1
|
Wu M, Xu Z, Fu C, Wang N, Zhang R, Le Y, Chen M, Yang N, Li Y, Zhang X, Li X, Lin Z. NAC transcription factor GbNTL9 modifies the accumulation and organization of cellulose microfibrils to enhance cotton fiber strength. J Adv Res 2025:S2090-1232(25)00120-1. [PMID: 39971129 DOI: 10.1016/j.jare.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 02/21/2025] Open
Abstract
INTRODUCTION Fiber strength is a critical determinant of fiber quality, with stronger fibers being highly preferred in the cotton textile industry. However, the genetic basis and the specific regulatory mechanism underlying the formation of cotton fiber strength remain largely unknown. OBJECTIVES To explore fiber strength-related genes, QTL mapping, map-based cloning, and gene function verification were conducted in a backcross inbred line BS41 derived from interspecific hybridization between upland cotton and sea-island cotton. METHODS Upland cotton Emian22 (E22) and an interspecific backcross inbred line (BIL) BS41 were used as parents to construct secondary segregation populations for BSA and QTL mapping of fiber strength. The candidate gene GbNTL9 was identified through map-based cloning and expression analysis. The function of NTL9 was determined through transgenic experiments and cytological observations. The regulatory mechanisms of NTL9 were explored using RNA-seq, RT-qPCR, yeast two-hybrid, bimolecular fluorescence complementation, and yeast one-hybrid. RESULTS A major QTL for fiber strength, qFS-A11-1, was mapped to a 14.6-kb genomic region using segregating populations from E22 × BS41. GbNTL9, which encodes a NAC transcription factor, was identified as the candidate gene. Overexpression of both upland cotton genotype NTL9E22 and sea-island genotype NTL9BS41 in upland cotton enhanced fiber strength by facilitating the dense accumulation and orderly organization of cellulose microfibrils within the cell wall. Transcriptomic analysis revealed that NTL9 inhibited the expression of genes involved in secondary wall synthesis, such as CESA4, CESA7, and CESA8, thereby delaying cell wall cellulose deposition and altering the microfibril deposition pattern. NTL9 interacted with MYB6 and functioned as a downstream gene in the ethylene signaling pathway. Additionally, an effective gene marker NTL9-24 was developed to distinguish haplotypes from G. barbadense and G. hirsutum for fiber quality breeding program. CONCLUSION Our findings demonstrate that GbNTL9 positively regulates fiber strength through altering the microfibril deposition pattern, and provide a new insight into the molecular mechanism underlying fiber strength.
Collapse
Affiliation(s)
- Mi Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 Hubei, China.
| | - Zhiyong Xu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 Hubei, China.
| | - Chao Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 Hubei, China.
| | - Nian Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 Hubei, China.
| | - Ruiting Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 Hubei, China.
| | - Yu Le
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 Hubei, China.
| | - Meilin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 Hubei, China.
| | - Ningyu Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 Hubei, China.
| | - Yuanxue Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 Hubei, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 Hubei, China.
| | - Ximei Li
- Shandong Key Laboratory of Dryland Farming Technology, Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops, College of Agronomy, Qingdao Agricultural University, Qingdao 266109 Shandong, China.
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 Hubei, China.
| |
Collapse
|
2
|
Lee Y, Rani H, Mallery EL, Szymanski DB. A cell fractionation and quantitative proteomics pipeline to enable functional analyses of cotton fiber development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17246. [PMID: 39970036 PMCID: PMC11838819 DOI: 10.1111/tpj.17246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 02/21/2025]
Abstract
Cotton fibers are aerial trichoblasts that employ a highly polarized diffuse growth mechanism to emerge from the developing ovule epidermis. After executing a complicated morphogenetic program, the cells reach lengths over 2 cm and serve as the foundation of a multi-billion-dollar textile industry. Important traits such as fiber diameter, length, and strength are defined by the growth patterns and cell wall properties of individual cells. At present, the ability to engineer fiber traits is limited by our lack of understanding regarding the primary controls governing the rate, duration, and patterns of cell growth. To gain insights into the compartmentalized functions of proteins in cotton fiber cells, we developed a label-free liquid chromatography mass spectrometry method for systems-level analyses of fiber proteome. Purified fibers from a single locule were used to fractionate the fiber proteome into apoplast (APOT), membrane-associated (p200), and crude cytosolic (s200) fractions. Subsequently, proteins were identified, and their localizations and potential functions were analyzed using combinations of size exclusion chromatography, statistical and bioinformatic analyses. This method had good coverage of the p200 and APOT fractions, the latter of which was dominated by proteins associated with particulate membrane-enclosed compartments. The apoplastic proteome was diverse, the proteins were not degraded, and some displayed distinct multimerization states compared to their cytosolic pool. This quantitative proteomic pipeline can be used to improve coverage and functional analyses of the cotton fiber proteome as a function of developmental time or differing genotypes.
Collapse
Affiliation(s)
- Youngwoo Lee
- Center for Plant BiologyPurdue UniversityWest LafayetteIndiana47907USA
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndiana47907USA
| | - Heena Rani
- Cereal Crops Research Unit, USDA‐ARS502 Walnut StreetMadisonWisconsin53762USA
| | - Eileen L. Mallery
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndiana47907USA
| | - Daniel B. Szymanski
- Center for Plant BiologyPurdue UniversityWest LafayetteIndiana47907USA
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndiana47907USA
- Department of Biological SciencesPurdue UniversityWest LafayetteIndiana47907USA
| |
Collapse
|
3
|
Wang Y, Zou D, Cheng CH, Zhang J, Zhang JB, Zheng Y, Li Y, Li XB. GhTBL3 is required for fiber secondary cell wall (SCW) formation via maintaining acetylation of xylan in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17167. [PMID: 39585209 DOI: 10.1111/tpj.17167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
TBL family proteins containing the domain of unknown function mainly act as xylan O-acetyltransferases, but the specific molecular mechanism of their functions remains unclear in plants (especially in cotton) so far. In this study, we characterized the TBL family proteins containing the conserved GDS and DxxH motifs in cotton (Gossypium hirsutum). Among them, GhTBL3 is highly expressed in fibers at the stage of secondary cell wall (SCW) formation and mainly functions as O-acetyltransferase to maintain acetylation of xylan in fiber SCW development. Overexpression of GhTBL3 in cotton promoted fiber SCW formation, resulting in increased fiber cell wall thickness. In contrast, suppression of GhTBL3 expression in cotton impaired fiber SCW synthesis, leading to the decreased fiber cell wall thickness, compared with wild type (WT). Furthermore, two fiber SCW-related transcription factors GhMYBL1 and GhKNL1 were found to directly bind to the promoter of GhTBL3 in cotton. GhMYBL1 enhanced the transcription activity of GhTBL3, whereas GhKNL1 inhibited the expression of GhTBL3 in fibers. The acetylation level of xylan was remarkably decreased in fibers of GhMYBL1 RNAi transgenic cotton, but the acetylation level of xylan was significantly increased in fibers of GhKNL1 RNAi cotton, relative to WT. Given together, the above results suggested that GhTBL3 may be under the dual control of GhMYBL1 and GhKNL1 to maintain the suitable acetylation level of xylan required for fiber SCW formation in cotton. Thus, our data provide an effective clue for potentially improving fiber quality by genetic manipulation of GhTBL3 in cotton breeding.
Collapse
Affiliation(s)
- Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dan Zou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Chang-Hao Cheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jie Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jing-Bo Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
4
|
Zhou Z, Zhang H, Yao JL, Gao Q, Wang Y, Liu Z, Zhang Y, Tian Y, Yan Z, Zhu Y, Zhang H. The MdERF61-mdm-miR397b-MdLAC7b module regulates apple resistance to Fusarium solani via lignin biosynthesis. PLANT PHYSIOLOGY 2024; 197:kiae518. [PMID: 39374536 DOI: 10.1093/plphys/kiae518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024]
Abstract
Apple replant disease (ARD) is a worldwide problem that threatens the industry. However, the genetic mechanism underlying plant disease resistance against ARD remains unclear. In this study, a negative regulatory microRNA in Malus domestica, mdm-miR397b, and its direct target MdLAC7b (Laccase) was selected for examination based on our previous small RNA and degradome sequencing results. Overexpressing the mdm-miR397b-MdLAC7b module altered the lignin deposition and jasmonic acid contents in apple roots, which also led to increased resistance to Fusarium solani. Additionally, Y1H library screening using mdm-miR397b promoter recombinants identified a transcription factor, MdERF61, that represses mdm-miR397b transcriptional activity by directly binding to 2 GCC-boxes in the mdm-miR397b promoter. In summary, our results suggest that the MdERF61-mdm-miR397b-MdLAC7b module plays a crucial role in apple resistance to F. solani and offers insights for enhancing plant resistance to soil-borne diseases in apples.
Collapse
Affiliation(s)
- Zhe Zhou
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, Henan 450008, China
| | - Haiqing Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Auckland 1142, New Zealand
| | - Qiming Gao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Yarong Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Zhenzhen Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Yaru Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Yi Tian
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Zhenli Yan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Yanmin Zhu
- United States Department of Agriculture, Agricultural Research Service, Tree Fruit Research Laboratory, Wenatchee, WA 98801, USA
| | - Hengtao Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, Henan 450008, China
| |
Collapse
|
5
|
Li H, Guo J, Li K, Gao Y, Li H, Long L, Chu Z, Du Y, Zhao X, Zhao B, Lan C, Botella JR, Zhang X, Jia KP, Miao Y. Regulation of lignin biosynthesis by GhCAD37 affects fiber quality and anther vitality in upland cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2846-2860. [PMID: 39559968 DOI: 10.1111/tpj.17149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/13/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Cotton stands as a pillar in the textile industry due to its superior natural fibers. Lignin, a complex polymer synthesized from phenylalanine and deposited in mature cotton fibers, is believed to be essential for fiber quality, although the precise effects remain largely unclear. In this study, we characterized two ubiquitously expressed cinnamyl alcohol dehydrogenases (CAD), GhCAD37A and GhCAD37D (GhCAD37A/D), in Gossypium hirsutum. GhCAD37A/D possess CAD enzymatic activities, to catalyze the generation of monolignol products during lignin biosynthesis. Analysis of transgenic cotton knockout and overexpressing plants revealed that GhCAD37A/D are important regulators of fiber quality, positively impacting breaking strength but negatively affecting fiber length and elongation percentage by modulating lignin biosynthesis in fiber cells. Moreover, GhCAD37A/D are shown to modulate anther vitality and affect stem lodging trait in cotton by influencing lignin biosynthesis in the vascular bundles of anther and stem, respectively. Additionally, our study revealed that Ghcad37A/D knockout plants displayed red stem xylem, likely due to the overaccumulation of aldehyde intermediates in the phenylpropanoid metabolism pathway, as indicated by metabolomics analysis. Thus, our work illustrates that GhCAD37A/D are two important enzymes of lignin biosynthesis in different cotton organs, influencing fiber quality, anther vitality, and stem lodging.
Collapse
Affiliation(s)
- Haipeng Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Jinggong Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Kun Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Yuwen Gao
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Hang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - Zongyan Chu
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Yubei Du
- Kaifeng Academy of Agriculture and Forestry, Kaifeng, China
| | - Xulong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - Bing Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - Chen Lan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xuebin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
| | - Kun-Peng Jia
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| | - Yuchen Miao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Henan, 475004, PR China
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China
| |
Collapse
|
6
|
Ding B, Liu B, Zhu X, Zhang H, Hu R, Li S, Zhang L, Jiang L, Yang Y, Zhang M, Zhao J, Pei Y, Hou L. Downregulation of the GhROD1 Gene Improves Cotton Fiber Fineness by Decreasing Acyl Pool Saturation, Stimulating Small Heat Shock Proteins (sHSPs), and Reducing H 2O 2 Production. Int J Mol Sci 2024; 25:11242. [PMID: 39457024 PMCID: PMC11509027 DOI: 10.3390/ijms252011242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Cotton fiber is one of the most important natural fiber sources in the world, and lipid metabolism plays a critical role in its development. However, the specific role of lipid molecules in fiber development and the impact of fatty acid alterations on fiber quality remain largely unknown. In this study, we demonstrate that the downregulation of GhROD1, a gene encoding phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), results in an improvement of fiber fineness. We found that GhROD1 downregulation significantly increases the proportion of linoleic acid (18:2) in cotton fibers, which subsequently upregulates genes encoding small heat shock proteins (sHSPs). This, in turn, reduces H2O2 production, thus delaying secondary wall deposition and leading to finer fibers. Our findings reveal how alterations in linoleic acid influence cellulose synthesis and suggest a potential strategy to improve cotton fiber quality by regulating lipid metabolism pathways.
