1
|
Wang C, Zhou B, Zhang Y, Zeng L. Plant ubiquitin E2 enzymes UBC32, UBC33, and UBC34 are involved in ERAD and function in host stress tolerance. BMC PLANT BIOLOGY 2025; 25:412. [PMID: 40169946 PMCID: PMC11963658 DOI: 10.1186/s12870-025-06419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/18/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a critical component of the ER-mediated protein quality control (ERQC) system and plays a vital role in plant stress responses. However, the ubiquitination machinery underlying plant ERAD-particularly the ubiquitin-conjugating enzymes (E2s)-and their contributions to stress tolerance remain poorly understood. RESULTS In this study, we identified UBC32, UBC33, and UBC34 as ER-localized ubiquitin E2 enzymes involved in ERAD and demonstrated their roles in biotic and abiotic stress tolerance in tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana). In response to biotic stress, UBC33 and UBC34 collectively contribute more substantially than UBC32 to plant immunity against Pseudomonas syringae pv. tomato (Pst). Under abiotic stress and ER stress induced by tunicamycin (TM), all three E2s play important roles. Notably, mutation of UBC32 enhances tolerance to TM-induced ER stress, whereas the loss of function in UBC33 or UBC34 suppresses this response. Additionally, UBC32, UBC33, and UBC34 act synergistically in Arabidopsis seed germination under salt stress and abscisic acid (ABA) treatment. While the single mutants atubc32, atubc33, and atubc34 exhibit germination rates comparable to Col-0 under salt stress or ABA treatment, the double mutants atubc32/33, atubc32/34, and atubc33/34 show a significantly greater reduction in germination rate. Interestingly, the atubc32/33/34 triple mutant exhibits a seed germination rate under salt stress and ABA treatment, as well as a level of host immunity to Pst, comparable to that of the atubc33/34 and atubc32/34 double mutants. CONCLUSIONS Our findings establish UBC32, UBC33, and UBC34 as key components of the plant ERAD machinery, contributing to plant tolerance to both abiotic and biotic stress. Despite their close phylogenetic relationship, these E2 enzymes exhibit redundant, synergistic, or antagonistic roles depending on the specific stress response pathway, underscoring the complexity of their functional interactions.
Collapse
Affiliation(s)
- Chaofeng Wang
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68588, USA
| | - Bangjun Zhou
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68588, USA
| | - Yi Zhang
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68588, USA
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lirong Zeng
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68588, USA.
| |
Collapse
|
2
|
Peng Z, Rehman A, Jiang X, Tian C, Wang Z, Li H, Wang X, Ahmad A, Azhar MT, Du X, He S. Comparative transcriptome analysis and functional verification revealed that GhSAP6 negatively regulates salt tolerance in upland cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109406. [PMID: 39700916 DOI: 10.1016/j.plaphy.2024.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/21/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Owing to the scarcity of cultivable land in China, the agricultural sector is primarily focused on grain and oil crops. Simultaneously, the cultivation of cotton has gradually shifted towards regions characterized by elevated soil salinity levels. Additionally, the mechanism behind cotton's ability to tolerate salt remains elusive. In this study, we identified the Z9807 genotype as highly tolerant to salt stress, exhibiting superior leaf wilting resistance, antioxidant activity, catalase activity, K+/Na+ ratio, and growth compared to the salt-sensitive ZJ0102. Comparative transcriptome analysis revealed marked differences in salt stress responses between Z9807 and ZJ0102. This study identified a considerable number of differentially expressed genes associated with salt tolerance across multiple time points. By integration of QTL and GWAS mapping data, we successfully identified 621 candidate genes associated with salt tolerance. Weighted gene correlation network analysis exhibited three co-expression modules related to salt-tolerant Z9807 samples, ultimately identifying 15 core salt-tolerant candidate genes. We also conducted in-depth research on the salt tolerance of the stress-associated protein (SAP) GhSAP6 (GhSAP6_At and GhSAP6_Dt homologs). Results revealed that these candidate genes may inhibit salt tolerance through Virus-Induced Gene Silencing (VIGS) and transgenic overexpression assays conducted in Arabidopsis thaliana. Furthermore, we used yeast two-hybrid and luciferase assay experiments to confirm the ubiquitin degradation pathway between selected interacting proteins and verified the interaction with RAD23C. This study will provide new insights into the mechanisms related to salt tolerance in upland cotton.
Collapse
Affiliation(s)
- Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuran Jiang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunyan Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhen Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hongge Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Adeel Ahmad
- Central Cotton Research Institute, Pakistan Central Cotton Committee, Multan, 60000, Pakistan
| | - Muhammad Tehseen Azhar
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China.
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China.
| |
Collapse
|
3
|
Liu J, Nie B, Yu B, Xu F, Zhang Q, Wang Y, Xu W. Rice ubiquitin-conjugating enzyme OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37102249 PMCID: PMC10363768 DOI: 10.1111/pbi.14059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/28/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Ubc13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity still remain largely unknown. Here, we used molecular biological, pathological, biochemical, and genetic approaches to evaluate the roles of rice OsUbc13 in response to pathogens. The OsUbc13-RNA interference (RNAi) lines with lesion mimic phenotypes displayed a significant increase in the accumulation of flg22- and chitin-induced reactive oxygen species, and in defence-related genes expression or hormones as well as resistance to Magnaporthe oryzae and Xanthomonas oryzae pv oryzae. Strikingly, OsUbc13 directly interacts with OsSnRK1a, which is the α catalytic subunit of SnRK1 (sucrose non-fermenting-1-related protein kinase-1) and acts as a positive regulator of broad-spectrum disease resistance in rice. In the OsUbc13-RNAi plants, although the protein level of OsSnRK1a did not change, its activity and ABA sensitivity were obviously enhanced, and the K63-linked polyubiquitination was weaker than that of wild-type Dongjin (DJ). Overexpression of the deubiquitinase-encoding gene OsOTUB1.1 produced similar effects with inhibition of OsUbc13 in affecting immunity responses, M. oryzae resistance, OsSnRK1a ubiquitination, and OsSnRK1a activity. Furthermore, re-interfering with OsSnRK1a in one OsUbc13-RNAi line (Ri-3) partially restored its M. oryzae resistance to a level between those of Ri-3 and DJ. Our data demonstrate OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Nie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Boling Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feiyun Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Zhang
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Luo R, Yang K, Xiao W. Plant deubiquitinases: from structure and activity to biological functions. PLANT CELL REPORTS 2023; 42:469-486. [PMID: 36567335 DOI: 10.1007/s00299-022-02962-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
This article attempts to provide comprehensive review of plant deubiquitinases, paying special attention to recent advances in their biochemical activities and biological functions. Proteins in eukaryotes are subjected to post-translational modifications, in which ubiquitination is regarded as a reversible process. Cellular deubiquitinases (DUBs) are a key component of the ubiquitin (Ub)-proteasome system responsible for cellular protein homeostasis. DUBs recycle Ub by hydrolyzing poly-Ub chains on target proteins, and maintain a balance of the cellular Ub pool. In addition, some DUBs prefer to cleave poly-Ub chains not linked through the conventional K48 residue, which often alter the substrate activity instead of its stability. In plants, all seven known DUB subfamilies have been identified, namely Ub-binding protease/Ub-specific protease (UBP/USP), Ub C-terminal hydrolase (UCH), Machado-Joseph domain-containing protease (MJD), ovarian-tumor domain-containing protease (OTU), zinc finger with UFM1-specific peptidase domain protease (ZUFSP), motif interacting with Ub-containing novel DUB family (MINDY), and JAB1/MPN/MOV34 protease (JAMM). This review focuses on recent advances in the structure, activity, and biological functions of plant DUBs, particularly in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Runbang Luo
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
5
|
Liu W, Tang X, Fu X, Zhang H, Zhu C, Zhang N, Si H. Functional Characterization of Potato UBC13- UEV1s Genes Required for Ubiquitin Lys63 Chain to Polyubiquitination. Int J Mol Sci 2023; 24:ijms24032412. [PMID: 36768743 PMCID: PMC9917286 DOI: 10.3390/ijms24032412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Ubiquitin-conjugating enzymes (E2s/UBC) are components of the ubiquitin proteasome system (UPS), and the ubiquitin-conjugating enzyme variant (UEV) is one of E2s (ubiquitin-conjugating enzymes, UBC) subfamily. The UEVs and UBC13 play an auxiliary role in mediating Lys63-linked polyUb chain assembly, which is correlated with target protein non-proteolytic functions, such as DNA repair or response to stress. However, the collaborative mechanism of StUBC13 (homologue of AtUBC13) and StUEVs (the UEVs in potato) involved in potato are not fully understood understood. Here, we identified two StUBC13 and seven StUEVs from potato genome. We analyzed protein motif and conserved domain, gene structure, phylogenetic features, cis-acting elements of StUBC13 and StUEVs. Subsequently, we screened StUBC13 partners protein and verified interaction between StUBC13 and StUEVs using yeast two-hybrid, split luciferase complementation (SLC) and bimolecular fluorescence complementation (BiFC) approach. The expression profile and qRT-PCR analysis suggested that StUBC13 and StUEVs gene exhibited a tissue-specific expression and were induced by different stress. Overall, this investigative study provides a comprehensive reference and view for further functional research on StUBC13 and StUEV1s in potato.
Collapse
Affiliation(s)
- Weigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xue Fu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Huanhuan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Cunlan Zhu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence:
| |
Collapse
|
6
|
Kumasaruge I, Wen R, Wang L, Gao P, Peng G, Xiao W. Systematic characterization of Brassica napus UBC13 genes involved in DNA-damage response and K63-linked polyubiquitination. BMC PLANT BIOLOGY 2023; 23:24. [PMID: 36631796 PMCID: PMC9835285 DOI: 10.1186/s12870-023-04035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ubc13 is the only known ubiquitin conjugating enzyme (Ubc/E2) dedicated to promoting Lys (K)63-linked polyubiquitination, and this process requires a Ubc/E2 variant (UEV). Unlike conventional K48-linked polyubiquitination that targets proteins for degradation, K63-linked polyubiquitination, which is involved in several cellular processes, does not target proteins for degradation but alter their activities. RESULTS In this study we report the identification and functional characterization of 12 Brassica napus UBC13 genes. All the cloned UBC13 gene products were able to physically interact with AtUev1D, an Arabidopsis UEV, to form stable complexes that are capable of catalyzing K63-linked polyubiquitination in vitro. Furthermore, BnUBC13 genes functionally complemented the yeast ubc13 null mutant defects in spontaneous mutagenesis and DNA-damage responses, suggesting that BnUBC13s can replace yeast UBC13 in mediating K63-linked polyubiquitination and error-free DNA-damage tolerance. CONCLUSION Collectively, this study provides convincing data to support notions that B. napus Ubc13s promote K63-linked polyubiquitination and are probably required for abiotic stress response. Since plant Ubc13-UEV are also implicated in other developmental and stress responses, this systematic study sets a milestone in exploring roles of K63-linked polyubiquitination in this agriculturally important crop.
