1
|
Che LP, Ruan J, Xin Q, Zhang L, Gao F, Cai L, Zhang J, Chen S, Zhang H, Rochaix JD, Peng L. RESISTANCE TO PHYTOPHTHORA1 promotes cytochrome b559 formation during early photosystem II biogenesis in Arabidopsis. THE PLANT CELL 2024; 36:4143-4167. [PMID: 38963884 PMCID: PMC11449094 DOI: 10.1093/plcell/koae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
As an essential intrinsic component of photosystem II (PSII) in all oxygenic photosynthetic organisms, heme-bridged heterodimer cytochrome b559 (Cyt b559) plays critical roles in the protection and assembly of PSII. However, the underlying mechanisms of Cyt b559 assembly are largely unclear. Here, we characterized the Arabidopsis (Arabidopsis thaliana) rph1 (resistance to Phytophthora1) mutant, which was previously shown to be susceptible to the oomycete pathogen Phytophthora brassicae. Loss of RPH1 leads to a drastic reduction in PSII accumulation, which can be primarily attributed to the defective formation of Cyt b559. Spectroscopic analyses showed that the heme level in PSII supercomplexes isolated from rph1 is significantly reduced, suggesting that RPH1 facilitates proper heme assembly in Cyt b559. Due to the loss of RPH1-mediated processes, a covalently bound PsbE-PsbF heterodimer is formed during the biogenesis of PSII. In addition, rph1 is highly photosensitive and accumulates elevated levels of reactive oxygen species under photoinhibitory-light conditions. RPH1 is a conserved intrinsic thylakoid protein present in green algae and terrestrial plants, but absent in Synechocystis, and it directly interacts with the subunits of Cyt b559. Thus, our data demonstrate that RPH1 represents a chloroplast acquisition specifically promoting the efficient assembly of Cyt b559, probably by mediating proper heme insertion into the apo-Cyt b559 during the initial phase of PSII biogenesis.
Collapse
Affiliation(s)
- Li-Ping Che
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Junxiang Ruan
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qiang Xin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lin Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Fudan Gao
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lujuan Cai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jianing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shiwei Chen
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hui Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, Geneva 1211, Switzerland
| | - Lianwei Peng
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
2
|
Komenda J, Sobotka R, Nixon PJ. The biogenesis and maintenance of PSII: Recent advances and current challenges. THE PLANT CELL 2024; 36:3997-4013. [PMID: 38484127 PMCID: PMC11449106 DOI: 10.1093/plcell/koae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 10/05/2024]
Abstract
The growth of plants, algae, and cyanobacteria relies on the catalytic activity of the oxygen-evolving PSII complex, which uses solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial PSII assembly/repair intermediates. We also discuss how chlorophyll synthesis is synchronized with protein synthesis and suggest a possible role for PSI in PSII assembly. Special attention is paid to unresolved and controversial issues that could be addressed in future research.
Collapse
Affiliation(s)
- Josef Komenda
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Roman Sobotka
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
3
|
Anand A, Chauhan S, Chodon A, Vimala Kumar KV, Saravanakumar S, Pandi G. Evidence of microRNAs origination from chloroplast genome and their role in regulating Photosystem II protein N (psbN) mRNA. BIOTECHNOLOGIA 2024; 105:19-32. [PMID: 38633894 PMCID: PMC11020153 DOI: 10.5114/bta.2024.135639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 04/19/2024] Open
Abstract
The microRNAs are endogenous, regulating gene expression either at the DNA or RNA level. Despite the availability of extensive studies on microRNA generation in plants, reports on their abundance, biogenesis, and consequent gene regulation in plant organelles remain naVve. Building on previous studies involving pre-miRNA sequencing in Abelmoschus esculentus, we demonstrated that three putative microRNAs were raised from the chloroplast genome. In the current study, we have characterized the genesis of these three microRNAs through a combination of bioinformatics and experimental approaches. The gene sequence for a miRNA, designated as AecpmiRNA1 (A. esculentus chloroplast miRNA), is potentially located in both the genomic DNA, i.e., nuclear and chloroplast genome. In contrast, the gene sequences for the other two miRNAs (AecpmiRNA2 and AecpmiRNA3) are exclusively present in the chloroplast genome. Target prediction revealed many potential mRNAs as targets for AecpmiRNAs. Further analysis using 5' RACE-PCR determined the AecpmiRNA3 binding and cleavage site at the photosystem II protein N (psbN). These results indicate that AecpmiRNAs are generated from the chloroplast genome, possessing the potential to regulate mRNAs arising from chloroplast gene(s). On the other side, the possibility of nuclear genome-derived mRNA regulation by AecpmiRNAs cannot be ruled out.
Collapse
Affiliation(s)
- Asha Anand
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | - Shailja Chauhan
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Aparna Chodon
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | | - S. Saravanakumar
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Gopal Pandi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
4
|
Yu J, Han Y, Xu H, Han S, Li X, Niu Y, Chen S, Zhang F. Structural divergence and phylogenetic relationships of Ajania (Asteraceae) from plastomes and ETS. BMC Genomics 2023; 24:602. [PMID: 37817095 PMCID: PMC10566131 DOI: 10.1186/s12864-023-09716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Ajania Poljakov, an Asteraceae family member, grows mostly in Asia's arid and semi-desert areas and is a significant commercial and decorative plant. Nevertheless, the genus' classification has been disputed, and the evolutionary connections within the genus have not been thoroughly defined. Hence, we sequenced and analyzed Ajania's plastid genomes and combined them with ETS data to assess their phylogenetic relationships. RESULTS We obtained a total of six new Ajania plastid genomes and nine ETS sequences. The whole plastome lengths of the six species sampled ranged from 151,002 bp to 151,115 bp, showing conserved structures. Combined with publicly available data from GenBank, we constructed six datasets to reconstruct the phylogenetic relationships, detecting nucleoplasmic clashes. Our results reveal the affinities of Artemisia, Chrysanthemum and Stilpnolepis to Ajania and validate the early taxonomy reclassification. Some of the plastid genes with low phylogenetic information and gene trees with topological differences may have contributed to the ambiguous phylogenetic results of Ajania. There is extensive evolutionary rate heterogeneity in plastid genes. The psbH and ycf2 genes, which are involved in photosynthesis and ATP transport, are under selective pressure. Plastomes from Ajania species diverged, and structural aspects of plastomes may indicate some of the real evolutionary connections. We suggest the ycf1 gene as a viable plastid DNA barcode because it has significant nucleotide diversity and better reflects evolutionary connections. CONCLUSION Our findings validate the early Ajania taxonomy reclassification and show evolutionary rate heterogeneity, genetic variety, and phylogenetic heterogeneity of plastid genes. This research might provide new insights into the taxonomy and evolution of Ajania, as well as provide useful information for germplasm innovation and genetic enhancement in horticultural species.
Collapse
Affiliation(s)
- Jingya Yu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yun Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Hao Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shuang Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiaoping Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yu Niu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
| | - Faqi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China.
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China.
| |
Collapse
|
5
|
Zhang L, Zhang Z, Cao J, Wang K, Qin L, Sun Y, Ju W, Qu C, Miao J. Extreme environmental adaptation mechanisms of Antarctic bryophytes are mainly the activation of antioxidants, secondary metabolites and photosynthetic pathways. BMC PLANT BIOLOGY 2023; 23:399. [PMID: 37605165 PMCID: PMC10464054 DOI: 10.1186/s12870-023-04366-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/22/2023] [Indexed: 08/23/2023]
Abstract
The environment in Antarctica is characterized by low temperature, intense UVB and few vegetation types. The Pohlia nutans M211 are bryophytes, which are the primary plants in Antarctica and can thrive well in the Antarctic harsh environment. The transcriptional profiling of Pohlia nutans M211 under low temperature and high UVB conditions was analyzed to explore their polar adaptation mechanism in the extreme Antarctic environment by third-generation sequencing and second-generation sequencing. In comparison to earlier second-generation sequencing techniques, a total of 43,101 non-redundant transcripts and 10,532 lncRNA transcripts were obtained, which were longer and more accurate. The analysis results of GO, KEGG, AS (alternative splicing), and WGCNA (weighted gene co-expression network analysis) of DEGs (differentially expressed genes), combined with the biochemical kits revealed that antioxidant, secondary metabolites pathways and photosynthesis were the key adaptive pathways for Pohlia nutans M211 to the Antarctic extreme environment. Furthermore, the low temperature and strong UVB are closely linked for the first time by the gene HY5 (hlongated hypocotyl 5) to form a protein interaction network through the PPI (protein-protein interaction networks) analysis method. The UVR8 module, photosynthetic module, secondary metabolites synthesis module, and temperature response module were the key components of the PPI network. In conclusion, this study will help to further explore the polar adaptation mechanism of Antarctic plants represented by bryophytes and to enrich the polar gene resources.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Zhi Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Yongjun Sun
- Homey Group Co.,Ltd, Rongcheng, 264300, China
| | - Wenming Ju
- Homey Group Co.,Ltd, Rongcheng, 264300, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao, 266061, China.