Collapse
Affiliation(s)
- Bo Ding
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Bi Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Xi Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Huiming Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Rongyu Hu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Silu Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Liuqin Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Linzhu Jiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Yang Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Mi Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Juan Zhao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Yan Pei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Lei Hou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (B.D.); (B.L.); (X.Z.); (H.Z.); (R.H.); (S.L.); (L.Z.); (L.J.); (Y.Y.); (M.Z.); (J.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Chu Q, Fu X, Zhao J, Li Y, Liu L, Zhang L, Zhang Y, Guo Y, Pei Y, Zhang M. Simultaneous improvement of fiber yield and quality in upland cotton ( Gossypium hirsutum L.) by integration of auxin transport and synthesis. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:64. [PMID: 39301413 PMCID: PMC11408424 DOI: 10.1007/s11032-024-01500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Cotton is a widely planted commercial crop in the world. Enhancing fiber yield and quality is a long-term goal for cotton breeders. Our previous work has demonstrated that fine promotion of auxin biosynthesis in ovule epidermis, by overexpressing FBP7pro::iaaM, has a significant improvement on lint yield and fiber fineness. Lately, transgenic cottons overexpressing GhROP6 variants modify mature fiber length by controlling GhPIN3a-mediated polar auxin transport in ovules. Here, this study showed that all these GhROP6-related cottons displayed unsatisfactory agronomic performance in field conditions. Yet extra auxin supply could promote their fiber development, suggesting inadequate auxin supply in the ovules. Thus, these cottons were integrated with enhanced auxin synthesis by crossing with FBP7pro::iaaM cotton. All the transgene-stacked cottons exhibited synergetic effects on cotton yield (seedcotton yield, lint yield, and lint percentage) and quality (length, strength, and micronaire). Notably, comparing to the FBP7pro::iaaM background, the transgene-stacked cotton co-expressing FBP7pro::iaaM and CA-ghrop6 (constitutively active GhROP6) exhibited a 12.6% increase in seedcotton yield and a 19.0% increase in lint yield over a three-year field trial, and simultaneously resulted in further improvement on fiber length, strength, and micronaire. Collectively, our data provide a potential strategy for genetic improvement on cotton fiber yield and quality. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01500-w.
Collapse
Affiliation(s)
- Qingqing Chu
- College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715 P. R. China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, P. R. China
| | - Xingxian Fu
- College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715 P. R. China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, P. R. China
| | - Juan Zhao
- College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715 P. R. China
| | - Yuxin Li
- College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715 P. R. China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, P. R. China
| | - Lina Liu
- College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715 P. R. China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, P. R. China
| | - Liuqin Zhang
- College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715 P. R. China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, P. R. China
| | - Yujie Zhang
- College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715 P. R. China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, P. R. China
| | - Yifan Guo
- College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715 P. R. China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, P. R. China
| | - Yan Pei
- College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715 P. R. China
| | - Mi Zhang
- College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715 P. R. China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, P. R. China
| |
Collapse
|
8
|
Zhao Z, Zhu Z, Jiao Y, Zhang G. Pan-genome analysis of GT64 gene family and expression response to Verticillium wilt in cotton. BMC PLANT BIOLOGY 2024; 24:893. [PMID: 39343881 PMCID: PMC11440917 DOI: 10.1186/s12870-024-05584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The GT64 subfamily, belonging to the glycosyltransferase family, plays a critical function in plant adaptation to stress conditions and the modulation of plant growth, development, and organogenesis processes. However, a comprehensive identification and systematic analysis of GT64 in cotton are still lacking. RESULTS This study used bioinformatics techniques to conduct a detailed investigation on the GT64 gene family members of eight cotton species for the first time. A total of 39 GT64 genes were detected, which could be classified into five subfamilies according to the phylogenetic tree. Among them, six genes were found in upland cotton. Furthermore, investigated the precise chromosomal positions of these genes and visually represented their gene structure details. Moreover, forecasted cis-regulatory elements in GhGT64s and ascertained the duplication type of the GT64 in the eight cotton species. Evaluation of the Ka/Ks ratio for similar gene pairs among the eight cotton species provided insights into the selective pressures acting on these homologous genes. Additionally, analyzed the expression profiles of the GT64 gene family. Overexpressing GhGT64_4 in tobacco improved its disease resistance. Subsequently, VIGS experiments conducted in cotton demonstrated reduced disease resistance upon silencing of the GhGT64_4, may indicate its involvement in affecting lignin and jasmonic acid biosynthesis pathways, thus impacting cotton resistance. Weighted Gene Co-expression Network Analysis (WGCNA) revealed an early immune response against Verticillium dahliae in G. barbadense compared to G. hirsutum. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) analysis indicated that some GT64 genes might play a role under various biotic and abiotic stress conditions. CONCLUSIONS These discoveries enhance our knowledge of GT64 family members and lay the groundwork for future investigations into the disease resistance mechanisms of this gene in cotton.
Collapse
Affiliation(s)
- Zengqiang Zhao
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation, 221 Wuyi Highway, Shihezi, Xinjiang, 832000, China
| | - Zongcai Zhu
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation, 221 Wuyi Highway, Shihezi, Xinjiang, 832000, China
| | - Yang Jiao
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
- College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, China.
| | - Guoli Zhang
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation, 221 Wuyi Highway, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
9
|
Xu F, Li G, He S, Zeng Z, Wang Q, Zhang H, Yan X, Hu Y, Tian H, Luo M. Sphingolipid inhibitor response gene GhMYB86 controls fiber elongation by regulating microtubule arrangement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1898-1914. [PMID: 38995105 DOI: 10.1111/jipb.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Although the cell membrane and cytoskeleton play essential roles in cellular morphogenesis, the interaction between the membrane and cytoskeleton is poorly understood. Cotton fibers are extremely elongated single cells, which makes them an ideal model for studying cell development. Here, we used the sphingolipid biosynthesis inhibitor, fumonisin B1 (FB1), and found that it effectively suppressed the myeloblastosis (MYB) transcription factor GhMYB86, thereby negatively affecting fiber elongation. A direct target of GhMYB86 is GhTUB7, which encodes the tubulin protein, the major component of the microtubule cytoskeleton. Interestingly, both the overexpression of GhMYB86 and GhTUB7 caused an ectopic microtubule arrangement at the fiber tips, and then leading to shortened fibers. Moreover, we found that GhMBE2 interacted with GhMYB86 and that FB1 and reactive oxygen species induced its transport into the nucleus, thereby enhancing the promotion of GhTUB7 by GhMYB86. Overall, we established a GhMBE2-GhMYB86-GhTUB7 regulation module for fiber elongation and revealed that membrane sphingolipids affect fiber elongation by altering microtubule arrangement.
Collapse
Affiliation(s)
- Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Guiming Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Shengyang He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Dianjiang No.1 Middle School of Chongqing, Chongqing, 408300, China
| | - Zhifeng Zeng
- Yushan No.1 Senior High School, Shangrao, 334700, China
| | - Qiaoling Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Hongju Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xingying Yan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Yulin Hu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Huidan Tian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ming Luo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
10
|
Wang L, Jin C, Zhang W, Mei X, Yu H, Wu M, Pei W, Ma J, Zhang B, Luo M, Yu J. Sphingosine Promotes Fiber Early Elongation in Upland Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:1993. [PMID: 39065521 PMCID: PMC11280728 DOI: 10.3390/plants13141993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Sphingolipids play an important role in cotton fiber development, but the regulatory mechanism is largely unclear. We found that serine palmitoyltransferase (SPT) enzyme inhibitors, myriocin and sphingosine (dihydrosphingosine (DHS) and phytosphingosine (PHS)), affected early fiber elongation in cotton, and we performed a sphingolipidomic and transcriptomic analysis of control and PHS-treated fibers. Myriocin inhibited fiber elongation, while DHS and PHS promoted it in a dose-effect manner. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found that contents of 22 sphingolipids in the PHS-treated fibers for 10 days were changed, of which the contents of 4 sphingolipids increased and 18 sphingolipids decreased. The transcriptome analysis identified 432 differentially expressed genes (238 up-regulated and 194 down-regulated) in the PHS-treated fibers. Among them, the phenylpropanoid biosynthesis pathway is the most significant enrichment. The expression levels of transcription factors such as MYB, ERF, LBD, and bHLH in the fibers also changed, and most of MYB and ERF were up-regulated. Auxin-related genes IAA, GH3 and BIG GRAIN 1 were up-regulated, while ABPs were down-regulated, and the contents of 3 auxin metabolites were decreased. Our results provide important sphingolipid metabolites and regulatory pathways that influence fiber elongation.
Collapse
Affiliation(s)
- Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Changyin Jin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenqing Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xueting Mei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hang Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Man Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenfeng Pei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jianjiang Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Bingbing Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Ming Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing 400716, China
| | - Jiwen Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (C.J.); (W.Z.); (X.M.); (H.Y.); (M.W.); (W.P.); (J.M.); (B.Z.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
11
|
Liu L, Grover CE, Kong X, Jareczek J, Wang X, Si A, Wang J, Yu Y, Chen Z. Expression profile analysis of cotton fiber secondary cell wall thickening stage. PeerJ 2024; 12:e17682. [PMID: 38993976 PMCID: PMC11238726 DOI: 10.7717/peerj.17682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
To determine the genes associated with the fiber strength trait in cotton, three different cotton cultivars were selected: Sea Island cotton (Xinhai 32, with hyper-long fibers labeled as HL), and upland cotton (17-24, with long fibers labeled as L, and 62-33, with short fibers labeled as S). These cultivars were chosen to assess fiber samples with varying qualities. RNA-seq technology was used to analyze the expression profiles of cotton fibers at the secondary cell wall (SCW) thickening stage (20, 25, and 30 days post-anthesis (DPA)). The results showed that a large number of differentially expressed genes (DEGs) were obtained from the three assessed cotton cultivars at different stages of SCW development. For instance, at 20 DPA, Sea Island cotton (HL) had 6,215 and 5,364 DEGs compared to upland cotton 17-24 (L) and 62-33 (S), respectively. Meanwhile, there were 1,236 DEGs between two upland cotton cultivars, 17-24 (L) and 62-33 (S). Gene Ontology (GO) term enrichment identified 42 functions, including 20 biological processes, 11 cellular components, and 11 molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified several pathways involved in SCW synthesis and thickening, such as glycolysis/gluconeogenesis, galactose metabolism, propanoate metabolism, biosynthesis of unsaturated fatty acids pathway, valine, leucine and isoleucine degradation, fatty acid elongation pathways, and plant hormone signal transduction. Through the identification of shared DEGs, 46 DEGs were found to exhibit considerable expressional differences at different fiber stages from the three cotton cultivars. These shared DEGs have functions including REDOX enzymes, binding proteins, hydrolases (such as GDSL thioesterase), transferases, metalloproteins (cytochromatin-like genes), kinases, carbohydrates, and transcription factors (MYB and WRKY). Therefore, RT-qPCR was performed to verify the expression levels of nine of the 46 identified DEGs, an approach which demonstrated the reliability of RNA-seq data. Our results provided valuable molecular resources for clarifying the cell biology of SCW biosynthesis during fiber development in cotton.