Collapse
Affiliation(s)
- Ivanthi Kumasaruge
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Rui Wen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Lipu Wang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Peng Gao
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
7
|
Wang S, Cao L, Willick IR, Wang H, Tanino KK. Arabidopsis Ubiquitin-Conjugating Enzymes UBC4, UBC5, and UBC6 Have Major Functions in Sugar Metabolism and Leaf Senescence. Int J Mol Sci 2022; 23:11143. [PMID: 36232444 PMCID: PMC9569852 DOI: 10.3390/ijms231911143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
The ubiquitin-conjugating enzyme (E2) is required for protein ubiquitination. Arabidopsis has 37 E2s grouped into 14 subfamilies and the functions for many of them are unknown. We utilized genetic and biochemical methods to study the roles of Arabidopsis UBC4, UBC5, and UBC6 of the E2 subfamily IV. The Arabidopsis ubc4/5/6 triple mutant plants had higher levels of glucose, sucrose, and starch than the control plants, as well as a higher protein level of a key gluconeogenic enzyme, cytosolic fructose 1,6-bisphosphatase 1 (cyFBP). In an in vitro assay, the proteasome inhibitor MG132 inhibited the degradation of recombinant cyFBP whereas ATP promoted cyFBP degradation. In the quadruple mutant ubc4/5/6 cyfbp, the sugar levels returned to normal, suggesting that the increased sugar levels in the ubc4/5/6 mutant were due to an increased cyFBPase level. In addition, the ubc4/5/6 mutant plants showed early leaf senescence at late stages of plant development as well as accelerated leaf senescence using detached leaves. Further, the leaf senescence phenotype remained in the quadruple ubc4/5/6 cyfbp mutant. Our results suggest that UBC4/5/6 have two lines of important functions, in sugar metabolism through regulating the cyFBP protein level and in leaf senescence likely through a cyFBP-independent mechanism.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ling Cao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ian R. Willick
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Karen K. Tanino
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
8
|
Yang K, Xiao W. Functions and mechanisms of the Ubc13-UEV complex and lysine 63-linked polyubiquitination in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5372-5387. [PMID: 35640002 DOI: 10.1093/jxb/erac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitination is one of the best-known post-translational modifications in eukaryotes, in which different linkage types of polyubiquitination result in different outputs of the target proteins. Distinct from the well-characterized K48-linked polyubiquitination that usually serves as a signal for degradation of the target protein, K63-linked polyubiquitination often requires a unique E2 heterodimer Ubc13-UEV and alters the target protein activity instead of marking it for degradation. This review focuses on recent advances on the roles of Ubc13-UEV-mediated K63-linked polyubiquitination in plant growth, development, and response to environmental stresses.
Collapse
Affiliation(s)
- Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Orosa-Puente B, Spoel SH. Harnessing the ubiquitin code to respond to environmental cues. Essays Biochem 2022; 66:111-121. [PMID: 35880291 PMCID: PMC9400065 DOI: 10.1042/ebc20210094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Ubiquitination is an essential post-translational signal that allows cells to adapt and respond to environmental stimuli. Substrate modifications range from a single ubiquitin molecule to complex polyubiquitin chains, where diverse chain topologies constitute a code that is utilized to modify the functions of proteins in numerous cellular signalling pathways. Diverse ubiquitin chain topologies are generated by linking the C-terminus of ubiquitin to one of seven lysine residues or the N-terminal methionine 1 residue of the preceding ubiquitin. Cooperative action between a large array of E2 conjugating and E3 ligase enzymes supports the formation of not only homotypic ubiquitin chains but also heterotypic mixed or branched chains. This complex array of chain topologies is recognized by proteins containing linkage-specific ubiquitin-binding domains and regulates numerous cellular pathways. Although many functions of the ubiquitin code in plants remain unknown, recent work suggests that specific chain topologies are associated with particular molecular processes. Deciphering the ubiquitin code and how plants utilize it to cope with the changing environment is essential to understand the regulatory mechanisms that underpin myriad stress responses and establishment of environmental tolerance.
Collapse
Affiliation(s)
- Beatriz Orosa-Puente
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 5JF, U.K
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 5JF, U.K
| |
Collapse
|
10
|
E2 ubiquitin-conjugating enzymes (UBCs): drivers of ubiquitin signalling in plants. Essays Biochem 2022; 66:99-110. [PMID: 35766526 DOI: 10.1042/ebc20210093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022]
Abstract
Most research in the field of ubiquitination has focused on E3 ubiquitin ligases because they are the specificity determinants of the ubiquitination process. Nevertheless, E2s are responsible for the catalysis during ubiquitin transfer, and are therefore, at the heart of the ubiquitination process. Arabidopsis has 37 ubiquitin E2s with additional ones mediating the attachment of ubiquitin-like proteins (e.g. SUMO, Nedd8 and ATG8). Importantly, E2s largely determine the type of ubiquitin chain built, and therefore, the type of signal that decides over the fate of the modified protein, such as degradation by the proteasome (Lys48-linked ubiquitin chains) or relocalization (Lys63-linked ubiquitin chains). Moreover, new regulatory layers impinging on E2s activity, including post-translational modifications or cofactors, are emerging that highlight the importance of E2s.
Collapse
|
11
|
Mano S, Hayashi Y, Hikino K, Otomo M, Kanai M, Nishimura M. Ubiquitin-conjugating activity by PEX4 is required for efficient protein transport to peroxisomes in Arabidopsis thaliana. J Biol Chem 2022; 298:102038. [PMID: 35595097 PMCID: PMC9190015 DOI: 10.1016/j.jbc.2022.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022] Open
Abstract
Protein transport to peroxisomes requires various proteins, such as receptors in the cytosol and components of the transport machinery on peroxisomal membranes. The Arabidopsis apem (aberrant peroxisome morphology) mutant apem7 shows decreased efficiency of peroxisome targeting signal 1–dependent protein transport to peroxisomes. In apem7 mutants, peroxisome targeting signal 2–dependent protein transport is also disturbed, and plant growth is repressed. The APEM7 gene encodes a protein homologous to peroxin 4 (PEX4), which belongs to the ubiquitin-conjugating (UBC) protein family; however, the UBC activity of Arabidopsis PEX4 remains to be investigated. Here, we show using electron microscopy and immunoblot analysis using specific PEX4 antibodies and in vitro transcription/translation assay that PEX4 localizes to peroxisomal membranes and possesses UBC activity. We found that the substitution of proline with leucine by apem7 mutation alters ubiquitination of PEX4. Furthermore, substitution of the active-site cysteine residue at position 90 in PEX4, which was predicted to be a ubiquitin-conjugation site, with alanine did not restore the apem7 phenotype. Taken together, these findings indicate that abnormal ubiquitination in the apem7 mutant alters ubiquitin signaling during the process of protein transport, suggesting that the UBC activity of PEX4 is indispensable for efficient protein transport to peroxisomes.
Collapse
Affiliation(s)
- Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Japan.
| | - Yasuko Hayashi
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
| | - Kazumi Hikino
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| | - Masayoshi Otomo
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata, Japan
| | - Masatake Kanai
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| |
Collapse
|
12
|
Trenner J, Monaghan J, Saeed B, Quint M, Shabek N, Trujillo M. Evolution and Functions of Plant U-Box Proteins: From Protein Quality Control to Signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:93-121. [PMID: 35226816 DOI: 10.1146/annurev-arplant-102720-012310] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Posttranslational modifications add complexity and diversity to cellular proteomes. One of the most prevalent modifications across eukaryotes is ubiquitination, which is orchestrated by E3 ubiquitin ligases. U-box-containing E3 ligases have massively expanded in the plant kingdom and have diversified into plant U-box proteins (PUBs). PUBs likely originated from two or three ancestral forms, fusing with diverse functional subdomains that resulted in neofunctionalization. Their emergence and diversification may reflect adaptations to stress during plant evolution, reflecting changes in the needs of plant proteomes to maintain cellular homeostasis. Through their close association with protein kinases, they are physically linked to cell signaling hubs and activate feedback loops by dynamically pairing with E2-ubiquitin-conjugating enzymes to generate distinct ubiquitin polymers that themselves act as signals. Here, we complement current knowledgewith comparative genomics to gain a deeper understanding of PUB function, focusing on their evolution and structural adaptations of key U-box residues, as well as their various roles in plant cells.
Collapse
Affiliation(s)
- Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany; ,
| | | | - Bushra Saeed
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; ,
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany; ,
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, USA;
| | - Marco Trujillo
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; ,
| |
Collapse
|
13
|
Wang P, Guo K, Su Q, Deng J, Zhang X, Tu L. Histone ubiquitination controls organ size in cotton (Gossypium hirsutum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1005-1020. [PMID: 35218092 DOI: 10.1111/tpj.15716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitination plays a vital role in modifying protein activity and destiny. Ub-conjugating enzyme E2 is one of the enzymes that participates in this precise process. There are at least 169 E2 proteins in the allotetraploid cotton (Gossypium hirsutum), but their function remains unknown. Here we identify an E2 gene GhUBC2L and show its positive role in cell proliferation and expansion. Complete knock-down of GhUBC2L in cotton resulted in retarded growth and reduced organ size. Conversely, overexpression of GhUBC2L promoted cotton growth, generating enlarged organs in size. Monoubiquitination of H2A and H2B was strongly impaired in GhUBC2L-suppressed cotton but slightly enhanced in GhUBC2L-overexpressed plant. GhUbox8, a U-box type E3 ligase protein, was found to interact with GhUBC2L both in vivo and in vitro, indicating their synergistical function in protein ubiquitination. Furthermore, GhUbox8 was shown to interact with a series of histone proteins, including histone H2A and H2B, indicating its potential monoubiquitination on H2A and H2B. Expression of genes relating to cell cycle and organ development were altered when the expression of GhUBC2L was changed. Our results show that GhUBC2L modulates histone monoubiquitination synergistically with GhUbox8 to regulate the expression of genes involved in organ development and cell cycle, thus controlling organ size in cotton. This research provides new insights into the role of protein ubiquitination in organ size control. Histone monoubiquitination plays an important role in plant development. Here, we identified an E2 enzyme GhUBC2L that modulates histone monoubiquitination synergistically with an E3 ligase GhUbox8 to mediate organ size control in cotton.
