulation is unknown. This study investigated the function and regulatory mechanism of the Cd-responsive metal ion transporter gene BrpHMA2. BrpHMA2 was induced by Cd stress and specifically expressed in vascular tissues, and the protein was localized in the plasma membrane. Heterologous expression of BrpHMA2 enhanced Cd accumulation and Cd sensitivity in transgenic Arabidopsis and yeast. After Cd stress, the transcriptional factors BrpNAC895 and BrpABI449, which may recognize the ABREs in the BrpHMA2 promoter, were also differentially expressed. The transcriptional regulation of BrpHMA2 was further investigated using ChIP-qPCR, EMSA and LUC reporter activity analysis employing the transient expression system of Brassica parachinensis protoplasts and tobacco leaves and the E. coli expression system. By binding to the promoter, BrpNAC895 induced the transcription of BrpHMA2. BrpABI449 might bind to the BrpHMA2 promoter or interact with BrpNAC895 to interfere with the action of BrpNAC895. The findings suggest that BrpHMA2 is a membrane-based afflux-type Cd transporter involved in the Cd2+ uptake and long-distance transport in plants. BrpNAC895 and BrpABI449, which function as the transcription activator and repressor respectively, coregulate BrpHMA2 expression.
Collapse
Affiliation(s)
- Shuai Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, China
| | - Limei Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Life Sciences College, Zhaoqing University, Zhaoqing, 526061, China
| | - Yanwu Deng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Yongsheng Bai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Chao Sun
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, 8210095 Nanjing, China
| | - Shili Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Jiajie Zhou
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Liyu Shi
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Xuewei Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| |
Collapse
|
37
|
Quintana J, Bernal M, Scholle M, Holländer-Czytko H, Nguyen NT, Piotrowski M, Mendoza-Cózatl DG, Haydon MJ, Krämer U. Root-to-shoot iron partitioning in Arabidopsis requires IRON-REGULATED TRANSPORTER1 (IRT1) protein but not its iron(II) transport function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:992-1013. [PMID: 34839543 DOI: 10.1111/tpj.15611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 05/26/2023]
Abstract
IRON-REGULATED TRANSPORTER1 (IRT1) is the root high-affinity ferrous iron (Fe) uptake system and indispensable for the completion of the life cycle of Arabidopsis thaliana without vigorous Fe supplementation. Here we provide evidence supporting a second role of IRT1 in root-to-shoot partitioning of Fe. We show that irt1 mutants overaccumulate Fe in roots, most prominently in the cortex of the differentiation zone in irt1-2, compared to the wild type. Shoots of irt1-2 are severely Fe-deficient according to Fe content and marker transcripts, as expected. We generated irt1-2 lines producing IRT1 mutant variants carrying single amino-acid substitutions of key residues in transmembrane helices IV and V, Ser206 and His232, which are required for transport activity in yeast. Root short-term 55 Fe uptake rates were uninformative concerning IRT1-mediated transport. Overall irt1-like concentrations of the secondary substrate Mn suggested that the transgenic Arabidopsis lines also remain incapable of IRT1-mediated root Fe uptake. Yet, IRT1S206A partially complements rosette dwarfing and leaf chlorosis of irt1-2, as well as root-to-shoot Fe partitioning and gene expression defects of irt1-2, all of which are fully complemented by wild-type IRT1. Taken together, these results suggest a regulatory function for IRT1 in root-to-shoot Fe partitioning that does not require Fe transport activity of IRT1. Among the genes of which transcript levels are partially dependent on IRT1, we identify MYB DOMAIN PROTEIN10, MYB DOMAIN PROTEIN72 and NICOTIANAMINE SYNTHASE4 as candidates for effecting IRT1-dependent Fe mobilization in roots. Understanding the biological functions of IRT1 will help to improve Fe nutrition and the nutritional quality of agricultural crops.