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao, 266061, China.
| |
Collapse
|
6
|
Yogadasan N, Doxey AC, Chuong SDX. A Machine Learning Framework Identifies Plastid-Encoded Proteins Harboring C3 and C4 Distinguishing Sequence Information. Genome Biol Evol 2023; 15:evad129. [PMID: 37462292 PMCID: PMC10368328 DOI: 10.1093/gbe/evad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
C4 photosynthesis is known to have at least 61 independent origins across plant lineages making it one of the most notable examples of convergent evolution. Of the >60 independent origins, a predicted 22-24 origins, encompassing greater than 50% of all known C4 species, exist within the Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae (PACMAD) clade of the Poaceae family. This clade is therefore primed with species ideal for the study of genomic changes associated with the acquisition of the C4 photosynthetic trait. In this study, we take advantage of the growing availability of sequenced plastid genomes and employ a machine learning (ML) approach to screen for plastid genes harboring C3 and C4 distinguishing information in PACMAD species. We demonstrate that certain plastid-encoded protein sequences possess distinguishing and informative sequence information that allows them to train accurate ML C3/C4 classification models. Our RbcL-trained model, for example, informs a C3/C4 classifier with greater than 99% accuracy. Accurate prediction of photosynthetic type from individual sequences suggests biologically relevant, and potentially differing roles of these sequence products in C3 versus C4 metabolism. With this ML framework, we have identified several key sequences and sites that are most predictive of C3/C4 status, including RbcL, subunits of the NAD(P)H dehydrogenase complex, and specific residues within, further highlighting their potential significance in the evolution and/or maintenance of C4 photosynthetic machinery. This general approach can be applied to uncover intricate associations between other similar genotype-phenotype relationships.
Collapse
Affiliation(s)
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Simon D X Chuong
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
7
|
Paul A, Mondal S, Pal A, Biswas S, Chakraborty K, Mazumder A, Biswas AK, Kundu R. Seed priming with NaCl helps to improve tissue tolerance, potassium retention ability of plants, and protects the photosynthetic ability in two different legumes, chickpea and lentil, under salt stress. PLANTA 2023; 257:111. [PMID: 37156996 DOI: 10.1007/s00425-023-04150-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
MAIN CONCLUSION Seed priming with NaCl mimicked the conditions of natural priming to improve the tissue tolerance nature of sensitive legumes, which helps to maintain survivability and yield in mildly saline areas. Seed priming with NaCl is a seed invigoration technique that helps to improve plant growth by altering Na+ and K+ content under salt stress. Legumes are overall sensitive to salt and salinity hampers their growth and yield. Therefore, a priming (50 mM NaCl) experiment was performed with two different legume members [Cicer arietinum cv. Anuradha and Lens culinaris cv. Ranjan] and different morpho-physiological, biochemical responses at 50 mM, 100 mM, and 150 mM NaCl and molecular responses at 150 mM NaCl were studied in hydroponically grown nonprimed and primed members. Similarly, a pot experiment was performed at 80 mM Na+, to check the yield. Tissue Na+ and K+ content suggested NaCl-priming did not significantly alter the accumulation of Na+ among nonprimed and primed members but retained more K+ in cells, thus maintaining a lower cellular Na+/K+ ratio. Low osmolyte content (e.g., proline) in primed members suggested priming could minimize their overall osmolytic requirement. Altogether, these implied tissue tolerance (TT) nature might have improved in case of NaCl-priming as was also reflected by a better TT score (LC50 value). An improved TT nature enabled the primed plants to maintain a significantly higher photosynthetic rate through better stomatal conductance. Along with this, a higher level of chlorophyll content and competent functioning of the photosynthetic subunits improved photosynthetic performance that ensured yield under stress. Overall, this study explores the potential of NaCl-priming and creates possibilities for considerably sensitive members; those in their nonprimed forms have no prospect in mildly saline agriculture.
Collapse
Affiliation(s)
- Alivia Paul
- Plant Physiology and Biochemistry Laboratory, CAS, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
- Cell Biology Laboratory, CAS, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Subhankar Mondal
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | - Asmita Pal
- Cell Biology Laboratory, CAS, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Soumyajit Biswas
- Regional-Cum-Facilitation Centre (Eastern Region), National Medical Plants Board (NMPB), Ministry of Ayush, Govt. of India, Jadavpur University, Kolkata, 700032, India
| | - Koushik Chakraborty
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Asis Mazumder
- Regional-Cum-Facilitation Centre (Eastern Region), National Medical Plants Board (NMPB), Ministry of Ayush, Govt. of India, Jadavpur University, Kolkata, 700032, India
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, CAS, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Rita Kundu
- Cell Biology Laboratory, CAS, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
8
|
Ghandour R, Gao Y, Laskowski J, Barahimipour R, Ruf S, Bock R, Zoschke R. Transgene insertion into the plastid genome alters expression of adjacent native chloroplast genes at the transcriptional and translational levels. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:711-725. [PMID: 36529916 PMCID: PMC10037153 DOI: 10.1111/pbi.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In plant biotechnology and basic research, chloroplasts have been used as chassis for the expression of various transgenes. However, potential unintended side effects of transgene insertion and high-level transgene expression on the expression of native chloroplast genes are often ignored and have not been studied comprehensively. Here, we examined expression of the chloroplast genome at both the transcriptional and translational levels in five transplastomic tobacco (Nicotiana tabacum) lines carrying the identical aadA resistance marker cassette in diverse genomic positions. Although none of the lines exhibits a pronounced visible phenotype, the analysis of three lines that contain the aadA insertion in different locations within the petL-petG-psaJ-rpl33-rps18 transcription unit demonstrates that transcriptional read-through from the aadA resistance marker is unavoidable, and regularly causes overexpression of downstream sense-oriented chloroplast genes at the transcriptional and translational levels. Investigation of additional lines that harbour the aadA intergenically and outside of chloroplast transcription units revealed that expression of the resistance marker can also cause antisense effects by interference with transcription/transcript accumulation and/or translation of downstream antisense-oriented genes. In addition, we provide evidence for a previously suggested role of genomically encoded tRNAs in chloroplast transcription termination and/or transcript processing. Together, our data uncover principles of neighbouring effects of chloroplast transgenes and suggest general strategies for the choice of transgene insertion sites and expression elements to minimize unintended consequences of transgene expression on the transcription and translation of native chloroplast genes.
Collapse
Affiliation(s)
- Rabea Ghandour
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Yang Gao
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | | | | | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| |
Collapse
|
9
|
Labban A, Shibl AA, Calleja ML, Hong PY, Morán XAG. Growth dynamics and transcriptional responses of a Red Sea Prochlorococcus strain to varying temperatures. Environ Microbiol 2022; 25:1007-1021. [PMID: 36567447 DOI: 10.1111/1462-2920.16326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022]
Abstract
Prochlorococcus play a crucial role in the ocean's biogeochemical cycling, but it remains controversial how they will respond to global warming. Here we assessed the response to temperature (22-30°C) of the growth dynamics and gene expression profiles of a Red Sea Prochlorococcus strain (RSP50) in a non-axenic culture. Both the specific growth rate (0.55-0.80 day-1 ) and cell size (0.04-0.07 μm3 ) of Prochlorococcus increased significantly with temperature. The primary production released extracellularly ranged from 20% to 34%, with humic-like fluorescent compounds increasing up to fivefold as Prochlorococcus reached its maximum abundance. At 30°C, genes involved in carbon fixation such as CsoS2 and CsoS3 and photosynthetic electron transport including PTOX were downregulated, suggesting a cellular homeostasis and energy saving mechanism response. In contrast, PTOX was found upregulated at 22°C and 24°C. Similar results were found for transaldolase, related to carbon metabolism, and citrate synthase, an important enzyme in the TCA cycle. Our data suggest that in spite of the currently warm temperatures of the Red Sea, Prochlorococcus can modulate its gene expression profiles to permit growth at temperatures lower than its optimum temperature (28°C) but is unable to cope with temperatures exceeding 30°C.