Collapse
Affiliation(s)
- Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qian Su
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jinwu Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
14
|
Li M, Wang L, Liu Y, Lin Y, Zhang Y, Long Y, Luo C, Zhang Y, Chen Q, Chen P, Wang Y, Wang X, Tang H, Luo Y. Characterization and regulation mechanism analysis of ubiquitin-conjugating family genes in strawberry reveals a potential role in fruit ripening. BMC PLANT BIOLOGY 2022; 22:39. [PMID: 35045827 PMCID: PMC8767729 DOI: 10.1186/s12870-021-03421-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND E2 ubiquitin-conjugating (UBC) enzymes are an integral component of the ubiquitin proteasome system that play an important role in plant development, growth, and external stress responses. Several UBC genes have been identified in various plants. However, no studies exploring the functions of UBC genes in regulating fruit of strawberry have been reported. In the present study, a systematic analysis of the entire UBC family members were conducted in the genome of strawberry (Fragaria ×ananassa) based on bioinformatics method, and the gene functioning in strawberry ripening was explored. RESULTS A total of 191 UBC genes were identified in the genome of cultivated strawberry. These genes were unevenly distributed across the 28 chromosomes from the 4 subgenomes of cultivated strawberry, ranging from 3 to 11 genes per chromosome. Moreover, the expansion of FaUBC genes in strawberry was mainly driven by WGD. All the FaUBC genes were clarified into 13 groups and most of them were included in the group VI. The gene structure analysis showed that the number of exons varied from 1 to 23, and the structure of genes had few differences within the same groups but a distinction in different groups. Identification of the cis-acting elements of the promoter revealed multiple regulatory elements that responded to plant growth and development, phytohormone responsive, and abiotic and biotic stress. Data from functional annotation indicated that FaUBC genes play a role in a variety of biological processes. The RNA-seq data showed that FaUBC genes displayed different expression pattern during the fruit ripening process and clarified into 6 clusters. In particular, cluster 3 exhibiting a sudden expression increase in the turning red stage were speculated to be involved in fruit ripening. Hence, two FaUBC genes (FaUBC76 and FaUBC78) were selected for gene function analysis by transient over-expression method. The results indicated that FaUBC76 has a positive effect on the fruit development and ripening in strawberry by up-regulating accumulation of anthocyanins. Moreover, expression of some maturity-related genes were also significantly increased, further supporting a role for FaUBC76 in the regulation of fruit ripening or softening. On the contrary, the overexpression of FaUBC78 significantly increased the firmness of strawberry fruit, indicating that FaUBC78 had a positive role in inhibiting the decrease of strawberry fruit firmness. CONCLUSION Our study not only provide comprehensive information on system evolution and function on UBC genes, but also give a new insight into explore the roles of FaUBC genes in the regulation of strawberry ripening.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liangxin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiting Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Long
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuanying Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pinwen Chen
- Departmental and Municipal Co-construction of Crops Genetic Improvement of Hill Land Key Laboratory of Sichuan, Nanchong, 637000, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
15
|
Yao D, Arguez MA, He P, Bent AF, Song J. Coordinated regulation of plant immunity by poly(ADP-ribosyl)ation and K63-linked ubiquitination. MOLECULAR PLANT 2021; 14:2088-2103. [PMID: 34418551 PMCID: PMC9070964 DOI: 10.1016/j.molp.2021.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/24/2021] [Accepted: 08/15/2021] [Indexed: 05/02/2023]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a posttranslational modification reversibly catalyzed by poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs) and plays a key role in multiple cellular processes. The molecular mechanisms by which PARylation regulates innate immunity remain largely unknown in eukaryotes. Here we show that Arabidopsis UBC13A and UBC13B, the major drivers of lysine 63 (K63)-linked polyubiquitination, directly interact with PARPs/PARGs. Activation of pathogen-associated molecular pattern (PAMP)-triggered immunity promotes these interactions and enhances PARylation of UBC13. Both parp1 parp2 and ubc13a ubc13b mutants are compromised in immune responses with increased accumulation of total pathogenesis-related (PR) proteins but decreased accumulation of secreted PR proteins. Protein disulfide-isomerases (PDIs), essential components of endoplasmic reticulum quality control (ERQC) that ensure proper folding and maturation of proteins destined for secretion, complex with PARPs/PARGs and are PARylated upon PAMP perception. Significantly, PARylation of UBC13 regulates K63-linked ubiquitination of PDIs, which may further promote their disulfide isomerase activities for correct protein folding and subsequent secretion. Taken together, these results indicate that plant immunity is coordinately regulated by PARylation and K63-linked ubiquitination.
Collapse
Affiliation(s)
- Dongsheng Yao
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX 75252, USA
| | - Marcus A Arguez
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX 75252, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junqi Song
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX 75252, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
16
|
Ma X, Zhang C, Kim DY, Huang Y, Chatt E, He P, Vierstra RD, Shan L. Ubiquitylome analysis reveals a central role for the ubiquitin-proteasome system in plant innate immunity. PLANT PHYSIOLOGY 2021; 185:1943-1965. [PMID: 33793954 PMCID: PMC8133637 DOI: 10.1093/plphys/kiab011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/22/2020] [Indexed: 05/22/2023]
Abstract
Protein ubiquitylation profoundly expands proteome functionality and diversifies cellular signaling processes, with recent studies providing ample evidence for its importance to plant immunity. To gain a proteome-wide appreciation of ubiquitylome dynamics during immune recognition, we employed a two-step affinity enrichment protocol based on a 6His-tagged ubiquitin (Ub) variant coupled with high sensitivity mass spectrometry to identify Arabidopsis proteins rapidly ubiquitylated upon plant perception of the microbe-associated molecular pattern (MAMP) peptide flg22. The catalog from 2-week-old seedlings treated for 30 min with flg22 contained 690 conjugates, 64 Ub footprints, and all seven types of Ub linkages, and included previously uncharacterized conjugates of immune components. In vivo ubiquitylation assays confirmed modification of several candidates upon immune elicitation, and revealed distinct modification patterns and dynamics for key immune components, including poly- and monoubiquitylation, as well as induced or reduced levels of ubiquitylation. Gene ontology and network analyses of the collection also uncovered rapid modification of the Ub-proteasome system itself, suggesting a critical auto-regulatory loop necessary for an effective MAMP-triggered immune response and subsequent disease resistance. Included targets were UBIQUITIN-CONJUGATING ENZYME 13 (UBC13) and proteasome component REGULATORY PARTICLE NON-ATPASE SUBUNIT 8b (RPN8b), whose subsequent biochemical and genetic analyses implied negative roles in immune elicitation. Collectively, our proteomic analyses further strengthened the connection between ubiquitylation and flg22-based immune signaling, identified components and pathways regulating plant immunity, and increased the database of ubiquitylated substrates in plants.
Collapse
Affiliation(s)
- Xiyu Ma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Chao Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Do Young Kim
- Department of Genetics, University of Wisconsin–Madison, 425-G Henry Mall, Madison, Wisconsin 53706
- Advanced Bio Convergence Center, Pohang Technopark, Gyeong-Buk 37668, South Korea
| | - Yanyan Huang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Elizabeth Chatt
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin–Madison, 425-G Henry Mall, Madison, Wisconsin 53706
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
- Author for communication:
| |
Collapse
|
17
|
Spielmann J, Vert G. The many facets of protein ubiquitination and degradation in plant root iron-deficiency responses. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2071-2082. [PMID: 32945865 DOI: 10.1093/jxb/eraa441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Organisms need to deal with the absolute requirement for metals and also their possible toxicity. This is achieved through an intricate network of signaling pathways that are integrated to ultimately fine-tune iron uptake and metabolism. The mechanisms by which plants cope with iron limitation and the associated genomic responses are well characterized. On top of this transcriptional cascade is another level of regulation involving the post-translational protein modification and degradation. The ubiquitination and/or degradation of several transcription factors in the iron-deficiency signaling pathways and metal transporters has recently come to light. In this review we discuss the mechanisms and possible roles of protein modification and turnover in the regulation of root iron-deficiency responses. We also highlight the tight coupling between metal sensing by E3 ubiquitin ligases or bifunctional transporters and protein degradation.
Collapse
Affiliation(s)
- Julien Spielmann
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, Auzeville-Tolosane, France
| |
Collapse
|
18
|
Guo H, Wang L, Hu R, He Y, Xiao W. Molecular cloning and functional characterization of Physcomitrella patens UBC13-UEV1 genes required for Lys63-linked polyubiquitination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110518. [PMID: 32563457 DOI: 10.1016/j.plantsci.2020.110518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Ubc13 and Ubc/E2 variant (Uev) form a stable heterodimer to mediate Lys63-linked polyubiquitination. Unicellular eukaryotic genomes often contain single UBC13 and UEV gene; however, multiple homologs were found in higher plants. As initial land plants, Physcomitrella patens occupies a key evolutionary position between green algae and higher plants. In this study, we report the identification and functional characterization of two UBC13 and three UEV1 genes from P. patens. Both PpUbc13s form heterodimers with PpUev1B or PpUev1C, which catalyze Lys63-linked polyubiquitination in vitro and functionally complement the yeast ubc13 mms2 null mutant from killing by DNA-damaging agents. In contrast, PpUev1A is unable to interact with Ubc13s and cannot complement the yeast mms2 mutant. Two single mutations, PpUev1A-D12N and ΔCT, barely have any effect; however, the corresponding double mutation makes PpUev1A functional in both heterodimer formation and complementation. This study identifies a critical Uev residue located in the Ubc13-Uev interface and reveals that mosses began to evolve multiple UBC13 and UEV orthologs in order to adapt to the terrestrial environment. The evolutionary significance of PpUEV1A is discussed.
Collapse
Affiliation(s)
- Huiping Guo
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Linxiao Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ruoyang Hu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
19
|
Wang S, Li Q, Zhao L, Fu S, Qin L, Wei Y, Fu YB, Wang H. Arabidopsis UBC22, an E2 able to catalyze lysine-11 specific ubiquitin linkage formation, has multiple functions in plant growth and immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110520. [PMID: 32563459 DOI: 10.1016/j.plantsci.2020.110520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/15/2020] [Accepted: 05/03/2020] [Indexed: 05/03/2023]
Abstract
Protein ubiquitination is critical for various biological processes in eukaryotes. A ubiquitin (Ub) chain can be linked through one of the seven lysine (K) residues or the N-terminus methionine of the Ub, and the Ub-conjugating enzymes called E2s play a critical role in determining the linkage specificity of Ub chains. Further, while K48-linked polyubiquitin chain is important for protein degradation, much less is known about the functions of other types of polyubiquitin chains in plants. We showed previously that UBC22 is unique in its ability to catalyze K11-dependent Ub dimer formation in vitro and ubc22 knockout mutants had defects in megasporogenesis. In this study, further analyses of the Arabidopsis ubc22 mutants revealed four subtypes of plants based on the phenotypic changes in vegetative growth. These four subtypes appeared consistently in the plants of three independent ubc22 mutants. Transcriptomic analysis showed that transcript levels of genes related to several pathways were altered differently in different subtypes of mutant plants. In one subtype, the mutant plants had increased expression of genes related to plant defenses and showed enhanced resistance to a necrotrophic plant pathogen. These results suggest multiple functions of UBC22 during plant development and stress response.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Zhao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada; Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Sanxiong Fu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada; Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Li Qin
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
20
|
Zhang Y, Zeng L. Crosstalk between Ubiquitination and Other Post-translational Protein Modifications in Plant Immunity. PLANT COMMUNICATIONS 2020; 1:100041. [PMID: 33367245 PMCID: PMC7748009 DOI: 10.1016/j.xplc.2020.100041] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/05/2023]
Abstract
Post-translational modifications (PTMs) are central to the modulation of protein activity, stability, subcellular localization, and interaction with partners. They greatly expand the diversity and functionality of the proteome and have taken the center stage as key players in regulating numerous cellular and physiological processes. Increasing evidence indicates that in addition to a single regulatory PTM, many proteins are modified by multiple different types of PTMs in an orchestrated manner to collectively modulate the biological outcome. Such PTM crosstalk creates a combinatorial explosion in the number of proteoforms in a cell and greatly improves the ability of plants to rapidly mount and fine-tune responses to different external and internal cues. While PTM crosstalk has been investigated in depth in humans, animals, and yeast, the study of interplay between different PTMs in plants is still at its infant stage. In the past decade, investigations showed that PTMs are widely involved and play critical roles in the regulation of interactions between plants and pathogens. In particular, ubiquitination has emerged as a key regulator of plant immunity. This review discusses recent studies of the crosstalk between ubiquitination and six other PTMs, i.e., phosphorylation, SUMOylation, poly(ADP-ribosyl)ation, acetylation, redox modification, and glycosylation, in the regulation of plant immunity. The two basic ways by which PTMs communicate as well as the underlying mechanisms and diverse outcomes of the PTM crosstalk in plant immunity are highlighted.
