1
|
Yang Z, Gong R, Mimata Y, Ye S, Ji W, Ye W. Malate inhibits light-induced stomatal opening through SLAC1- and G-proteins mediated pathway in grapevine and Arabidopsis. Biosci Biotechnol Biochem 2025; 89:693-703. [PMID: 39890606 DOI: 10.1093/bbb/zbaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
A key tricarboxylic acid (TCA) cycle metabolite, malate, accumulates in leaves during dehydration and induces stomatal closure by recruiting cytosolic Ca2+, activating SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1), and promoting reactive oxygen species (ROS). However, the effects of malate on stomatal opening and its underlying molecular mechanisms remain poorly understood. Our study revealed that, among TCA cycle metabolites, malate specifically inhibited light-induced stomatal opening in both grapevine and Arabidopsis. We demonstrated that SLAC1 was required for malate's inhibitory effects. The inhibition by malate was disrupted by Ca2+ signaling inhibitors. Additionally, the malate signal was mediated by G-proteins, which regulate the production of second messengers. ROS production was abolished when G-proteins were inhibited. These findings show that malate efficiently maintains stomatal closure by not only inducing stomatal closure but also inhibiting stomatal opening. The inhibition of stomatal opening by malate is mediated through the activation of SLAC1 and the G-protein signaling cascade.
Collapse
Affiliation(s)
- Zhongyi Yang
- Shanxi Agricultural University, College of Horticulture, Jinzhong, Shanxi, China
| | - Ruhai Gong
- Shanxi Agricultural University, College of Horticulture, Jinzhong, Shanxi, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang Key Laboratory of Grapevine Improvement and Utilization, Weifang, Shandong, China
| | - Yoshiharu Mimata
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang Key Laboratory of Grapevine Improvement and Utilization, Weifang, Shandong, China
| | - Shaosong Ye
- Shanxi Agricultural University, College of Horticulture, Jinzhong, Shanxi, China
| | - Wei Ji
- Shanxi Agricultural University, College of Horticulture, Jinzhong, Shanxi, China
| | - Wenxiu Ye
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang Key Laboratory of Grapevine Improvement and Utilization, Weifang, Shandong, China
| |
Collapse
|
2
|
Zhang Y, Zhao Y, Hou X, Zhang C, Wang Z, Zhang J, Liu X, Shi X, Duan W, Xiao K. Wheat TaPYL9-involved signalling pathway impacts plant drought response through regulating distinct osmotic stress-associated physiological indices. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:352-373. [PMID: 39488840 PMCID: PMC11772342 DOI: 10.1111/pbi.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 06/01/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
The abscisic acid (ABA) signalling pathway plays a crucial role in plants' response to drought stress. In this study, we aimed to characterize the impact of an ABA signalling module, which consisted of TaPYL9 and its downstream partners in Triticum aestivum, on plant drought adaptation. Our results showed that TaPYL9 protein contains conserved motifs and targets plasma membrane and nucleus after being sorted by the endoplasmic reticulum. In addition, TaPYL9 transcripts in both roots and leaves were significantly upregulated in response to drought stress. We conducted glucuronidase (GUS) histochemical staining analysis for transgenic plants carrying a truncated TaPYL9 promoter, which suggested that cis-elements associate with ABA and drought response, such as ABRE, DRE and recognition sites MYB and MYC, regulating the gene transcription under drought conditions. Using protein interaction assays (i.e., yeast two-hybrid, bimolecular fluorescence complementation (BiFC), co-immunoprecipitation (Co-IP) and in vitro pull-down), we demonstrated interactions between the intermediate segment of TaPYL9, the intermediate segment of TaPP2C6, the N-terminus of TaSnRK2.8 and the C-terminus of the transcription factor TabZIP1 in wheat, indicating the involvement of TaPYL9 in the constitution of an ABA signalling module, namely TaPYL9/TaPP2C6/TaSnRK2.8/TabZIP1. Transgene analysis revealed that TaPYL9, TaSnRK2.8 and TabZIP1 positively regulated drought response, while TaPP2C6 negatively regulated it, and that these genes were closely associated with the regulation of stomata movement, osmolyte accumulation and ROS homeostasis. Electrophoretic mobility shift (EMSA) and transcriptioal activation assays indicated that TabZIP1 interacted promoters of TaP5CS2, TaSLAC1-1 and TaCAT2 and activated transcription of these genes, which regulated proline biosynthesis, stomata movement and ROS scavenging upon drought signalling, respectively. Furthermore, we found that the transcripts of TaPYL9 and stress-responsive genes were positively correlated with yields in wheat cultivars under field drought conditions. Altogether, our findings suggest that the TaPYL9-involved signalling pathway significantly regulates drought response by modulating osmotic stress-associated physiological processes in T. aestivum.
Collapse
Affiliation(s)
- Yanyang Zhang
- State Key Laboratory of North China Crop Improvement and RegulationBaodingHebeiChina
- College of AgronomyAgricultural University of HebeiBaodingHebeiChina
| | - Yingjia Zhao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingHebeiChina
- College of AgronomyAgricultural University of HebeiBaodingHebeiChina
- Hebei Key Laboratory of Crop Cultivation Physiology and Green ProductionInstitute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry SciencesShijiazhuangHebeiChina
| | - Xiaoyang Hou
- State Key Laboratory of North China Crop Improvement and RegulationBaodingHebeiChina
- College of AgronomyAgricultural University of HebeiBaodingHebeiChina
| | - Chunlin Zhang
- State Key Laboratory of North China Crop Improvement and RegulationBaodingHebeiChina
- College of AgronomyAgricultural University of HebeiBaodingHebeiChina
| | - Ziyi Wang
- State Key Laboratory of North China Crop Improvement and RegulationBaodingHebeiChina
- College of AgronomyAgricultural University of HebeiBaodingHebeiChina
| | - Jiaqi Zhang
- State Key Laboratory of North China Crop Improvement and RegulationBaodingHebeiChina
- College of AgronomyAgricultural University of HebeiBaodingHebeiChina
| | - Xianchang Liu
- State Key Laboratory of North China Crop Improvement and RegulationBaodingHebeiChina
- College of AgronomyAgricultural University of HebeiBaodingHebeiChina
| | - Xinxin Shi
- State Key Laboratory of North China Crop Improvement and RegulationBaodingHebeiChina
- College of AgronomyAgricultural University of HebeiBaodingHebeiChina
| | - Wanrong Duan
- State Key Laboratory of North China Crop Improvement and RegulationBaodingHebeiChina
- College of AgronomyAgricultural University of HebeiBaodingHebeiChina
| | - Kai Xiao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingHebeiChina
- College of AgronomyAgricultural University of HebeiBaodingHebeiChina
| |
Collapse
|
3
|
Dang T, Piro L, Pasini C, Santelia D. Starch metabolism in guard cells: At the intersection of environmental stimuli and stomatal movement. PLANT PHYSIOLOGY 2024; 196:1758-1777. [PMID: 39115378 PMCID: PMC11531838 DOI: 10.1093/plphys/kiae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024]
Abstract
Starch metabolism in guard cells plays a central role in regulating stomatal movement in response to light, elevated ambient CO2 and potentially other abiotic and biotic factors. Here, we discuss how various guard cell signal transduction pathways converge to promote rearrangements in guard cell starch metabolism for efficient stomatal responses, an essential physiological process that sustains plant productivity and stress tolerance. We suggest manipulation of guard cell starch dynamics as a previously overlooked strategy to improve stomatal behavior under changing environmental conditions.
Collapse
Affiliation(s)
- Trang Dang
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lucia Piro
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Carlo Pasini
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Diana Santelia
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
4
|
Petřík I, Hladík P, Zhang C, Pěnčík A, Novák O. Spatio-temporal plant hormonomics: from tissue to subcellular resolution. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5295-5311. [PMID: 38938164 DOI: 10.1093/jxb/erae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Due to technological advances in mass spectrometry, significant progress has been achieved recently in plant hormone research. Nowadays, plant hormonomics is well established as a fully integrated scientific field focused on the analysis of phytohormones, mainly on their isolation, identification, and spatiotemporal quantification in plants. This review represents a comprehensive meta-study of the advances in the phytohormone analysis by mass spectrometry over the past decade. To address current trends and future perspectives, Web of Science data were systematically collected and key features such as mass spectrometry-based analyses were evaluated using multivariate data analysis methods. Our findings showed that plant hormonomics is currently divided into targeted and untargeted approaches. Both aim to miniaturize the sample, allowing high-resolution quantification to be covered in plant organs as well as subcellular compartments. Therefore, we can study plant hormone biosynthesis, metabolism, and signalling at a spatio-temporal resolution. Moreover, this trend has recently been accelerated by technological advances such as fluorescence-activated cell sorting or mass spectrometry imaging.
Collapse
Affiliation(s)
- Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Pavel Hladík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Chao Zhang
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
5
|
Wevers D, Ramautar R, Clark C, Hankemeier T, Ali A. Opportunities and challenges for sample preparation and enrichment in mass spectrometry for single-cell metabolomics. Electrophoresis 2023; 44:2000-2024. [PMID: 37667867 DOI: 10.1002/elps.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023]
Abstract
Single-cell heterogeneity in metabolism, drug resistance and disease type poses the need for analytical techniques for single-cell analysis. As the metabolome provides the closest view of the status quo in the cell, studying the metabolome at single-cell resolution may unravel said heterogeneity. A challenge in single-cell metabolome analysis is that metabolites cannot be amplified, so one needs to deal with picolitre volumes and a wide range of analyte concentrations. Due to high sensitivity and resolution, MS is preferred in single-cell metabolomics. Large numbers of cells need to be analysed for proper statistics; this requires high-throughput analysis, and hence automation of the analytical workflow. Significant advances in (micro)sampling methods, CE and ion mobility spectrometry have been made, some of which have been applied in high-throughput analyses. Microfluidics has enabled an automation of cell picking and metabolite extraction; image recognition has enabled automated cell identification. Many techniques have been used for data analysis, varying from conventional techniques to novel combinations of advanced chemometric approaches. Steps have been set in making data more findable, accessible, interoperable and reusable, but significant opportunities for improvement remain. Herein, advances in single-cell analysis workflows and data analysis are discussed, and recommendations are made based on the experimental goal.