Collapse
Affiliation(s)
- Abbrar Labban
- Marine Science, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Environmental Science and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ahmed A Shibl
- Genetic Heritage Group, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Maria Ll Calleja
- Climate Geochemistry Department, Max Plank Institute for Chemistry, Mainz, Germany
| | - Pei-Ying Hong
- Environmental Science and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Xosé Anxelu G Morán
- Marine Science, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía (IEO-CSIC), Gijón/Xixón, Spain
| |
Collapse
|
10
|
Knoppová J, Sobotka R, Yu J, Bečková M, Pilný J, Trinugroho JP, Csefalvay L, Bína D, Nixon PJ, Komenda J. Assembly of D1/D2 complexes of photosystem II: Binding of pigments and a network of auxiliary proteins. PLANT PHYSIOLOGY 2022; 189:790-804. [PMID: 35134246 PMCID: PMC9157124 DOI: 10.1093/plphys/kiac045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Photosystem II (PSII) is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water. To investigate the initial steps of PSII assembly, we used strains of the cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes and their precursor D1 and D2 modules (D1mod and D2mod). RCII preparations isolated using either a His-tagged D2 or a FLAG-tagged PsbI subunit contained the previously described RCIIa and RCII* complexes that differ with respect to the presence of the Ycf39 assembly factor and high light-inducible proteins (Hlips) and a larger complex consisting of RCIIa bound to monomeric PSI. All RCII complexes contained the PSII subunits D1, D2, PsbI, PsbE, and PsbF and the assembly factors rubredoxin A and Ycf48, but we also detected PsbN, Slr1470, and the Slr0575 proteins, which all have plant homologs. The RCII preparations also contained prohibitins/stomatins (Phbs) of unknown function and FtsH protease subunits. RCII complexes were active in light-induced primary charge separation and bound chlorophylls (Chls), pheophytins, beta-carotenes, and heme. The isolated D1mod consisted of D1/PsbI/Ycf48 with some Ycf39 and Phb3, while D2mod contained D2/cytochrome b559 with co-purifying PsbY, Phb1, Phb3, FtsH2/FtsH3, CyanoP, and Slr1470. As stably bound, Chl was detected in D1mod but not D2mod, formation of RCII appears to be important for stable binding of most of the Chls and both pheophytins. We suggest that Chl can be delivered to RCII from either monomeric Photosystem I or Ycf39/Hlips complexes.
Collapse
Affiliation(s)
- Jana Knoppová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Jianfeng Yu
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Martina Bečková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Jan Pilný
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - Joko P Trinugroho
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ladislav Csefalvay
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice 370 05, Czech Republic
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Photosynthesis, Třeboň 37901, Czech Republic
| |
Collapse
|
11
|
Ferrieux M, Dufour L, Doré H, Ratin M, Guéneuguès A, Chasselin L, Marie D, Rigaut-Jalabert F, Le Gall F, Sciandra T, Monier G, Hoebeke M, Corre E, Xia X, Liu H, Scanlan DJ, Partensky F, Garczarek L. Comparative Thermophysiology of Marine Synechococcus CRD1 Strains Isolated From Different Thermal Niches in Iron-Depleted Areas. Front Microbiol 2022; 13:893413. [PMID: 35615522 PMCID: PMC9124967 DOI: 10.3389/fmicb.2022.893413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Marine Synechococcus cyanobacteria are ubiquitous in the ocean, a feature likely related to their extensive genetic diversity. Amongst the major lineages, clades I and IV preferentially thrive in temperate and cold, nutrient-rich waters, whilst clades II and III prefer warm, nitrogen or phosphorus-depleted waters. The existence of such cold (I/IV) and warm (II/III) thermotypes is corroborated by physiological characterization of representative strains. A fifth clade, CRD1, was recently shown to dominate the Synechococcus community in iron-depleted areas of the world ocean and to encompass three distinct ecologically significant taxonomic units (ESTUs CRD1A-C) occupying different thermal niches, suggesting that distinct thermotypes could also occur within this clade. Here, using comparative thermophysiology of strains representative of these three CRD1 ESTUs we show that the CRD1A strain MITS9220 is a warm thermotype, the CRD1B strain BIOS-U3-1 a cold temperate thermotype, and the CRD1C strain BIOS-E4-1 a warm temperate stenotherm. Curiously, the CRD1B thermotype lacks traits and/or genomic features typical of cold thermotypes. In contrast, we found specific physiological traits of the CRD1 strains compared to their clade I, II, III, and IV counterparts, including a lower growth rate and photosystem II maximal quantum yield at most temperatures and a higher turnover rate of the D1 protein. Together, our data suggests that the CRD1 clade prioritizes adaptation to low-iron conditions over temperature adaptation, even though the occurrence of several CRD1 thermotypes likely explains why the CRD1 clade as a whole occupies most iron-limited waters.
Collapse
Affiliation(s)
- Mathilde Ferrieux
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Louison Dufour
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Hugo Doré
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Morgane Ratin
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Audrey Guéneuguès
- Sorbonne Université, CNRS, UMR 7621 Laboratoire d’Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls/mer, Banyuls, France
| | - Léo Chasselin
- Sorbonne Université, CNRS, UMR 7621 Laboratoire d’Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls/mer, Banyuls, France
| | - Dominique Marie
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Fabienne Rigaut-Jalabert
- Sorbonne Université, CNRS, Fédération de Recherche FR2424, Station Biologique de Roscoff, Roscoff, France
| | - Florence Le Gall
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Théo Sciandra
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Garance Monier
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Mark Hoebeke
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Erwan Corre
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - David J. Scanlan
- University of Warwick, School of Life Sciences, Coventry, United Kingdom
| | - Frédéric Partensky
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Laurence Garczarek
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
- CNRS Research Federation (FR2022) Tara Océans GO-SEE, Paris, France
| |
Collapse
|
12
|
Che L, Meng H, Ruan J, Peng L, Zhang L. Rubredoxin 1 Is Required for Formation of the Functional Photosystem II Core Complex in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:824358. [PMID: 35283894 PMCID: PMC8905225 DOI: 10.3389/fpls.2022.824358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 05/03/2023]
Abstract
Chloroplast thylakoid protein rubredoxin 1 (RBD1) in Chlamydomonas and its cyanobacterial homolog RubA contain a rubredoxin domain. These proteins have been proposed to participate in the assembly of photosystem II (PSII) at early stages. However, the effects of inactivation of RBD1 on PSII assembly in higher plants are largely unclear. Here, we characterized an Arabidopsis rbd1 mutant in detail. A drastic reduction of intact PSII complex but relatively higher levels of assembly intermediates including PSII RC, pre-CP47, and pre-CP43 were found in rbd1. Polysome association and ribosome profiling revealed that ribosome recruitment of psbA mRNA is specifically reduced. Consistently, in vivo protein pulse-chase labeling showed that the rate of D1/pD1 synthesis is significantly reduced in rbd1 compared with WT. Moreover, newly synthesized mature D1 and pD1/D2 can assemble into the PSII reaction center (RC) complex but further formation of larger PSII complexes is nearly totally blocked in rbd1. Our data imply that RBD1 is not only required for the formation of a functional PSII core complex during the early stages of PSII assembly but may also be involved in the translation of D1 in higher plants.
Collapse
Affiliation(s)
- Liping Che
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, China
| | - Han Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Junxiang Ruan
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, China
| | - Lianwei Peng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lin Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- *Correspondence: Lin Zhang,
| |
Collapse
|
13
|
Transcriptome analysis of Kentucky bluegrass subject to drought and ethephon treatment. PLoS One 2021; 16:e0261472. [PMID: 34914788 PMCID: PMC8675742 DOI: 10.1371/journal.pone.0261472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
Kentucky bluegrass (Poa pratensis L.) is an excellent cool-season turfgrass utilized widely in Northern China. However, turf quality of Kentucky bluegrass declines significantly due to drought. Ethephon seeds-soaking treatment has been proved to effectively improve the drought tolerance of Kentucky bluegrass seedlings. In order to investigate the effect of ethephon leaf-spraying method on drought tolerance of Kentucky bluegrass and understand the underlying mechanism, Kentucky bluegrass plants sprayed with and without ethephon are subjected to either drought or well watered treatments. The relative water content and malondialdehyde conent were measured. Meanwhile, samples were sequenced through Illumina. Results showed that ethephon could improve the drought tolerance of Kentucky bluegrass by elevating relative water content and decreasing malondialdehyde content under drought. Transcriptome analysis showed that 58.43% transcripts (254,331 out of 435,250) were detected as unigenes. A total of 9.69% (24,643 out of 254,331) unigenes were identified as differentially expressed genes in one or more of the pairwise comparisons. Differentially expressed genes due to drought stress with or without ethephon pre-treatment showed that ethephon application affected genes associated with plant hormone, signal transduction pathway and plant defense, protein degradation and stabilization, transportation and osmosis, antioxidant system and the glyoxalase pathway, cell wall and cuticular wax, fatty acid unsaturation and photosynthesis. This study provides a theoretical basis for revealing the mechanism for how ethephon regulates drought response and improves drought tolerance of Kentucky bluegrass.