Collapse
Affiliation(s)
- Li Liu
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xianhui Kong
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Josef Jareczek
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xuwen Wang
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Aijun Si
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Juan Wang
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Yu Yu
- Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Zhiwen Chen
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong, China
| |
Collapse
|
12
|
Jiao J, Zheng H, Zhou X, Huang Y, Niu Q, Ke L, Tang S, Liu H, Sun Y. The functions of laccase gene GhLAC15 in fiber colouration and development in brown-colored cotton. PHYSIOLOGIA PLANTARUM 2024; 176:e14415. [PMID: 38962818 DOI: 10.1111/ppl.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
The monotonicity of color type in naturally colored cottons (NCCs) has become the main limiting factor to their widespread use, simultaneously coexisting with poor fiber quality. The synchronous improvement of fiber quality and color become more urgent and crucial as the demand for sustainable development increases. The homologous gene of wild cotton Gossypium stocksii LAC15 in G. hirsutum, GhLAC15, was also dominantly expressed in the developing fibers of brown cotton XC20 from 5 DPA (day post anthesis) to 25 DPA, especially at the secondary cell wall thickening stage (20 DPA and 25 DPA). In XC20 plants with downregulated GhLAC15 (GhLAC15i), a remarkable reduction in proanthocyanidins (PAs) and lignin contents was observed. Some of the key genes in the phenylpropane and flavonoid biosynthesis pathway were down-regulated in GhLAC15i plants. Notably, the fiber length of GhLAC15i plants showed an obvious increase and the fiber color was lightened. Moreover, we found that the thickness of cotton fiber cell wall was decreased in GhLAC15i plants and the fiber surface became smoother compared to that of WT. Taken together, this study revealed that GhLAC15 played an important role in PAs and lignin biosynthesis in naturally colored cotton fibers. It might mediate fiber color and fiber quality by catalyzing PAs oxidation and lignin polymerization, ultimately regulating fiber colouration and development.
Collapse
Affiliation(s)
- Junye Jiao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Xinping Zhou
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Yinshuai Huang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Qingqing Niu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Shouwu Tang
- China Colored-cotton (Group) Co., Ltd., China
| | - Haifeng Liu
- China Colored-cotton (Group) Co., Ltd., China
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
13
|
Wang J, Wang X, Wang L, Nazir MF, Fu G, Peng Z, Chen B, Xing A, Zhu M, Ma X, Wang X, Jia Y, Pan Z, Wang L, Xia Y, He S, Du X. Exploring the regulatory role of non-coding RNAs in fiber development and direct regulation of GhKCR2 in the fatty acid metabolic pathway in upland cotton. Int J Biol Macromol 2024; 266:131345. [PMID: 38574935 DOI: 10.1016/j.ijbiomac.2024.131345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Cotton fiber holds immense importance as the primary raw material for the textile industry. Consequently, comprehending the regulatory mechanisms governing fiber development is pivotal for enhancing fiber quality. Our study aimed to construct a regulatory network of competing endogenous RNAs (ceRNAs) and assess the impact of non-coding RNAs on gene expression throughout fiber development. Through whole transcriptome data analysis, we identified differentially expressed genes (DEGs) regulated by non-coding RNA (ncRNA) that were predominantly enriched in phenylpropanoid biosynthesis and the fatty acid elongation pathway. This analysis involved two contrasting phenotypic materials (J02-508 and ZRI015) at five stages of fiber development. Additionally, we conducted a detailed analysis of genes involved in fatty acid elongation, including KCS, KCR, HACD, ECR, and ACOT, to unveil the factors contributing to the variation in fatty acid elongation between J02-508 and ZRI015. Through the integration of histochemical GUS staining, dual luciferase assay experiments, and correlation analysis of expression levels during fiber development stages for lncRNA MSTRG.44818.23 (MST23) and GhKCR2, we elucidated that MST23 positively regulates GhKCR2 expression in the fatty acid elongation pathway. This identification provides valuable insights into the molecular mechanisms underlying fiber development, emphasizing the intricate interplay between non-coding RNAs and protein-coding genes.
Collapse
Affiliation(s)
- Jingjing Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyang Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liyuan Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Mian Faisal Nazir
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Guoyong Fu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhen Peng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Baojun Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Aishuang Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Mengchen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xinli Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Xiuxiu Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yinhua Jia
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Zhaoe Pan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liru Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yingying Xia
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 455001, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China.
| |
Collapse
|
14
|
Yang Y, Zhou X, Zhu X, Ding B, Jiang L, Zhang H, Li S, Cao S, Zhang M, Pei Y, Hou L. GhMYB52 Like: A Key Factor That Enhances Lint Yield by Negatively Regulating the Lignin Biosynthesis Pathway in Fibers of Upland Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2024; 25:4921. [PMID: 38732136 PMCID: PMC11084151 DOI: 10.3390/ijms25094921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
In the context of sustainable agriculture and biomaterial development, understanding and enhancing plant secondary cell wall formation are crucial for improving crop fiber quality and biomass conversion efficiency. This is especially critical for economically important crops like upland cotton (Gossypium hirsutum L.), for which fiber quality and its processing properties are essential. Through comprehensive genome-wide screening and analysis of expression patterns, we identified a particularly high expression of an R2R3 MYB transcription factor, GhMYB52 Like, in the development of the secondary cell wall in cotton fiber cells. Utilizing gene-editing technology to generate a loss-of-function mutant to clarify the role of GhMYB52 Like, we revealed that GhMYB52 Like does not directly contribute to cellulose synthesis in cotton fibers but instead represses a subset of lignin biosynthesis genes, establishing it as a lignin biosynthesis inhibitor. Concurrently, a substantial decrease in the lint index, a critical measure of cotton yield, was noted in parallel with an elevation in lignin levels. This study not only deepens our understanding of the molecular mechanisms underlying cotton fiber development but also offers new perspectives for the molecular improvement of other economically important crops and the enhancement of biomass energy utilization.
Collapse
Affiliation(s)
- Yang Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Xue Zhou
- Laboratory Animal Center, Southwest University, Chongqing 400715, China;
| | - Xi Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Bo Ding
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Linzhu Jiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Huiming Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Silu Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Shuyan Cao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Mi Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Yan Pei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Lei Hou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Li C, Zhao J, Liu Z, Yang Y, Lai C, Ma J, Aierxi A. Comparative Transcriptomic Analysis of Gossypium hirsutum Fiber Development in Mutant Materials ( xin w 139) Provides New Insights into Cotton Fiber Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1127. [PMID: 38674536 PMCID: PMC11054599 DOI: 10.3390/plants13081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Cotton is the most widely planted fiber crop in the world, and improving cotton fiber quality has long been a research hotspot. The development of cotton fibers is a complex process that includes four consecutive and overlapping stages, and although many studies on cotton fiber development have been reported, most of the studies have been based on cultivars that are promoted in production or based on lines that are used in breeding. Here, we report a phenotypic evaluation of Gossypium hirsutum based on immature fiber mutant (xin w 139) and wild-type (Xin W 139) lines and a comparative transcriptomic study at seven time points during fiber development. The results of the two-year study showed that the fiber length, fiber strength, single-boll weight and lint percentage of xin w 139 were significantly lower than those of Xin W 139, and there were no significant differences in the other traits. Principal component analysis (PCA) and cluster analysis of the RNA-sequencing (RNA-seq) data revealed that these seven time points could be clearly divided into three different groups corresponding to the initiation, elongation and secondary cell wall (SCW) synthesis stages of fiber development, and the differences in fiber development between the two lines were mainly due to developmental differences after twenty days post anthesis (DPA). Differential expression analysis revealed a total of 5131 unique differentially expressed genes (DEGs), including 290 transcription factors (TFs), between the 2 lines. These DEGs were divided into five clusters. Each cluster functional category was annotated based on the KEGG database, and different clusters could describe different stages of fiber development. In addition, we constructed a gene regulatory network by weighted correlation network analysis (WGCNA) and identified 15 key genes that determined the differences in fiber development between the 2 lines. We also screened seven candidate genes related to cotton fiber development through comparative sequence analysis and qRT-PCR; these genes included three TFs (GH_A08G1821 (bHLH), GH_D05G3074 (Dof), and GH_D13G0161 (C3H)). These results provide a theoretical basis for obtaining an in-depth understanding of the molecular mechanism of cotton fiber development and provide new genetic resources for cotton fiber research.
Collapse
Affiliation(s)
- Chunping Li
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Jieyin Zhao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
| | - Zhongshan Liu
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Yanlong Yang
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Chengxia Lai
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Jun Ma
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Alifu Aierxi
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| |
Collapse
|
16
|
Tian X, Ji M, You J, Zhang Y, Lindsey K, Zhang X, Tu L, Wang M. Synergistic interplay of redox homeostasis and polysaccharide synthesis promotes cotton fiber elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:405-422. [PMID: 38163320 DOI: 10.1111/tpj.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Cell polarity is the foundation of cell development and tissue morphogenesis. The investigation of polarized growth provides opportunities to gain profound insights into morphogenesis and tissue functionality in organisms. Currently, there are still many mysteries surrounding the mechanisms that regulate polarized cell growth. Cotton fiber cells serve as an excellent model for studying polarized growth, and provide important clues for unraveling the molecular mechanisms, signaling pathways, and regulatory networks of polarized growth. In this study, we characterized two functional genes, GhMDHAR1AT/DT and GhDHAR2AT/DT with predominant expression during fiber elongation. Loss of function of both genes contributed to a significant increase in fiber length. Transcriptomic data revealed up-regulated expression of antioxidant genes in CRISPR mutant lines, along with delayed expression of secondary wall-related genes and temporally prolonged expression of primary wall-related genes. Experimental evidence demonstrated that the increase in GSH content and glutathione peroxidase (GPX) enzyme activity led to enhanced total antioxidant capacity (T-AOC), resulting in reduced H2O2 levels, which contributed to the extension of fiber elongation stage in CRISPR mutant lines. Moreover, the increased polysaccharide synthesis in CRISPR mutant lines was found to provide an abundant supply of raw materials for fiber cell wall elongation, suggesting that synergistic interplay between redox homeostasis and polysaccharide synthesis in fiber cells may facilitate cell wall remodeling and fiber elongation. This study provides valuable insights for deciphering the mechanisms of cell polarized growth and improving cotton fiber quality.
Collapse
Affiliation(s)
- Xuehan Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengyuan Ji
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuqi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Laksana C, Sophiphun O, Chanprame S. Lignin reduction in sugarcane by performing CRISPR/Cas9 site-direct mutation of SoLIM transcription factor. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111987. [PMID: 38220093 DOI: 10.1016/j.plantsci.2024.111987] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Genetic engineering of plant cell walls is limited for reducing lignocellulose recalcitrance, so mild and/or green-like pretreatment is still required for sequential enzymatic saccharification. Here, we report a method to reduce lignin content in sugarcane stalks using the CRISPR/Cas 9 technique. Three target sequences of SoLIM were designed and fused to pRGEB32. The cassette constructs were introduced into sugarcane calli cv. KK3 through Agrobacterium-mediated transformation. We produced one base substitution and one insertion line for the 1st target site; two insertions, one deletion, and one base substitution for the 2nd target site; and one base substitution and insertion for the 3rd target site. qRT-PCR analysis of SoLIM, SoPAL, SoC4H, and SoCAD showeded that downregulation of SoLIM by single nucleotide insertions or deletions reduced the expression of SoPAL, SoC4H, and SoCAD. Consequently, the edited lines contained 9.74 to 51.46% less lignin content compared to that in the wild-type plants. The syringyl/guaiacyl (S/G) ratio of the edited lines ranged between 0.23 and 0.49, while the wild-type was 0.22. The histochemical evaluation and scanning electron microscopy of the cell walls supported this observation. A low lignin content sugarcane will provide a better feedstock for second-generation bioethanol production.