Collapse
Affiliation(s)
- Dirk Wevers
- Wageningen University and Research, Wageningen, The Netherlands
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Rawi Ramautar
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Charlie Clark
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Ahmed Ali
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| |
Collapse
|
6
|
Elizondo-Villarreal N, Torres-Barrera RO, Arriaga-Garza R, Verástegui-Domínguez LH, Corté R, Castaño VM. Ag Thin Films from Pelargonium Zonale Leaves via Green Chemistry. CHEMISTRY & CHEMICAL TECHNOLOGY 2023. [DOI: 10.23939/chcht17.01.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Ag thin films were successfully produced via a green chemistry method from silver nanoparticles (AgNPs) obtained from reacting an extract of Pelargonium Zonale leaves with silver nitrate. The ions of silver nitrate were reduced to silver atoms by reducing stabilizer-capping compounds contained in the extract of Pelargonium Zonale leaves. The obtained atoms nucleate in small clusters that grew into nanoparticles and finally, they formed a homogeneous silver thin film on a glass substrate. The nanostructured thin films obtained were characterized by profilometry, X Ray Diffraction, Atomic Force Electronic Microscopy, UV-Vis, and Transmission Electron Microscopy.
Collapse
|
7
|
Ferrero-Serrano Á, Chakravorty D. Plants and heterotrimeric G proteins: Expect the unexpected. MOLECULAR PLANT 2023; 16:506-508. [PMID: 36575797 DOI: 10.1016/j.molp.2022.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Ángel Ferrero-Serrano
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | - David Chakravorty
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| |
Collapse
|
8
|
Genome-Wide Identification, Expression and Interaction Analysis of GmSnRK2 and Type A PP2C Genes in Response to Abscisic Acid Treatment and Drought Stress in Soybean Plant. Int J Mol Sci 2022; 23:ijms232113166. [PMID: 36361951 PMCID: PMC9653956 DOI: 10.3390/ijms232113166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
As a typical ancient tetraploid, soybean (Glycine max) is an important oil crop species and plays a crucial role in supplying edible oil, plant protein and animal fodder worldwide. As global warming intensifies, the yield of soybean in the field is often strongly restricted by drought stress. SNF1-related protein kinase 2 (SnRK2) and type A protein phosphatase 2C (PP2C-A) family members are core components of the abscisic acid (ABA) signal transduction pathway in plants and have been suggested to play important roles in increasing plant tolerance to drought stress, but genetic information supporting this idea is still lacking in soybean. Here, we cloned the GmSnRK2s and GmPP2C-A family genes from the reference genome of Williams 82 soybean. The results showed that the expression patterns of GmSnRK2s and GmPP2C-As are spatiotemporally distinct. The expression of GmSnRK2s in response to ABA and drought signals is not strictly the same as that of Arabidopsis SnRK2 homologous genes. Moreover, our results indicated that the duplicate pairs of GmSnRK2s and GmPP2C-As have similar expression patterns, cis-elements and relationships. GmSnRK2.2 may have a distinct function in the drought-mediated ABA signaling pathway. Furthermore, the results of yeast two-hybrid (Y2H) assays between GmSnRK2s and GmPP2C-As revealed that GmSnRK2.17, GmSnRK2.18, GmSnRK2.22, GmPP2C5, GmPP2C7, GmPP2C10 and GmPP2C17 may play central roles in the crosstalk among ABA signals in response to drought stress. Furthermore, GmPP2C-As and GmSnRKs were targeted by miRNA and validated by degradome sequencing, which may play multiple roles in the crosstalk between ABA and drought signals and other stress signals. Taken together, these results indicate that GmSnRK2s and GmPP2C-As may play a variety of roles in the drought-mediated ABA signaling pathway.
Collapse
|
9
|
Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology. Int J Mol Sci 2022; 23:ijms23136985. [PMID: 35805979 PMCID: PMC9266571 DOI: 10.3390/ijms23136985] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
In the past two decades, the post-genomic era envisaged high-throughput technologies, resulting in more species with available genome sequences. In-depth multi-omics approaches have evolved to integrate cellular processes at various levels into a systems biology knowledge base. Metabolomics plays a crucial role in molecular networking to bridge the gaps between genotypes and phenotypes. However, the greater complexity of metabolites with diverse chemical and physical properties has limited the advances in plant metabolomics. For several years, applications of liquid/gas chromatography (LC/GC)-mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been constantly developed. Recently, ion mobility spectrometry (IMS)-MS has shown utility in resolving isomeric and isobaric metabolites. Both MS and NMR combined metabolomics significantly increased the identification and quantification of metabolites in an untargeted and targeted manner. Thus, hyphenated metabolomics tools will narrow the gap between the number of metabolite features and the identified metabolites. Metabolites change in response to environmental conditions, including biotic and abiotic stress factors. The spatial distribution of metabolites across different organs, tissues, cells and cellular compartments is a trending research area in metabolomics. Herein, we review recent technological advancements in metabolomics and their applications in understanding plant stress biology and different levels of spatial organization. In addition, we discuss the opportunities and challenges in multiple stress interactions, multi-omics, and single-cell metabolomics.
Collapse
|
10
|
Nieves-Cordones M, Azeem F, Long Y, Boeglin M, Duby G, Mouline K, Hosy E, Vavasseur A, Chérel I, Simonneau T, Gaymard F, Leung J, Gaillard I, Thibaud JB, Véry AA, Boudaoud A, Sentenac H. Non-autonomous stomatal control by pavement cell turgor via the K+ channel subunit AtKC1. THE PLANT CELL 2022; 34:2019-2037. [PMID: 35157082 PMCID: PMC9048897 DOI: 10.1093/plcell/koac038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 01/28/2022] [Indexed: 05/27/2023]
Abstract
Stomata optimize land plants' photosynthetic requirements and limit water vapor loss. So far, all of the molecular and electrical components identified as regulating stomatal aperture are produced, and operate, directly within the guard cells. However, a completely autonomous function of guard cells is inconsistent with anatomical and biophysical observations hinting at mechanical contributions of epidermal origins. Here, potassium (K+) assays, membrane potential measurements, microindentation, and plasmolysis experiments provide evidence that disruption of the Arabidopsis thaliana K+ channel subunit gene AtKC1 reduces pavement cell turgor, due to decreased K+ accumulation, without affecting guard cell turgor. This results in an impaired back pressure of pavement cells onto guard cells, leading to larger stomatal apertures. Poorly rectifying membrane conductances to K+ were consistently observed in pavement cells. This plasmalemma property is likely to play an essential role in K+ shuttling within the epidermis. Functional complementation reveals that restoration of the wild-type stomatal functioning requires the expression of the transgenic AtKC1 at least in the pavement cells and trichomes. Altogether, the data suggest that AtKC1 activity contributes to the building of the back pressure that pavement cells exert onto guard cells by tuning K+ distribution throughout the leaf epidermis.
Collapse
Affiliation(s)
| | | | | | - Martin Boeglin
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Geoffrey Duby
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Karine Mouline
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | | | - Alain Vavasseur
- CEA Cadarache DSV DEVM LEMS UMR 163, CNRS/CEA, F-13108 St Paul Lez Durance, France
| | - Isabelle Chérel
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Thierry Simonneau
- INRA Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala, 2, F-34060 Montpellier Cedex 1, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Jeffrey Leung
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Isabelle Gaillard
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Jean-Baptiste Thibaud
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
- Institut des biomolécules Max Mousseron (UMR 5247 CNRS-UM-ENSCM) Campus CNRS, 1919 route de Mende, F-34293 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
11
|
Cesarino I. Better NOT together: single-cell transcriptomic landscape of leaf tissues. PLANT PHYSIOLOGY 2022; 188:680-682. [PMID: 35135002 PMCID: PMC8825450 DOI: 10.1093/plphys/kiab562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, 370, 05508-020, São Paulo, Brazil
| |
Collapse
|
12
|
Tenorio Berrío R, Verstaen K, Vandamme N, Pevernagie J, Achon I, Van Duyse J, Van Isterdael G, Saeys Y, De Veylder L, Inzé D, Dubois M. Single-cell transcriptomics sheds light on the identity and metabolism of developing leaf cells. PLANT PHYSIOLOGY 2022; 188:898-918. [PMID: 34687312 PMCID: PMC8825278 DOI: 10.1093/plphys/kiab489] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/05/2021] [Indexed: 05/08/2023]
Abstract
As the main photosynthetic instruments of vascular plants, leaves are crucial and complex plant organs. A strict organization of leaf mesophyll and epidermal cell layers orchestrates photosynthesis and gas exchange. In addition, water and nutrients for leaf growth are transported through the vascular tissue. To establish the single-cell transcriptomic landscape of these different leaf tissues, we performed high-throughput transcriptome sequencing of individual cells isolated from young leaves of Arabidopsis (Arabidopsis thaliana) seedlings grown in two different environmental conditions. The detection of approximately 19,000 different transcripts in over 1,800 high-quality leaf cells revealed 14 cell populations composing the young, differentiating leaf. Besides the cell populations comprising the core leaf tissues, we identified subpopulations with a distinct identity or metabolic activity. In addition, we proposed cell-type-specific markers for each of these populations. Finally, an intuitive web tool allows for browsing the presented dataset. Our data present insights on how the different cell populations constituting a developing leaf are connected via developmental, metabolic, or stress-related trajectories.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kevin Verstaen
- Department of Applied Mathematics, Ghent University, Computer Science and Statistics, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Niels Vandamme
- Department of Applied Mathematics, Ghent University, Computer Science and Statistics, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Julie Pevernagie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ignacio Achon
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Julie Van Duyse
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Gert Van Isterdael
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- Department of Applied Mathematics, Ghent University, Computer Science and Statistics, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Author for communication:
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
13
|
Chhajed S, Lu LL, Mangual G, Zhu W, Dufresne C, Chen S. Three-in-one method for high throughput plant multi-omics. Methods Enzymol 2022; 683:153-170. [PMID: 37087185 DOI: 10.1016/bs.mie.2022.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multi-omics has gained momentum over the past few years especially in plant single cell-type analysis as they aim to understand cellular molecular networks across different levels of genetic information flow. For multi-omics sample preparation, molecular extractions performed non-simultaneously create rooms for variation, inaccurate data, waste of limited samples, resources and labor. Here we optimized a protocol for 3-in-1 simultaneous extraction of RNA, metabolites, and proteins from the same single cell-type sample. We adapted a commercially available RNA kit with a few modifications to obtain high quality starting materials for sequencing and LC-MS/MS-based metabolomics and proteomics. RNAs are bound to the column, metabolites were extracted in a polar solvent and proteins are precipitated using acetone. This creates an all-in-one workflow using a standard RNA kit. Little training is required to carry out this protocol as it is simple and easy to use. It may be used with a wide range of plant species and different amounts of starting materials, including single cells.