Collapse
Affiliation(s)
- Julia Quintana
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - María Bernal
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
- Department of Plant Nutrition, Estación Experimental de Aula Dei-CSIC, 50059, Zaragoza, Spain
| | - Marleen Scholle
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Nga T Nguyen
- Division of Plant Sciences, MU-Columbia, Columbia, MO, 65211-7310, USA
| | - Markus Piotrowski
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Michael J Haydon
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Ute Krämer
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
38
|
Quintana J, Bernal M, Scholle M, Holländer-Czytko H, Nguyen NT, Piotrowski M, Mendoza-Cózatl DG, Haydon MJ, Krämer U. Root-to-shoot iron partitioning in Arabidopsis requires IRON-REGULATED TRANSPORTER1 (IRT1) protein but not its iron(II) transport function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:992-1013. [PMID: 34839543 DOI: 10.1101/2021.02.08.430285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 05/29/2023]
Abstract
IRON-REGULATED TRANSPORTER1 (IRT1) is the root high-affinity ferrous iron (Fe) uptake system and indispensable for the completion of the life cycle of Arabidopsis thaliana without vigorous Fe supplementation. Here we provide evidence supporting a second role of IRT1 in root-to-shoot partitioning of Fe. We show that irt1 mutants overaccumulate Fe in roots, most prominently in the cortex of the differentiation zone in irt1-2, compared to the wild type. Shoots of irt1-2 are severely Fe-deficient according to Fe content and marker transcripts, as expected. We generated irt1-2 lines producing IRT1 mutant variants carrying single amino-acid substitutions of key residues in transmembrane helices IV and V, Ser206 and His232, which are required for transport activity in yeast. Root short-term 55 Fe uptake rates were uninformative concerning IRT1-mediated transport. Overall irt1-like concentrations of the secondary substrate Mn suggested that the transgenic Arabidopsis lines also remain incapable of IRT1-mediated root Fe uptake. Yet, IRT1S206A partially complements rosette dwarfing and leaf chlorosis of irt1-2, as well as root-to-shoot Fe partitioning and gene expression defects of irt1-2, all of which are fully complemented by wild-type IRT1. Taken together, these results suggest a regulatory function for IRT1 in root-to-shoot Fe partitioning that does not require Fe transport activity of IRT1. Among the genes of which transcript levels are partially dependent on IRT1, we identify MYB DOMAIN PROTEIN10, MYB DOMAIN PROTEIN72 and NICOTIANAMINE SYNTHASE4 as candidates for effecting IRT1-dependent Fe mobilization in roots. Understanding the biological functions of IRT1 will help to improve Fe nutrition and the nutritional quality of agricultural crops.
Collapse
Affiliation(s)
- Julia Quintana
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - María Bernal
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
- Department of Plant Nutrition, Estación Experimental de Aula Dei-CSIC, 50059, Zaragoza, Spain
| | - Marleen Scholle
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Nga T Nguyen
- Division of Plant Sciences, MU-Columbia, Columbia, MO, 65211-7310, USA
| | - Markus Piotrowski
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Michael J Haydon
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Ute Krämer
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
39
|
Li Y, Li Q, Beuchat G, Zeng H, Zhang C, Chen LQ. Combined analyses of translatome and transcriptome in Arabidopsis reveal new players responding to magnesium deficiency. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2075-2092. [PMID: 34473403 DOI: 10.1111/jipb.13169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Translational control of gene expression, including recruitment of ribosomes to messenger RNA (mRNA), is particularly important during the response to stress. Purification of ribosome-associated mRNAs using translating ribosome affinity purification (TRAP) followed by RNA-sequencing facilitates the study of mRNAs undergoing active transcription and better proxies the translatome, or protein response, to stimuli. To identify plant responses to Magnesium (Mg) deficiency at the translational level, we combined transcriptome and translatome analyses. Excitingly, we found 26 previously unreported Mg-responsive genes that were only regulated at the translational level and not the transcriptional level, during the early response to Mg deficiency. In addition, mutants of the transcription factor ELONGATED HYPOCOTYL 5 (HY5), the H+ /CATION EXCHANGER 1 and 3 (CAX1 and CAX3), and UBIQUITIN 11 (UBQ11) exhibited early chlorosis phenotype under Mg deficiency, supporting their functional involvement in ion homeostasis. Overall, our study strongly supports that TRAP-seq combined with RNA-seq followed by phenotype screening could facilitate the identification of novel players during stress responses.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Qianqian Li