Collapse
Affiliation(s)
- Chanakan Laksana
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Onsulang Sophiphun
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Sontichai Chanprame
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
18
|
Li S, Yu M, Qanmber G, Feng M, Hussain G, Wang Y, Yang Z, Zhang J. GhHB14_D10 and GhREV_D5, two HD-ZIP III transcription factors, play a regulatory role in cotton fiber secondary cell wall biosynthesis. PLANT CELL REPORTS 2024; 43:76. [PMID: 38381221 DOI: 10.1007/s00299-024-03147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
KEY MESSAGE GhHB14_D10 and GhREV_D5 regulated secondary cell wall formation and played an important role in fiber development. Cotton serves as an important source of natural fiber, and the biosynthesis of the secondary cell wall plays a pivotal role in determining cotton fiber quality. Nevertheless, the intricacies of this mechanism in cotton fiber remain insufficiently elucidated. This study investigates the functional roles of GhHB14_D10 and GhREV_D5, two HD-ZIP III transcription factors, in secondary cell wall biosynthesis in cotton fibers. Both GhHB14_D10 and GhREV_D5 were found to be localized in the nucleus with transcriptional activation activity. Ectopic overexpression of GhHB14_D10 and GhREV_D5 in Arabidopsis resulted in changed xylem differentiation, secondary cell wall deposition, and expression of genes related to the secondary cell wall. Silencing of GhHB14_D10 and GhREV_D5 in cotton led to enhanced fiber length, reduced cell wall thickness, cellulose contents and expression of secondary cell wall-related genes. Moreover, GhHB14_D10's direct interaction with GhREV_D5, and transcriptional regulation of cellulose biosynthesis genes GhCesA4-4 and GhCesA7-2 revealed their collaborative roles in secondary cell wall during cotton fiber development. Overall, these results shed light on the roles of GhHB14_D10 and GhREV_D5 in secondary cell wall biosynthesis, offering a strategy for the genetic improvement of cotton fiber quality.
Collapse
Affiliation(s)
- Shuaijie Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, No.157 Kexue Avenue, High-tech Zone, Zhengzhou, 450001, China
| | - Mengli Yu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, No.157 Kexue Avenue, High-tech Zone, Zhengzhou, 450001, China
| | - Mengru Feng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, No.157 Kexue Avenue, High-tech Zone, Zhengzhou, 450001, China
| | - Ghulam Hussain
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yichen Wang
- Aulin College, Northeast Forestry University, Harbin, 150040, China
| | - Zuoren Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, No.157 Kexue Avenue, High-tech Zone, Zhengzhou, 450001, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Jie Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, No.157 Kexue Avenue, High-tech Zone, Zhengzhou, 450001, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
19
|
Li YB, Shen N, Deng X, Liu Z, Zhu S, Liu C, Tang D, Han LB. Fimbrin associated with Pmk1 to regulate the actin assembly during Magnaporthe oryzae hyphal growth and infection. STRESS BIOLOGY 2024; 4:5. [PMID: 38252344 PMCID: PMC10803693 DOI: 10.1007/s44154-023-00147-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
The dynamic assembly of the actin cytoskeleton is vital for Magnaporthe oryzae development and host infection. The actin-related protein MoFim1 is a key factor for organizing the M. oryzae actin cytoskeleton. Currently, how MoFim1 is regulated in M. oryzae to precisely rearrange the actin cytoskeleton is unclear. In this study, we found that MoFim1 associates with the M. oryzae mitogen-activated protein (MAP) kinase Pmk1 to regulate actin assembly. MoFim1 directly interacted with Pmk1, and the phosphorylation level of MoFim1 was decreased in Δpmk1, which led to a change in the subcellular distribution of MoFim1 in the hyphae of Δpmk1. Moreover, the actin cytoskeleton was aberrantly organized at the hyphal tip in the Δpmk1, which was similar to what was observed in the Δmofim1 during hyphal growth. Furthermore, phosphorylation analysis revealed that Pmk1 could phosphorylate MoFim1 at serine 94. Loss of phosphorylation of MoFim1 at serine 94 decreased actin bundling activity. Additionally, the expression of the site mutant of MoFim1 S94D (in which serine 94 was replaced with aspartate to mimic phosphorylation) in Δpmk1 could reverse the defects in actin organization and hyphal growth in Δpmk1. It also partially rescues the formation of appressorium failure in Δpmk1. Taken together, these findings suggest a regulatory mechanism in which Pmk1 phosphorylates MoFim1 to regulate the assembly of the actin cytoskeleton during hyphal development and pathogenesis.
Collapse
Affiliation(s)
- Yuan-Bao Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ningning Shen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xianya Deng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zixuan Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuai Zhu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengyu Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| | - Li-Bo Han
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
20
|
Wang X, Xiang Y, Sun M, Xiong Y, Li C, Zhang T, Ma W, Wang Y, Liu X. Transcriptomic and metabolomic analyses reveals keys genes and metabolic pathways in tea (Camellia sinensis) against six-spotted spider mite (Eotetranychus Sexmaculatus). BMC PLANT BIOLOGY 2023; 23:638. [PMID: 38072959 PMCID: PMC10712147 DOI: 10.1186/s12870-023-04651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Six-spotted spider mite (Eotetranychus sexmaculatus) is one of the most damaging pests of tea (Camellia sinensis). E. sexmaculatus causes great economic loss and affects tea quality adversely. In response to pests, such as spider mites, tea plants have evolved resistance mechanisms, such as expression of defense-related genes and defense-related metabolites. RESULTS To evaluate the biochemical and molecular mechanisms of resistance in C. sinensis against spider mites, "Tianfu-5" (resistant to E. sexmaculatus) and "Fuding Dabai" (susceptible to E. sexmaculatus) were inoculated with spider mites. Transcriptomics and metabolomics based on RNA-Seq and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) technology were used to analyze changes in gene expression and metabolite content, respectively. RNA-Seq data analysis revealed that 246 to 3,986 differentially expressed genes (DEGs) were identified in multiple compared groups, and these DEGs were significantly enriched in various pathways, such as phenylpropanoid and flavonoid biosynthesis, plant-pathogen interactions, MAPK signaling, and plant hormone signaling. Additionally, the metabolome data detected 2,220 metabolites, with 194 to 260 differentially abundant metabolites (DAMs) identified in multiple compared groups, including phenylalanine, lignin, salicylic acid, and jasmonic acid. The combined analysis of RNA-Seq and metabolomic data indicated that phenylpropanoid and flavonoid biosynthesis, MAPK signaling, and Ca2+-mediated PR-1 signaling pathways may contribute to spider mite resistance. CONCLUSIONS Our findings provide insights for identifying insect-induced genes and metabolites and form a basis for studies on mechanisms of host defense against spider mites in C. sinensis. The candidate genes and metabolites identified will be a valuable resource for tea breeding in response to biotic stress.
Collapse
Affiliation(s)
- Xiaoping Wang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.
| | - Yunjia Xiang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Minshan Sun
- Henan Assist Research Biotechnology Co., Ltd, Zhengzhou, China
| | - Yuanyuan Xiong
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chunhua Li
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ting Zhang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Weiwei Ma
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yun Wang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiao Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
21
|
Li G, Song C, Manzoor MA, Li D, Cao Y, Cai Y. Functional and kinetics of two efficient phenylalanine ammonia lyase from Pyrus bretschneideri. BMC PLANT BIOLOGY 2023; 23:612. [PMID: 38041062 PMCID: PMC10693048 DOI: 10.1186/s12870-023-04586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND The enzyme phenylalanine ammonia lyase (PAL) controls the transition from primary to secondary metabolism by converting L-phenylalanine (L-Phe) to cinnamic acid. However, the function of PAL in pear plants (Pyrus bretschneideri) has not yet been fully elucidated. RESULTS We identified three PAL genes (PbPAL1, PbPAL2 and PbPAL3) from the pear genome by exploring pear genome databases. The evolutionary tree revealed that three PbPALs were classified into one group. We expressed PbPAL1 and PbPAL2 recombinant proteins, and the purified PbPAL1 and PbPAL2 proteins showed strict substrate specificity for L-Phe, no activity toward L-Tyr in vitro, and modest changes in kinetics and enzyme characteristics. Furthermore, overexpression of PbAL1 and PbPAL1-RNAi, respectively, and resulted in significant changes in stone cell and lignin contents in pear fruits. The results of yeast one-hybrid (Y1H) assays that PbWLIM1 could bind to the conserved PAL box in the PbPAL promoter and regulate the transcription level of PbPAL2. CONCLUSIONS Our findings not only showed PbPAL's potential role in lignin biosynthesis but also laid the foundation for future studies on the regulation of lignin synthesis and stone cell development in pear fruit utilizing molecular biology approaches.
Collapse
Affiliation(s)
- Guohui Li
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Cheng Song
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Daoyuan Li
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Yongping Cai
- Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
22
|
Wang Y, Li Y, He SP, Xu SW, Li L, Zheng Y, Li XB. The transcription factor ERF108 interacts with AUXIN RESPONSE FACTORs to mediate cotton fiber secondary cell wall biosynthesis. THE PLANT CELL 2023; 35:4133-4154. [PMID: 37542517 PMCID: PMC10615210 DOI: 10.1093/plcell/koad214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/02/2023] [Accepted: 07/01/2023] [Indexed: 08/07/2023]
Abstract
Phytohormones play indispensable roles in plant growth and development. However, the molecular mechanisms underlying phytohormone-mediated regulation of fiber secondary cell wall (SCW) formation in cotton (Gossypium hirsutum) remain largely underexplored. Here, we provide mechanistic evidence for functional interplay between the APETALA2/ethylene response factor (AP2/ERF) transcription factor GhERF108 and auxin response factors GhARF7-1 and GhARF7-2 in dictating the ethylene-auxin signaling crosstalk that regulates fiber SCW biosynthesis. Specifically, in vitro cotton ovule culture revealed that ethylene and auxin promote fiber SCW deposition. GhERF108 RNA interference (RNAi) cotton displayed remarkably reduced cell wall thickness compared with controls. GhERF108 interacted with GhARF7-1 and GhARF7-2 to enhance the activation of the MYB transcription factor gene GhMYBL1 (MYB domain-like protein 1) in fibers. GhARF7-1 and GhARF7-2 respond to auxin signals that promote fiber SCW thickening. GhMYBL1 RNAi and GhARF7-1 and GhARF7-2 virus-induced gene silencing (VIGS) cotton displayed similar defects in fiber SCW formation as GhERF108 RNAi cotton. Moreover, the ethylene and auxin responses were reduced in GhMYBL1 RNAi plants. GhMYBL1 directly binds to the promoters of GhCesA4-1, GhCesA4-2, and GhCesA8-1 and activates their expression to promote cellulose biosynthesis, thereby boosting fiber SCW formation. Collectively, our findings demonstrate that the collaboration between GhERF108 and GhARF7-1 or GhARF7-2 establishes ethylene-auxin signaling crosstalk to activate GhMYBL1, ultimately leading to the activation of fiber SCW biosynthesis.
Collapse
Affiliation(s)
- Yao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| | - Shao-Ping He
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| | - Shang-Wei Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| | - Li Li
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070,China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070,China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079,China
| |
Collapse
|
23
|
Zheng K, Cai Y, Qu Y, Teng L, Wang C, Gao J, Chen Q. Effect of the HCT Gene on Lignin Synthesis and Fiber Development in Gossypium barbadense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 338:111914. [PMID: 39492445 DOI: 10.1016/j.plantsci.2023.111914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/07/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
As one of the key enzymes in the metabolic pathway of phenylpropane, shikimate hydroxycinnamoyl transferase (HCT) is mainly involved in the biosynthesis of the plant secondary cell wall, which is closely related to cotton fiber quality. In this study, whole-genome identification and bioinformatics analysis of the HCT gene family were performed in G. barbadense. In the whole genome, we identified 136 GbHCT genes encoding 309-504 amino acids. Phylogenetic analysis divided the genome into 5 subfamilies, which were located on 25 chromosomes. Collinear analysis of polyploidization and tandem duplication events were the main driving forces for the rapid expansion and evolution of this family, and the genes underwent loose purifying selection constraints after duplication. Gene promoters identified a variety of cis-acting elements related to plant hormones and the stress response. Several members of the GbHCT family were highly expressed during the development of cotton fiber, and different members had different expression patterns in cotton fiber. After GbHCT114 gene silencing in cotton, the amount of stem surface trichomes and lignin content decreased, and the cell morphology and arrangement changed. After the GbHCT114 gene was overexpressed in Arabidopsis thaliana (L.) Heynh., the number of stem and leaf surface trichomes and the cross-sectional area of the secondary xylem duct cell wall increased. In addition, utilizing transcriptomic analysis, differentially expressed genes associated with lignin synthesis and fiber development were identified. Taken together, the results obtained in this study confirm that the GbHCT114 gene regulates plant trichome development, which lays a theoretical foundation for future studies on the function of GbHCT114 in cotton.