Collapse
|
21
|
Liu W, Tang X, Qi X, Fu X, Ghimire S, Ma R, Li S, Zhang N, Si H. The Ubiquitin Conjugating Enzyme: An Important Ubiquitin Transfer Platform in Ubiquitin-Proteasome System. Int J Mol Sci 2020; 21:E2894. [PMID: 32326224 PMCID: PMC7215765 DOI: 10.3390/ijms21082894] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022] Open
Abstract
Owing to a sessile lifestyle in nature, plants are routinely faced with diverse hostile environments such as various abiotic and biotic stresses, which lead to accumulation of free radicals in cells, cell damage, protein denaturation, etc., causing adverse effects to cells. During the evolution process, plants formed defense systems composed of numerous complex gene regulatory networks and signal transduction pathways to regulate and maintain the cell homeostasis. Among them, ubiquitin-proteasome pathway (UPP) is the most versatile cellular signal system as well as a powerful mechanism for regulating many aspects of the cell physiology because it removes most of the abnormal and short-lived peptides and proteins. In this system, the ubiquitin-conjugating enzyme (E2) plays a critical role in transporting ubiquitin from the ubiquitin-activating enzyme (E1) to the ubiquitin-ligase enzyme (E3) and substrate. Nevertheless, the comprehensive study regarding the role of E2 enzymes in plants remains unexplored. In this review, the ubiquitination process and the regulatory role that E2 enzymes play in plants are primarily discussed, with the focus particularly put on E2's regulation of biological functions of the cell.
Collapse
Affiliation(s)
- Weigang Liu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
| | - Xun Tang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xuehong Qi
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xue Fu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Shantwana Ghimire
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
| | - Rui Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
| | - Shigui Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Huaijun Si
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (S.G.); (R.M.); (S.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (X.T.); (X.Q.); (X.F.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
22
|
Romero-Barrios N, Monachello D, Dolde U, Wong A, San Clemente H, Cayrel A, Johnson A, Lurin C, Vert G. Advanced Cataloging of Lysine-63 Polyubiquitin Networks by Genomic, Interactome, and Sensor-Based Proteomic Analyses. THE PLANT CELL 2020; 32:123-138. [PMID: 31712406 PMCID: PMC6961633 DOI: 10.1105/tpc.19.00568] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 05/17/2023]
Abstract
The lack of resolution when studying the many different ubiquitin chain types found in eukaryotic cells has been a major hurdle to our understanding of their specific roles. We currently have very little insight into the cellular and physiological functions of Lys-63 (K63)-linked ubiquitin chains, although they are the second most abundant forms of ubiquitin in plant cells. To overcome this problem, we developed several large-scale approaches to characterize (1) the E2-E3 ubiquitination machinery driving K63-linked ubiquitin chain formation and (2) K63 polyubiquitination targets to provide a comprehensive picture of K63 polyubiquitin networks in Arabidopsis (Arabidopsis thaliana). Our work identified the ubiquitin-conjugating enzymes (E2s) UBC35/36 as the major drivers of K63 polyubiquitin chain formation and highlights the major role of these proteins in plant growth and development. Interactome approaches allowed us to identify many proteins that interact with the K63 polyubiquitination-dedicated E2s UBC35/36 and their cognate E2 variants, including more than a dozen E3 ligases and their putative targets. In parallel, we improved the in vivo detection of proteins decorated with K63-linked ubiquitin chains by sensor-based proteomics, yielding important insights into the roles of K63 polyubiquitination in plant cells. This work strongly increases our understanding of K63 polyubiquitination networks and functions in plants.
Collapse
Affiliation(s)
- Natali Romero-Barrios
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Dario Monachello
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France
| | - Ulla Dolde
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 31320 Castanet-Tolosan, France
| | - Aloysius Wong
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Hélène San Clemente
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 31320 Castanet-Tolosan, France
| | - Anne Cayrel
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Alexander Johnson
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Claire Lurin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 31320 Castanet-Tolosan, France
| |
Collapse
|
23
|
Kud J, Wang W, Gross R, Fan Y, Huang L, Yuan Y, Gray A, Duarte A, Kuhl JC, Caplan A, Goverse A, Liu Y, Dandurand LM, Xiao F. The potato cyst nematode effector RHA1B is a ubiquitin ligase and uses two distinct mechanisms to suppress plant immune signaling. PLoS Pathog 2019; 15:e1007720. [PMID: 30978251 PMCID: PMC6461251 DOI: 10.1371/journal.ppat.1007720] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Plant pathogens, such as bacteria, fungi, oomycetes and nematodes, rely on wide range of virulent effectors delivered into host cells to suppress plant immunity. Although phytobacterial effectors have been intensively investigated, little is known about the function of effectors of plant-parasitic nematodes, such as Globodera pallida, a cyst nematode responsible for vast losses in the potato and tomato industries. Here, we demonstrate using in vivo and in vitro ubiquitination assays the potato cyst nematode (Globodera pallida) effector RHA1B is an E3 ubiquitin ligase that employs multiple host plant E2 ubiquitin conjugation enzymes to catalyze ubiquitination. RHA1B was able to suppress effector-triggered immunity (ETI), as manifested by suppression of hypersensitive response (HR) mediated by a broad range of nucleotide-binding leucine-rich repeat (NB-LRR) immune receptors, presumably via E3-dependent degradation of the NB-LRR receptors. RHA1B also blocked the flg22-triggered expression of Acre31 and WRKY22, marker genes of pathogen‐associated molecular pattern (PAMP)‐triggered immunity (PTI), but this did not require the E3 activity of RHA1B. Moreover, transgenic potato overexpressing the RHA1B transgene exhibited enhanced susceptibility to G. pallida. Thus, our data suggest RHA1B facilitates nematode parasitism not only by triggering degradation of NB-LRR immune receptors to block ETI signaling but also by suppressing PTI signaling via an as yet unknown E3-independent mechanism. Globodera pallida is a plant-parasitic cyst nematode that causes vast losses in economically important crops such as potato and tomato. To successfully parasitize host plants, G. pallida produces proteins called effectors to overcome plant defenses. Here, we report identification of a novel G. pallida effector RHA1B as an E3 ubiquitin ligase, which is responsible for ubiquitin-proteasome-mediated protein degradation in general. We found that RHA1B can suppress plant defense signaling via both E3-dependent and -independent manners. In particular, it promotes degradation of a broad range of NB-LRR immune receptors. In addition, expression of RHA1B in potato plants made the plants more susceptible to G. pallida infection, indicating that RHA1B acts as an effector that aids parasitism. Overall, we found RHA1B as the first effector with ubiquitin ligase activity identified from eukaryotic pathogen infecting plants or animals. Our data suggest nematode uses RHA1B as a powerful weapon to manipulate host cellular signaling pathways, thereby interfering with plant immunity for successful parasitism.
Collapse
Affiliation(s)
- Joanna Kud
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
| | - Wenjie Wang
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
- School of Food Science, Hefei University of Technology, Hefei, China
| | - Rachel Gross
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
| | - Youhong Fan
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
- School of Food Science, Hefei University of Technology, Hefei, China
| | - Li Huang
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
| | - Yulin Yuan
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
| | - Amanda Gray
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States of America
| | - Aida Duarte
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States of America
| | - Joseph C. Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
| | - Allan Caplan
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Yongsheng Liu
- School of Food Science, Hefei University of Technology, Hefei, China
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Louise-Marie Dandurand
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States of America
- * E-mail: (LMD); (FX)
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States of America
- * E-mail: (LMD); (FX)
| |
Collapse
|
24
|
Regulation of Plant Immunity by the Proteasome. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 343:37-63. [DOI: 10.1016/bs.ircmb.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Wang L, Wen R, Wang J, Xiang D, Wang Q, Zang Y, Wang Z, Huang S, Li X, Datla R, Fobert PR, Wang H, Wei Y, Xiao W. Arabidopsis UBC13 differentially regulates two programmed cell death pathways in responses to pathogen and low-temperature stress. THE NEW PHYTOLOGIST 2019; 221:919-934. [PMID: 30218535 DOI: 10.1111/nph.15435] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 08/02/2018] [Indexed: 05/17/2023]
Abstract
UBC13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity remain to be defined. Here we used genetic and pathological methods to evaluate roles of Arabidopsis UBC13 in response to pathogens and environmental stresses. Loss of UBC13 failed to activate the expression of numerous cold-responsive genes and resulted in hypersensitivity to low-temperature stress, indicating that UBC13 is involved in plant response to low-temperature stress. Furthermore, the ubc13 mutant displayed low-temperature-induced and salicylic acid-dependent lesion mimic phenotypes. Unlike typical lesion mimic mutants, ubc13 did not enhance disease resistance against virulent bacterial and fungal pathogens, but diminished hypersensitive response and compromised effector-triggered immunity against avirulent bacterial pathogens. UBC13 differently regulates two types of programmed cell death in response to low temperature and pathogen. The lesion mimic phenotype in the ubc13 mutant is partially dependent on SNC1. UBC13 interacts with an F-box protein CPR1 that regulates the homeostasis of SNC1. However, the SNC1 protein level was not altered in the ubc13 mutant, implying that UBC13 is not involved in CPR1-regulated SNC1 protein degradation. Taken together, our results revealed that UBC13 is a key regulator in plant response to low temperature and pathogens.