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Gabriel Beuchat
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Houqing Zeng
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Cankui Zhang
- Department of Agronomy and Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, 49707, USA
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
40
|
Krausko M, Labajová M, Peterková D, Jásik J. Specific expression of AtIRT1 in phloem companion cells suggests its role in iron translocation in aboveground plant organs. PLANT SIGNALING & BEHAVIOR 2021; 16:1925020. [PMID: 34057037 PMCID: PMC8281124 DOI: 10.1080/15592324.2021.1925020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
IRON-REGULATED TRANSPORTER 1 (IRT1) is a central iron transporter responsible for the uptake of iron from the rhizosphere to root epidermal cells. This study uses immunohistochemistry, histochemistry, and fluorometry to show that this gene's promoter is also active in the aboveground parts, specifically in phloem companied cells. Promoter activity here was regulated by iron as it was in the roots. The promoter of the close IRT2 homolog was root-specific and only weakly active in the stem pits. RT-PCR showed the presence of a long splicing form exclusively in iron-deficient roots. The short splicing form was present in all organs regardless of the presence of iron. Immunohistology exhibited labeling on the periphery of the epidermal cells in matured root zone and intracellular patches in the meristematic cells. In the aboveground organs, the protein was seen in the whole volume of companion cells and in neighboring sieve elements as bodies. The fluorescent protein technique revealed the short IRT1 form to be present in the patches accumulated mainly around the nucleus and the long form as a continuous layer along the cells periphery. These results suggest that IRT1 has a role also in the aboveground organs.
Collapse
Affiliation(s)
- Miroslav Krausko
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava 4, Slovak Republic
| | - Mária Labajová
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava 4, Slovak Republic
| | - Darina Peterková
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava 4, Slovak Republic
| | - Ján Jásik
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava 4, Slovak Republic
| |
Collapse
|
41
|
Parveen S, Rahman A. Actin Isovariant ACT7 Modulates Root Thermomorphogenesis by Altering Intracellular Auxin Homeostasis. Int J Mol Sci 2021; 22:7749. [PMID: 34299366 PMCID: PMC8306570 DOI: 10.3390/ijms22147749] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 12/16/2022] Open
Abstract
High temperature stress is one of the most threatening abiotic stresses for plants limiting the crop productivity world-wide. Altered developmental responses of plants to moderate-high temperature has been shown to be linked to the intracellular auxin homeostasis regulated by both auxin biosynthesis and transport. Trafficking of the auxin carrier proteins plays a major role in maintaining the cellular auxin homeostasis. The intracellular trafficking largely relies on the cytoskeletal component, actin, which provides track for vesicle movement. Different classes of actin and the isovariants function in regulating various stages of plant development. Although high temperature alters the intracellular trafficking, the role of actin in this process remains obscure. Using isovariant specific vegetative class actin mutants, here we demonstrate that ACTIN 7 (ACT7) isovariant plays an important role in regulating the moderate-high temperature response in Arabidopsis root. Loss of ACT7, but not ACT8 resulted in increased inhibition of root elongation under prolonged moderate-high temperature. Consistently, kinematic analysis revealed a drastic reduction in cell production rate and cell elongation in act7-4 mutant under high temperature. Quantification of actin dynamicity reveals that prolonged moderate-high temperature modulates bundling along with orientation and parallelness of filamentous actin in act7-4 mutant. The hypersensitive response of act7-4 mutant was found to be linked to the altered intracellular auxin distribution, resulted from the reduced abundance of PIN-FORMED PIN1 and PIN2 efflux carriers. Collectively, these results suggest that vegetative class actin isovariant, ACT7 modulates the long-term moderate-high temperature response in Arabidopsis root.