Collapse
|
14
|
Zhang Y, Liu R, Zhou Y, Wang S, Zhang B, Kong J, Zheng S, Yang N. PLDα1 and GPA1 are involved in the stomatal closure induced by Oridonin in Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1005-1016. [PMID: 34167638 DOI: 10.1071/fp21156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Oridonin is an important diterpenoid, which plays an important role in plant growth and development. PLDα1 and GPA1 are involved in many biotic or abiotic stresses. In this study, using the seedlings of Arabidopsis thaliana L. wild type (WT), PLDα1 defective mutant (pldα1), GPA1 defective mutant (gpa1) and pldα1/gpa1 double mutant as materials, the effect of stomatal apertures responding to Oridonin and the functions of PLDα1 and GPA1 in this response were investigated. The results showed that 60 μmol·L-1 of Oridonin induced stomatal closure and significantly increased the relative expression levels of GPA1 and PLDα1. Oridonin increased H2O2 accumulation in guard cells by inhibiting the antioxidant enzymes. The increase of H2O2 caused the expression of OST1, which is a positive regulatory gene for stomatal closure. Both PLDα1 and GPA1 were involved in Oridonin-induced stomatal closure and PLDα1 acted downstream of GPA1. The results suggested that Oridonin caused stomatal closure by affecting GPA1 and promoting PLDα1 to produce PA, and further accumulating H2O2 to upregulate gene OST1.
Collapse
Affiliation(s)
- Yue Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ruirui Liu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yaping Zhou
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Simin Wang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Bianfeng Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Juantao Kong
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ning Yang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China; and Corresponding author.
| |
Collapse
|
15
|
Yoshida T, Yamaguchi-Shinozaki K. Metabolic engineering: Towards water deficiency adapted crop plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153375. [PMID: 33609854 DOI: 10.1016/j.jplph.2021.153375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Water deficiency caused by drought is one of the severe environmental conditions limiting plant growth, development, and yield. In this review article, we will summarize the changes in transcription, metabolism, and phytohormones under drought stress conditions and show the key transcription factors in these processes. We will also highlight the recent attempts to enhance stress tolerance without growth retardation and discuss the perspective on the development of stress adapted crops by engineering transcription factors.
Collapse
Affiliation(s)
- Takuya Yoshida
- Max-Planck-Institut Für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany; Centre of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657, Tokyo, Japan; Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 156-8502, Tokyo, Japan
| |
Collapse
|
16
|
Franzisky BL, Geilfus CM, Romo-Pérez ML, Fehrle I, Erban A, Kopka J, Zörb C. Acclimatisation of guard cell metabolism to long-term salinity. PLANT, CELL & ENVIRONMENT 2021; 44:870-884. [PMID: 33251628 DOI: 10.1111/pce.13964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Stomatal movements are enabled by changes in guard cell turgor facilitated via transient accumulation of inorganic and organic ions imported from the apoplast or biosynthesized within guard cells. Under salinity, excess salt ions accumulate within plant tissues resulting in osmotic and ionic stress. To elucidate whether (a) Na+ and Cl- concentrations increase in guard cells in response to long-term NaCl exposure and how (b) guard cell metabolism acclimates to the anticipated stress, we profiled the ions and primary metabolites of leaves, the apoplast and isolated guard cells at darkness and during light, that is, closed and fully opened stomata. In contrast to leaves, the primary metabolism of guard cell preparations remained predominantly unaffected by increased salt ion concentrations. Orchestrated reductions of stomatal aperture and guard cell osmolyte synthesis were found, but unlike in leaves, no increases of stress responsive metabolites or compatible solutes occurred. Diverging regulation of guard cell metabolism might be a prerequisite to facilitate the constant adjustment of turgor that affects aperture. Moreover, the photoperiod-dependent sucrose accumulation in the apoplast and guard cells changed to a permanently replete condition under NaCl, indicating that stress-related photosynthate accumulation in leaves contributes to the permanent closing response of stomata under stress.
Collapse
Affiliation(s)
| | - Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, Germany
| | | | - Ines Fehrle
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Christian Zörb
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
17
|
Xiang Q, Lott AA, Assmann SM, Chen S. Advances and perspectives in the metabolomics of stomatal movement and the disease triangle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110697. [PMID: 33288010 DOI: 10.1016/j.plantsci.2020.110697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 05/20/2023]
Abstract
Crops are continuously exposed to microbial pathogens that cause tremendous yield losses worldwide. Stomatal pores formed by pairs of specialized guard cells in the leaf epidermis represent a major route of pathogen entry. Guard cells have an essential role as a first line of defense against pathogens. Metabolomics is an indispensable systems biology tool that has facilitated discovery and functional studies of metabolites that regulate stomatal movement in response to pathogens and other environmental factors. Guard cells, pathogens and environmental factors constitute the "stomatal disease triangle". The aim of this review is to highlight recent advances toward understanding the stomatal disease triangle in the context of newly discovered signaling molecules, hormone crosstalk, and consequent molecular changes that integrate pathogens and environmental sensing into stomatal immune responses. Future perspectives on emerging single-cell studies, multiomics and molecular imaging in the context of stomatal defense are discussed. Advances in this important area of plant biology will inform rational crop engineering and breeding for enhanced stomatal defense without disruption of other pathways that impact crop yield.
Collapse
Affiliation(s)
- Qingyuan Xiang
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA
| | - Aneirin A Lott
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Sixue Chen
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA; Proteomics and Mass Spectrometry Facility, University of Florida, FL, USA.
| |
Collapse
|
18
|
Jose J, Roy Choudhury S. Heterotrimeric G-proteins mediated hormonal responses in plants. Cell Signal 2020; 76:109799. [PMID: 33011291 DOI: 10.1016/j.cellsig.2020.109799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/27/2023]
Abstract
Phytohormones not only orchestrate intrinsic developmental programs from germination to senescence but also regulate environmental inputs through complex signalling pathways. Despite building an own signalling network, hormones mutually contribute several signalling systems, which are also essential for plant growth and development, defense, and responses to abiotic stresses. One of such important signalling cascades is G-proteins, which act as critical regulators of a wide range of fundamental cellular processes by transducing receptor signals to the intracellular environment. G proteins are composed of α, β, and γ subunits, and the molecular switching between active and inactive conformation of Gα controls the signalling cycle. The active GTP bound Gα and freed Gβγ have both independent and tightly coordinated roles in the regulation of effector molecules, thereby modulating multiple responses, including hormonal responses. Therefore, an interplay of hormones with G-proteins fine-tunes multiple biological processes of plants; however, their molecular mechanisms are largely unknown. Functional characterization of hormone biosynthesis, perception, and signalling components, as well as identification of few effector molecules of G-proteins and their interaction networks, reduces the complexity of the hormonal signalling networks related to G-proteins. In this review, we highlight a valuable insight into the mechanisms of how the G-protein signalling cascades connect with hormonal responses to regulate increased developmental flexibility as well as remarkable plasticity of plants.