Collapse
|
14
|
Ríos-Meléndez S, Valadez-Hernández E, Delgadillo C, Luna-Guevara ML, Martínez-Núñez MA, Sánchez-Pérez M, Martínez-Y-Pérez JL, Arroyo-Becerra A, Cárdenas L, Bibbins-Martínez M, Maldonado-Mendoza IE, Villalobos-López MA. Pseudocrossidium replicatum (Taylor) R.H. Zander is a fully desiccation-tolerant moss that expresses an inducible molecular mechanism in response to severe abiotic stress. PLANT MOLECULAR BIOLOGY 2021; 107:387-404. [PMID: 34189708 PMCID: PMC8648698 DOI: 10.1007/s11103-021-01167-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/10/2021] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE The moss Pseudocrossidium replicatum is a desiccation-tolerant species that uses an inducible system to withstand severe abiotic stress in both protonemal and gametophore tissues. Desiccation tolerance (DT) is the ability of cells to recover from an air-dried state. Here, the moss Pseudocrossidium replicatum was identified as a fully desiccation-tolerant (FDT) species. Its gametophores rapidly lost more than 90% of their water content when exposed to a low-humidity atmosphere [23% relative humidity (RH)], but abscisic acid (ABA) pretreatment diminished the final water loss after equilibrium was reached. P. replicatum gametophores maintained good maximum photosystem II (PSII) efficiency (Fv/Fm) for up to two hours during slow dehydration; however, ABA pretreatment induced a faster decrease in the Fv/Fm. ABA also induced a faster recovery of the Fv/Fm after rehydration. Protein synthesis inhibitor treatment before dehydration hampered the recovery of the Fv/Fm when the gametophores were rehydrated after desiccation, suggesting the presence of an inducible protective mechanism that is activated in response to abiotic stress. This observation was also supported by accumulation of soluble sugars in gametophores exposed to ABA or NaCl. Exogenous ABA treatment delayed the germination of P. replicatum spores and induced morphological changes in protonemal cells that resembled brachycytes. Transcriptome analyses revealed the presence of an inducible molecular mechanism in P. replicatum protonemata that was activated in response to dehydration. This study is the first RNA-Seq study of the protonemal tissues of an FDT moss. Our results suggest that P. replicatum is an FDT moss equipped with an inducible molecular response that prepares this species for severe abiotic stress and that ABA plays an important role in this response.
Collapse
Affiliation(s)
- Selma Ríos-Meléndez
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Emmanuel Valadez-Hernández
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Claudio Delgadillo
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maria L Luna-Guevara
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, C.P. 72000, Puebla, Puebla, México
| | - Mario A Martínez-Núñez
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, C.P. 97302, Mérida, Yucatán, México
| | - Mishael Sánchez-Pérez
- Unidad de Análisis Bioinformáticos, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - José L Martínez-Y-Pérez
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, C.P. 90210, Ixtacuixtla, Tlaxcala, México
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Luis Cárdenas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Martha Bibbins-Martínez
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Ignacio E Maldonado-Mendoza
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional, C.P. 81049, Guasave, Sinaloa, México
| | - Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México.
| |
Collapse
|
15
|
Zupok A, Kozul D, Schöttler MA, Niehörster J, Garbsch F, Liere K, Fischer A, Zoschke R, Malinova I, Bock R, Greiner S. A photosynthesis operon in the chloroplast genome drives speciation in evening primroses. THE PLANT CELL 2021; 33:2583-2601. [PMID: 34048579 PMCID: PMC8408503 DOI: 10.1093/plcell/koab155] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/27/2021] [Indexed: 05/09/2023]
Abstract
Genetic incompatibility between the cytoplasm and the nucleus is thought to be a major factor in species formation, but mechanistic understanding of this process is poor. In evening primroses (Oenothera spp.), a model plant for organelle genetics and population biology, hybrid offspring regularly display chloroplast-nuclear incompatibility. This usually manifests in bleached plants, more rarely in hybrid sterility or embryonic lethality. Hence, most of these incompatibilities affect photosynthetic capability, a trait that is under selection in changing environments. Here we show that light-dependent misregulation of the plastid psbB operon, which encodes core subunits of photosystem II and the cytochrome b6f complex, can lead to hybrid incompatibility, and this ultimately drives speciation. This misregulation causes an impaired light acclimation response in incompatible plants. Moreover, as a result of their different chloroplast genotypes, the parental lines differ in photosynthesis performance upon exposure to different light conditions. Significantly, the incompatible chloroplast genome is naturally found in xeric habitats with high light intensities, whereas the compatible one is limited to mesic habitats. Consequently, our data raise the possibility that the hybridization barrier evolved as a result of adaptation to specific climatic conditions.
Collapse
Affiliation(s)
| | | | - Mark Aurel Schöttler
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Julia Niehörster
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Frauke Garbsch
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Karsten Liere
- Institut für Biologie/Molekulare Genetik, Humboldt-Universität zu Berlin, Berlin, D-10115, Germany
| | - Axel Fischer
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Reimo Zoschke
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Irina Malinova
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Ralph Bock
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | | |
Collapse
|
16
|
Zhang Z, Zhao LS, Liu LN. Characterizing the supercomplex association of photosynthetic complexes in cyanobacteria. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202142. [PMID: 34295515 PMCID: PMC8278045 DOI: 10.1098/rsos.202142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/28/2021] [Indexed: 05/15/2023]
Abstract
The light reactions of photosynthesis occur in thylakoid membranes that are densely packed with a series of photosynthetic complexes. The lateral organization and close association of photosynthetic complexes in native thylakoid membranes are vital for efficient light harvesting and energy transduction. Recently, analysis of the interconnections between photosynthetic complexes to form supercomplexes has garnered great interest. In this work, we report a method integrating immunoprecipitation, mass spectrometry and atomic force microscopy to identify the inter-complex associations of photosynthetic complexes in thylakoid membranes from the cyanobacterium Synechococcus elongatus PCC 7942. We characterize the preferable associations between individual photosynthetic complexes and binding proteins involved in the complex-complex interfaces, permitting us to propose the structural models of photosynthetic complex associations that promote the formation of photosynthetic supercomplexes. We also identified other potential binding proteins with the photosynthetic complexes, suggesting the highly connecting networks associated with thylakoid membranes. This study provides mechanistic insight into the physical interconnections of photosynthetic complexes and potential partners, which are crucial for efficient energy transfer and physiological acclimatization of the photosynthetic apparatus. Advanced knowledge of the protein organization and interplay of the photosynthetic machinery will inform rational design and engineering of artificial photosynthetic systems to supercharge energy production.
Collapse
Affiliation(s)
- Zimeng Zhang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Long-Sheng Zhao
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao 266237, People's Republic of China
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
17
|
Méteignier L, Ghandour R, Meierhoff K, Zimmerman A, Chicher J, Baumberger N, Alioua A, Meurer J, Zoschke R, Hammani K. The Arabidopsis mTERF-repeat MDA1 protein plays a dual function in transcription and stabilization of specific chloroplast transcripts within the psbE and ndhH operons. THE NEW PHYTOLOGIST 2020; 227:1376-1391. [PMID: 32343843 PMCID: PMC7496394 DOI: 10.1111/nph.16625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 05/28/2023]
Abstract
The mTERF gene family encodes for nucleic acid binding proteins that are predicted to regulate organellar gene expression in eukaryotes. Despite the implication of this gene family in plant development and response to abiotic stresses, a precise molecular function was assigned to only a handful number of its c. 30 members in plants. Using a reverse genetics approach in Arabidopsis thaliana and combining molecular and biochemical techniques, we revealed new functions for the chloroplast mTERF protein, MDA1. We demonstrated that MDA1 associates in vivo with components of the plastid-encoded RNA polymerase and transcriptional active chromosome complexes. MDA1 protein binds in vivo and in vitro with specificity to 27-bp DNA sequences near the 5'-end of psbE and ndhA chloroplast genes to stimulate their transcription, and additionally promotes the stabilization of the 5'-ends of processed psbE and ndhA messenger (m)RNAs. Finally, we provided evidence that MDA1 function in gene transcription likely coordinates RNA folding and the action of chloroplast RNA-binding proteins on mRNA stabilization. Our results provide examples for the unexpected implication of DNA binding proteins and gene transcription in the regulation of mRNA stability in chloroplasts, blurring the boundaries between DNA and RNA metabolism in this organelle.
Collapse
Affiliation(s)
- Louis‐Valentin Méteignier
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Rabea Ghandour
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Karin Meierhoff
- Institute of Developmental and Molecular Biology of PlantsHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Aude Zimmerman
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRSUniversité de Strasbourg15 rue René Descartes67084StrasbourgFrance
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Abdelmalek Alioua
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Jörg Meurer
- Plant SciencesFaculty of BiologyLudwig‐Maximilians‐University MunichGroßhaderner Street 2‐482152Planegg‐MartinsriedGermany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Kamel Hammani
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| |
Collapse
|
18
|
Wei W, Liang DW, Bian XH, Shen M, Xiao JH, Zhang WK, Ma B, Lin Q, Lv J, Chen X, Chen SY, Zhang JS. GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca 2+ signaling pathways in transgenic soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:384-398. [PMID: 31271689 DOI: 10.1111/tpj.14449] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 05/18/2023]
Abstract
WRKY transcription factors play important roles in response to various abiotic stresses. Previous study have proved that soybean GmWRKY54 can improve stress tolerance in transgenic Arabidopsis. Here, we generated soybean transgenic plants and further investigated roles and biological mechanisms of GmWRKY54 in response to drought stress. We demonstrated that expression of GmWRKY54, driven by either a constitutive promoter (pCm) or a drought-induced promoter (RD29a), confers drought tolerance. GmWRKY54 is a transcriptional activator and affects a large number of stress-related genes as revealed by RNA sequencing. Gene ontology (GO) enrichment and co-expression network analysis, together with measurement of physiological parameters, supported the idea that GmWRKY54 enhances stomatal closure to reduce water loss, and therefore confers drought tolerance in soybean. GmWRKY54 directly binds to the promoter regions of genes including PYL8, SRK2A, CIPK11 and CPK3 and activates them. Therefore GmWRKY54 achieves its function through abscisic acid (ABA) and Ca2+ signaling pathways. It is valuable that GmWRKY54 activates an ABA receptor and an SnRK2 kinase in the upstream position, unlike other WRKY proteins that regulate downstream genes in the ABA pathway. Our study revealed the role of GmWRKY54 in drought tolerance and further manipulation of this gene should improve growth and production in soybean and other legumes/crops under unfavorable conditions.