Collapse
Affiliation(s)
- Sumaya Parveen
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan;
| | - Abidur Rahman
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan;
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
- Agri-Innovation Center, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
42
|
Zhang G, Yang J, Zhang M, Li Q, Wu Y, Zhao X, Zhang H, Wang Y, Wu J, Wang W. Wheat TaPUB1 Regulates Cd Uptake and Tolerance by Promoting the Degradation of TaIRT1 and TaIAA17. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5818-5829. [PMID: 34018722 DOI: 10.1021/acs.jafc.0c08042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) accumulation in agricultural soils is an increasingly serious problem, as plants absorb Cd, which inhibits their growth and development. Nonetheless, the molecular mechanisms underlying Cd detoxification and accumulation in wheat (Triticum aestivum L.) are unclear. Here, we isolated the U-box E3 ligase TaPUB1 from wheat and reported the functional characterization of TaPUB1 in Cd uptake and tolerance in wheat. Under Cd stress, TaPUB1 overexpression lines displayed higher photosynthetic rates than the wild type; opposite results were observed in the TaPUB1-RNAi lines. In addition, TaPUB1 overexpression lines showed reduced Cd uptake and accumulation, whereas RNAi plants exhibited a significant increase in Cd accumulation after Cd treatment. We further found that TaPUB1 enhanced the resistance of wheat to Cd stress in three ways. First, TaPUB1 interacts with and ubiquitinates TaIRT1, resulting in the inhibition of Cd uptake. Second, TaPUB1 interacts directly with and ubiquitinates TaIAA17, facilitates its degradation, and results in primary root elongation by activating the Aux signaling pathway under Cd stress. Moreover, TaPUB1 decreases ROS accumulation by regulating antioxidant-related gene expression and antioxidant enzyme activity under Cd stress. Thus, a molecular mechanism by which TaPUB1 regulates Cd uptake and tolerance by modulating the stability of TaIRT1 and TaIAA17 proteins was revealed.
Collapse
Affiliation(s)
- Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong 274015, P. R. China
| | - Junjiao Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Meng Zhang
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P. R. China
| | - Qinxue Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Yunzhen Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Xiaoyu Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Huifei Zhang
- College of Agricultural, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Yong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Jiajie Wu
- College of Agricultural, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| |
Collapse
|
43
|
Castaings L, Alcon C, Kosuth T, Correia D, Curie C. Manganese triggers phosphorylation-mediated endocytosis of the Arabidopsis metal transporter NRAMP1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1328-1337. [PMID: 33735495 DOI: 10.1111/tpj.15239] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1) transporter guarantees plant survival of manganese (Mn) deficiency by mediating Mn entry into root cells. Unlike other high-affinity metal transporters, NRAMP1 is only slightly regulated at the transcriptional level. We show here that adequate Mn content in tissues is safeguarded through a tight control of the quantity of NRAMP1 present at the surface of root cells. Depending on Mn availability, an NRAMP1-GFP fusion protein cycles dynamically between the plasma membrane (PM) and endosomal compartments. This involves a clathrin-mediated endocytosis pathway, as disrupting this pathway in auxilin-overexpressor lines prevents NRAMP1 internalization. Mutation of the phosphorylated serine residues 20, 22 and 24 in the cytosol-exposed N terminus of NRAMP1 alters its membrane distribution. Indeed, a phospho-dead mutation stabilizes NRAMP1 at the PM, regardless of the Mn regime, and dramatically reduces plant tolerance to Mn toxicity. Conversely a phosphomimetic mutant is constitutively internalized into endosomes. Together, these data establish that phosphorylation of NRAMP1 is the trigger for its Mn-induced endocytosis and represents the main level of regulation of this transporter. Furthermore, the extent of Mn toxicity observed when interrupting NRAMP1 membrane cycling undermines the dogma that Mn is only marginally toxic to plants.