Collapse
Affiliation(s)
- Jismon Jose
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India.
| |
Collapse
|
19
|
Zhu M, Geng S, Chakravorty D, Guan Q, Chen S, Assmann SM. Metabolomics of red-light-induced stomatal opening in Arabidopsis thaliana: Coupling with abscisic acid and jasmonic acid metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1331-1348. [PMID: 31677315 DOI: 10.1111/tpj.14594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Environmental stimuli-triggered stomatal movement is a key physiological process that regulates CO2 uptake and water loss in plants. Stomata are defined by pairs of guard cells that perceive and transduce external signals, leading to cellular volume changes and consequent stomatal aperture change. Within the visible light spectrum, red light induces stomatal opening in intact leaves. However, there has been debate regarding the extent to which red-light-induced stomatal opening arises from direct guard cell sensing of red light versus indirect responses as a result of red light influences on mesophyll photosynthesis. Here we identify conditions that result in red-light-stimulated stomatal opening in isolated epidermal peels and enlargement of protoplasts, firmly establishing a direct guard cell response to red light. We then employ metabolomics workflows utilizing gas chromatography mass spectrometry and liquid chromatography mass spectrometry for metabolite profiling and identification of Arabidopsis guard cell metabolic signatures in response to red light in the absence of the mesophyll. We quantified 223 metabolites in Arabidopsis guard cells, with 104 found to be red light responsive. These red-light-modulated metabolites participate in the tricarboxylic acid cycle, carbon balance, phytohormone biosynthesis and redox homeostasis. We next analyzed selected Arabidopsis mutants, and discovered that stomatal opening response to red light is correlated with a decrease in guard cell abscisic acid content and an increase in jasmonic acid content. The red-light-modulated guard cell metabolome reported here provides fundamental information concerning autonomous red light signaling pathways in guard cells.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sisi Geng
- The Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
| | - David Chakravorty
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Qijie Guan
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Sixue Chen
- The Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
20
|
Argueso CT, Assmann SM, Birnbaum KD, Chen S, Dinneny JR, Doherty CJ, Eveland AL, Friesner J, Greenlee VR, Law JA, Marshall‐Colón A, Mason GA, O'Lexy R, Peck SC, Schmitz RJ, Song L, Stern D, Varagona MJ, Walley JW, Williams CM. Directions for research and training in plant omics: Big Questions and Big Data. PLANT DIRECT 2019; 3:e00133. [PMID: 31245771 PMCID: PMC6589541 DOI: 10.1002/pld3.133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 05/04/2023]
Abstract
A key remit of the NSF-funded "Arabidopsis Research and Training for the 21st Century" (ART-21) Research Coordination Network has been to convene a series of workshops with community members to explore issues concerning research and training in plant biology, including the role that research using Arabidopsis thaliana can play in addressing those issues. A first workshop focused on training needs for bioinformatic and computational approaches in plant biology was held in 2016, and recommendations from that workshop have been published (Friesner et al., Plant Physiology, 175, 2017, 1499). In this white paper, we provide a summary of the discussions and insights arising from the second ART-21 workshop. The second workshop focused on experimental aspects of omics data acquisition and analysis and involved a broad spectrum of participants from academics and industry, ranging from graduate students through post-doctorates, early career and established investigators. Our hope is that this article will inspire beginning and established scientists, corporations, and funding agencies to pursue directions in research and training identified by this workshop, capitalizing on the reference species Arabidopsis thaliana and other valuable plant systems.
Collapse
Affiliation(s)
- Cristiana T. Argueso
- Department of Bioagricultural Sciences and Pest ManagementColorado State UniversityFort CollinsColorado
| | - Sarah M. Assmann
- Biology DepartmentPenn State UniversityUniversity ParkPennsylvania
| | - Kenneth D. Birnbaum
- Department of BiologyCenter for Genomics and Systems BiologyNew York UniversityNew YorkNew York
| | - Sixue Chen
- Department of BiologyGenetics InstitutePlant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFlorida
- Proteomics and Mass SpectrometryInterdisciplinary Center for Biotechnology ResearchUniversity of FloridaGainesvilleFlorida
| | | | - Colleen J. Doherty
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNorth Carolina
| | | | | | - Vanessa R. Greenlee
- International ProgramsCollege of Agriculture and Life SciencesCornell UniversityIthacaNew York
| | - Julie A. Law
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCalifornia
- Division of Biological SciencesUniversity of California, San DiegoLa JollaCalifornia
| | - Amy Marshall‐Colón
- Department of Plant BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinois
| | - Grace Alex Mason
- Department of Plant Biology and Genome CenterUC DavisDavisCalifornia
| | - Ruby O'Lexy
- Coriell Institute for Medical ResearchCamdenNew Jersey
| | - Scott C. Peck
- Division of BiochemistryChristopher S. Bond Life Sciences CenterInterdisciplinary Plant GroupUniversity of MissouriColumbiaMissouri
| | | | - Liang Song
- Department of BotanyThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | | | | | - Justin W. Walley
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowa
| | - Cranos M. Williams
- Department of Electrical and Computer EngineeringNorth Carolina State UniversityRaleighNorth Carolina
| |
Collapse
|
21
|
Misra CS, Santos MR, Rafael-Fernandes M, Martins NP, Monteiro M, Becker JD. Transcriptomics of Arabidopsis sperm cells at single-cell resolution. PLANT REPRODUCTION 2019; 32:29-38. [PMID: 30675644 DOI: 10.1007/s00497-018-00355-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 05/22/2023]
Abstract
We present a detailed protocol for isolation of single sperm cells and transcriptome analysis to study variation in gene expression between sperm cells. Male gametophyte development in flowering plants begins with a microspore mother cell, which upon two consecutive cell divisions forms a mature pollen grain containing a vegetative nucleus and two sperm cells. Pollen development is a highly dynamic process, involving changes at both the transcriptome and epigenome levels of vegetative nuclei and the pair of sperm cells that have their own cytoplasm and nucleus. While the overall transcriptome of Arabidopsis pollen development is well documented, studies at single-cell level, in particular of sperm cells, are still lacking. Such studies would be essential to understand whether and how the two sperm cells are transcriptionally different, in particular once the pollen tube grows through the transmitting tissue of the pistil. Here we describe a detailed protocol for isolation of single sperm cells from growing pollen tubes and analysis of their transcriptome.
Collapse
Affiliation(s)
- Chandra Shekhar Misra
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Avenida da República, 2780-157, Oeiras, Portugal
| | - Mário R Santos
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | | | - Nuno P Martins
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Marta Monteiro
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
22
|
Roy Choudhury S, Marlin MA, Pandey S. The Role of Gβ Protein in Controlling Cell Expansion via Potential Interaction with Lipid Metabolic Pathways. PLANT PHYSIOLOGY 2019; 179:1159-1175. [PMID: 30622152 PMCID: PMC6393804 DOI: 10.1104/pp.18.01312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 05/23/2023]
Abstract
Heterotrimeric G-proteins influence almost all aspects of plant growth, development, and responses to biotic and abiotic stresses in plants, likely via their interaction with specific effectors. However, the identity of such effectors and their mechanism of action are mostly unknown. While investigating the roles of different G-protein subunits in modulating the oil content in Camelina (Camelina sativa), an oil seed crop, we uncovered a role of Gβ proteins in controlling anisotropic cell expansion. Knockdown of Gβ genes causes reduced longitudinal and enhanced transverse expansion, resulting in altered cell, tissue, and organ shapes in transgenic plants during vegetative and reproductive development. These plants also exhibited substantial changes in their fatty acid and phospholipid profiles, which possibly leads to the increased oil content of the transgenic seeds. This increase is potentially caused by the direct interaction of Gβ proteins with a specific patatin-like phospholipase, pPLAIIIδ. Camelina plants with suppressed Gβ expression exhibit higher lipase activity, and show phenotypes similar to plants overexpressing pPLAIIIδ, suggesting that the Gβ proteins are negative regulators of pPLAIIIδ. These results reveal interactions between the G-protein-mediated and lipid signaling/metabolic pathways, where specific phospholipases may act as effectors that control key developmental and environmental responses of plants.
Collapse
Affiliation(s)
| | - Maria A Marlin
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
23
|
Meng L, Zhang T, Geng S, Scott PB, Li H, Chen S. Comparative proteomics and metabolomics of JAZ7-mediated drought tolerance in Arabidopsis. J Proteomics 2019; 196:81-91. [DOI: 10.1016/j.jprot.2019.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/16/2023]
|
24
|
Miao J, Yang Z, Zhang D, Wang Y, Xu M, Zhou L, Wang J, Wu S, Yao Y, Du X, Gu F, Gong Z, Gu M, Liang G, Zhou Y. Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:650-664. [PMID: 30160362 PMCID: PMC6381795 DOI: 10.1111/pbi.13005] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 05/22/2023]
Abstract
Heterotrimeric G proteins, which consist of Gα , Gβ and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield production. The expression levels of RGG2 were significantly higher than those of other rice Gγ -encoding genes in all tissues tested, suggesting that RGG2 plays essential roles in rice growth and development. By regulating cell expansion, overexpression of RGG2 in Nipponbare (NIP) led to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system in the Zhenshan 97 (ZS97) background, zrgg2-1 and zrgg2-2, exhibited enhanced growth, including elongated internodes, increased 1000-grain weight and plant biomass and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGG2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3 ) treatment and the GA-induced α-amylase activity of seeds, we found that RGG2 is also involved in GA signalling. In summary, we propose that RGG2 may regulate grain and organ size via the GA pathway and that manipulation of RGG2 may provide a novel strategy for rice grain yield enhancement.
Collapse
Affiliation(s)
- Jun Miao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain CropsKey Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain CropsKey Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain CropsKey Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Yuzhu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain CropsKey Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Mengbin Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain CropsKey Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Lihui Zhou
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Jun Wang
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Shujun Wu
- Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Youli Yao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain CropsKey Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Xi Du
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain CropsKey Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Fangfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain CropsKey Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain CropsKey Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Minghong Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain CropsKey Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain CropsKey Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain CropsKey Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| |
Collapse
|
25
|
Yoshida T, Anjos LD, Medeiros DB, Araújo WL, Fernie AR, Daloso DM. Insights into ABA-mediated regulation of guard cell primary metabolism revealed by systems biology approaches. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:37-49. [PMID: 30447225 DOI: 10.1016/j.pbiomolbio.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023]
Abstract
Despite the fact that guard cell abscisic acid (ABA) signalling pathway is well documented, our understanding concerning how and to which extent ABA regulates guard cell metabolism remains fragmentary. Here we have adopted different systems approaches to investigate how ABA modulates guard cell central metabolism by providing genes that are possibly ABA-regulated. By using previous published Arabidopsis guard cell transcript profiling data, we carried out an extensive co-expression network analysis using ABA-related genes and those related to the metabolism and transport of sugars, starch and organic acids. Next, we investigated the presence of ABA responsive elements (ABRE) in the promoter of genes that are highly expressed in guard cells, responsive to ABA and co-expressed with ABA-related genes. Together, these analyses indicated that 44 genes are likely regulated by ABA and 8 of them are highly expressed in guard cells in both the presence and absence of ABA, including genes of the tricarboxylic acid cycle and those related to sucrose and hexose transport and metabolism. It seems likely that ABA may modulate both sucrose transport through guard cell plasma membrane and sucrose metabolism within guard cells. In this context, genes associated with sucrose synthase, sucrose phosphate synthase, trehalose-6-phosphate, invertase, UDP-glucose epimerase/pyrophosphorylase and different sugar transporters contain ABRE in their promoter and are thus possibly ABA regulated. Although validation experiments are required, our study highlights the importance of systems biology approaches to drive new hypothesis and to unravel genes and pathways that are regulated by ABA in guard cells.