Collapse
Affiliation(s)
- Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Da-Wei Liang
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Hui Xiao
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Lin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Lv
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Xi Chen
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Burton-Smith RN, Watanabe A, Tokutsu R, Song C, Murata K, Minagawa J. Structural determination of the large photosystem II-light-harvesting complex II supercomplex of Chlamydomonas reinhardtii using nonionic amphipol. J Biol Chem 2019; 294:15003-15013. [PMID: 31420447 DOI: 10.1074/jbc.ra119.009341] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/14/2019] [Indexed: 02/01/2023] Open
Abstract
In photosynthetic organisms, photosystem II (PSII) is a large membrane protein complex, consisting of a pair of core complexes surrounded by an array of variable numbers of light-harvesting complex (LHC) II proteins. Previously reported structures of the PSII-LHCII supercomplex of the green alga Chlamydomonas reinhardtii exhibit significant structural heterogeneity, but recently improved purification methods employing ionic amphipol A8-35 have enhanced supercomplex stability, providing opportunities for determining a more intact structure. Herein, we present a 5.8 Å cryo-EM map of the C. reinhardtii PSII-LHCII supercomplex containing six LHCII trimers (C2S2M2L2). Utilizing a newly developed nonionic amphipol-based purification and stabilizing method, we purified the largest photosynthetic supercomplex to the highest percentage of the intact configuration reported to date. We found that the interprotein distances within the light-harvesting complex array in the green algal photosystem are larger than those previously observed in higher plants, indicating that the potential route of energy transfer in the PSII-LHCII supercomplex in green algae may be altered. Interestingly, we also observed an asymmetric PSII-LHCII supercomplex structure comprising C2S2M1L1 in the same sample. Moreover, we found a new density adjacent to the PSII core complex, attributable to a single-transmembrane helix. It was previously unreported in the cryo-EM maps of PSII-LHCII supercomplexes from land plants.
Collapse
Affiliation(s)
- Raymond N Burton-Smith
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Akimasa Watanabe
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Chihong Song
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan .,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan .,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| |
Collapse
|
20
|
Williams-Carrier R, Brewster C, Belcher SE, Rojas M, Chotewutmontri P, Ljungdahl S, Barkan A. The Arabidopsis pentatricopeptide repeat protein LPE1 and its maize ortholog are required for translation of the chloroplast psbJ RNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:56-66. [PMID: 30844105 DOI: 10.1111/tpj.14308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 05/21/2023]
Abstract
The expression of chloroplast genes relies on a host of nucleus-encoded proteins. Identification of such proteins and elucidation of their functions are ongoing challenges. We used ribosome profiling to revisit the function of the pentatricopeptide repeat protein LPE1, reported to stimulate translation of the chloroplast psbA mRNA in Arabidopsis. Mutation of the maize LPE1 ortholog causes a photosystem II (PSII) deficiency and a defect in translation of the chloroplast psbJ open reading frame (ORF) but has no effect on psbA expression. To reflect this function, we named the maize LPE1 ortholog Translation of psbJ 1 (TPJ1). Arabidopsis lpe1 mutants likewise exhibit a loss of psbJ translation, and have, in addition, a decrease in psbN translation. We detected a small decrease in ribosome occupancy on the psbA mRNA in Arabidopsis lpe1 mutants, but ribosome profiling analyses of other PSII mutants (hcf107 and hcf173) in conjunction with in vitro RNA binding data strongly suggest that this is a secondary effect of their PSII deficiency. We conclude that maize TPJ1 promotes PSII synthesis by activating translation of the psbJ ORF, that this function is conserved in Arabidopsis LPE1, and that an additional role for LPE1 in psbN translation contributes to the PSII deficiency in lpe1 mutants.
Collapse
Affiliation(s)
| | - Carolyn Brewster
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Susan E Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | | | - Sonja Ljungdahl
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
21
|
Tetu SG, Sarker I, Schrameyer V, Pickford R, Elbourne LDH, Moore LR, Paulsen IT. Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean's most abundant photosynthetic bacteria. Commun Biol 2019; 2:184. [PMID: 31098417 PMCID: PMC6517427 DOI: 10.1038/s42003-019-0410-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022] Open
Abstract
Plastic pollution is a global threat to marine ecosystems. Plastic litter can leach a variety of substances into marine environments; however, virtually nothing is known regarding how this affects photosynthetic bacteria at the base of the marine food web. To address this, we investigated the effect of plastic leachate exposure on marine Prochlorococcus, widely considered the most abundant photosynthetic organism on Earth and vital contributors to global primary production and carbon cycling. Two strains of Prochlorococcus representing distinct ecotypes were exposed to leachate from common plastic items: high-density polyethylene bags and polyvinyl chloride matting. We show leachate exposure strongly impairs Prochlorococcus in vitro growth and photosynthetic capacity and results in genome-wide transcriptional changes. The strains showed distinct differences in the extent and timing of their response to each leachate. Consequently, plastic leachate exposure could influence marine Prochlorococcus community composition and potentially the broader composition and productivity of ocean phytoplankton communities.
Collapse
Affiliation(s)
- Sasha G. Tetu
- Molecular Sciences, Macquarie University, Sydney, 2109 NSW Australia
| | - Indrani Sarker
- Molecular Sciences, Macquarie University, Sydney, 2109 NSW Australia
| | - Verena Schrameyer
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, 3100 Denmark
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, 2052 NSW Australia
| | | | - Lisa R. Moore
- Molecular Sciences, Macquarie University, Sydney, 2109 NSW Australia
| | - Ian T. Paulsen
- Molecular Sciences, Macquarie University, Sydney, 2109 NSW Australia
| |
Collapse
|
22
|
Chen YE, Yuan S, Lezhneva L, Meurer J, Schwenkert S, Mamedov F, Schröder WP. The Low Molecular Mass Photosystem II Protein PsbTn Is Important for Light Acclimation. PLANT PHYSIOLOGY 2019; 179:1739-1753. [PMID: 30538167 PMCID: PMC6446760 DOI: 10.1104/pp.18.01251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/30/2018] [Indexed: 05/29/2023]
Abstract
Photosystem II (PSII) is a supramolecular complex containing over 30 protein subunits and a large set of cofactors, including various pigments and quinones as well as Mn, Ca, Cl, and Fe ions. Eukaryotic PSII complexes contain many subunits not found in their bacterial counterparts, including the proteins PsbP (PSII), PsbQ, PsbS, and PsbW, as well as the highly homologous, low-molecular-mass subunits PsbTn1 and PsbTn2 whose function is currently unknown. To determine the function of PsbTn1 and PsbTn2, we generated single and double psbTn1 and psbTn2 knockout mutants in Arabidopsis (Arabidopsis thaliana). Cross linking and reciprocal coimmunoprecipitation experiments revealed that PsbTn is a lumenal PSII protein situated next to the cytochrome b 559 subunit PsbE. The removal of the PsbTn proteins decreased the oxygen evolution rate and PSII core phosphorylation level but increased the susceptibility of PSII to photoinhibition and the production of reactive oxygen species. The assembly and stability of PSII were unaffected, indicating that the deficiencies of the psbTn1 psbTn2 double mutants are due to structural changes. Double mutants exhibited a higher rate of nonphotochemical quenching of excited states than the wild type and single mutants, as well as slower state transition kinetics and a lower quantum yield of PSII when grown in the field. Based on these results, we propose that the main function of the PsbTn proteins is to enable PSII to acclimate to light shifts or intense illumination.