Collapse
Affiliation(s)
- Lipu Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Rui Wen
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Jinghe Wang
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Daoquan Xiang
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Qian Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuepeng Zang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Zheng Wang
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Shuai Huang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Pierre R Fobert
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E2
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| |
Collapse
|
26
|
Miricescu A, Goslin K, Graciet E. Ubiquitylation in plants: signaling hub for the integration of environmental signals. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4511-4527. [PMID: 29726957 DOI: 10.1093/jxb/ery165] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/27/2018] [Indexed: 05/20/2023]
Abstract
A fundamental question in biology is how organisms integrate the plethora of environmental cues that they perceive to trigger a co-ordinated response. The regulation of protein stability, which is largely mediated by the ubiquitin-proteasome system in eukaryotes, plays a pivotal role in these processes. Due to their sessile lifestyle and the need to respond rapidly to a multitude of environmental factors, plants are thought to be especially dependent on proteolysis to regulate cellular processes. In this review, we present the complexity of the ubiquitin system in plants, and discuss the relevance of the proteolytic and non-proteolytic roles of this system in the regulation and co-ordination of plant responses to environmental signals. We also discuss the role of the ubiquitin system as a key regulator of plant signaling pathways. We focus more specifically on the functions of E3 ligases as regulators of the jasmonic acid (JA), salicylic acid (SA), and ethylene hormone signaling pathways that play important roles to mount a co-ordinated response to multiple environmental stresses. We also provide examples of new players in this field that appear to integrate different cues and signaling pathways.
Collapse
Affiliation(s)
- Alexandra Miricescu
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Kevin Goslin
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | | |
Collapse
|
27
|
Zhang C, Song L, Choudhary MK, Zhou B, Sun G, Broderick K, Giesler L, Zeng L. Genome-wide analysis of genes encoding core components of the ubiquitin system in soybean (Glycine max) reveals a potential role for ubiquitination in host immunity against soybean cyst nematode. BMC PLANT BIOLOGY 2018; 18:149. [PMID: 30021519 PMCID: PMC6052599 DOI: 10.1186/s12870-018-1365-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/09/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Ubiquitination is a major post-translational protein modification that regulates essentially all cellular and physiological pathways in eukaryotes. The ubiquitination process typically involves three distinct classes of enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3). To date, a comprehensive identification and analysis of core components comprising of the whole soybean (Glycine max) ubiquitin system (UBS) has not been reported. RESULTS We performed a systematic, genome-wide analysis of genes that encode core members of the soybean UBS in this study. A total of 1431 genes were identified with high confidence to encode putative soybean UBS components, including 4 genes encoding E1s, 71 genes that encode the E2s, and 1356 genes encoding the E3-related components. Among the E3-encoding genes, 760 encode RING-type E3s, 124 encode U-box domain-containing E3s, and 472 encode F-box proteins. To find out whether the identified soybean UBS genes encode active enzymes, a set of genes were randomly selected and the enzymatic activities of their recombinant proteins were tested. Thioester assays indicated proteins encoded by the soybean E1 gene GmUBA1 and the majority of selected E2 genes are active E1 or E2 enzymes, respectively. Meanwhile, most of the purified RING and U-box domain-containing proteins displayed E3 activity in the in vitro ubiquitination assay. In addition, 1034 of the identified soybean UBS genes were found to express in at least one of 14 soybean tissues examined and the transcript level of 338 soybean USB genes were significantly changed after abiotic or biotic (Fusarium oxysporum and Rhizobium strains) stress treatment. Finally, the expression level of a large number of the identified soybean UBS-related genes was found significantly altered after soybean cyst nematode (SCN) treatment, suggesting the soybean UBS potentially plays an important role in soybean immunity against SCN. CONCLUSIONS Our findings indicate the presence of a large and diverse number of core UBS proteins in the soybean genome, which suggests that target-specific modification by ubiquitin is a complex and important part of cellular and physiological regulation in soybean. We also revealed certain members of the soybean UBS may be involved in immunity against soybean cyst nematode (SCN). This study sets up an essential foundation for further functional characterization of the soybean UBS in various physiological processes, such as host immunity against SCN.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588 USA
| | - Li Song
- Department of Information Science, University of Arkansas, Little Rock, AR 72204 USA
| | - Mani Kant Choudhary
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588 USA
| | - Bangjun Zhou
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588 USA
| | - Guangchao Sun
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588 USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583 USA
| | - Kyle Broderick
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
| | - Loren Giesler
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
| | - Lirong Zeng
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588 USA
| |
Collapse
|
28
|
Zhou B, Zeng L. The Tomato U-Box Type E3 Ligase PUB13 Acts With Group III Ubiquitin E2 Enzymes to Modulate FLS2-Mediated Immune Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:615. [PMID: 29868071 PMCID: PMC5952000 DOI: 10.3389/fpls.2018.00615] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/18/2018] [Indexed: 06/01/2023]
Abstract
In Arabidopsis and rice, the ubiquitin ligase PUB13-mediated protein degradation plays a significant role in plant pattern-triggered immunity (PTI) and flowering time control. The Arabidopsis PUB13 has been shown to attenuate the pattern recognition receptor FLS2-mediated immune signaling by ubiquitinating FLS2 and consequently promoting its degradation by the 26S proteasome. Nevertheless, the cognate ubiquitin-conjugating enzymes (E2) with which PUB13 acts to modulate FLS2-mediated PTI are unknown. To address this question, we investigate here the tomato (Solanum lycopersicum) homolog of PUB13, SlPUB13 by utilizing the recently characterized complete set of tomato E2s. Of the 13 groups of tomato E2s, only members in group III are found to interact and act with SlPUB13. Knocking-down of the group III E2 genes enhances callose deposition and induction of the RbohB gene in the immunity-associated, early oxidative burst after flg22 treatment. The group III E2s are also found to work with SlPUB13 to ubiquitinate FLS2 in vitro and are required for PUB13-mediated degradation of FLS2 in vivo upon flg22 treatment, suggesting an essential role for group III E2s in the modulation of FLS2-mediated immune signaling by PUB13. Additionally, another immunity-associated E3, NtCMPG1 is shown to also work specifically with members of group III E2 in the in vitro ubiquitination assay, which implies the group III E2 enzymes may cooperate with many E3 ligases to regulate different aspects of PTI. Taken together, these data corroborate the notion that group III E2 enzymes play an important role in PTI and build a foundation for further functional and mechanistic characterization of tomato PUB13.
Collapse
|
29
|
Jue D, Sang X, Liu L, Shu B, Wang Y, Xie J, Liu C, Shi S. The Ubiquitin-Conjugating Enzyme Gene Family in Longan (Dimocarpus longan Lour.): Genome-Wide Identification and Gene Expression during Flower Induction and Abiotic Stress Responses. Molecules 2018; 23:molecules23030662. [PMID: 29543725 PMCID: PMC6017367 DOI: 10.3390/molecules23030662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin-conjugating enzymes (E2s or UBC enzymes) play vital roles in plant development and combat various biotic and abiotic stresses. Longan (Dimocarpus longan Lour.) is an important fruit tree in the subtropical region of Southeast Asia and Australia; however the characteristics of the UBC gene family in longan remain unknown. In this study, 40 D. longan UBC genes (DlUBCs), which were classified into 15 groups, were identified in the longan genome. An RNA-seq based analysis showed that DlUBCs showed distinct expression in nine longan tissues. Genome-wide RNA-seq and qRT-PCR based gene expression analysis revealed that 11 DlUBCs were up- or down-regualted in the cultivar “Sijimi” (SJ), suggesting that these genes may be important for flower induction. Finally, qRT-PCR analysis showed that the mRNA levels of 13 DlUBCs under SA (salicylic acid) treatment, seven under methyl jasmonate (MeJA) treatment, 27 under heat treatment, and 16 under cold treatment were up- or down-regulated, respectively. These results indicated that the DlUBCs may play important roles in responses to abiotic stresses. Taken together, our results provide a comprehensive insight into the organization, phylogeny, and expression patterns of the longan UBC genes, and therefore contribute to the greater understanding of their biological roles in longan.
Collapse
Affiliation(s)
- Dengwei Jue
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| | - Xuelian Sang
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| | - Liqin Liu
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| | - Bo Shu
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| | - Yicheng Wang
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| | - Jianghui Xie
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| | - Chengming Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Shengyou Shi
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| |
Collapse
|
30
|
Romero-Barrios N, Vert G. Proteasome-independent functions of lysine-63 polyubiquitination in plants. THE NEW PHYTOLOGIST 2018; 217:995-1011. [PMID: 29194634 DOI: 10.1111/nph.14915] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/12/2017] [Indexed: 05/21/2023]
Abstract
Contents Summary 995 I. Introduction 995 II. The plant Ub machinery 996 III. From Ub to Ub linkage types in plants 997 IV. Increasing analytical resolution for K63 polyUb in plants 998 V. How to build K63 polyUb chains? 998 VI. Cellular roles of K63 polyUb in plants 999 VII. Physiological roles of K63 polyUb in plants 1004 VIII. Future perspectives: towards the next level of the Ub code 1006 Acknowledgements 1006 References 1007 SUMMARY: Ubiquitination is a post-translational modification essential for the regulation of eukaryotic proteins, having an impact on protein fate, function, localization or activity. What originally appeared to be a simple system to regulate protein turnover by the 26S proteasome is now known to be the most intricate regulatory process cells have evolved. Ubiquitin can be arranged in countless chain assemblies, triggering various cellular outcomes. Polyubiquitin chains using lysine-63 from ubiquitin represent the second most abundant type of ubiquitin modification. Recent studies have exposed their common function in proteasome-independent functions in non-plant model organisms. The existence of lysine-63 polyubiquitination in plants is, however, only just emerging. In this review, we discuss the recent advances on the characterization of ubiquitin chains and the molecular mechanisms driving the formation of lysine-63-linked ubiquitin modifications. We provide an overview of the roles associated with lysine-63 polyubiquitination in plant cells in the light of what is known in non-plant models. Finally, we review the crucial roles of lysine-63 polyubiquitin-dependent processes in plant growth, development and responses to environmental conditions.
Collapse
Affiliation(s)
- Natali Romero-Barrios
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| |
Collapse
|
31
|
Immunity-Associated Programmed Cell Death as a Tool for the Identification of Genes Essential for Plant Innate Immunity. Methods Mol Biol 2018. [PMID: 29332285 DOI: 10.1007/978-1-4939-7668-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Plants have evolved a sophisticated innate immune system to contend with potential infection by various pathogens. Understanding and manipulation of key molecular mechanisms that plants use to defend against various pathogens are critical for developing novel strategies in plant disease control. In plants, resistance to attempted pathogen infection is often associated with hypersensitive response (HR), a form of rapid programmed cell death (PCD) at the site of attempted pathogen invasion. In this chapter, we describe a method for rapid identification of genes that are essential for plant innate immunity. It combines virus-induced gene silencing (VIGS), a tool that is suitable for studying gene function in high-throughput, with the utilization of immunity-associated PCD, particularly HR-linked PCD as the readout of changes in plant innate immunity. The chapter covers from the design of gene fragment for VIGS, the agroinfiltration of the Nicotiana benthamian plants, to the use of immunity-associated PCD induced by twelve elicitors as the indicator of activation of plant immunity.