Collapse
Affiliation(s)
- Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, 14476, Germany.
| | - Letícia Dos Anjos
- Departamento de Biologia Vegetal, Universidade Federal de Lavras, Lavras, Minas Gerais, 62700-000, Brazil
| | - David B Medeiros
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, 14476, Germany; Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, 14476, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60451-970, Brazil.
| |
Collapse
|
26
|
Misra BB, Reichman SM, Chen S. The guard cell ionome: Understanding the role of ions in guard cell functions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:50-62. [PMID: 30458181 DOI: 10.1016/j.pbiomolbio.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/01/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
The ionome is critical for plant growth, productivity, defense, and it eventually affects human food quantity and quality. Located on the leaf surface, stomatal guard cells are critical gatekeepers for water, gas, and pathogens. Insights form ionomics (metallomics) is imperative as we enter an omics-driven systems biology era where an understanding of guard cell function and physiology is advanced through efforts in genomics, transcriptomics, proteomics, and metabolomics. While the roles of major cations (K, Ca) and anions (Cl) are well known in guard cell function, the related physiology, movement and regulation of trace elements, metal ions, and heavy metals are poorly understood. The majority of the information on the role of trace elements in guard cells emanates from classical feeding experiments, field or in vitro fortification, micropropagation, and microscopy studies, while novel insights are available from limited metal ion transporter and ion channel studies. Given the rejuvenated and recent interest in the constantly changing ionome in plant mineral balance and eventually in human nutrition and health, we looked into the far from established guard cell ionome in lieu of the modern omics era of high throughput research endeavors. Newer technologies and tools i.e., high resolution mass spectrometry, advanced imaging, and phenomics are now available to delve into the guard cell ionomes. In this review, research efforts on guard cell ionomes were collated and categorized, and we highlight the underlying role of the largely unknown ionome in guard cell function towards a systems physiology understanding of plant health and productivity.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, 27157, NC, USA; Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA.
| | - Suzie M Reichman
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, GPO Box 2476, Melbourne, 3001, Australia
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA; Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
27
|
G protein subunit phosphorylation as a regulatory mechanism in heterotrimeric G protein signaling in mammals, yeast, and plants. Biochem J 2018; 475:3331-3357. [PMID: 30413679 DOI: 10.1042/bcj20160819] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022]
Abstract
Heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits are vital eukaryotic signaling elements that convey information from ligand-regulated G protein-coupled receptors (GPCRs) to cellular effectors. Heterotrimeric G protein-based signaling pathways are fundamental to human health [Biochimica et Biophysica Acta (2007) 1768, 994-1005] and are the target of >30% of pharmaceuticals in clinical use [Biotechnology Advances (2013) 31, 1676-1694; Nature Reviews Drug Discovery (2017) 16, 829-842]. This review focuses on phosphorylation of G protein subunits as a regulatory mechanism in mammals, budding yeast, and plants. This is a re-emerging field, as evidence for phosphoregulation of mammalian G protein subunits from biochemical studies in the early 1990s can now be complemented with contemporary phosphoproteomics and genetic approaches applied to a diversity of model systems. In addition, new evidence implicates a family of plant kinases, the receptor-like kinases, which are monophyletic with the interleukin-1 receptor-associated kinase/Pelle kinases of metazoans, as possible GPCRs that signal via subunit phosphorylation. We describe early and modern observations on G protein subunit phosphorylation and its functional consequences in these three classes of organisms, and suggest future research directions.
Collapse
|
28
|
Dong H, Bai L, Zhang Y, Zhang G, Mao Y, Min L, Xiang F, Qian D, Zhu X, Song CP. Modulation of Guard Cell Turgor and Drought Tolerance by a Peroxisomal Acetate-Malate Shunt. MOLECULAR PLANT 2018; 11:1278-1291. [PMID: 30130577 DOI: 10.1016/j.molp.2018.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 07/13/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
In plants, stomatal movements are tightly controlled by changes in cellular turgor pressure. Carbohydrates produced by glycolysis and the tricarboxylic acid cycle play an important role in regulating turgor pressure. Here, we describe an Arabidopsis mutant, bzu1, isolated in a screen for elevated leaf temperature in response to drought stress, which displays smaller stomatal pores and higher drought resistance than wild-type plants. BZU1 encodes a known acetyl-coenzyme A synthetase, ACN1, which acts in the first step of a metabolic pathway converting acetate to malate in peroxisomes. We showed that BZU1/ACN1-mediated acetate-to-malate conversion provides a shunt that plays an important role in osmoregulation of stomatal turgor. We found that the smaller stomatal pores in the bzu1 mutant are a consequence of reduced accumulation of malate, which acts as an osmoticum and/or a signaling molecule in the control of turgor pressure within guard cells, and these results provided new genetic evidence for malate-regulated stomatal movement. Collectively, our results indicate that a peroxisomal BZU1/ACN1-mediated acetate-malate shunt regulates drought resistance by controlling the turgor pressure of guard cells in Arabidopsis.
Collapse
Affiliation(s)
- Huan Dong
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Ling Bai
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yu Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Guozeng Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yanqing Mao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Lulu Min
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Fuyou Xiang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Dongdong Qian
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xiaohong Zhu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Chun-Peng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China.
| |
Collapse
|
29
|
Wu TY, Urano D. Genetic and Systematic Approaches Toward G Protein-Coupled Abiotic Stress Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1378. [PMID: 30294337 PMCID: PMC6158310 DOI: 10.3389/fpls.2018.01378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/29/2018] [Indexed: 05/15/2023]
Abstract
Heterotrimeric G protein, composed of Gα, Gβ, and Gγ subunits, modulates plant adaptations to environmental stresses such as high salinity, drought, extreme temperatures and high light intensity. Most of these evidence were however derived solely from conventional genetics methods with which stress-associated phenotypes were compared between wild type and various G protein mutant plants. Recent advances in systematic approaches, mainly transcriptome and proteome, have contributed to in-depth understanding of molecular linkages between G proteins and environmental changes. Here, we update our knowledge on the roles of G proteins in abiotic stress responses. Furthermore, we highlight the current whole genome studies and integrated omics approach to better understand the fundamental G protein functions involved in abiotic stress responses. It is our purpose here to bridge the gap between molecular mechanisms in G protein science and stress biology and pave the way toward crop improvement researches in the future.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Šimura J, Antoniadi I, Široká J, Tarkowská D, Strnad M, Ljung K, Novák O. Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. PLANT PHYSIOLOGY 2018; 177:476-489. [PMID: 29703867 PMCID: PMC6001343 DOI: 10.1104/pp.18.00293] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/11/2018] [Indexed: 05/14/2023]
Abstract
Phytohormones are physiologically important small molecules that play essential roles in intricate signaling networks that regulate diverse processes in plants. We present a method for the simultaneous targeted profiling of 101 phytohormone-related analytes from minute amounts of fresh plant material (less than 20 mg). Rapid and nonselective extraction, fast one-step sample purification, and extremely sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry enable concurrent quantification of the main phytohormone classes: cytokinins, auxins, brassinosteroids, gibberellins, jasmonates, salicylates, and abscisates. We validated this hormonomic approach in salt-stressed and control Arabidopsis (Arabidopsis thaliana) seedlings, quantifying a total of 43 endogenous compounds in both root and shoot samples. Subsequent multivariate statistical data processing and cross-validation with transcriptomic data highlighted the main hormone metabolites involved in plant adaptation to salt stress.
Collapse
Affiliation(s)
- Jan Šimura
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Czech Academy of Sciences, and Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Ioanna Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umea, Sweden
| | - Jitka Široká
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Czech Academy of Sciences, and Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Czech Academy of Sciences, and Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Czech Academy of Sciences, and Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umea, Sweden
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Czech Academy of Sciences, and Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
31
|
Ma T, Yoo MJ, Zhang T, Liu L, Koh J, Song WY, Harmon AC, Sha W, Chen S. Characterization of thiol-based redox modifications of Brassica napusSNF1-related protein kinase 2.6-2C. FEBS Open Bio 2018; 8:628-645. [PMID: 29632815 PMCID: PMC5881534 DOI: 10.1002/2211-5463.12401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/09/2017] [Accepted: 01/29/2018] [Indexed: 01/04/2023] Open
Abstract
Sucrose nonfermenting 1‐related protein kinase 2.6 (SnRK2.6), also known as Open Stomata 1 (OST1) in Arabidopsis thaliana, plays a pivotal role in abscisic acid (ABA)‐mediated stomatal closure. Four SnRK2.6 paralogs were identified in the Brassica napus genome in our previous work. Here we studied one of the paralogs, BnSnRK2.6‐2C, which was transcriptionally induced by ABA in guard cells. Recombinant BnSnRK2.6‐2C exhibited autophosphorylation activity and its phosphorylation sites were mapped. The autophosphorylation activity was inhibited by S‐nitrosoglutathione (GSNO) and by oxidized glutathione (GSSG), and the inhibition was reversed by reductants. Using monobromobimane (mBBr) labeling, we demonstrated a dose‐dependent modification of BnSnRK2.6‐2C by GSNO. Furthermore, mass spectrometry analysis revealed previously uncharacterized thiol‐based modifications including glutathionylation and sulfonic acid formation. Of the six cysteine residues in BnSnRK2.6‐2C, C159 was found to have different types of thiol modifications, suggesting its high redox sensitivity and versatility. In addition, mBBr labeling on tyrosine residues was identified. Collectively, these data provide detailed biochemical characterization of redox‐induced modifications and changes of the BnSnRK2.6‐2C activity.