Collapse
Affiliation(s)
- Kai Zheng
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572000, China; Postdoctoral Research Station, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Yongsheng Cai
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Yanying Qu
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Lu Teng
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Chaoyue Wang
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Jie Gao
- Postdoctoral Research Station, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Quanjia Chen
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
24
|
Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2214-2256. [PMID: 36899210 DOI: 10.1007/s11427-022-2278-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/12/2023]
Abstract
Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.
Collapse
Affiliation(s)
- Xingpeng Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwen Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Maojun Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianying Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sumbul Saeed
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
25
|
Sarkar MAR, Sarkar S, Islam MSU, Zohra FT, Rahman SM. A genome‑wide approach to the systematic and comprehensive analysis of LIM gene family in sorghum (Sorghum bicolor L.). Genomics Inform 2023; 21:e36. [PMID: 37813632 PMCID: PMC10584642 DOI: 10.5808/gi.23007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 08/09/2023] [Indexed: 10/11/2023] Open
Abstract
The LIM domain-containing proteins are dominantly found in plants and play a significant role in various biological processes such as gene transcription as well as actin cytoskeletal organization. Nevertheless, genome-wide identification as well as functional analysis of the LIM gene family have not yet been reported in the economically important plant sorghum (Sorghum bicolor L.). Therefore, we conducted an in silico identification and characterization of LIM genes in S. bicolor genome using integrated bioinformatics approaches. Based on phylogenetic tree analysis and conserved domain, we identified five LIM genes in S. bicolor (SbLIM) genome corresponding to Arabidopsis LIM (AtLIM) genes. The conserved domain, motif as well as gene structure analyses of the SbLIM gene family showed the similarity within the SbLIM and AtLIM members. The gene ontology (GO) enrichment study revealed that the candidate LIM genes are directly involved in cytoskeletal organization and various other important biological as well as molecular pathways. Some important families of regulating transcription factors such as ERF, MYB, WRKY, NAC, bZIP, C2H2, Dof, and G2-like were detected by analyzing their interaction network with identified SbLIM genes. The cis-acting regulatory elements related to predicted SbLIM genes were identified as responsive to light, hormones, stress, and other functions. The present study will provide valuable useful information about LIM genes in sorghum which would pave the way for the future study of functional pathways of candidate SbLIM genes as well as their regulatory factors in wet-lab experiments.
Collapse
Affiliation(s)
- Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Salim Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shohel Ul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
26
|
Iqbal A, Aslam S, Ahmed M, Khan F, Ali Q, Han S. Role of Actin Dynamics and GhACTIN1 Gene in Cotton Fiber Development: A Prototypical Cell for Study. Genes (Basel) 2023; 14:1642. [PMID: 37628693 PMCID: PMC10454433 DOI: 10.3390/genes14081642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Cotton crop is considered valuable for its fiber and seed oil. Cotton fiber is a single-celled outgrowth from the ovule epidermis, and it is a very dynamic cell for study. It has four distinct but overlapping developmental stages: initiation, elongation, secondary cell wall synthesis, and maturation. Among the various qualitative characteristics of cotton fiber, the important ones are the cotton fiber staple length, tensile strength, micronaire values, and fiber maturity. Actin dynamics are known to play an important role in fiber elongation and maturation. The current review gives an insight into the cotton fiber developmental stages, the qualitative traits associated with cotton fiber, and the set of genes involved in regulating these developmental stages and fiber traits. This review also highlights some prospects for how biotechnological approaches can improve cotton fiber quality.
Collapse
Affiliation(s)
- Adnan Iqbal
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China;
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| | - Sibgha Aslam
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| | - Mukhtar Ahmed
- Government Boys College Sokasan, Higher Education Department, Azad Jammu and Kashmir, Bhimber 10040, Pakistan
| | - Fahad Khan
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan 33001, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Shiming Han
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China;
| |
Collapse
|
27
|
Zhang L, Yu Y, Zhang M, Rong K, Wu Y, Zhang M, Hu H. Genome-wide identification of xylan glucuronosyltransferase family in cotton and function characterization of GhGUX5 in regulating Verticillium wilt resistance. Int J Biol Macromol 2023:124795. [PMID: 37207759 DOI: 10.1016/j.ijbiomac.2023.124795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/26/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023]
Abstract
Xylan glucuronosyltransferase (GUX) is widely involved in a variety of physiological processes in plants, including plant development, growth and the defense response to pathogens. However, the function of GUX regulators in Verticillium dahliae (V. dahliae) infection has not been considered previously in cotton. Overall, 119 GUX genes were identified from multiple species and were phylogenetically categorized into seven classes. Duplication event analysis indicated that GUXs in Gossypium hirsutum primarily originated from segmental duplication. GhGUXs promoter analysis indicated cis-regulatory elements capable of reacting to several different stresses. RNA-Seq data and qRT-PCR analysis both indicated that most GhGUXs were associated with V. dahliae infection. Gene interaction network analysis showed that GhGUX5 interacted with 11 proteins, and the relative expression of these 11 proteins changed significantly following V. dahliae infection. In addition, silencing and overexpression of GhGUX5 results to enhance and reduce plant's susceptibility to V. dahliae. Further study showed that TRV: GhGUX5 silenced cotton plants exhibited a decrease in the degree of lignification, total lignin content, gene expression levels involved in lignin biosynthesis, and enzyme activity compared with TRV: 00. The above results indicate that GhGUX5 enhances Verticillium wilt resistance through the lignin biosynthesis pathway.
Collapse
Affiliation(s)
- Lei Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yongang Yu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Meng Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Kaikuo Rong
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yanxia Wu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Mingxia Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Haiyan Hu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
28
|
Liu Z, Sun Z, Ke H, Chen B, Gu Q, Zhang M, Wu N, Chen L, Li Y, Meng C, Wang G, Wu L, Zhang G, Ma Z, Zhang Y, Wang X. Transcriptome, Ectopic Expression and Genetic Population Analysis Identify Candidate Genes for Fiber Quality Improvement in Cotton. Int J Mol Sci 2023; 24:8293. [PMID: 37175999 PMCID: PMC10179096 DOI: 10.3390/ijms24098293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Comparative transcriptome analysis of fiber tissues between Gossypium barbadense and Gossypium hirsutum could reveal the molecular mechanisms underlying high-quality fiber formation and identify candidate genes for fiber quality improvement. In this study, 759 genes were found to be strongly upregulated at the elongation stage in G. barbadense, which showed four distinct expression patterns (I-IV). Among them, the 346 genes of group IV stood out in terms of the potential to promote fiber elongation, in which we finally identified 42 elongation-related candidate genes by comparative transcriptome analysis between G. barbadense and G. hirsutum. Subsequently, we overexpressed GbAAR3 and GbTWS1, two of the 42 candidate genes, in Arabidopsis plants and validated their roles in promoting cell elongation. At the secondary cell wall (SCW) biosynthesis stage, 2275 genes were upregulated and exhibited five different expression profiles (I-V) in G. barbadense. We highlighted the critical roles of the 647 genes of group IV in SCW biosynthesis and further picked out 48 SCW biosynthesis-related candidate genes by comparative transcriptome analysis. SNP molecular markers were then successfully developed to distinguish the SCW biosynthesis-related candidate genes from their G. hirsutum orthologs, and the genotyping and phenotyping of a BC3F5 population proved their potential in improving fiber strength and micronaire. Our results contribute to the better understanding of the fiber quality differences between G. barbadense and G. hirsutum and provide novel alternative genes for fiber quality improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China; (Z.L.); (Z.S.); (H.K.); (B.C.); (Q.G.); (M.Z.); (N.W.); (G.Z.); (Z.M.)
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China; (Z.L.); (Z.S.); (H.K.); (B.C.); (Q.G.); (M.Z.); (N.W.); (G.Z.); (Z.M.)
| |
Collapse
|
29
|
Li WB, Song SW, Zhong MM, Liu LG, Su L, Han LB, Xia GX, Sun YD, Wang HY. VILLIN2 regulates cotton defense against Verticillium dahliae by modulating actin cytoskeleton remodeling. PLANT PHYSIOLOGY 2023; 192:666-679. [PMID: 36881883 PMCID: PMC10152694 DOI: 10.1093/plphys/kiad095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/24/2023] [Indexed: 05/03/2023]
Abstract
The active structural change of actin cytoskeleton is a general host response upon pathogen attack. This study characterized the function of the cotton (Gossypium hirsutum) actin-binding protein VILLIN2 (GhVLN2) in host defense against the soilborne fungus Verticillium dahliae. Biochemical analysis demonstrated that GhVLN2 possessed actin-binding, -bundling, and -severing activities. A low concentration of GhVLN2 could shift its activity from actin bundling to actin severing in the presence of Ca2+. Knockdown of GhVLN2 expression by virus-induced gene silencing reduced the extent of actin filament bundling and interfered with the growth of cotton plants, resulting in the formation of twisted organs and brittle stems with a decreased cellulose content of the cell wall. Upon V. dahliae infection, the expression of GhVLN2 was downregulated in root cells, and silencing of GhVLN2 enhanced the disease tolerance of cotton plants. The actin bundles were less abundant in root cells of GhVLN2-silenced plants than in control plants. However, upon infection by V. dahliae, the number of actin filaments and bundles in the cells of GhVLN2-silenced plants was raised to a comparable level as those in control plants, with the dynamic remodeling of the actin cytoskeleton appearing several hours in advance. GhVLN2-silenced plants exhibited a higher incidence of actin filament cleavage in the presence of Ca2+, suggesting that pathogen-responsive downregulation of GhVLN2 could activate its actin-severing activity. These data indicate that the regulated expression and functional shift of GhVLN2 contribute to modulating the dynamic remodeling of the actin cytoskeleton in host immune responses against V. dahliae.
Collapse
Affiliation(s)
- Wen-Bo Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang-Wei Song
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Meng Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan-Gong Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Su
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Bo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gui-Xian Xia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong-Duo Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Yun Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
30
|
Zheng H, Jiao J, Niu Q, Zhu N, Huang Y, Ke L, Tang S, Liu H, Sun Y. Cloning and functional analysis of GhDFR1, a key gene of flavonoid synthesis pathway in naturally colored cotton. Mol Biol Rep 2023; 50:4865-4873. [PMID: 37052804 DOI: 10.1007/s11033-023-08420-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND The naturally colored brown cotton fiber is the most widely used environmentally friendly textile material, which primarily contains proanthocyanidins and their derivatives. Many structural genes in the flavonoid synthesis pathway are known to improve the genetic resources of naturally colored cotton. Among them, DFR is a crucial late enzyme to synthesis both anthocyanins and proanthocyanidins in the plant flavonoid pathway. METHODS The protein sequences of GhDFRs were analyzed using bioinformatic tools. The expression levels of GhDFRs in various tissues and organs of upland cotton Zongxu1 (ZX1), were analyzed by quantitative real-time PCR, and the expression pattern of GhDFR1 during fiber development of white cotton and brown cotton was analyzed further. The function of GhDFR1 in NCC ZX1 was preliminarily analyzed by virus induced gene silencing (VIGS) technology. RESULTS Bioinformatic analysis revealed that GhDFRs sequences in upland cotton genome were extremely conserved. Furthermore, evolutionary tree analysis revealed that the functions of GhDFR1 and GhDFR2, and GhDFR3 and GhDFR4, presented different and shared some similarities. Our study showed GhDFR1 and GhDFR2 were specifically expressed in fibers, while GhDFR3 and GhDFR4 were specifically expressed in petals. GhDFR1 was exclusively expressed in brown cotton fiber at various stages of development and progressively increased with the growth of fiber, but the trend of expression in white cotton was quite the opposite. We silenced GhDFR1 expression in brown cotton fiber using VIGS technology, and observed the VIGS-interference plants. After reducing the expression level of GhDFR1, the period for significant GhDFR1 expression in the developing fibers changed, reducing the content of anthocyanins, and lightening the color of mature cotton fibers. CONCLUSION GhDFR1 was preferentially expressed in brown cotton during fiber development. The timing of GhDFR1 expression for flavonoid synthesis altered, resulting in anthocyanin contents reduced and the fiber color of the GhDFR1i lines lightened. These findings showed the role of GhDFR1 in fiber coloration of NCC and provided a new candidate for NCC genetic improvement.