Collapse
|
32
|
Zhou B, Zeng L. Conventional and unconventional ubiquitination in plant immunity. MOLECULAR PLANT PATHOLOGY 2017; 18:1313-1330. [PMID: 27925369 PMCID: PMC6638253 DOI: 10.1111/mpp.12521] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 05/16/2023]
Abstract
Ubiquitination is one of the most abundant types of protein post-translational modification (PTM) in plant cells. The importance of ubiquitination in the regulation of many aspects of plant immunity has been increasingly appreciated in recent years. Most of the studies linking ubiquitination to the plant immune system, however, have been focused on the E3 ubiquitin ligases and the conventional ubiquitination that leads to the degradation of the substrate proteins by the 26S proteasome. By contrast, our knowledge about the role of unconventional ubiquitination that often serves as non-degradative, regulatory signal remains a significant gap. We discuss, in this review, the recent advances in our understanding of ubiquitination in the modulation of plant immunity, with a particular focus on the E3 ubiquitin ligases. We approach the topic from a perspective of two broadly defined types of ubiquitination in an attempt to highlight the importance, yet current scarcity, in our knowledge about the regulation of plant immunity by unconventional ubiquitination.
Collapse
Affiliation(s)
- Bangjun Zhou
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
| | - Lirong Zeng
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
- Southern Regional Collaborative Innovation Center for Grain and Oil CropsHunan Agricultural UniversityChangsha410128China
| |
Collapse
|
33
|
Gao Y, Wang Y, Xin H, Li S, Liang Z. Involvement of Ubiquitin-Conjugating Enzyme (E2 Gene Family) in Ripening Process and Response to Cold and Heat Stress of Vitis vinifera. Sci Rep 2017; 7:13290. [PMID: 29038452 PMCID: PMC5643510 DOI: 10.1038/s41598-017-13513-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/25/2017] [Indexed: 12/03/2022] Open
Abstract
Ubiquitin-conjugating (UBC) E2 enzyme plays crucial roles in plant growth and development. Limited information can describe the function of UBC enzyme E2 in grapes. A total of 43 UBC enzyme E2 genes with conserved UBC domain were identified in grapes. These genes were divided into five groups based on phylogenetic tree with tomatoes. Sequence analyses indicated that VvUBCs in the same group possessed similar gene structures and conserved motifs. Gene distribution in chromosomes was uneven, and gene duplication existed in 36 VvUBCs. Transcriptome and qRT-PCR analysis indicated that most VvUBCs are involved in ripening and post-harvest stage, and feature functional roles in grape organs. According to the transcriptome and qRT-PCR results, seven and six VvUBCs in grape responded to cold and heat stress, respectively, whereas no remarkable VvUBCs change was noted under salt or water-deficit stress. This study provides new insights to physiological and developmental roles of these enzymes and regulation mechanism of E2 genes in grapes.
Collapse
Affiliation(s)
- Yingying Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, PR China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, PR China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, PR China.
| |
Collapse
|
34
|
Sharma B, Bhatt TK. Genome-wide identification and expression analysis of E2 ubiquitin-conjugating enzymes in tomato. Sci Rep 2017; 7:8613. [PMID: 28819320 PMCID: PMC5561181 DOI: 10.1038/s41598-017-09121-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/14/2017] [Indexed: 11/27/2022] Open
Abstract
The ubiquitin-proteasomal degradation mechanism has gained the attention over the past decade. The E2 ubiquitin conjugating enzymes are the crucial part of ubiquitination mechanism and they are believed to hold imperative association for plant development. It accepts ubiquitin from the E1 enzyme and interacts with the E3 ligase to transfer ubiquitin or directly transfers ubiquitin to the substrate. The functional aspects of E2 ubiquitin enzymes in plant systems are unclear. Tomato is being used as a model plant and rarely explored to study E2 ubiquitin enzyme. We have utilized in-silico methods to analyze E2 enzymes in Solanum lycopersicum and 59 genes were identified with UBC family domains. The physio-chemical properties, chromosomal localization, structural organization, gene duplication, promoter analysis, gene ontology and conserved motifs were investigated along with phylogenetic analysis of tomato E2 genes exploring evolutionary relations. The gene expression analysis of RNA sequencing data revealed expression profile of tomato E2 genes in seedling, root, leaf, seed, fruit, and flower tissues. Our study aid in the understanding of distribution, expansion, evolutionary relation and probable participation in plant biological processes of tomato E2 enzymes that will facilitate strong base for future research on ubiquitin-mediated regulations in tomato and other plant systems.
Collapse
Affiliation(s)
- Bhaskar Sharma
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
| |
Collapse
|
35
|
Zhou B, Zeng L. Elucidating the role of highly homologous Nicotiana benthamiana ubiquitin E2 gene family members in plant immunity through an improved virus-induced gene silencing approach. PLANT METHODS 2017; 13:59. [PMID: 28736574 PMCID: PMC5521103 DOI: 10.1186/s13007-017-0210-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/17/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Virus-induced gene silencing (VIGS) has been used in many plant species as an attractive post transcriptional gene silencing (PTGS) method for studying gene function either individually or at large-scale in a high-throughput manner. However, the specificity and efficiency for knocking down members of a highly homologous gene family have remained to date a significant challenge in VIGS due to silencing of off-targets. RESULTS Here we present an improved method for the selection and evaluation of gene fragments used for VIGS to specifically and efficiently knock down members of a highly homologous gene family. Using this method, we knocked down twelve and four members, respectively of group III of the gene family encoding ubiquitin-conjugating enzymes (E2) in Nicotiana benthamiana. Assays using these VIGS-treated plants revealed that the group III E2s are essential for plant development, plant immunity-associated reactive oxygen species (ROS) production, expression of the gene NbRbohB that is required for ROS production, and suppression of immunity-associated programmed cell death (PCD) by AvrPtoB, an effector protein of the bacterial pathogen Pseudomons syringae. Moreover, functional redundancy for plant development and ROS production was found to exist among members of group III E2s. CONCLUSIONS We have found that employment of a gene fragment as short as approximately 70 base pairs (bp) that contains at least three mismatched nucleotides to other genes within any 21-bp sequences prevents silencing of off-target(s) in VIGS. This improved approach in the selection and evaluation of gene fragments allows for specific and efficient knocking down of highly homologous members of a gene family. Using this approach, we implicated N. benthamiana group III E2s in plant development, immunity-associated ROS production, and suppression of multiple immunity-associated PCD by AvrPtoB. We also unraveled functional redundancy among group III members in their requirement for plant development and plant immunity-associated ROS production.
Collapse
Affiliation(s)
- Bangjun Zhou
- Center for Plant Science Innovation, Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
| | - Lirong Zeng
- Center for Plant Science Innovation, Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583 USA
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
36
|
Wang Q, Zang Y, Zhou X, Xiao W. Characterization of four rice UEV1 genes required for Lys63-linked polyubiquitination and distinct functions. BMC PLANT BIOLOGY 2017; 17:126. [PMID: 28716105 PMCID: PMC5513143 DOI: 10.1186/s12870-017-1073-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/03/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND The error-free branch of the DNA-damage tolerance (DDT) pathway is orchestrated by Lys63-linked polyubiquitination of proliferating cell nuclear antigen (PCNA), and this polyubiquitination is mediated by a Ubc13-Uev complex in yeast. We have previously cloned OsUBC13 from rice, whose product functions as an E2 to promote Lys63-linked ubiquitin chain assembly in the presence of yeast or human Uev. RESULTS Here we identify four highly conserved UEV1 genes in rice whose products are able to form stable heterodimers with OsUbc13 and mediate Lys63-linked ubiquitin chain assembly. Expression of OsUEV1s is able to rescue the yeast mms2 mutant from death caused by DNA-damaging agents. Interestingly, OsUev1A contains a unique C-terminal tail with a conserved prenylation site not found in the other three OsUev1s, and this post-translational modification appears to be required for its unique subcellular distribution and association with the membrane. The analysis of OsUEV1 expression profiles obtained from the Genevestigator database indicates that these genes are differentially regulated. CONCLUSIONS We speculate that different OsUev1s play distinct roles by serving as a regulatory subunit of the Ubc13-Uev1 complex to respond to diverse cellular, developmental and environmental signals.
Collapse
Affiliation(s)
- Qian Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuepeng Zang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xuan Zhou
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
37
|
Li X, Hasegawa Y, Lu Y, Sato T. Ubiquitin related enzymes and plant-specific ubiquitin ligase ATL family in tomato plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2017; 34:71-78. [PMID: 31275011 PMCID: PMC6543760 DOI: 10.5511/plantbiotechnology.17.0306a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/06/2017] [Indexed: 05/28/2023]
Abstract
Ubiquitination is one of the fundamental post-translational modifications of proteins with ubiquitin, a conserved 76-amino acid protein present in eukaryotes, which is catalyzed by ubiquitin ligase. Compared with humans, the number of ubiquitin ligase genes is nearly double in plant species such as Arabidopsis and rice, suggesting that this enzyme plays critical roles in many aspects of plant growth, including development and abiotic and biotic environmental stress responses. In addition to its fundamental activities in eukaryotic cells, ubiquitin signaling mediates plant specific cellular functions, including phytohormone response, seed and fruit development, and biotic and abiotic stress responses. The ATL family is a RING-H2 type ubiquitin ligase widely conserved in plant species. We previously showed that the plant specific ubiquitin ligase ATL31 regulates the carbon/nitrogen-nutrient response and pathogen resistance in Arabidopsis, and we identified and characterized the basic biochemical function of an ATL31 homologue in tomato plants (Solanum lycopersicum L.). This protein, called SlATL31, may act as a ubiquitin ligase in tomato fruit. The tomato is a major crop plant and a model system for fleshy fruit development. This review provides an overview of the ubiquitin ligases and related enzymes, and highlights the ubiquitin ligase ATL family in tomato plants.