Collapse
Affiliation(s)
- Yang-Er Chen
- Department of Chemistry, University of Umeå, Umeå SE-901 87, Sweden
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Shu Yuan
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lina Lezhneva
- Department of Chemistry, University of Umeå, Umeå SE-901 87, Sweden
| | - Jörg Meurer
- Department Biology I, Plant Sciences, Ludwig-Maximilians-University, Munich 82152 Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Department Biology I, Plant Sciences, Ludwig-Maximilians-University, Munich 82152 Planegg-Martinsried, Germany
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | | |
Collapse
|
23
|
Li Y, Liu B, Zhang J, Kong F, Zhang L, Meng H, Li W, Rochaix JD, Li D, Peng L. OHP1, OHP2, and HCF244 Form a Transient Functional Complex with the Photosystem II Reaction Center. PLANT PHYSIOLOGY 2019; 179:195-208. [PMID: 30397023 PMCID: PMC6324237 DOI: 10.1104/pp.18.01231] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/29/2018] [Indexed: 05/19/2023]
Abstract
The reaction center (RC) of photosystem II (PSII), which is composed of D1, D2, PsbI, and cytochrome b559 subunits, forms at an early stage of PSII biogenesis. However, it is largely unclear how these components assemble to form a functional unit. In this work, we show that synthesis of the PSII core proteins D1/D2 and formation of the PSII RC is blocked specifically in the absence of ONE-HELIX PROTEIN1 (OHP1) and OHP2 proteins in Arabidopsis (Arabidopsis thaliana), indicating that OHP1 and OHP2 are essential for the formation of the PSII RC. Mutagenesis of the chlorophyll-binding residues in OHP proteins impairs their function and/or stability, suggesting that they may function in the binding of chlorophyll in vivo. We further show that OHP1, OHP2, and HIGH CHLOROPHYLL FLUORESCENCE244 (HCF244), together with D1, D2, PsbI, and cytochrome b559, form a complex. We designated this complex the PSII RC-like complex to distinguish it from the RC subcomplex in the intact PSII complex. Our data imply that OHP1, OHP2, and HCF244 are present in this PSII RC-like complex for a limited time at an early stage of PSII de novo assembly and of PSII repair under high-light conditions. In a subsequent stage of PSII biogenesis, OHP1, OHP2, and HCF244 are released from the PSII RC-like complex and replaced by the other PSII subunits. Together with previous reports on the cyanobacterium Synechocystis, our results demonstrate that the process of PSII RC assembly is highly conserved among photosynthetic species.
Collapse
Affiliation(s)
- Yonghong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Fanna Kong
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lin Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Han Meng
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenjing Li
- College of Life Sciences, Langfang Teachers University, Langfang Hebei 065000, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Dan Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lianwei Peng
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
24
|
Schmid LM, Ohler L, Möhlmann T, Brachmann A, Muiño JM, Leister D, Meurer J, Manavski N. PUMPKIN, the Sole Plastid UMP Kinase, Associates with Group II Introns and Alters Their Metabolism. PLANT PHYSIOLOGY 2019; 179:248-264. [PMID: 30409856 PMCID: PMC6324238 DOI: 10.1104/pp.18.00687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/29/2018] [Indexed: 05/07/2023]
Abstract
The chloroplast hosts photosynthesis and a variety of metabolic pathways that are essential for plant viability and acclimation processes. In this study, we show that the sole plastid UMP kinase (PUMPKIN) in Arabidopsis (Arabidopsis thaliana) associates specifically with the introns of the plastid transcripts trnG-UCC, trnV-UAC, petB, petD, and ndhA in vivo, as revealed by RNA immunoprecipitation coupled with deep sequencing (RIP-Seq); and that PUMPKIN can bind RNA efficiently in vitro. Analyses of target transcripts showed that PUMPKIN affects their metabolism. Null alleles and knockdowns of pumpkin were viable but clearly affected in growth, plastid translation, and photosynthetic performance. In pumpkin mutants, the levels of many plastid transcripts were reduced, while the amounts of others were increased, as revealed by RNA-Seq analysis. PUMPKIN is a homomultimeric, plastid-localized protein that forms in vivo RNA-containing megadalton-sized complexes and catalyzes the ATP-dependent conversion of UMP to UDP in vitro with properties characteristic of known essential eubacterial UMP kinases. A moonlighting function of PUMPKIN combining RNA and pyrimidine metabolism is discussed.
Collapse
Affiliation(s)
- Lisa-Marie Schmid
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Lisa Ohler
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin Schrödinger Street, 67653 Kaiserslautern, Germany
| | - Torsten Möhlmann
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin Schrödinger Street, 67653 Kaiserslautern, Germany
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Jose M Muiño
- Humboldt University, Faculty of Life Science, Philipp Street 13, 10115 Berlin, Germany
| | - Dario Leister
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Jörg Meurer
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Nikolay Manavski
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
25
|
Pulido P, Zagari N, Manavski N, Gawronski P, Matthes A, Scharff LB, Meurer J, Leister D. CHLOROPLAST RIBOSOME ASSOCIATED Supports Translation under Stress and Interacts with the Ribosomal 30S Subunit. PLANT PHYSIOLOGY 2018; 177:1539-1554. [PMID: 29914890 PMCID: PMC6084680 DOI: 10.1104/pp.18.00602] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/09/2018] [Indexed: 05/07/2023]
Abstract
Chloroplast ribosomes, which originated from cyanobacteria, comprise a large subunit (50S) and a small subunit (30S) containing ribosomal RNAs (rRNAs) and various ribosomal proteins. Genes for many chloroplast ribosomal proteins, as well as proteins with auxiliary roles in ribosome biogenesis or functioning, reside in the nucleus. Here, we identified Arabidopsis (Arabidopsis thaliana) CHLOROPLAST RIBOSOME ASSOCIATED (CRASS), a member of the latter class of proteins, based on the tight coexpression of its mRNA with transcripts for nucleus-encoded chloroplast ribosomal proteins. CRASS was acquired during the evolution of embryophytes and is localized to the chloroplast stroma. Loss of CRASS results in minor defects in development, photosynthetic efficiency, and chloroplast translation activity under controlled growth conditions, but these phenotypes are greatly exacerbated under stress conditions induced by the translational inhibitors lincomycin and chloramphenicol or by cold treatment. The CRASS protein comigrates with chloroplast ribosomal particles and coimmunoprecipitates with the 16S rRNA and several chloroplast ribosomal proteins, particularly the plastid ribosomal proteins of the 30S subunit (PRPS1 and PRPS5). The association of CRASS with PRPS1 and PRPS5 is independent of rRNA and is not detectable in yeast two-hybrid experiments, implying that either CRASS interacts indirectly with PRPS1 and PRPS5 via another component of the small ribosomal subunit or that it recognizes structural features of the multiprotein/rRNA particle. CRASS plays a role in the biogenesis and/or stability of the chloroplast ribosome that becomes critical under certain stressful conditions when ribosomal activity is compromised.
Collapse
Affiliation(s)
- Pablo Pulido
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Nicola Zagari
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, I-38010 San Michele all'Adige, Italy
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
| | - Piotr Gawronski
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Annemarie Matthes
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Lars B Scharff
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
26
|
Liang Z, Zhu N, Mai KK, Liu Z, Tzeng D, Osteryoung KW, Zhong S, Staehelin LA, Kang BH. Thylakoid-Bound Polysomes and a Dynamin-Related Protein, FZL, Mediate Critical Stages of the Linear Chloroplast Biogenesis Program in Greening Arabidopsis Cotyledons. THE PLANT CELL 2018; 30:1476-1495. [PMID: 29880711 PMCID: PMC6096583 DOI: 10.1105/tpc.17.00972] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/02/2018] [Accepted: 06/06/2018] [Indexed: 05/16/2023]
Abstract
Biogenesis of the complex 3D architecture of plant thylakoids remains an unsolved problem. Here, we analyzed this process in chloroplasts of germinating Arabidopsis thaliana cotyledons using 3D electron microscopy and gene expression analyses of chloroplast proteins. Our study identified a linear developmental sequence with five assembly stages: tubulo-vesicular prothylakoids (24 h after imbibition [HAI]), sheet-like pregranal thylakoids that develop from the prothylakoids (36 HAI), proliferation of pro-grana stacks with wide tubular connections to the originating pregrana thylakoids (60 HAI), structural differentiation of pro-grana stacks and expanded stroma thylakoids (84 HAI), and conversion of the pro-grana stacks into mature grana stacks (120 HAI). Development of the planar pregranal thylakoids and the pro-grana membrane stacks coincides with the appearance of thylakoid-bound polysomes and photosystem II complex subunits at 36 HAI. ATP synthase, cytochrome b6f, and light-harvesting complex II proteins are detected at 60 HAI, while PSI proteins and the curvature-inducing CURT1A protein appear at 84 HAI. If stromal ribosome biogenesis is delayed, prothylakoids accumulate until stromal ribosomes are produced, and grana-forming thylakoids develop after polysomes bind to the thylakoid membranes. In fzo-like (fzl) mutants, in which thylakoid organization is perturbed, pro-grana stacks in cotyledons form discrete, spiral membrane compartments instead of organelle-wide membrane networks, suggesting that FZL is involved in fusing membrane compartments together. Our data demonstrate that the assembly of thylakoid protein complexes, CURT1 proteins, and FZL proteins mediate distinct and critical steps in thylakoid biogenesis.