Collapse
Affiliation(s)
- Tianyi Ma
- College of Life Sciences Northeast Forestry University Harbin China.,Department of Biology Genetics Institute University of Florida Gainesville FL USA.,College of Life Sciences, Agriculture and Forestry Qiqihar University Heilongjiang China
| | - Mi-Jeong Yoo
- Department of Biology Genetics Institute University of Florida Gainesville FL USA
| | - Tong Zhang
- Department of Biology Genetics Institute University of Florida Gainesville FL USA
| | - Lihong Liu
- Department of Biology Genetics Institute University of Florida Gainesville FL USA
| | - Jin Koh
- Proteomics and Mass Spectrometry Interdisciplinary Center for Biotechnology Research University of Florida Gainesville FL USA
| | - Wen-Yuan Song
- Department of Plant Pathology University of Florida Gainesville FL USA.,Plant Molecular and Cellular Biology University of Florida Gainesville FL USA
| | - Alice C Harmon
- Department of Biology Genetics Institute University of Florida Gainesville FL USA.,Plant Molecular and Cellular Biology University of Florida Gainesville FL USA
| | - Wei Sha
- College of Life Sciences Northeast Forestry University Harbin China.,College of Life Sciences, Agriculture and Forestry Qiqihar University Heilongjiang China
| | - Sixue Chen
- Department of Biology Genetics Institute University of Florida Gainesville FL USA.,Proteomics and Mass Spectrometry Interdisciplinary Center for Biotechnology Research University of Florida Gainesville FL USA.,Plant Molecular and Cellular Biology University of Florida Gainesville FL USA
| |
Collapse
|
32
|
Yu Y, Chakravorty D, Assmann SM. The G Protein β-Subunit, AGB1, Interacts with FERONIA in RALF1-Regulated Stomatal Movement. PLANT PHYSIOLOGY 2018; 176:2426-2440. [PMID: 29301953 PMCID: PMC5841690 DOI: 10.1104/pp.17.01277] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/03/2018] [Indexed: 05/04/2023]
Abstract
Heterotrimeric guanine nucleotide-binding (G) proteins are composed of Gα, Gβ, and Gγ subunits and function as molecular switches in signal transduction. In Arabidopsis (Arabidopsis thaliana), there are one canonical Gα (GPA1), three extra-large Gα (XLG1, XLG2, and XLG3), one Gβ (AGB1), and three Gγ (AGG1, AGG2, and AGG3) subunits. To elucidate AGB1 molecular signaling, we performed immunoprecipitation using plasma membrane-enriched proteins followed by mass spectrometry to identify the protein interactors of AGB1. After eliminating proteins present in the control immunoprecipitation, commonly identified contaminants, and organellar proteins, a total of 103 candidate AGB1-associated proteins were confidently identified. We identified all of the G protein subunits except XLG1, receptor-like kinases, Ca2+ signaling-related proteins, and 14-3-3-like proteins, all of which may couple with or modulate G protein signaling. We confirmed physical interaction between AGB1 and the receptor-like kinase FERONIA (FER) using bimolecular fluorescence complementation. The Rapid Alkalinization Factor (RALF) family of polypeptides have been shown to be ligands of FER. In this study, we demonstrate that RALF1 regulates stomatal apertures and does so in a G protein-dependent manner, inhibiting stomatal opening and promoting stomatal closure in Columbia but not in agb1 mutants. We further show that AGGs and XLGs, but not GPA1, participate in RALF1-mediated stomatal signaling. Our results suggest that FER acts as a G protein-coupled receptor for plant heterotrimeric G proteins.
Collapse
Affiliation(s)
- Yunqing Yu
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - David Chakravorty
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sarah M Assmann
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
33
|
Pang Q, Zhang T, Wang Y, Kong W, Guan Q, Yan X, Chen S. Metabolomics of Early Stage Plant Cell-Microbe Interaction Using Stable Isotope Labeling. FRONTIERS IN PLANT SCIENCE 2018; 9:760. [PMID: 29922325 PMCID: PMC5996122 DOI: 10.3389/fpls.2018.00760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/17/2018] [Indexed: 05/02/2023]
Abstract
Metabolomics has been used in unraveling metabolites that play essential roles in plant-microbe (including pathogen) interactions. However, the problem of profiling a plant metabolome with potential contaminating metabolites from the coexisting microbes has been largely ignored. To address this problem, we implemented an effective stable isotope labeling approach, where the metabolome of a plant bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 was labeled with heavy isotopes. The labeled bacterial cells were incubated with Arabidopsis thaliana epidermal peels (EPs) with guard cells, and excessive bacterial cells were subsequently removed from the plant tissues by washing. The plant metabolites were characterized by liquid chromatography mass spectrometry using multiple reactions monitoring, which can differentiate plant and bacterial metabolites. Targeted metabolomic analysis suggested that Pst DC3000 infection may modulate stomatal movement by reprograming plant signaling and primary metabolic pathways. This proof-of-concept study demonstrates the utility of this strategy in differentiation of the plant and microbe metabolomes, and it has broad applications in studying metabolic interactions between microbes and other organisms.
Collapse
Affiliation(s)
- Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Tong Zhang
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Yang Wang
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Wenwen Kong
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Qijie Guan
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Xiufeng Yan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- *Correspondence: Xiufeng Yan, Sixue Chen,
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, United States
- *Correspondence: Xiufeng Yan, Sixue Chen,
| |
Collapse
|
34
|
Pařízková B, Pernisová M, Novák O. What Has Been Seen Cannot Be Unseen-Detecting Auxin In Vivo. Int J Mol Sci 2017; 18:ijms18122736. [PMID: 29258197 PMCID: PMC5751337 DOI: 10.3390/ijms18122736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Auxins mediate various processes that are involved in plant growth and development in response to specific environmental conditions. Its proper spatio-temporal distribution that is driven by polar auxin transport machinery plays a crucial role in the wide range of auxins physiological effects. Numbers of approaches have been developed to either directly or indirectly monitor auxin distribution in vivo in order to elucidate the basis of its precise regulation. Herein, we provide an updated list of valuable techniques used for monitoring auxins in plants, with their utilities and limitations. Because the spatial and temporal resolutions of the presented approaches are different, their combination may provide a comprehensive outcome of auxin distribution in diverse developmental processes.
Collapse
Affiliation(s)
- Barbora Pařízková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Markéta Pernisová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
35
|
Daloso DM, Medeiros DB, Dos Anjos L, Yoshida T, Araújo WL, Fernie AR. Metabolism within the specialized guard cells of plants. THE NEW PHYTOLOGIST 2017; 216:1018-1033. [PMID: 28984366 DOI: 10.1111/nph.14823] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/21/2017] [Indexed: 05/21/2023]
Abstract
Contents 1018 I. 1018 II. 1019 III. 1022 IV. 1025 V. 1026 VI. 1029 1030 References 1030 SUMMARY: Stomata are leaf epidermal structures consisting of two guard cells surrounding a pore. Changes in the aperture of this pore regulate plant water-use efficiency, defined as gain of C by photosynthesis per leaf water transpired. Stomatal aperture is actively regulated by reversible changes in guard cell osmolyte content. Despite the fact that guard cells can photosynthesize on their own, the accumulation of mesophyll-derived metabolites can seemingly act as signals which contribute to the regulation of stomatal movement. It has been shown that malate can act as a signalling molecule and a counter-ion of potassium, a well-established osmolyte that accumulates in the vacuole of guard cells during stomatal opening. By contrast, their efflux from guard cells is an important mechanism during stomatal closure. It has been hypothesized that the breakdown of starch, sucrose and lipids is an important mechanism during stomatal opening, which may be related to ATP production through glycolysis and mitochondrial metabolism, and/or accumulation of osmolytes such as sugars and malate. However, experimental evidence supporting this theory is lacking. Here we highlight the particularities of guard cell metabolism and discuss this in the context of the guard cells themselves and their interaction with the mesophyll cells.
Collapse
Affiliation(s)
- Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60451-970, Brasil
| | - David B Medeiros
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brasil
| | - Letícia Dos Anjos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60451-970, Brasil
| | - Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brasil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
36
|
Libault M, Pingault L, Zogli P, Schiefelbein J. Plant Systems Biology at the Single-Cell Level. TRENDS IN PLANT SCIENCE 2017; 22:949-960. [PMID: 28970001 DOI: 10.1016/j.tplants.2017.08.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 05/19/2023]
Abstract
Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system.
Collapse
Affiliation(s)
- Marc Libault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
| | - Lise Pingault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Prince Zogli
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Metabolic Signatures in Response to Abscisic Acid (ABA) Treatment in Brassica napus Guard Cells Revealed by Metabolomics. Sci Rep 2017; 7:12875. [PMID: 28993661 PMCID: PMC5634414 DOI: 10.1038/s41598-017-13166-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/19/2017] [Indexed: 11/08/2022] Open
Abstract
Drought can severely damage crops, resulting in major yield losses. During drought, vascular land plants conserve water via stomatal closure. Each stomate is bordered by a pair of guard cells that shrink in response to drought and the associated hormone abscisic acid (ABA). The activation of complex intracellular signaling networks underlies these responses. Therefore, analysis of guard cell metabolites is fundamental for elucidation of guard cell signaling pathways. Brassica napus is an important oilseed crop for human consumption and biodiesel production. Here, non-targeted metabolomics utilizing gas chromatography mass spectrometry (GC-MS/MS) and liquid chromatography mass spectrometry (LC-MS/MS) were employed for the first time to identify metabolic signatures in response to ABA in B. napus guard cell protoplasts. Metabolome profiling identified 390 distinct metabolites in B. napus guard cells, falling into diverse classes. Of these, 77 metabolites, comprising both primary and secondary metabolites were found to be significantly ABA responsive, including carbohydrates, fatty acids, glucosinolates, and flavonoids. Selected secondary metabolites, sinigrin, quercetin, campesterol, and sitosterol, were confirmed to regulate stomatal closure in Arabidopsis thaliana, B. napus or both species. Information derived from metabolite datasets can provide a blueprint for improvement of water use efficiency and drought tolerance in crops.