Collapse
Affiliation(s)
- Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Junye Jiao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Qingqing Niu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Ning Zhu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Yinshuai Huang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Shouwu Tang
- China Colored-Cotton (Group) Co., Ltd., Ürümqi, 830011, Xinjiang, People's Republic of China
| | - Haifeng Liu
- China Colored-Cotton (Group) Co., Ltd., Ürümqi, 830011, Xinjiang, People's Republic of China.
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
31
|
Singh SK, Shree A, Verma S, Singh K, Kumar K, Srivastava V, Singh R, Saxena S, Singh AP, Pandey A, Verma PK. The nuclear effector ArPEC25 from the necrotrophic fungus Ascochyta rabiei targets the chickpea transcription factor CaβLIM1a and negatively modulates lignin biosynthesis, increasing host susceptibility. THE PLANT CELL 2023; 35:1134-1159. [PMID: 36585808 PMCID: PMC10015165 DOI: 10.1093/plcell/koac372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 05/29/2023]
Abstract
Fungal pathogens deploy a barrage of secreted effectors to subvert host immunity, often by evading, disrupting, or altering key components of transcription, defense signaling, and metabolic pathways. However, the underlying mechanisms of effectors and their host targets are largely unexplored in necrotrophic fungal pathogens. Here, we describe the effector protein Ascochyta rabiei PEXEL-like Effector Candidate 25 (ArPEC25), which is secreted by the necrotroph A. rabiei, the causal agent of Ascochyta blight disease in chickpea (Cicer arietinum), and is indispensable for virulence. After entering host cells, ArPEC25 localizes to the nucleus and targets the host LIM transcription factor CaβLIM1a. CaβLIM1a is a transcriptional regulator of CaPAL1, which encodes phenylalanine ammonia lyase (PAL), the regulatory, gatekeeping enzyme of the phenylpropanoid pathway. ArPEC25 inhibits the transactivation of CaβLIM1a by interfering with its DNA-binding ability, resulting in negative regulation of the phenylpropanoid pathway and decreased levels of intermediates of lignin biosynthesis, thereby suppressing lignin production. Our findings illustrate the role of fungal effectors in enhancing virulence by targeting a key defense pathway that leads to the biosynthesis of various secondary metabolites and antifungal compounds. This study provides a template for the study of less explored necrotrophic effectors and their host target functions.
Collapse
Affiliation(s)
- Shreenivas Kumar Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Shree
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sandhya Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kunal Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikas Srivastava
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Samiksha Saxena
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Agam Prasad Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashutosh Pandey
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
32
|
Wang D, Hu X, Ye H, Wang Y, Yang Q, Liang X, Wang Z, Zhou Y, Wen M, Yuan X, Zheng X, Ye W, Guo B, Yusuyin M, Russinova E, Zhou Y, Wang K. Cell-specific clock-controlled gene expression program regulates rhythmic fiber cell growth in cotton. Genome Biol 2023; 24:49. [PMID: 36918913 PMCID: PMC10012527 DOI: 10.1186/s13059-023-02886-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/26/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The epidermis of cotton ovule produces fibers, the most important natural cellulose source for the global textile industry. However, the molecular mechanism of fiber cell growth is still poorly understood. RESULTS Here, we develop an optimized protoplasting method, and integrate single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) to systematically characterize the cells of the outer integument of ovules from wild type and fuzzless/lintless (fl) cotton (Gossypium hirsutum). By jointly analyzing the scRNA-seq data from wildtype and fl, we identify five cell populations including the fiber cell type and construct the development trajectory for fiber lineage cells. Interestingly, by time-course diurnal transcriptomic analysis, we demonstrate that the primary growth of fiber cells is a highly regulated circadian rhythmic process. Moreover, we identify a small peptide GhRALF1 that circadian rhythmically controls fiber growth possibly through oscillating auxin signaling and proton pump activity in the plasma membrane. Combining with scATAC-seq, we further identify two cardinal cis-regulatory elements (CREs, TCP motif, and TCP-like motif) which are bound by the trans factors GhTCP14s to modulate the circadian rhythmic metabolism of mitochondria and protein translation through regulating approximately one third of genes that are highly expressed in fiber cells. CONCLUSIONS We uncover a fiber-specific circadian clock-controlled gene expression program in regulating fiber growth. This study unprecedentedly reveals a new route to improve fiber traits by engineering the circadian clock of fiber cells.
Collapse
Affiliation(s)
- Dehe Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Hanzhe Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Yue Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Qian Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaodong Liang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Zilin Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Yifan Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Miaomiao Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, China.,TaiKang Center for Life and Medical Sciences, RNA Institute, Remin Hospital, Wuhan University, Wuhan, China
| | - Xueyan Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaomin Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen Ye
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, School of Medicine, Wuhan University, Wuhan, China
| | - Boyu Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Mayila Yusuyin
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Yu Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China. .,Institute for Advanced Studies, Wuhan University, Wuhan, China. .,TaiKang Center for Life and Medical Sciences, RNA Institute, Remin Hospital, Wuhan University, Wuhan, China. .,Medical Research Institute, Frontier Science Center for Immunology and Metabolism, School of Medicine, Wuhan University, Wuhan, China.
| | - Kun Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China. .,Institute for Advanced Studies, Wuhan University, Wuhan, China.
| |
Collapse
|
33
|
Yang Y, Lai W, Long L, Gao W, Xu F, Li P, Zhou S, Ding Y, Hu H. Comparative proteomic analysis identified proteins and the phenylpropanoid biosynthesis pathway involved in the response to ABA treatment in cotton fiber development. Sci Rep 2023; 13:1488. [PMID: 36707547 PMCID: PMC9883468 DOI: 10.1038/s41598-023-28084-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Abscisic acid (ABA) is a plant hormone that plays an important role in cotton fiber development. In this study, the physiological changes and proteomic profiles of cotton (Gossypium hirsutum) ovules were analyzed after 20 days of ABA or ABA inhibitor (ABAI) treatment. The results showed that compared to the control (CK), the fiber length was significantly decreased under ABA treatment and increased under ABAI treatment. Using a tandem mass tags-based quantitative technique, the proteomes of cotton ovules were comprehensively analyzed. A total of 7321 proteins were identified, of which 365 and 69 differentially accumulated proteins (DAPs) were identified in ABA versus CK and ABAI versus CK, respectively. Specifically, 345 and 20 DAPs were up- and down-regulated in the ABA group, and 65 and 4 DAPs were up- and down-regulated in the ABAI group, respectively. The DAPs in the ABA group were mainly enriched in the biosynthesis of secondary metabolites, phenylpropanoid biosynthesis and flavonoid secondary metabolism, whereas the DAPs in the ABAI group were mainly enriched in the indole alkaloid biosynthesis and phenylpropanoid biosynthesis pathways. Moreover, 9 proteins involved in phenylpropanoid biosynthesis were upregulated after ABA treatment, suggesting that this pathway might play important roles in the response to ABA, and 3 auxin-related proteins were upregulated, indicating that auxin might participate in the regulation of fiber development under ABAI treatment.
Collapse
Affiliation(s)
- Yong Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Wenjie Lai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Fuchun Xu
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Ping Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Shihan Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yuanhao Ding
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China. .,Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China.
| | - Haiyan Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China. .,Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China.
| |
Collapse
|
34
|
Zeng J, Yan X, Bai W, Zhang M, Chen Y, Li X, Hou L, Zhao J, Ding X, Liu R, Wang F, Ren H, Zhang J, Ding B, Liu H, Xiao Y, Pei Y. Carpel-specific down-regulation of GhCKXs in cotton significantly enhances seed and fiber yield. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6758-6772. [PMID: 35792654 PMCID: PMC9629787 DOI: 10.1093/jxb/erac303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Cytokinin is considered to be an important driver of seed yield. To increase the yield of cotton while avoiding the negative consequences caused by constitutive overproduction of cytokinin, we down-regulated specifically the carpel genes for cytokinin oxidase/dehydrogenase (CKX), a key negative regulator of cytokinin levels, in transgenic cotton. The carpel-specific down-regulation of CKXs significantly enhanced cytokinin levels in the carpels. The elevated cytokinin promoted the expression of carpel- and ovule-development-associated genes, GhSTK2, GhAG1, and GhSHP, boosting ovule formation and thus producing more seeds in the ovary. Field experiments showed that the carpel-specific increase of cytokinin significantly increased both seed yield and fiber yield of cotton, without resulting in detrimental phenotypes. Our study details the regulatory mechanism of cytokinin signaling for seed development, and provides an effective and feasible strategy for yield improvement of seed crops.
Collapse
Affiliation(s)
- Jianyan Zeng
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Xingying Yan
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Wenqin Bai
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Yang Chen
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Xianbi Li
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Lei Hou
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Juan Zhao
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Xiaoyan Ding
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Ruochen Liu
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Fanlong Wang
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Hui Ren
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Jingyi Zhang
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Bo Ding
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Haoru Liu
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | - Yuehua Xiao
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P. R. China
| | | |
Collapse
|
35
|
Zhang J, Liu Z, Sakamoto S, Mitsuda N, Ren A, Persson S, Zhang D. ETHYLENE RESPONSE FACTOR 34 promotes secondary cell wall thickening and strength of rice peduncles. PLANT PHYSIOLOGY 2022; 190:1806-1820. [PMID: 36047836 PMCID: PMC9614485 DOI: 10.1093/plphys/kiac385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Cellulose and lignin are critical cell wall components for plant morphogenesis and adaptation to environmental conditions. The cytoskeleton supports cell wall deposition, but much of the underpinning regulatory components remain unknown. Here, we show that an APETALA2/ETHYLENE RESPONSE FACTOR (ERF) family transcription factor, OsERF34, directly promotes the expression of the actin- and microtubule-binding protein Rice Morphology Determinant (RMD) in rice (Oryza sativa) peduncles. OsERF34 and RMD are highly expressed in sclerenchymatous peduncle cells that are fortified by thick secondary cell walls (SCWs) that provide mechanical peduncle strength. erf34 and rmd-1 mutants contained lower cellulose and lignin contents and thinner SCWs, while ERF34 over-expressing (OE) lines maintained high cellulose and lignin content with thicker SCWs. These characteristics impacted peduncle mechanical strength, that is, reduced strength in erf34 and rmd-1 and increased strength of ERF34 OE plants. Taken together, our results demonstrate that the OsERF34-RMD cascade positively regulates SCW synthesis and mechanical strength in rice peduncles, which is important for yield, and provide a potential guide for improved peduncle breeding efforts in rice.
Collapse
Affiliation(s)
- Jiao Zhang
- School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zengyu Liu
- School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | - Anran Ren
- School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Staffan Persson
- School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Plant & Environmental Sciences (PLEN), University of Copenhagen, Frederiksberg, 1870, Denmark
- Copenhagen Plant Science Center (CPSC), University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, 5064, Australia
| |
Collapse
|
36
|
Wang Y, Liu H, Wang Z, Guo Y, Hu T, Zhou X. P25 and P37 proteins encoded by firespike leafroll-associated virus are viral suppressors of RNA silencing. Front Microbiol 2022; 13:964156. [PMID: 36051767 PMCID: PMC9424829 DOI: 10.3389/fmicb.2022.964156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Firespike leafroll-associated virus (FLRaV) is a major pathogen associated with firespike (Odontonema tubaeforme) leafroll disease. Phylogenetic analysis showed that FLRaV possesses typical traits of subgroup II members of ampeloviruses, but encodes two additional proteins, P25 and P37. Here, we determined the microfilament localization of P25 protein. Posttranscriptional gene silencing (PTGS) assay showed that both FLRaV P25 and P37 were able to suppress the local and systemic PTGS and FLRaV P25 was capable of suppressing the green fluorescent protein (GFP) gene silencing triggered by both sense RNA-induced PTGS (S-PTGS) and inverted repeat RNA-induced PTGS (IR-PTGS). In contrast, FLRaV P37 was only able to inhibit the GFP silencing triggered by the S-PTGS but not the IR-PTGS. In the transcriptional gene silencing (TGS) assay, only FLRaV P25 was found to be able to reverse established TGS-mediated silencing of GFP in 16-TGS plants. We also found that FLRaV P25 could aggravate the disease symptom and viral titer of potato virus X in N. benthamiana. These results suggest that FLRaV P25 and P37 may have crucial roles in overcoming host RNA silencing, which provides key insights into our understanding of the molecular mechanisms underlying FLRaV infection.