Collapse
Affiliation(s)
- Zizhen Liang
- Centre for Cell and Developmental Biology, State Key Laboratory for Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ning Zhu
- Centre for Cell and Developmental Biology, State Key Laboratory for Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Keith K Mai
- Centre for Cell and Developmental Biology, State Key Laboratory for Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zhongyuna Liu
- Centre for Cell and Developmental Biology, State Key Laboratory for Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - David Tzeng
- Centre for Cell and Developmental Biology, State Key Laboratory for Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | - Silin Zhong
- Centre for Cell and Developmental Biology, State Key Laboratory for Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - L Andrew Staehelin
- Molecular Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80306
| | - Byung-Ho Kang
- Centre for Cell and Developmental Biology, State Key Laboratory for Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
27
|
Fridman S, Flores-Uribe J, Larom S, Alalouf O, Liran O, Yacoby I, Salama F, Bailleul B, Rappaport F, Ziv T, Sharon I, Cornejo-Castillo FM, Philosof A, Dupont CL, Sánchez P, Acinas SG, Rohwer FL, Lindell D, Béjà O. A myovirus encoding both photosystem I and II proteins enhances cyclic electron flow in infected Prochlorococcus cells. Nat Microbiol 2017; 2:1350-1357. [PMID: 28785078 DOI: 10.1038/s41564-017-0002-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/28/2017] [Indexed: 01/27/2023]
Abstract
Cyanobacteria are important contributors to primary production in the open oceans. Over the past decade, various photosynthesis-related genes have been found in viruses that infect cyanobacteria (cyanophages). Although photosystem II (PSII) genes are common in both cultured cyanophages and environmental samples 1-4 , viral photosystem I (vPSI) genes have so far only been detected in environmental samples 5,6 . Here, we have used a targeted strategy to isolate a cyanophage from the tropical Pacific Ocean that carries a PSI gene cassette with seven distinct PSI genes (psaJF, C, A, B, K, E, D) as well as two PSII genes (psbA, D). This cyanophage, P-TIM68, belongs to the T4-like myoviruses, has a prolate capsid, a long contractile tail and infects Prochlorococcus sp. strain MIT9515. Phage photosynthesis genes from both photosystems are expressed during infection, and the resultant proteins are incorporated into membranes of the infected host. Moreover, photosynthetic capacity in the cell is maintained throughout the infection cycle with enhancement of cyclic electron flow around PSI. Analysis of metagenomic data from the Tara Oceans expedition 7 shows that phages carrying PSI gene cassettes are abundant in the tropical Pacific Ocean, composing up to 28% of T4-like cyanomyophages. They are also present in the tropical Indian and Atlantic Oceans. P-TIM68 populations, specifically, compose on average 22% of the PSI-gene-cassette carrying phages. Our results suggest that cyanophages carrying PSI and PSII genes are likely to maintain and even manipulate photosynthesis during infection of their Prochlorococcus hosts in the tropical oceans.
Collapse
Affiliation(s)
- Svetlana Fridman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - José Flores-Uribe
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Shirley Larom
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Onit Alalouf
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Oded Liran
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Iftach Yacoby
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Faris Salama
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS and Université Pierre et Marie Curie, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS and Université Pierre et Marie Curie, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Tamar Ziv
- Smoler Proteomics Center, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Itai Sharon
- Migal Galilee Research Institute, Kiryat Shmona, 11016, Israel.,Tel Hai College, Upper Galilee, 12210, Israel
| | - Francisco M Cornejo-Castillo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, 08003, Barcelona, Spain
| | - Alon Philosof
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Christopher L Dupont
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, 08003, Barcelona, Spain
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, 08003, Barcelona, Spain
| | - Forest L Rohwer
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Debbie Lindell
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
28
|
Kohzuma K, Sato Y, Ito H, Okuzaki A, Watanabe M, Kobayashi H, Nakano M, Yamatani H, Masuda Y, Nagashima Y, Fukuoka H, Yamada T, Kanazawa A, Kitamura K, Tabei Y, Ikeuchi M, Sakamoto W, Tanaka A, Kusaba M. The Non-Mendelian Green Cotyledon Gene in Soybean Encodes a Small Subunit of Photosystem II. PLANT PHYSIOLOGY 2017; 173:2138-2147. [PMID: 28235890 PMCID: PMC5373049 DOI: 10.1104/pp.16.01589] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/21/2017] [Indexed: 05/21/2023]
Abstract
Chlorophyll degradation plays important roles in leaf senescence including regulation of degradation of chlorophyll-binding proteins. Although most genes encoding enzymes of the chlorophyll degradation pathway have been identified, the regulation of their activity has not been fully understood. Green cotyledon mutants in legume are stay-green mutants, in which chlorophyll degradation is impaired during leaf senescence and seed maturation. Among them, the soybean (Glycine max) green cotyledon gene cytG is unique because it is maternally inherited. To isolate cytG, we extensively sequenced the soybean chloroplast genome, and detected a 5-bp insertion causing a frame-shift in psbM, which encodes one of the small subunits of photosystem II. Mutant tobacco plants (Nicotiana tabacum) with a disrupted psbM generated using a chloroplast transformation technique had green senescent leaves, confirming that cytG encodes PsbM. The phenotype of cytG was very similar to that of mutant of chlorophyll b reductase catalyzing the first step of chlorophyll b degradation. In fact, chlorophyll b-degrading activity in dark-grown cytG and psbM-knockout seedlings was significantly lower than that of wild-type plants. Our results suggest that PsbM is a unique protein linking photosynthesis in presenescent leaves with chlorophyll degradation during leaf senescence and seed maturation. Additionally, we discuss the origin of cytG, which may have been selected during domestication of soybean.
Collapse
Affiliation(s)
- Kaori Kohzuma
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Yutaka Sato
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Hisashi Ito
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Ayako Okuzaki
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Mai Watanabe
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Hideki Kobayashi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Michiharu Nakano
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Hiroshi Yamatani
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Yu Masuda
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Yumi Nagashima
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Hiroyuki Fukuoka
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Tetsuya Yamada
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Akira Kanazawa
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Keisuke Kitamura
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Yutaka Tabei
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Masahiko Ikeuchi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Wataru Sakamoto
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Ayumi Tanaka
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.);
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.);
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.);
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.);
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.);
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.);
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| |
Collapse
|
29
|
Kümpers BMC, Burgess SJ, Reyna-Llorens I, Smith-Unna R, Boursnell C, Hibberd JM. Shared characteristics underpinning C4 leaf maturation derived from analysis of multiple C3 and C4 species of Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:177-189. [PMID: 28062590 PMCID: PMC5853325 DOI: 10.1093/jxb/erw488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/13/2016] [Indexed: 05/08/2023]
Abstract
Most terrestrial plants use C3 photosynthesis to fix carbon. In multiple plant lineages a modified system known as C4 photosynthesis has evolved. To better understand the molecular patterns associated with induction of C4 photosynthesis, the genus Flaveria that contains C3 and C4 species was used. A base to tip maturation gradient of leaf anatomy was defined, and RNA sequencing was undertaken along this gradient for two C3 and two C4 Flaveria species. Key C4 traits including vein density, mesophyll and bundle sheath cross-sectional area, chloroplast ultrastructure, and abundance of transcripts encoding proteins of C4 photosynthesis were quantified. Candidate genes underlying each of these C4 characteristics were identified. Principal components analysis indicated that leaf maturation and the photosynthetic pathway were responsible for the greatest amount of variation in transcript abundance. Photosynthesis genes were over-represented for a prolonged period in the C4 species. Through comparison with publicly available data sets, we identify a small number of transcriptional regulators that have been up-regulated in diverse C4 species. The analysis identifies similar patterns of expression in independent C4 lineages and so indicates that the complex C4 pathway is associated with parallel as well as convergent evolution.
Collapse
Affiliation(s)
- Britta M C Kümpers
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Steven J Burgess
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Richard Smith-Unna
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Chris Boursnell
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
30
|
Abstract
Photosynthesis is central to all life on earth, providing not only oxygen but also organic compounds that are synthesized from atmospheric CO 2 and water using light energy as the driving force. The still-increasing world population poses a serious challenge to further enhance biomass production of crop plants. Crop yield is determined by various parameters, inter alia by the light energy conversion efficiency of the photosynthetic machinery. Photosynthesis can be looked at from different perspectives: (i) light reactions and carbon assimilation, (ii) leaves and canopy structure, and (ii) source-sink relationships. In this review, we discuss opportunities and prospects to increase photosynthetic performance at the different layers, taking into account the recent progress made in the respective fields.