Collapse
|
38
|
Geng S, Yu B, Zhu N, Dufresne C, Chen S. Metabolomics and Proteomics of Brassica napus Guard Cells in Response to Low CO 2. Front Mol Biosci 2017; 4:51. [PMID: 28791296 PMCID: PMC5525006 DOI: 10.3389/fmolb.2017.00051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/06/2017] [Indexed: 02/02/2023] Open
Abstract
Stomatal guard cell response to various stimuli is an important process that balances plant carbon dioxide (CO2) uptake and water transpiration. Elevated CO2 induces stomatal closure, while low CO2 promotes stomatal opening. The signaling process of elevated CO2 induced stomatal closure has been extensively studied in recent years. However, the mechanism of low CO2 induced stomatal opening is not fully understood. Here we report metabolomic and proteomic responses of Brassica napus guard cells to low CO2 using hyphenated mass spectrometry technologies. A total of 411 metabolites and 1397 proteins were quantified in a time-course study of low CO2 effects. Metabolites and proteins that exhibited significant changes are overrepresented in fatty acid metabolism, starch and sucrose metabolism, glycolysis and redox regulation. Concomitantly, multiple hormones that promote stomatal opening increased in response to low CO2. Interestingly, jasmonic acid precursors were diverted to a branch pathway of traumatic acid biosynthesis. These results indicate that the low CO2 response is mediated by a complex crosstalk between different phytohormones.
Collapse
Affiliation(s)
- Sisi Geng
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, United States
- Department of Biology, Genetics Institute, University of FloridaGainesville, FL, United States
| | - Bing Yu
- Department of Biology, Genetics Institute, University of FloridaGainesville, FL, United States
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Ning Zhu
- Department of Biology, Genetics Institute, University of FloridaGainesville, FL, United States
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, United States
| | - Craig Dufresne
- Thermo Fisher ScientificWest Palm Beach, FL, United States
| | - Sixue Chen
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, United States
- Department of Biology, Genetics Institute, University of FloridaGainesville, FL, United States
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, United States
| |
Collapse
|
39
|
Ma Y, Zhao Y, Berkowitz GA. Intracellular Ca2+ is important for flagellin-triggered defense in Arabidopsis and involves inositol polyphosphate signaling. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3617-3628. [PMID: 28595359 PMCID: PMC5853439 DOI: 10.1093/jxb/erx176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/08/2017] [Indexed: 05/20/2023]
Abstract
Cytosolic Ca2+ increase is a crucial and early step of plant immunity evoked by pathogen-associated molecular patterns (PAMPs) such as flagellin (flg). Components responsible for this increase are still not uncovered, although current models of plant immune signaling portray extracellular Ca2+ influx as paramount to flg activation of defense pathways. Work presented here provides new insights into cytosolic Ca2+ increase associated with flg-induced defense responses. We show that extracellular Ca2+ contributes more to immune responses evoked by plant elicitor peptide (Pep3) than that evoked by flg, indicating an intracellular Ca2+ source responsible for immune responses evoked by flg. Genetic impairment of the inositol polyphosphate (InsP) and G-protein signal associated with flg perception reduced flg-dependent immune responses. Previous work indicates that prior exposure of Arabidopsis plants to flg leads to an immune response reflected by less vigorous growth of a pathogenic microbe. We found that this immune response to flg was compromised in mutants lacking the ability to generate an InsP or G-protein signal. We conclude that the recruitment of intracellular Ca2+ stores by flg may involve InsP and G-protein signaling. We also found a notable difference in contribution of intracellular stores of Ca2+ to the immune signaling evoked by another PAMP, elf18 peptide, which had a very different response profile to impairment of InsP signaling. Although Ca2+ signaling is at the core of the innate immune as well as hypersensitive response to plant pathogens, it appears that the molecular mechanisms generating the Ca2+ signal in response to different PAMPs are different.
Collapse
Affiliation(s)
- Yi Ma
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, USA
| | - Yichen Zhao
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, USA
| | - Gerald A Berkowitz
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, USA
- Correspondence:
| |
Collapse
|
40
|
Zhu R, Dong X, Hao W, Gao W, Zhang W, Xia S, Liu T, Shang Z. Heterotrimeric G Protein-Regulated Ca 2+ Influx and PIN2 Asymmetric Distribution Are Involved in Arabidopsis thaliana Roots' Avoidance Response to Extracellular ATP. FRONTIERS IN PLANT SCIENCE 2017; 8:1522. [PMID: 28919907 PMCID: PMC5585194 DOI: 10.3389/fpls.2017.01522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/18/2017] [Indexed: 05/04/2023]
Abstract
Extracellular ATP (eATP) has been reported to be involved in plant growth as a primary messenger in the apoplast. Here, roots of Arabidopsis thaliana seedlings growing in jointed medium bent upon contact with ATP-containing medium to keep away from eATP, showing a marked avoidance response. Roots responded similarly to ADP and bz-ATP but did not respond to AMP and GTP. The eATP avoidance response was reduced in loss-of-function mutants of heterotrimeric G protein α subunit (Gα) (gpa1-1 and gpa1-2) and enhanced in Gα-over-expression (OE) lines (wGα and cGα). Ethylenebis(oxyethylenenitrilo) tetraacetic acid (EGTA) and Gd3+ remarkably suppressed eATP-induced root bending. ATP-stimulated Ca2+ influx was impaired in Gα null mutants and increased in its OE lines. DR5-GFP and PIN2 were asymmetrically distributed in ATP-stimulated root tips, this effect was strongly suppressed by EGTA and diminished in Gα null mutants. In addition, some eATP-induced genes' expression was also impaired in Gα null mutants. Based on these results, we propose that heterotrimeric Gα-regulated Ca2+ influx and PIN2 distribution may be key signaling events in eATP sensing and avoidance response in Arabidopsis thaliana roots.
Collapse
|
41
|
Geng S, Misra BB, de Armas E, Huhman DV, Alborn HT, Sumner LW, Chen S. Jasmonate-mediated stomatal closure under elevated CO 2 revealed by time-resolved metabolomics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:947-962. [PMID: 27500669 DOI: 10.1111/tpj.13296] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/01/2016] [Indexed: 05/18/2023]
Abstract
Foliar stomatal movements are critical for regulating plant water loss and gas exchange. Elevated carbon dioxide (CO2 ) levels are known to induce stomatal closure. However, the current knowledge on CO2 signal transduction in stomatal guard cells is limited. Here we report metabolomic responses of Brassica napus guard cells to elevated CO2 using three hyphenated metabolomics platforms: gas chromatography-mass spectrometry (MS); liquid chromatography (LC)-multiple reaction monitoring-MS; and ultra-high-performance LC-quadrupole time-of-flight-MS. A total of 358 metabolites from guard cells were quantified in a time-course response to elevated CO2 level. Most metabolites increased under elevated CO2 , showing the most significant differences at 10 min. In addition, reactive oxygen species production increased and stomatal aperture decreased with time. Major alterations in flavonoid, organic acid, sugar, fatty acid, phenylpropanoid and amino acid metabolic pathways indicated changes in both primary and specialized metabolic pathways in guard cells. Most interestingly, the jasmonic acid (JA) biosynthesis pathway was significantly altered in the course of elevated CO2 treatment. Together with results obtained from JA biosynthesis and signaling mutants as well as CO2 signaling mutants, we discovered that CO2 -induced stomatal closure is mediated by JA signaling.
Collapse
Affiliation(s)
- Sisi Geng
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Biswapriya B Misra
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Evaldo de Armas
- Thermo Fisher Scientific, 1400 Northpoint Parkway, West Palm Beach, FL, 33407, USA
| | - David V Huhman
- Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Hans T Alborn
- Chemistry Research Unit, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL, 32608, USA
| | - Lloyd W Sumner
- Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Sixue Chen
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
42
|
Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4182071. [PMID: 27088086 PMCID: PMC4818802 DOI: 10.1155/2016/4182071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 11/17/2022]
Abstract
The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hair cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. In this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.
Collapse
|
43
|
Zhu M, Jeon BW, Geng S, Yu Y, Balmant K, Chen S, Assmann SM. Preparation of Epidermal Peels and Guard Cell Protoplasts for Cellular, Electrophysiological, and -Omics Assays of Guard Cell Function. Methods Mol Biol 2016; 1363:89-121. [PMID: 26577784 DOI: 10.1007/978-1-4939-3115-6_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Bioassays are commonly used to study stomatal phenotypes. There are multiple options in the choice of plant materials and species used for observation of stomatal and guard cell responses in vivo. Here, detailed procedures for bioassays of stomatal responses to abscisic acid (ABA) in Arabidopsis thaliana are described, including ABA promotion of stomatal closure, ABA inhibition of stomatal opening, and ABA promotion of reaction oxygen species (ROS) production in guard cells. We also include an example of a stomatal bioassay for the guard cell CO2 response using guard cell-enriched epidermal peels from Brassica napus. Highly pure preparations of guard cell protoplasts can be produced, which are also suitable for studies on guard cell signaling, as well as for studies on guard cell ion transport. Small-scale and large-scale guard cell protoplast preparations are commonly used for electrophysiological and -omics studies, respectively. We provide a procedure for small-scale guard cell protoplasting from A. thaliana. Additionally, a general protocol for large-scale preparation of guard cell protoplasts, with specifications for three different species, A. thaliana, B. napus, and Vicia faba is also provided.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Byeong Wook Jeon
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Sisi Geng
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Yunqing Yu
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Kelly Balmant
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Sarah M Assmann
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
44
|
Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate. PLoS One 2015; 10:e0144206. [PMID: 26641455 PMCID: PMC4671721 DOI: 10.1371/journal.pone.0144206] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023] Open
Abstract
Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3-). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3- responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3-. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage.