Collapse
Affiliation(s)
- Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hui Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Tao Hu,
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Xueping Zhou,
| |
Collapse
|
37
|
Ke L, Yu D, Zheng H, Xu Y, Wu Y, Jiao J, Wang X, Mei J, Cai F, Zhao Y, Sun J, Zhang X, Sun Y. Function deficiency of GhOMT1 causes anthocyanidins over-accumulation and diversifies fibre colours in cotton (Gossypium hirsutum). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1546-1560. [PMID: 35503731 PMCID: PMC9342615 DOI: 10.1111/pbi.13832] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/23/2022] [Indexed: 05/25/2023]
Abstract
Naturally coloured cotton (NCC) fibres need little or no dyeing process in textile industry to low-carbon emission and are environment-friendly. Proanthocyanidins (PAs) and their derivatives were considered as the main components causing fibre coloration and made NCCs very popular and healthy, but the monotonous fibre colours greatly limit the wide application of NCCs. Here a G. hirsutum empurpled mutant (HS2) caused by T-DNA insertion is found to enhance the anthocyanidins biosynthesis and accumulate anthocyanidins in the whole plant. HPLC and LC/MS-ESI analysis confirmed the anthocyanidins methylation and peonidin, petunidin and malvidin formation are blocked. The deficiency of GhOMT1 in HS2 was associated with the activation of the anthocyanidin biosynthesis and the altered components of anthocyanidins. The transcripts of key genes in anthocyanidin biosynthesis pathway are significantly up-regulated in HS2, while transcripts of the genes for transport and decoration were at similar levels as in WT. To investigate the potential mechanism of GhOMT1 deficiency in cotton fibre coloration, HS2 mutant was crossed with NCCs. Surprisingly, offsprings of HS2 and NCCs enhanced PAs biosynthesis and increased PAs levels in their fibres from the accumulated anthocyanidins through up-regulated GhANR and GhLAR. As expected, multiple novel lines with improved fibre colours including orange red and navy blue were produced in their generations. Based on this work, a new strategy for breeding diversified NCCs was brought out by promoting PA biosynthesis. This work will help shed light on mechanisms of PA biosynthesis and bring out potential molecular breeding strategy to increase PA levels in NCCs.
Collapse
Affiliation(s)
- Liping Ke
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Dongliang Yu
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Hongli Zheng
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yihan Xu
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yuqing Wu
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Junye Jiao
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Xiaoli Wang
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Jun Mei
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Fangfang Cai
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yanyan Zhao
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Jie Sun
- College of AgricultureThe Key Laboratory of Oasis Eco‐AgricultureShihezi UniversityShiheziChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| |
Collapse
|
38
|
Silencing of a Cotton Actin-Binding Protein GhWLIM1C Decreases Resistance against Verticillium dahliae Infection. PLANTS 2022; 11:plants11141828. [PMID: 35890462 PMCID: PMC9316592 DOI: 10.3390/plants11141828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022]
Abstract
LIM proteins are widely spread in various types of plant cells and play diversely crucial cellular roles through actin cytoskeleton assembly and gene expression regulation. Till now, it has not been clear whether LIM proteins function in plant pathogen defense. In this study, we characterized a LIM protein, GhWLIM1C, in upland cotton (Gossypium hirsutum). We found that GhWLIM1C could bind and bundle the actin cytoskeleton, and it contains two LIM domains (LIM1 and LIM2). Both the two domains could bind directly to the actin filaments. Moreover, the LIM2 domain additionally bundles the actin cytoskeleton, indicating that it possesses a different biochemical activity than LIM1. The expression of GhWLIM1C responds to the infection of the cotton fungal pathogen Verticillium dahliae (V. dahliae). Silencing of GhWLIM1C decreased cotton resistance to V. dahliae. These may be associated with the down regulated plant defense response, including the PR genes expression and ROS accumulation in the infected cotton plants. In all, these results provide new evidence that a plant LIM protein functions in plant pathogen resistance and the assembly of the actin cytoskeleton are closely related to the triggering of the plant defense response.
Collapse
|
39
|
Wang Y, Zhou Q, Meng Z, Abid MA, Wang Y, Wei Y, Guo S, Zhang R, Liang C. Multi-Dimensional Molecular Regulation of Trichome Development in Arabidopsis and Cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:892381. [PMID: 35463426 PMCID: PMC9021843 DOI: 10.3389/fpls.2022.892381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Plant trichomes are specialized epidermal cells that are widely distributed on plant aerial tissues. The initiation and progression of trichomes are controlled in a coordinated sequence of multiple molecular events. During the past decade, major breakthroughs in the molecular understanding of trichome development were achieved through the characterization of various trichomes defective mutants and trichome-associated genes, which revealed a highly complex molecular regulatory network underlying plant trichome development. This review focuses on the recent millstone in plant trichomes research obtained using genetic and molecular studies, as well as 'omics' analyses in model plant Arabidopsis and fiber crop cotton. In particular, we discuss the latest understanding and insights into the underlying molecular mechanisms of trichomes formation at multiple dimensions, including at the chromatin, transcriptional, post-transcriptional, and post-translational levels. We summarize that the integration of multi-dimensional trichome-associated genes will enable us to systematically understand the molecular regulation network that landscapes the development of the plant trichomes. These advances will enable us to address the unresolved questions regarding the molecular crosstalk that coordinate concurrent and ordered the changes in cotton fiber initiation and progression, together with their possible implications for genetic improvement of cotton fiber.
Collapse
|
40
|
Zeng J, Xi J, Li B, Yan X, Dai Y, Wu Y, Xiao Y, Pei Y, Zhang M. Microtubules play a crucial role in regulating actin organization and cell initiation in cotton fibers. PLANT CELL REPORTS 2022; 41:1059-1073. [PMID: 35217893 DOI: 10.1007/s00299-022-02837-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Dynamic organization of actin and microtubule cytoskeletons directs a distinct expansion behavior of cotton fiber initiation from cell elongation. Cotton fibers are highly elongated single cells derived from the ovule epidermis. Although actin and microtubule (MT) cytoskeletons have been implicated in cell elongation and secondary wall deposition, their roles in fiber initiation is poorly understood. Here, we used fluorescent probes and pharmacological approaches to study the roles of these cytoskeletal components during cotton fiber initiation. Both cytoskeletons align along the growth axis in initiating fibers. The dorsal view of ovules shows that unlike the fine actin filaments (AFs) in nonfiber cells, the AFs in fiber cells are dense and bundled. MTs are randomized in fiber cells and well-ordered in nonfiber cells. The pharmacological experiments revealed that the depolymerization of AFs and MTs assisted fiber initiation. Both AF stabilization and depolymerization inhibited fiber elongation. In contrast, the proper depolymerization of MTs promoted cell elongation, although the MT-stabilizing drug consistently resulted in a negative effect. Notably, we found that the organization of AFs was correlated with MT dynamics. Stabilizing the MTs by taxol treatment promoted the formation of AF bundles (in fiber initials) and transversely aligned AFs (in elongating fibers), whereas depolymerizing the MTs by oryzalin treatment promoted the fragmentation of AFs. Collectively, our data indicates that MTs plays a crucial role in regulating AF organization and early development of cotton fibers.
Collapse
Affiliation(s)
- Jianyan Zeng
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Jing Xi
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Baoxia Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Xingying Yan
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yonglu Dai
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yiping Wu
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yuehua Xiao
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China.
- Academy of Agricultural Sciences, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
41
|
Yu D, Li X, Li Y, Ali F, Li F, Wang Z. Dynamic roles and intricate mechanisms of ethylene in epidermal hair development in Arabidopsis and cotton. THE NEW PHYTOLOGIST 2022; 234:375-391. [PMID: 34882809 DOI: 10.1111/nph.17901] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Ethylene affects many aspects of plant growth and development, including root hairs and trichomes growth in Arabidopsis, as well as fiber development in cotton, though the underlying mechanism is unclear. In this article, we update the research progress associated with the main genes in ethylene biosynthesis and signaling pathway, and we propose a clear ethylene pathway based on genome-wide identification of homologues in cotton. Expression pattern analysis using transcriptome data revealed that some candidate genes may contribute to cotton fiber development through the ethylene pathway. Moreover, we systematically summarized the effects of ethylene on the development of epidermal hair and the underlying regulatory mechanisms in Arabidopsis. Based on the knowledge of ethylene-promoted cell differentiation, elongation, and development in different tissues or plants, we advised a possible regulatory network for cotton fiber development with ethylene as the hub. Importantly, we emphasized the roles of ethylene as an important node in regulating cotton vegetative growth, and stress resistance, and suggested utilizing multiple methods to subtly modify ethylene synthesis or signaling in a tissue or spatiotemporal-specific manner to clarify its exact effect on architecture, adaptability of the plant, and fiber development, paving the way for basic research and genetic improvement of the cotton crop.
Collapse
Affiliation(s)
- Daoqian Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaona Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yonghui Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
42
|
Zhu Y, Hu X, Wang P, Wang H, Ge X, Li F, Hou Y. GhODO1, an R2R3-type MYB transcription factor, positively regulates cotton resistance to Verticillium dahliae via the lignin biosynthesis and jasmonic acid signaling pathway. Int J Biol Macromol 2022; 201:580-591. [DOI: 10.1016/j.ijbiomac.2022.01.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
|
43
|
Zang Y, Hu Y, Dai F, Zhang T. Comparative transcriptome analysis reveals the regulation network for fiber strength in cotton. Biotechnol Lett 2022; 44:547-560. [PMID: 35194701 DOI: 10.1007/s10529-022-03236-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/11/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Determine the effect of secondary cell wall (SCW) thickness and microcrystalline cellulose content (MCC) on mature fiber strength (FS) and reveal through comparative transcriptome analysis the molecular regulation network governing FS in cotton. RESULTS Transmission electron microscope (TEM) analysis of two parent varieties, Prema with elite FS and 86-1 with weak fiber, revealed significant difference in the SCW but not in MCC. Transcriptome analysis revealed that genes differentially expressed during SCW thickening (20 DPA) are highly related to FS; in particular, up-regulated genes such as UDPG, CESA2, and NAC83 were important in SCW thickening, likely contributing to higher FS. GO and KEGG enrichment analysis revealed the common up-regulated genes to be enriched in carbon metabolism and terms relating to the cell wall. CONCLUSIONS We developed two recombinant inbred lines with elite FS, selected from the filial generation of Prema and 86-1. By comparing transcriptomic data, we revealed the gene expression network governing SCW thickness in mature fiber. Our results provide solid insights into the relationship of the SCW and FS.