Collapse
Affiliation(s)
- Loren Castaings
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Carine Alcon
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Thibault Kosuth
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - David Correia
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Catherine Curie
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
44
|
Sharma S, Prasad A, Sharma N, Prasad M. Role of ubiquitination enzymes in abiotic environmental interactions with plants. Int J Biol Macromol 2021; 181:494-507. [PMID: 33798570 DOI: 10.1016/j.ijbiomac.2021.03.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/08/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Ubiquitination, a post-translational modification, plays a crucial role in various aspects of plant development and stress responses. Protein degradation by ubiquitination is well established and ubiquitin is the main underlying component directing the turnover of proteins. Recent reports have also revealed the non-proteolytic roles of ubiquitination in plants. In the past decade, ubiquitination has emerged to be one of the most important players in modulating plant's responses to abiotic stresses, which led to identification of specific E3 ligases and their targets involved in the process. Most of the E3 ligases play regulatory roles by modifying the stability and accumulation of stress responsive regulatory proteins, such as transcription factors, thus, modifying the downstream responses, or by degrading the proteins involved in the downstream cascade itself. In this review, we summarize and highlight the recent advances in the field of ubiquitination-mediated regulation of plant's responses to various abiotic stresses including limited nutrient availability and metal toxicity. The non-proteolytic role of ubiquitination in epigenetic regulation of abiotic stress induced response has also been discussed.
Collapse
Affiliation(s)
- Shambhavi Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
45
|
Spielmann J, Vert G. The many facets of protein ubiquitination and degradation in plant root iron-deficiency responses. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2071-2082. [PMID: 32945865 DOI: 10.1093/jxb/eraa441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Organisms need to deal with the absolute requirement for metals and also their possible toxicity. This is achieved through an intricate network of signaling pathways that are integrated to ultimately fine-tune iron uptake and metabolism. The mechanisms by which plants cope with iron limitation and the associated genomic responses are well characterized. On top of this transcriptional cascade is another level of regulation involving the post-translational protein modification and degradation. The ubiquitination and/or degradation of several transcription factors in the iron-deficiency signaling pathways and metal transporters has recently come to light. In this review we discuss the mechanisms and possible roles of protein modification and turnover in the regulation of root iron-deficiency responses. We also highlight the tight coupling between metal sensing by E3 ubiquitin ligases or bifunctional transporters and protein degradation.
Collapse
Affiliation(s)
- Julien Spielmann
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, Auzeville-Tolosane, France
| |
Collapse
|
46
|
Astolfi S, Celletti S, Vigani G, Mimmo T, Cesco S. Interaction Between Sulfur and Iron in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:670308. [PMID: 34354720 PMCID: PMC8329491 DOI: 10.3389/fpls.2021.670308] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/25/2021] [Indexed: 05/08/2023]
Abstract
It is well known that S interacts with some macronutrients, such as N, P, and K, as well as with some micronutrients, such as Fe, Mo, Cu, Zn, and B. From our current understanding, such interactions could be related to the fact that: (i) S shares similar chemical properties with other elements (e.g., Mo and Se) determining competition for the acquisition/transport process (SULTR transporter family proteins); (ii) S-requiring metabolic processes need the presence of other nutrients or regulate plant responses to other nutritional deficiencies (S-containing metabolites are the precursor for the synthesis of ethylene and phytosiderophores); (iii) S directly interacts with other elements (e.g., Fe) by forming complexes and chemical bonds, such as Fe-S clusters; and (iv) S is a constituent of organic molecules, which play crucial roles in plants (glutathione, transporters, etc.). This review summarizes the current state of knowledge of the interplay between Fe and S in plants. It has been demonstrated that plant capability to take up and accumulate Fe strongly depends on S availability in the growth medium in both monocots and dicot plants. Moreover, providing S above the average nutritional need enhances the Fe content in wheat grains, this beneficial effect being particularly pronounced under severe Fe limitation. On the other hand, Fe shortage induces a significant increase in the demand for S, resulting in enhanced S uptake and assimilation rate, similar to what happens under S deficiency. The critical evaluation of the recent studies on the modulation of Fe/S interaction by integrating old and new insights gained on this topic will help to identify the main knowledge gaps. Indeed, it remains a challenge to determine how the interplay between S and Fe is regulated and how plants are able to sense environmental nutrient fluctuations and then to adapt their uptake, translocation, assimilation, and signaling. A better knowledge of the mechanisms of Fe/S interaction might considerably help in improving crop performance within a context of limited nutrient resources and a more sustainable agriculture.