Collapse
|
45
|
Chakraborty N, Sharma P, Kanyuka K, Pathak RR, Choudhury D, Hooley R, Raghuram N. G-protein α-subunit (GPA1) regulates stress, nitrate and phosphate response, flavonoid biosynthesis, fruit/seed development and substantially shares GCR1 regulation in A. thaliana. PLANT MOLECULAR BIOLOGY 2015; 89:559-76. [PMID: 26346778 DOI: 10.1007/s11103-015-0374-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/28/2015] [Indexed: 05/09/2023]
Abstract
Heterotrimeric G-proteins are implicated in several plant processes, but the mechanisms of signal-response coupling and the roles of G-protein coupled receptors in general and GCR1 in particular, remain poorly understood. We isolated a knock-out mutant of the Arabidopsis G-protein α subunit (gpa1-5) and analysed its transcriptome to understand the genomewide role of GPA1 and compared it with that of our similar analysis of a GCR1 mutant (Chakraborty et al. 2015, PLoS ONE 10(2):e0117819). We found 394 GPA1-regulated genes spanning 79 biological processes, including biotic and abiotic stresses, development, flavonoid biosynthesis, transcription factors, transporters and nitrate/phosphate responses. Many of them are either unknown or unclaimed explicitly in other published gpa1 mutant transcriptome analyses. A comparison of all known GPA1-regulated genes (including the above 394) with 350 GCR1-regulated genes revealed 114 common genes. This can be best explained by GCR1-GPA1 coupling, or by convergence of their independent signaling pathways. Though the common genes in our GPA1 and GCR1 mutant datasets constitute only 26% of the GPA1-regulated and 30% of the GCR1-responsive genes, they belong to nearly half of all the processes affected in both the mutants. Thus, GCR1 and GPA1 regulate not only some common genes, but also different genes belonging to the same processes to achieve similar outcomes. Overall, we validate some known and report many hitherto unknown roles of GPA1 in plants, including agronomically important ones such as biotic stress and nutrient response, and also provide compelling genetic evidence to revisit the role of GCR1 in G-protein signalling.
Collapse
Affiliation(s)
- Navjyoti Chakraborty
- University School of Biotechnology, G.G.S. Indraprastha University, Sector 16 C, Dwarka, New Delhi, 110078, India
| | - Priyanka Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, Sector 16 C, Dwarka, New Delhi, 110078, India
| | - Kostya Kanyuka
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Ravi Ramesh Pathak
- University School of Biotechnology, G.G.S. Indraprastha University, Sector 16 C, Dwarka, New Delhi, 110078, India
| | | | - Richard Hooley
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Nandula Raghuram
- University School of Biotechnology, G.G.S. Indraprastha University, Sector 16 C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
46
|
Munemasa S, Hauser F, Park J, Waadt R, Brandt B, Schroeder JI. Mechanisms of abscisic acid-mediated control of stomatal aperture. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:154-62. [PMID: 26599955 PMCID: PMC4679528 DOI: 10.1016/j.pbi.2015.10.010] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 05/18/2023]
Abstract
Drought stress triggers an increase in the level of the plant hormone abscisic acid (ABA), which initiates a signaling cascade to close stomata and reduce water loss. Recent studies have revealed that guard cells control cytosolic ABA concentration through the concerted actions of biosynthesis, catabolism as well as transport across membranes. Substantial progress has been made at understanding the molecular mechanisms of how the ABA signaling core module controls the activity of anion channels and thereby stomatal aperture. In this review, we focus on our current mechanistic understanding of ABA signaling in guard cells including the role of the second messenger Ca(2+) as well as crosstalk with biotic stress responses.
Collapse
Affiliation(s)
- Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| | - Felix Hauser
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - Jiyoung Park
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - Rainer Waadt
- University of Heidelberg, Centre for Organismal Studies, Plant Developmental Biology, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Benjamin Brandt
- Structural Plant Biology Laboratory, Department for Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva, Switzerland
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
47
|
Daloso DM, Antunes WC, Pinheiro DP, Waquim JP, Araújo WL, Loureiro ME, Fernie AR, Williams TCR. Tobacco guard cells fix CO2 by both Rubisco and PEPcase while sucrose acts as a substrate during light-induced stomatal opening. PLANT, CELL & ENVIRONMENT 2015; 38:2353-71. [PMID: 25871738 DOI: 10.1111/pce.12555] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 05/21/2023]
Abstract
Transcriptomic and proteomic studies have improved our knowledge of guard cell function; however, metabolic changes in guard cells remain relatively poorly understood. Here we analysed metabolic changes in guard cell-enriched epidermal fragments from tobacco during light-induced stomatal opening. Increases in sucrose, glucose and fructose were observed during light-induced stomatal opening in the presence of sucrose in the medium while no changes in starch were observed, suggesting that the elevated fructose and glucose levels were a consequence of sucrose rather than starch breakdown. Conversely, reduction in sucrose was observed during light- plus potassium-induced stomatal opening. Concomitant with the decrease in sucrose, we observed an increase in the level as well as in the (13) C enrichment in metabolites of, or associated with, the tricarboxylic acid cycle following incubation of the guard cell-enriched preparations in (13) C-labelled bicarbonate. Collectively, the results obtained support the hypothesis that sucrose is catabolized within guard cells in order to provide carbon skeletons for organic acid production. Furthermore, they provide a qualitative demonstration that CO2 fixation occurs both via ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPcase). The combined data are discussed with respect to current models of guard cell metabolism and function.
Collapse
Affiliation(s)
- Danilo M Daloso
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Werner C Antunes
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
- Departamento de Biologia, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Daniela P Pinheiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Jardel P Waquim
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Marcelo E Loureiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Thomas C R Williams
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
- Departamento de Botânica, Universidade de Brasilia, Brasilia, Distrito Federal, 70910-900, Brazil
| |
Collapse
|
48
|
Medeiros DB, Daloso DM, Fernie AR, Nikoloski Z, Araújo WL. Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control. PLANT, CELL & ENVIRONMENT 2015; 38:1457-70. [PMID: 25689387 DOI: 10.1111/pce.12517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/20/2015] [Accepted: 01/27/2015] [Indexed: 05/08/2023]
Abstract
Stomata control the concomitant exchange of CO2 and transpiration in land plants. While a constant supply of CO2 is need to maintain the rate of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. The factors affecting stomatal movement are directly coupled with the cellular networks of guard cells. Although the guard cell has been used as a model for characterization of signaling pathways, several important questions about its functioning remain elusive. Current modeling approaches describe the stomatal conductance in terms of relatively few easy-to-measure variables being unsuitable for in silico design of genetic manipulation strategies. Here, we argue that a system biology approach, combining modeling and high-throughput experiments, may be used to elucidate the mechanisms underlying stomata control and to determine targets for modulation of stomatal responses to environment. In support of our opinion, we review studies demonstrating how high-throughput approaches have provided a systems-view of guard cells. Finally, we emphasize the opportunities and challenges of genome-scale modeling and large-scale data integration for in silico manipulation of guard cell functions to improve crop yields, particularly under stress conditions which are of pertinence both to climate change and water use efficiency.
Collapse
Affiliation(s)
- David B Medeiros
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Danilo M Daloso
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
49
|
Misra BB, Acharya BR, Granot D, Assmann SM, Chen S. The guard cell metabolome: functions in stomatal movement and global food security. FRONTIERS IN PLANT SCIENCE 2015; 6:334. [PMID: 26042131 PMCID: PMC4436583 DOI: 10.3389/fpls.2015.00334] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 04/28/2015] [Indexed: 05/06/2023]
Abstract
Guard cells represent a unique single cell-type system for the study of cellular responses to abiotic and biotic perturbations that affect stomatal movement. Decades of effort through both classical physiological and functional genomics approaches have generated an enormous amount of information on the roles of individual metabolites in stomatal guard cell function and physiology. Recent application of metabolomics methods has produced a substantial amount of new information on metabolome control of stomatal movement. In conjunction with other "omics" approaches, the knowledge-base is growing to reach a systems-level description of this single cell-type. Here we summarize current knowledge of the guard cell metabolome and highlight critical metabolites that bear significant impact on future engineering and breeding efforts to generate plants/crops that are resistant to environmental challenges and produce high yield and quality products for food and energy security.
Collapse
Affiliation(s)
- Biswapriya B. Misra
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | | | - David Granot
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Bet-Dagan, Israel
| | | | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| |
Collapse
|
50
|
Li K, Wang X, Pidatala VR, Chang CP, Cao X. Novel Quantitative Metabolomic Approach for the Study of Stress Responses of Plant Root Metabolism. J Proteome Res 2014; 13:5879-87. [DOI: 10.1021/pr5007813] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kefeng Li
- School
of Medicine, University of California, San Diego, 92103, California United States
- Department
of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xu Wang
- Key
Laboratory for Food Nutrition and Safety of Ministry of Education, Tianjin University of Science and Technology, 300457 Tianjin, People’s Republic of China
- Analytical
Department, Tianjin Ting Yu Consulting Co., Ltd., 300457 Tianjin, People’s Republic of China
| | - Venkataramana R. Pidatala
- Department
of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Chi-Peng Chang
- Analytical
Department, Tianjin Ting Yu Consulting Co., Ltd., 300457 Tianjin, People’s Republic of China
| | - Xiaohong Cao
- Key
Laboratory for Food Nutrition and Safety of Ministry of Education, Tianjin University of Science and Technology, 300457 Tianjin, People’s Republic of China
| |
Collapse
|