Collapse
Affiliation(s)
- Xingwen Li
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yoko Hasegawa
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yu Lu
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Takeo Sato
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
38
|
Wang J, Yu H, Xiong G, Lu Z, Jiao Y, Meng X, Liu G, Chen X, Wang Y, Li J. Tissue-Specific Ubiquitination by IPA1 INTERACTING PROTEIN1 Modulates IPA1 Protein Levels to Regulate Plant Architecture in Rice. THE PLANT CELL 2017; 29:697-707. [PMID: 28298520 PMCID: PMC5435429 DOI: 10.1105/tpc.16.00879] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 03/09/2017] [Indexed: 05/02/2023]
Abstract
Plant architecture, a collection of genetically controlled agronomic traits, is one of the decisive factors that determine grain production. IDEAL PLANT ARCHITECTURE1 (IPA1) encodes a key transcription factor with pleiotropic effects on regulating plant architecture in rice (Oryza sativa), and IPA1 expression is controlled at the posttranscriptional level by microRNA156 and microRNA529. Here, we report the identification and characterization of IPA1 INTERACTING PROTEIN1 (IPI1), a RING-finger E3 ligase that can interact with IPA1 in the nucleus. IPI1 promotes the degradation of IPA1 in panicles, while it stabilizes IPA1 in shoot apexes. Consistent with these findings, the ipi1 loss-of-function mutants showed markedly altered plant architecture, including more tillers, enlarged panicles, and increased yield per plant. Moreover, IPI1 could ubiquitinate the IPA1-mediated complex with different polyubiquitin chains, adding K48-linked polyubiquitin chains in panicles and K63-linked polyubiquitin chains in the shoot apex. These results demonstrate that IPI1 affects plant architecture through precisely tuning IPA1 protein levels in different tissues in rice and provide new insight into the tissue-specific regulation of plant architecture and important genetic resources for molecular breeding.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Rice Research Institute, Sichuan Agricultural University, Sichuan 611130, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosheng Xiong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zefu Lu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongqing Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuewei Chen
- Rice Research Institute, Sichuan Agricultural University, Sichuan 611130, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Zhou B, Mural RV, Chen X, Oates ME, Connor RA, Martin GB, Gough J, Zeng L. A Subset of Ubiquitin-Conjugating Enzymes Is Essential for Plant Immunity. PLANT PHYSIOLOGY 2017; 173:1371-1390. [PMID: 27909045 PMCID: PMC5291023 DOI: 10.1104/pp.16.01190] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/28/2016] [Indexed: 05/06/2023]
Abstract
Of the three classes of enzymes involved in ubiquitination, ubiquitin-conjugating enzymes (E2) have been often incorrectly considered to play merely an auxiliary role in the process, and few E2 enzymes have been investigated in plants. To reveal the role of E2 in plant innate immunity, we identified and cloned 40 tomato genes encoding ubiquitin E2 proteins. Thioester assays indicated that the majority of the genes encode enzymatically active E2. Phylogenetic analysis classified the 40 tomato E2 enzymes into 13 groups, of which members of group III were found to interact and act specifically with AvrPtoB, a Pseudomonas syringae pv tomato effector that uses its ubiquitin ligase (E3) activity to suppress host immunity. Knocking down the expression of group III E2 genes in Nicotiana benthamiana diminished the AvrPtoB-promoted degradation of the Fen kinase and the AvrPtoB suppression of host immunity-associated programmed cell death. Importantly, silencing group III E2 genes also resulted in reduced pattern-triggered immunity (PTI). By contrast, programmed cell death induced by several effector-triggered immunity elicitors was not affected on group III-silenced plants. Functional characterization suggested redundancy among group III members for their role in the suppression of plant immunity by AvrPtoB and in PTI and identified UBIQUITIN-CONJUGATING11 (UBC11), UBC28, UBC29, UBC39, and UBC40 as playing a more significant role in PTI than other group III members. Our work builds a foundation for the further characterization of E2s in plant immunity and reveals that AvrPtoB has evolved a strategy for suppressing host immunity that is difficult for the plant to thwart.
Collapse
Affiliation(s)
- Bangjun Zhou
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Ravi V Mural
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Xuanyang Chen
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Matt E Oates
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Richard A Connor
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Gregory B Martin
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Julian Gough
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.)
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.)
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.)
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| | - Lirong Zeng
- Plant Science Innovation Center and Plant Pathology Department, University of Nebraska, Lincoln, Nebraska 68583 (B.Z., L.Z.);
- Biology Department, University of Arkansas, Little Rock, Arkansas 72204 (B.Z., R.V.M., X.C., R.A.C., L.Z.);
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom (M.E.O., J.G.);
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (G.B.M.); and
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha 410128, China (L.Z.)
| |
Collapse
|
40
|
Cheng MC, Kuo WC, Wang YM, Chen HY, Lin TP. UBC18 mediates ERF1 degradation under light-dark cycles. THE NEW PHYTOLOGIST 2017; 213:1156-1167. [PMID: 27787902 DOI: 10.1111/nph.14272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/11/2016] [Indexed: 05/05/2023]
Abstract
Ethylene Response Factor 1 (ERF1) plays a crucial role in biotic and abiotic stress responses. Previous studies have shown that ERF1 regulates stress-responsive gene expression by binding to different cis-acting elements in response to various stress signals. ERF1 was also reported to be unstable in the dark, and it regulates hypocotyl elongation. Here, we elucidated the mechanism underlying degradation of ERF1. Yeast two-hybrid screening showed that UBIQUITIN-CONJUGATING ENZYME 18 (UBC18) interacted with ERF1. The interaction between ERF1 and UBC18 was verified using pull-down assays and coimmunoprecipitation analyses. We then compared the ERF1 protein abundance in the UBC18 mutant and overexpression plants. Based on the results of protein degradation and in vivo ubiquitination assays, we proposed that UBC18 mediates ERF1 ubiquitination and degradation. ERF1 was more stable in UBC18 mutants and less stable in UBC18 overexpression lines compared with that in wild-type plants. ERF1 was degraded by the 26S proteasome system via regulation of UBC18 and promotes dark-repression of downstream genes and proline accumulation. UBC18 negatively regulated drought and salt stress responses by altering the abundance of ERF1 and the expression of genes downstream of ERF1.
Collapse
Affiliation(s)
- Mei-Chun Cheng
- Institute of Plant Biology, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 10617, Taiwan
| | - Wen-Chieh Kuo
- Institute of Plant Biology, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 10617, Taiwan
| | - Yi-Ming Wang
- Institute of Plant Biology, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 10617, Taiwan
| | - Hsing-Yu Chen
- Institute of Plant Biology, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 10617, Taiwan
| | - Tsan-Piao Lin
- Institute of Plant Biology, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 10617, Taiwan
| |
Collapse
|
41
|
Large-scale rewiring of innate immunity circuitry and microRNA regulation during initial rice blast infection. Sci Rep 2016; 6:25493. [PMID: 27150822 PMCID: PMC4858701 DOI: 10.1038/srep25493] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/19/2016] [Indexed: 12/12/2022] Open
Abstract
Rice blast is a recurrent fungal disease, and resistance to fungal infection is a complex trait. Therefore, a comprehensive examination of rice transcriptome and its variation during fungal infection is necessary to understand the complex gene regulatory networks. In this study, adopting Next-Generation Sequencing we profiled the transcriptomes and microRNAomes of rice varieties, one susceptible and the other resistant to M. oryzae, at multiple time points during the fungal infection. Our results revealed a substantial variation in the plant transcriptome and microRNAome as well as change to rice innate immunity during fungal infection. A number of putative R gene candidates were identified from a perturbed rice transcriptome analysis. The expression of genes and non-coding RNA molecules changed in both fungal resistant and susceptible plants during M. oryzae invasion discovered distinct pathways triggered in the susceptible and resistant plants. In addition, a number of fungus genes in the susceptible and resistant plants were constantly expressed at different time points, suggesting that they were likely to be the potential AVR genes. Our results revealed large-scale rewiring of innate immunity circuitry and microRNA regulation during initial rice blast infection, which would help to develop more robust blast-resistant rice plants.
Collapse
|
42
|
Wang S, Cao L, Wang H. Arabidopsis ubiquitin-conjugating enzyme UBC22 is required for female gametophyte development and likely involved in Lys11-linked ubiquitination. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3277-88. [PMID: 27069118 PMCID: PMC4892721 DOI: 10.1093/jxb/erw142] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Protein ubiquitination is critical for numerous processes in eukaryotes. The ubiquitin-conjugating enzyme (E2) is required for ubiquitination. The Arabidopsis genome has approximately 37 E2 genes, but in vivo functions for most of them remain unknown. In this study we observed that knockout mutants of Arabidopsis UBC22 had much-reduced silique length and seed number, with nearly 90% of ovules aborted. Analyses revealed that the majority of mutant embryo sacs displayed severe defects and often contained no gamete nuclei. There was no difference between mutant and wild-type Arabidopsis at the megaspore mother cell stage; however, the functional megaspore was either not present or appeared abnormal in a large portion of mutant ovules, suggesting that the defect started with functional megaspore degeneration in the mutants. Degeneration continued during megagametogenesis, such that the percentage of mature embryo sacs without any gamete nuclei was much greater than the percentage of developing ovules without a functional megaspore and, in addition, various abnormalities in megagametogenesis were observed. Additionally, heterozygous plants had only 13.1% of ovules aborted, indicating that the heterozygous sporophytic tissues could affect the development of the mutant female gametophyte. UBC22 is the sole member of an Arabidopsis E2 subfamily, and is more closely related to one type of E2s in animals that catalyzes Lys11-specific ubiquitination. Indeed, our results showed that Arabidopsis UBC22 could catalyze ubiquitin dimer formation in vitro in a Lys11-dependent manner, suggesting that it likely catalyzes Lys11-linked ubiquitination in plants. This study has thus identified one biochemical property of UBC22 and revealed a novel function in female gametophyte development.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ling Cao
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
43
|
Dong C, Hu H, Jue D, Zhao Q, Chen H, Xie J, Jia L. The banana E2 gene family: Genomic identification, characterization, expression profiling analysis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 245:11-24. [PMID: 26940488 DOI: 10.1016/j.plantsci.2016.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/23/2015] [Accepted: 01/13/2016] [Indexed: 05/06/2023]
Abstract
The E2 is at the center of a cascade of Ub1 transfers, and it links activation of the Ub1 by E1 to its eventual E3-catalyzed attachment to substrate. Although the genome-wide analysis of this family has been performed in some species, little is known about analysis of E2 genes in banana. In this study, 74 E2 genes of banana were identified and phylogenetically clustered into thirteen subgroups. The predicted banana E2 genes were distributed across all 11 chromosomes at different densities. Additionally, the E2 domain, gene structure and motif compositions were analyzed. The expression of all of the banana E2 genes was analyzed in the root, stem, leaf, flower organs, five stages of fruit development and under abiotic stresses. All of the banana E2 genes, with the exception of few genes in each group, were expressed in at least one of the organs and fruit developments, which indicated that the E2 genes might involve in various aspects of the physiological and developmental processes of the banana. Quantitative RT-PCR (qRT-PCR) analysis identified that 45 E2s under drought and 33 E2s under salt were induced. To the best of our knowledge, this report describes the first genome-wide analysis of the banana E2 gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family.
Collapse
Affiliation(s)
- Chen Dong
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
| | - Huigang Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
| | - Dengwei Jue
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
| | - Qiufang Zhao
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
| | - Hongliang Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
| | - Jianghui Xie
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
| | - Liqiang Jia
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China.
| |
Collapse
|
44
|
Guo H, Wen R, Liu Z, Datla R, Xiao W. Molecular Cloning and Functional Characterization of Two Brachypodium distachyon UBC13 Genes Whose Products Promote K63-Linked Polyubiquitination. FRONTIERS IN PLANT SCIENCE 2016; 6:1222. [PMID: 26779244 PMCID: PMC4703986 DOI: 10.3389/fpls.2015.01222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/18/2015] [Indexed: 05/24/2023]
Abstract
Living organisms are constantly subject to DNA damage from environmental sources. Due to the sessile nature of plants, UV irradiation is a major genotoxic agent and imposes a significant threat on plant survival, genome stability and crop yield. In addition, other environmental chemicals can also influence the stability of the plant genome. Eukaryotic organisms have evolved a mechanism to cope with replication-blocking lesions and stabilize the genome. This mechanism is known as error-free DNA damage tolerance, and is mediated by K63-linked PCNA polyubiquitination. Genes related to K63-linked polyubiquitination have been isolated recently from model plants like Arabidopsis and rice, but we are unaware of such reports on the crop model Brachypodium distachyon. Here, we report the identification and functional characterization of two B. distachyon UBC13 genes. Both Ubc13s form heterodimers with Uevs from other species, which are capable of catalyzing K63 polyubiquitination in vitro. Both genes can functionally rescue the yeast ubc13 null mutant from killing by DNA-damaging agents. These results suggest that Ubc13-Uev-promoted K63-linked polyubiquitination is highly conserved in eukaryotes including B. distachyon. Consistent with recent findings that K63-linked polyubiquitination is involved in several developmental and stress-responsive pathways, the expression of BdUbc13s appears to be constitutive and is regulated by abnormal temperatures.