Collapse
Affiliation(s)
- Yihao Zang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Plant Precision Breeding Academy, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Plant Precision Breeding Academy, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Fan Dai
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Plant Precision Breeding Academy, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Plant Precision Breeding Academy, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China. .,State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
44
|
Li X, Liu W, Ren Z, Wang X, Liu J, Yang Z, Zhao J, Pei X, Liu Y, He K, Zhang F, Zhang Z, Yang D, Ma X, Li W. Glucose regulates cotton fiber elongation by interacting with brassinosteroid. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:711-726. [PMID: 34636403 DOI: 10.1093/jxb/erab451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/09/2021] [Indexed: 05/18/2023]
Abstract
In plants, glucose (Glc) plays important roles, as a nutrient and signal molecule, in the regulation of growth and development. However, the function of Glc in fiber development of upland cotton (Gossypium hirsutum) is unclear. Here, using gas chromatography-mass spectrometry (GC-MS), we found that the Glc content in fibers was higher than that in ovules during the fiber elongation stage. In vitro ovule culture revealed that lower Glc concentrations promoted cotton fiber elongation, while higher concentrations had inhibitory effects. The hexokinase inhibitor N-acetylglucosamine (NAG) inhibited cotton fiber elongation in the cultured ovules, indicating that Glc-mediated fiber elongation depends on the Glc signal transduced by hexokinase. RNA sequencing (RNA-seq) analysis and hormone content detection showed that 150mM Glc significantly activated brassinosteroid (BR) biosynthesis, and the expression of signaling-related genes was also increased, which promoted fiber elongation. In vitro ovule culture clarified that BR induced cotton fiber elongation in a dose-dependent manner. In hormone recovery experiments, only BR compensated for the inhibitory effects of NAG on fiber elongation in a Glc-containing medium. However, the ovules cultured with the BR biosynthetic inhibitor brassinazole and from the BR-deficient cotton mutant pag1 had greatly reduced fiber elongation at all the Glc concentrations tested. This demonstrates that Glc does not compensate for the inhibition of fiber elongation caused by BR biosynthetic defects, suggesting that the BR signaling pathway works downstream of Glc during cotton fiber elongation. Altogether, our study showed that Glc plays an important role in cotton fibre elongation, and crosstalk occurs between Glc and BR signaling during modulation of fiber elongation.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Liu
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhiqiang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Wu N, Yang J, Wang G, Ke H, Zhang Y, Liu Z, Ma Z, Wang X. Novel insights into water-deficit-responsive mRNAs and lncRNAs during fiber development in Gossypium hirsutum. BMC PLANT BIOLOGY 2022; 22:6. [PMID: 34979912 PMCID: PMC8722198 DOI: 10.1186/s12870-021-03382-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The fiber yield and quality of cotton are greatly and periodically affected by water deficit. However, the molecular mechanism of the water deficit response in cotton fiber cells has not been fully elucidated. RESULTS In this study, water deficit caused a significant reduction in fiber length, strength, and elongation rate but a dramatic increase in micronaire value. To explore genome-wide transcriptional changes, fibers from cotton plants subjected to water deficit (WD) and normal irrigation (NI) during fiber development were analyzed by transcriptome sequencing. Analysis showed that 3427 mRNAs and 1021 long noncoding RNAs (lncRNAs) from fibers were differentially expressed between WD and NI plants. The maximum number of differentially expressed genes (DEGs) and lncRNAs (DERs) was identified in fibers at the secondary cell wall biosynthesis stage, suggesting that this is a critical period in response to water deficit. Twelve genes in cotton fiber were differentially and persistently expressed at ≥ five time points, suggesting that these genes are involved in both fiber development and the water-deficit response and could potentially be used in breeding to improve cotton resistance to drought stress. A total of 540 DEGs were predicted to be potentially regulated by DERs by analysis of coexpression and genomic colocation, accounting for approximately 15.76% of all DEGs. Four DERs, potentially acting as target mimics for microRNAs (miRNAs), indirectly regulated their corresponding DEGs in response to water deficit. CONCLUSIONS This work provides a comprehensive transcriptome analysis of fiber cells and a set of protein-coding genes and lncRNAs implicated in the cotton response to water deficit, significantly affecting fiber quality during the fiber development stage.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
46
|
Yang X, Bu Y, Niu F, Cun Y, Zhang L, Song X. Comprehensive analysis of LIM gene family in wheat reveals the involvement of TaLIM2 in pollen development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111101. [PMID: 34895538 DOI: 10.1016/j.plantsci.2021.111101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
LIM domain proteins were involved in organizing the cytoskeleton, adjusting the metabolism and gene expression, some of them were specific express in pollen. LIM gene family in plants were studied in sunflower, tobacco, foxtail millet, rape, rice and Arabidopsis thaliana, however, it has not been investigated in wheat to date. In the present study, we totally characterized 29 TaLIM genes through genome-wide analysis, which were divided into two categories and five subclasses according to phylogenetic analysis. RNA-Seq analysis indicated the expression patterns of TaLIM genes have specific temporal and spatial characteristics, especially TaLIM2 was highly expressed in fertility anthers. Phenotypic and cytological of BSMV: TaLIM2 showed that it had defects in the later stage of pollen development and germination, which further testified that TaLIM2 was closely related to fertility conversion. These findings will be useful for functional analysis of LIM genes in wheat fertility and contribute to hybrid wheat breeding.
Collapse
Affiliation(s)
- Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yaning Bu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yujie Cun
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
47
|
Wu C, Zuo D, Xiao S, Wang Q, Cheng H, Lv L, Zhang Y, Li P, Song G. Genome-Wide Identification and Characterization of GhCOMT Gene Family during Fiber Development and Verticillium Wilt Resistance in Cotton. PLANTS 2021; 10:plants10122756. [PMID: 34961226 PMCID: PMC8706182 DOI: 10.3390/plants10122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Caffeic acid O-methyltransferases (COMTs) play an essential role in lignin synthesis procession, especially in the plant’s phenylalanine metabolic pathway. The content of COMT genes in cotton and the relationship between their expression patterns have not been studied clearly in cotton. In this study, we have identified 190 COMT genes in cotton, which were classified into three groups (I, II and III), and mapped on the cotton chromosomes. In addition, we found that 135 of the 190 COMT genes result from dispersed duplication (DSD) and whole-genome duplication (WGD), indicating that DSD and WGD were the main forces driving COMT gene expansion. The Ka/Ks analysis showed that GhCOMT43 and GhCOMT41 evolved from GaCOMT27 and GrCOMT14 through positive selection. The results of qRT-PCR showed that GhCOMT13, GhCOMT28, GhCOMT39 and GhCOMT55 were related to lignin content during the cotton fiber development. GhCOMT28, GhCOMT39, GhCOMT55, GhCOMT56 and GhCOMT57 responded to Verticillium Wilt (VW) and maybe related to VW resistance through lignin synthesis. Conclusively, this study found that GhCOMTs were highly expressed in the secondary wall thickening stage and VW. These results provide a clue for studying the functions of GhCOMTs in the development of cotton fiber and VW resistance and could lay a foundation for breeding cotton cultivates with higher quantity and high resistance to VW.
Collapse
Affiliation(s)
- Cuicui Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
| | - Shuiping Xiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
- Cotton Research Institute of Jiangxi Province, Jiujiang 332105, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
| | - Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
| | - Pengbo Li
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China
- Correspondence: (P.L.); (G.S.); Tel.: +86-372-2562377 (P.L. & G.S.)
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
- Correspondence: (P.L.); (G.S.); Tel.: +86-372-2562377 (P.L. & G.S.)
| |
Collapse
|
48
|
Sun Y, Zhong M, Li Y, Zhang R, Su L, Xia G, Wang H. GhADF6-mediated actin reorganization is associated with defence against Verticillium dahliae infection in cotton. MOLECULAR PLANT PATHOLOGY 2021; 22:1656-1667. [PMID: 34515397 PMCID: PMC8578822 DOI: 10.1111/mpp.13137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 05/07/2023]
Abstract
Several studies have revealed that actin depolymerizing factors (ADFs) participate in plant defence responses; however, the functional mechanisms appear intricate and need further exploration. In this study, we identified an ADF6 gene in upland cotton (designated as GhADF6) that is evidently involved in cotton's response to the fungal pathogen Verticillium dahliae. GhADF6 binds to actin filaments and possesses actin severing and depolymerizing activities in vitro and in vivo. When cotton root (the site of the fungus invasion) was inoculated with the pathogen, the expression of GhADF6 was markedly down-regulated in the epidermal cells. By virus-induced gene silencing analysis, the down-regulation of GhADF6 expression rendered the cotton plants tolerant to V. dahliae infection. Accordingly, the abundance of actin filaments and bundles in the root cells was significantly higher than that in the control plant, which phenocopied that of the V. dahliae-challenged wild-type cotton plant. Altogether, our results provide evidence that an increase in filament actin (F-actin) abundance as well as dynamic actin remodelling are required for plant defence against the invading pathogen, which are likely to be fulfilled by the coordinated expressional regulation of the actin-binding proteins, including ADF.
Collapse
Affiliation(s)
- Yongduo Sun
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mengmeng Zhong
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuanbao Li
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ruihui Zhang
- University of Chinese Academy of SciencesBeijingChina
- Institute of BotanyChinese Academy of SciencesBeijingChina
| | - Lei Su
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
| | - Guixian Xia
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
| | - Haiyun Wang
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
| |
Collapse
|
49
|
Xu R, Li Y, Liu C, Shen N, Zhang Q, Cao T, Qin M, Han L, Tang D. Twinfilin regulates actin assembly and Hexagonal peroxisome 1 (Hex1) localization in the pathogenesis of rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2021; 22:1641-1655. [PMID: 34519407 PMCID: PMC8578832 DOI: 10.1111/mpp.13136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 05/06/2023]
Abstract
Actin assembly at the hyphal tip is key for polar growth and pathogenesis of the rice blast fungus Magnaporthe oryzae. The mechanism of its precise assemblies and biological functions is not understood. Here, we characterized the role of M. oryzae Twinfilin (MoTwf) in M. oryzae infection through organizing the actin cables that connect to Spitzenkörper (Spk) at the hyphal tip. MoTwf could bind and bundle the actin filaments. It formed a complex with Myosin2 (MoMyo2) and the Woronin body protein Hexagonal peroxisome 1 (MoHex1). Enrichment of MoMyo2 and MoHex1 in the hyphal apical region was disrupted in a ΔMotwf loss-of-function mutant, which also showed a decrease in the number and width of actin cables. These findings indicate that MoTwf participates in the virulence of M. oryzae by organizing Spk-connected actin filaments and regulating MoHex1 distribution at the hyphal tip.
Collapse
Affiliation(s)
- Rui Xu
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuan‐Bao Li
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chengyu Liu
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ningning Shen
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qian Zhang
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tingyan Cao
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Minghui Qin
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Bo Han
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
50
|
Zang Y, Hu Y, Xu C, Wu S, Wang Y, Ning Z, Han Z, Si Z, Shen W, Zhang Y, Fang L, Zhang T. GhUBX controlling helical growth results in production of stronger cotton fiber. iScience 2021; 24:102930. [PMID: 34409276 PMCID: PMC8361218 DOI: 10.1016/j.isci.2021.102930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
Cotton fiber is an excellent model for studying plant cell elongation and cell wall biogenesis as well because they are highly polarized and use conserved polarized diffuse growth mechanism. Fiber strength is an important trait among cotton fiber qualities due to ongoing changes in spinning technology. However, the molecular mechanism of fiber strength forming is obscure. Through map-based cloning, we identified the fiber strength gene GhUBX. Increasing its expression, the fiber strength of the transgenic cotton was significantly enhanced compared to the receptor W0 and the helices number of the transgenic fiber was remarkably increased. Additionally, we proved that GhUBX regulates the fiber helical growth by degrading the GhSPL1 via the ubiquitin 26S–proteasome pathway. Taken together, we revealed the internal relationship between fiber helices and fiber stronger. It will be useful for improving the fiber quality in cotton breeding and illustrating the molecular mechanism for plant twisted growth. Isolation of the first fiber strength gene GhUBX using map-based cloning strategy Verification of the function of GhUBX experimentally in transgenic cotton Link helices to the cotton fiber strength, that more helices make fiber stronger An ubiquitin–proteasome system regulating the development of cotton fiber
Collapse
Affiliation(s)
- Yihao Zang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.,Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Yan Hu
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Chenyu Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.,Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Shenjie Wu
- Biotechnology Research Center, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
| | - Yangkun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Ning
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zegang Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhanfeng Si
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Weijuan Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yayao Zhang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Lei Fang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - TianZhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.,Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|