Collapse
Affiliation(s)
- Stefania Astolfi
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Viterbo, Italy
- *Correspondence: Stefania Astolfi,
| | - Silvia Celletti
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Gianpiero Vigani
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Turin, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
- Tanja Mimmo,
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
47
|
Chen WW, Zhu HH, Wang JY, Han GH, Huang RN, Hong YG, Yang JL. Comparative Physiological and Transcriptomic Analyses Reveal Altered Fe-Deficiency Responses in Tomato Epimutant Colorless Non-ripening. FRONTIERS IN PLANT SCIENCE 2021; 12:796893. [PMID: 35126421 PMCID: PMC8813752 DOI: 10.3389/fpls.2021.796893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/27/2021] [Indexed: 05/05/2023]
Abstract
The mechanisms associated with the regulation of iron (Fe) homeostasis have been extensively examined, however, epigenetic regulation of these processes remains largely unknown. Here, we report that a naturally occurring epigenetic mutant, Colorless non-ripening (Cnr), displayed increased Fe-deficiency responses compared to its wild-type Ailsa Craig (AC). RNA-sequencing revealed that a total of 947 and 1,432 genes were up-regulated by Fe deficiency in AC and Cnr roots, respectively, while 923 and 1,432 genes were, respectively, down-regulated. Gene ontology analysis of differentially expressed genes showed that genes encoding enzymes, transporters, and transcription factors were preferentially affected by Fe deficiency. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed differential metabolic responses to Fe deficiency between AC and Cnr. Based on comparative transcriptomic analyses, 24 genes were identified as potential targets of Cnr epimutation, and many of them were found to be implicated in Fe homeostasis. By developing CRISPR/Cas9 genome editing SlSPL-CNR knockout (KO) lines, we found that some Cnr-mediated Fe-deficiency responsive genes showed similar expression patterns between SlSPL-CNR KO plants and the Cnr epimutant. Moreover, both two KO lines displayed Fe-deficiency-induced chlorosis more severe than AC plants. Additionally, the Cnr mutant displayed hypermethylation in the 286-bp epi-mutated region on the SlSPL-CNR promoter, which contributes to repressed expression of SlSPL-CNR when compared with AC plants. However, Fe-deficiency induced no change in DNA methylation both at the 286-bp epi-allele region and the entire region of SlSPL-CNR gene. Taken together, using RNA-sequencing and genetic approaches, we identified Fe-deficiency responsive genes in tomato roots, and demonstrated that SlSPL-CNR is a novel regulator of Fe-deficiency responses in tomato, thereby, paving the way for further functional characterization and regulatory network dissection.
Collapse
Affiliation(s)
- Wei Wei Chen
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hui Hui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jia Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Guang Hao Han
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ru Nan Huang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yi Guo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Yi Guo Hong,
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Li Yang,
| |
Collapse
|
48
|
Ivanov R, Vert G. Endocytosis in plants: Peculiarities and roles in the regulated trafficking of plant metal transporters. Biol Cell 2020; 113:1-13. [PMID: 33044749 DOI: 10.1111/boc.202000118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
The removal of transmembrane proteins from the plasma membrane via endocytosis has emerged as powerful strategy in the regulation of receptor signalling and molecule transport. In the last decade, IRON-REGULATED TRANSPORTER1 (IRT1) has been established as one of the key plant model proteins for studying endomembrane trafficking. The use of IRT1 and additional other metal transporters has uncovered novel factors involved in plant endocytosis and facilitated a better understanding of the role of endocytosis in the fine balancing of plant metal homoeostasis. In this review, we outline the specifics of plant endocytosis compared to what is known in yeast and mammals, and based on several examples, we demonstrate how studying metal transport has contributed to extending our knowledge of endocytic trafficking by shedding light on novel regulatory mechanisms and factors.