Collapse
Affiliation(s)
- Huiping Guo
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Rui Wen
- National Research Council CanadaSaskatoon, SK, Canada
| | - Zhi Liu
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Raju Datla
- National Research Council CanadaSaskatoon, SK, Canada
| | - Wei Xiao
- College of Life Sciences, Capital Normal UniversityBeijing, China
- Department of Microbiology and Immunology, University of SaskatchewanSaskatoon, SK, Canada
| |
Collapse
|
45
|
Guo H, Wen R, Wang Q, Datla R, Xiao W. Three Brachypodium distachyon Uev1s Promote Ubc13-Mediated Lys63-Linked Polyubiquitination and Confer Different Functions. FRONTIERS IN PLANT SCIENCE 2016; 7:1551. [PMID: 27803708 PMCID: PMC5067413 DOI: 10.3389/fpls.2016.01551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/03/2016] [Indexed: 05/08/2023]
Abstract
In this study, we report the identification and functional characterization of three Brachypodium distachyon UEV genes. All three BdUev1s form heterodimers with BdUbc13s, which are capable of catalyzing Lys63-linked polyubiquitination in vitro. The three BdUEV1 genes are also able to functionally complement the budding yeast mms2 mutant defective in DNA-damage tolerance. BdUev1A differs from the other two BdUev1s in that it contains an 18-amino acid tail, which appears to compromise its function in yeast, as deletion of this tail restores full function. BdUev1A is excluded from the nucleus, whereas BdUev1B, BdUev1C and the C-terminally truncated BdUev1A are mainly found in the nucleus. These and the BdUEV1 gene expression analysis allow us to speculate that although all three BdUev1s function by promoting Lys63-linked polyubiquitination, BdUev1B and BdUev1C are involved in DNA-damage response and possibly other nuclear functions, while BdUev1A is required for non-nuclear function(s).
Collapse
Affiliation(s)
- Huiping Guo
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Rui Wen
- National Research Council Canada, SaskatoonSK, Canada
| | - Qianqian Wang
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Raju Datla
- National Research Council Canada, SaskatoonSK, Canada
| | - Wei Xiao
- College of Life Sciences, Capital Normal UniversityBeijing, China
- Department of Microbiology and Immunology, University of Saskatchewan, SaskatoonSK, Canada
- *Correspondence: Wei Xiao,
| |
Collapse
|
46
|
Kothari KS, Dansana PK, Giri J, Tyagi AK. Rice Stress Associated Protein 1 (OsSAP1) Interacts with Aminotransferase (OsAMTR1) and Pathogenesis-Related 1a Protein (OsSCP) and Regulates Abiotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2016; 7:1057. [PMID: 27486471 PMCID: PMC4949214 DOI: 10.3389/fpls.2016.01057] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/06/2016] [Indexed: 05/19/2023]
Abstract
Stress associated proteins (SAPs) are the A20/AN1 zinc-finger containing proteins which can regulate the stress signaling in plants. The rice SAP protein, OsSAP1 has been shown to confer abiotic stress tolerance to plants, when overexpressed, by modulating the expression of endogenous stress-related genes. To further understand the mechanism of OsSAP1-mediated stress signaling, OsSAP1 interacting proteins were identified using yeast two-hybrid analysis. Two novel proteins, aminotransferase (OsAMTR1) and a SCP/TAPS or pathogenesis-related 1 class of protein (OsSCP) were found to interact with OsSAP1. The genes encoding OsAMTR1 and OsSCP were stress-responsive and showed higher expression upon abiotic stress treatments. The role of OsAMTR1 and OsSCP under stress was analyzed by overexpressing them constitutively in Arabidopsis and responses of transgenic plants were assessed under salt and water-deficit stress. The OsAMTR1 and OsSCP overexpressing plants showed higher seed germination, root growth and fresh weight than wild-type plants under stress conditions. Overexpression of OsAMTR1 and OsSCP affected the expression of many known stress-responsive genes which were not affected by the overexpression of OsSAP1. Moreover, the transcript levels of OsSCP and OsAMTR1 were also unaffected by the overexpression of OsSAP1. Hence, it was concluded that OsSAP1 regulates the stress responsive signaling by interacting with these proteins which further regulate the downstream stress responsive gene expression.
Collapse
Affiliation(s)
| | - Prasant K. Dansana
- Department of Plant Molecular Biology, University of Delhi South Campus, New DelhiIndia
| | - Jitender Giri
- National Institute of Plant Genome Research, New DelhiIndia
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research, New DelhiIndia
- Department of Plant Molecular Biology, University of Delhi South Campus, New DelhiIndia
- *Correspondence: Akhilesh K. Tyagi,
| |
Collapse
|
47
|
Jue D, Sang X, Lu S, Dong C, Zhao Q, Chen H, Jia L. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize. PLoS One 2015; 10:e0143488. [PMID: 26606743 PMCID: PMC4659669 DOI: 10.1371/journal.pone.0143488] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). METHODOLOGY/PRINCIPAL FINDINGS In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. CONCLUSIONS Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize.
Collapse
Affiliation(s)
- Dengwei Jue
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Xuelian Sang
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Shengqiao Lu
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530227, China
| | - Chen Dong
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Qiufang Zhao
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Hongliang Chen
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Liqiang Jia
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| |
Collapse
|
48
|
Wen R, Wang S, Xiang D, Venglat P, Shi X, Zang Y, Datla R, Xiao W, Wang H. UBC13, an E2 enzyme for Lys63-linked ubiquitination, functions in root development by affecting auxin signaling and Aux/IAA protein stability. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:424-36. [PMID: 25142088 DOI: 10.1111/tpj.12644] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 07/21/2014] [Accepted: 08/12/2014] [Indexed: 05/21/2023]
Abstract
Unlike conventional lysine (K) 48-linked polyubiquitination, K63-linked polyubiquitination plays signaling roles in yeast and animals. Thus far, UBC13 is the only known ubiquitin-conjugating enzyme (E2) specialized in K63-linked polyubiquitination. Previous identification of Arabidopsis genes encoding UBC13 as well as its interacting partner UEV1 indicates that the UBC13-mediated ubiquitination pathway is conserved in plants; however, little is known about functions and signaling mediated through K63-linked polyubiquitination in plants. To address the functions of UBC13-mediated ubiquitination in plants, we created Arabidopsis ubc13 null mutant lines in which the two UBC13 genes were disrupted. The double mutant displayed altered root development, including shorter primary root, fewer lateral roots and only a few short root hairs in comparison with the wild type and single mutant plants, indicating that UBC13 activity is critical for all major aspects of root development. The double mutant plants were insensitive to auxin treatments, suggesting that the strong root phenotypes do not simply result from a reduced level of auxin. Instead, the ubc13 mutant had a reduced auxin response, as indicated by the expression of an auxin-responsive DR5 promoter-GFP. Furthermore, both the enzymatic activity and protein level of an AXR3/IAA17-GUS reporter were greatly increased in the ubc13 mutant, whereas the induction of many auxin-responsive genes was suppressed. Collectively, these results suggest that Aux/IAA proteins accumulate in the ubc13 mutant, resulting in a reduced auxin response and defective root development. Hence, this study provides possible mechanistic links between UBC13-mediated protein ubiquitination, root development and auxin signaling.
Collapse
Affiliation(s)
- Rui Wen
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5; Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tomanov K, Luschnig C, Bachmair A. Ubiquitin Lys 63 chains - second-most abundant, but poorly understood in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:15. [PMID: 24550925 PMCID: PMC3907715 DOI: 10.3389/fpls.2014.00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/14/2014] [Indexed: 05/20/2023]
Abstract
Covalent attachment of the small modifier ubiquitin to Lys ε-amino groups of proteins is surprisingly diverse. Once attached to a substrate, ubiquitin is itself frequently modified by ubiquitin, to form chains. All seven Lys residues of ubiquitin, as well as its N-terminal Met, can be ubiquitylated, implying cellular occurrence of different ubiquitin chain types. The available data suggest that the synthesis, recognition, and hydrolysis of different chain types are precisely regulated. This remarkable extent of control underlies a versatile cellular response to substrate ubiquitylation. In this review, we focus on roles of Lys63-linked ubiquitin chains in plants. Despite limited available knowledge, several recent findings illustrate the importance of these chains as signaling components in plants.
Collapse
Affiliation(s)
- Konstantin Tomanov
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Center for Molecular Biology, University of ViennaVienna, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Andreas Bachmair
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Center for Molecular Biology, University of ViennaVienna, Austria
| |
Collapse
|
50
|
Duplan V, Rivas S. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity. FRONTIERS IN PLANT SCIENCE 2014; 5:42. [PMID: 24592270 PMCID: PMC3923142 DOI: 10.3389/fpls.2014.00042] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/28/2014] [Indexed: 05/19/2023]
Abstract
Reversible protein ubiquitination plays a crucial role during the regulation of plant immune signaling. E3 ubiquitin (Ub)-ligase enzymes, which are classified into different families depending on their structural and functional features, confer the specificity of substrate and are the best characterized components of the ubiquitination cascade. E3 Ub-ligases of different families have been shown to be involved in all steps of plant immune responses. Indeed, they have been involved in the first steps of pathogen perception, as they appear to modulate perception of pathogen-associated molecular patterns by pattern-recognition receptors at the plasma membrane and to regulate the accumulation of nucleotide-binding leucine-rich repeat-type intracellular immune receptors. In addition, E3 Ub-ligase proteins are also involved in the regulation of the signaling responses downstream of pathogen perception through targeting vesicle trafficking components or nuclear transcription factors, for instance. Finally, we also discuss the case of microbial effector proteins that are able to target host E3 Ub-ligases, or to act themselves as E3 Ub-ligases, in their attempt to subvert the host proteasome to promote disease.
Collapse
Affiliation(s)
- Vincent Duplan
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594Castanet-Tolosan, France
| | - Susana Rivas
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594Castanet-Tolosan, France
- *Correspondence: Susana Rivas, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR CNRS/INRA 2594/441, 24 Chemin de Borde Rouge-Auzeville, CS 52627, 31326 Castanet-Tolosan cedex, France e-mail:
| |
Collapse
|