Collapse
Affiliation(s)
- Rumen Ivanov
- Institute of Botany, Heinrich-Heine University, Düsseldorf, D-40225, Germany
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, 31320, France
| |
Collapse
|
49
|
Martín-Barranco A, Spielmann J, Dubeaux G, Vert G, Zelazny E. Dynamic Control of the High-Affinity Iron Uptake Complex in Root Epidermal Cells. PLANT PHYSIOLOGY 2020; 184:1236-1250. [PMID: 32873629 PMCID: PMC7608170 DOI: 10.1104/pp.20.00234] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/20/2020] [Indexed: 05/05/2023]
Abstract
In plants, iron uptake from the soil is tightly regulated to ensure optimal growth and development. Iron absorption in Arabidopsis root epidermal cells requires the IRT1 transporter that also allows the entry of certain non-iron metals, such as Zn, Mn, and Co. Recent work demonstrated that IRT1 endocytosis and degradation are controlled by IRT1 non-iron metal substrates in a ubiquitin-dependent manner. To better understand how metal uptake is regulated, we identified IRT1-interacting proteins in Arabidopsis roots by mass spectrometry and established an interactome of IRT1. Interestingly, the AHA2 proton pump and the FRO2 reductase, both of which work in concert with IRT1 in the acidification-reduction-transport strategy of iron uptake, were part of this interactome. We confirmed that IRT1, FRO2, and AHA2 associate through co-immunopurification and split-ubiquitin analyses, and uncovered that they form tripartite direct interactions. We characterized the dynamics of the iron uptake complex and showed that FRO2 and AHA2 ubiquitination is independent of the non-iron metal substrates transported by IRT1. In addition, FRO2 and AHA2 are not largely endocytosed in response to non-iron metal excess, unlike IRT1. Indeed, we provide evidence that the phosphorylation of IRT1 in response to high levels of non-iron metals likely triggers dissociation of the complex. Overall, we propose that a dedicated iron-acquisition protein complex exists at the cell surface of Arabidopsis root epidermal cells to optimize iron uptake.
Collapse
Affiliation(s)
- Amanda Martín-Barranco
- Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Julien Spielmann
- Plant Science Research Laboratory, Unité Mixte de Recherche 5546, Centre National de la Recherche Scientifique/University of Toulouse 3, 31320 Auzeville Tolosane, France
| | - Guillaume Dubeaux
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093
| | - Grégory Vert
- Plant Science Research Laboratory, Unité Mixte de Recherche 5546, Centre National de la Recherche Scientifique/University of Toulouse 3, 31320 Auzeville Tolosane, France
| | - Enric Zelazny
- Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
50
|
Xiao Z, Yang C, Liu C, Yang L, Yang S, Zhou J, Li F, Jiang L, Xiao S, Gao C, Shen W. SINAT E3 ligases regulate the stability of the ESCRT component FREE1 in response to iron deficiency in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1399-1417. [PMID: 32786047 DOI: 10.1111/jipb.13005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 05/18/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is an ancient, evolutionarily conserved membrane remodeling complex that is essential for multivesicular body (MVB) biogenesis in eukaryotes. FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1), which was previously identified as a plant-specific ESCRT component, modulates MVB-mediated endosomal sorting and autophagic degradation. Although the basic cellular functions of FREE1 as an ESCRT component have been described, the regulators that control FREE1 turnover remain unknown. Here, we analyzed how FREE1 homeostasis is mediated by the RING-finger E3 ubiquitin ligases, SINA of Arabidopsis thaliana (SINATs), in response to iron deficiency. Under iron-deficient growth conditions, SINAT1-4 were induced and ubiquitinated FREE1, thereby promoting its degradation and relieving the repressive effect of FREE1 on iron absorption. By contrast, SINAT5, another SINAT member that lacks ubiquitin ligase activity due to the absence of the RING domain, functions as a protector protein which stabilizes FREE1. Collectively, our findings uncover a hitherto unknown mechanism of homeostatic regulation of FREE1, and demonstrate a unique regulatory SINAT-FREE1 module that subtly regulates plant response to iron deficiency stress.
Collapse
Affiliation(s)
- Zhidan Xiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lianming Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shuhong Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jun Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liwen Jiang
- School of Life Sciences, Center for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|