Collapse
Affiliation(s)
- Ulf-Ingo Flügge
- Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Peter Westhoff
- Department of Biology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Dario Leister
- Plant Molecular Biology, Department of Biology I, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
31
|
He P, Huang S, Xiao G, Zhang Y, Yu J. Abundant RNA editing sites of chloroplast protein-coding genes in Ginkgo biloba and an evolutionary pattern analysis. BMC PLANT BIOLOGY 2016; 16:257. [PMID: 27903241 PMCID: PMC5131507 DOI: 10.1186/s12870-016-0944-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/22/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND RNA editing is a posttranscriptional modification process that alters the RNA sequence so that it deviates from the genomic DNA sequence. RNA editing mainly occurs in chloroplasts and mitochondrial genomes, and the number of editing sites varies in terrestrial plants. Why and how RNA editing systems evolved remains a mystery. Ginkgo biloba is one of the oldest seed plants and has an important evolutionary position. Determining the patterns and distribution of RNA editing in the ancient plant provides insights into the evolutionary trend of RNA editing, and helping us to further understand their biological significance. RESULTS In this paper, we investigated 82 protein-coding genes in the chloroplast genome of G. biloba and identified 255 editing sites, which is the highest number of RNA editing events reported in a gymnosperm. All of the editing sites were C-to-U conversions, which mainly occurred in the second codon position, biased towards to the U_A context, and caused an increase in hydrophobic amino acids. RNA editing could change the secondary structures of 82 proteins, and create or eliminate a transmembrane region in five proteins as determined in silico. Finally, the evolutionary tendencies of RNA editing in different gene groups were estimated using the nonsynonymous-synonymous substitution rate selection mode. CONCLUSIONS The G. biloba chloroplast genome possesses the highest number of RNA editing events reported so far in a seed plant. Most of the RNA editing sites can restore amino acid conservation, increase hydrophobicity, and even influence protein structures. Similar purifying selections constitute the dominant evolutionary force at the editing sites of essential genes, such as the psa, some psb and pet groups, and a positive selection occurred in the editing sites of nonessential genes, such as most ndh and a few psb genes.
Collapse
Affiliation(s)
- Peng He
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Sheng Huang
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Guanghui Xiao
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Yuzhou Zhang
- College of life sciences, Shaanxi Normal University, Xi'an, China
| | - Jianing Yu
- College of life sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
32
|
Identification of manganese efficiency candidate genes in winter barley (Hordeum vulgare) using genome wide association mapping. BMC Genomics 2016; 17:775. [PMID: 27716061 PMCID: PMC5050567 DOI: 10.1186/s12864-016-3129-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Manganese (Mn) has several essential functions in plants, including a role as cofactor in the oxygen evolving complex (OEC) of photosystem II (PSII). Manganese deficiency is a major plant nutritional disorder in winter cereals resulting in significant yield reductions and winter kill in more severe cases. Among the winter cereals, genotypes of winter barley are known to differ considerably in tolerance to Mn deficiency, but the genes controlling the Mn deficiency trait remains elusive. RESULTS Experiments were conducted using 248 barley varieties, cultivated in six distinct environments prone to induce Mn deficiency. High-throughput phenotyping for Mn deficiency was performed by chlorophyll a (Chl a) fluorescence analysis to quantify the quantum yield efficiency of PSII. High-throughput phenotyping in combination with ICP-OES based multi-element analyses allowed detection of marker-trait associations by genome wide association (GWA) mapping. Several key candidate genes were identified, including PSII subunit proteins, germin like proteins and Mn superoxide dismutase. The putative roles of the encoded proteins in Mn dependent metabolic processes are discussed. CONCLUSIONS Fifty-four candidate genes were identified by Chl a fluorescence phenotyping and association genetics. Tolerance of plants to Mn deficiency, which is referred to as Mn efficiency, appeared to be a complex trait involving many genes. Moreover, the trait appeared to be highly dependent on the environmental conditions in field. This study provides the basis for an improved understanding of the parameters influencing Mn efficiency and is valuable in future plant breeding aiming at producing new varieties with improved tolerance to cultivation in soil prone to induce Mn deficiency.
Collapse
|
33
|
Plöchinger M, Torabi S, Rantala M, Tikkanen M, Suorsa M, Jensen PE, Aro EM, Meurer J. The Low Molecular Weight Protein PsaI Stabilizes the Light-Harvesting Complex II Docking Site of Photosystem I. PLANT PHYSIOLOGY 2016; 172:450-63. [PMID: 27406169 PMCID: PMC5074619 DOI: 10.1104/pp.16.00647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/09/2016] [Indexed: 05/03/2023]
Abstract
PsaI represents one of three low molecular weight peptides of PSI. Targeted inactivation of the plastid PsaI gene in Nicotiana tabacum has no measurable effect on photosynthetic electron transport around PSI or on accumulation of proteins involved in photosynthesis. Instead, the lack of PsaI destabilizes the association of PsaL and PsaH to PSI, both forming the light-harvesting complex (LHC)II docking site of PSI. These alterations at the LHCII binding site surprisingly did not prevent state transition but led to an increased incidence of PSI-LHCII complexes, coinciding with an elevated phosphorylation level of the LHCII under normal growth light conditions. Remarkably, LHCII was rapidly phosphorylated in ΔpsaI in darkness even after illumination with far-red light. We found that this dark phosphorylation also occurs in previously described mutants impaired in PSI function or state transition. A prompt shift of the plastoquinone (PQ) pool into a more reduced redox state in the dark caused an enhanced LHCII phosphorylation in ΔpsaI Since the redox status of the PQ pool is functionally connected to a series of physiological, biochemical, and gene expression reactions, we propose that the shift of mutant plants into state 2 in darkness represents a compensatory and/or protective metabolic mechanism. This involves an increased reduction and/or reduced oxidation of the PQ pool, presumably to sustain a balanced excitation of both photosystems upon the onset of light.
Collapse
Affiliation(s)
- Magdalena Plöchinger
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| | - Salar Torabi
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| | - Marjaana Rantala
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| | - Mikko Tikkanen
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| | - Marjaana Suorsa
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| | - Poul-Erik Jensen
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| | - Eva Mari Aro
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| | - Jörg Meurer
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| |
Collapse
|
34
|
Theis J, Schroda M. Revisiting the photosystem II repair cycle. PLANT SIGNALING & BEHAVIOR 2016; 11:e1218587. [PMID: 27494214 PMCID: PMC5058467 DOI: 10.1080/15592324.2016.1218587] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 05/18/2023]
Abstract
The ability of photosystem (PS) II to catalyze the light-driven oxidation of water comes along with its vulnerability to oxidative damage, in particular of the D1 core subunit. Photodamaged PSII undergoes repair in a multi-step process involving (i) reversible phosphorylation of PSII core subunits; (ii) monomerization and lateral migration of the PSII core from grana to stroma thylakoids; (iii) partial disassembly of PSII; (iv) proteolytic degradation of damaged D1; (v) replacement of damaged D1 protein with a new copy; (vi) reassembly of PSII monomers and migration back to grana thylakoids for dimerization and supercomplex assembly. Here we review the current knowledge on the PSII repair cycle.
Collapse
Affiliation(s)
- Jasmine Theis
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
- CONTACT Michael Schroda Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich-Str. 70, 67663 Kaiserslautern, Germany
| |
Collapse
|
35
|
Chotewutmontri P, Barkan A. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize. PLoS Genet 2016; 12:e1006106. [PMID: 27414025 PMCID: PMC4945096 DOI: 10.1371/journal.pgen.1006106] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/13/2016] [Indexed: 11/18/2022] Open
Abstract
Chloroplast genomes in land plants contain approximately 100 genes, the majority of which reside in polycistronic transcription units derived from cyanobacterial operons. The expression of chloroplast genes is integrated into developmental programs underlying the differentiation of photosynthetic cells from non-photosynthetic progenitors. In C4 plants, the partitioning of photosynthesis between two cell types, bundle sheath and mesophyll, adds an additional layer of complexity. We used ribosome profiling and RNA-seq to generate a comprehensive description of chloroplast gene expression at four stages of chloroplast differentiation, as displayed along the maize seedling leaf blade. The rate of protein output of most genes increases early in development and declines once the photosynthetic apparatus is mature. The developmental dynamics of protein output fall into several patterns. Programmed changes in mRNA abundance make a strong contribution to the developmental shifts in protein output, but output is further adjusted by changes in translational efficiency. RNAs with prioritized translation early in development are largely involved in chloroplast gene expression, whereas those with prioritized translation in photosynthetic tissues are generally involved in photosynthesis. Differential gene expression in bundle sheath and mesophyll chloroplasts results primarily from differences in mRNA abundance, but differences in translational efficiency amplify mRNA-level effects in some instances. In most cases, rates of protein output approximate steady-state protein stoichiometries, implying a limited role for proteolysis in eliminating unassembled or damaged proteins under non-stress conditions. Tuned protein output results from gene-specific trade-offs between translational efficiency and mRNA abundance, both of which span a large dynamic range. Analysis of ribosome footprints at sites of RNA editing showed that the chloroplast translation machinery does not generally discriminate between edited and unedited RNAs. However, editing of ACG to AUG at the rpl2 start codon is essential for translation initiation, demonstrating that ACG does not serve as a start codon in maize chloroplasts.
Collapse
Affiliation(s)
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
36
|
Michoux F, Ahmad N, Wei ZY, Belgio E, Ruban AV, Nixon PJ. Testing the Role of the N-Terminal Tail of D1 in the Maintenance of Photosystem II in Tobacco Chloroplasts. FRONTIERS IN PLANT SCIENCE 2016; 7:844. [PMID: 27446098 PMCID: PMC4914591 DOI: 10.3389/fpls.2016.00844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/30/2016] [Indexed: 05/29/2023]
Abstract
A key step in the repair of photoinactivated oxygen-evolving photosystem II (PSII) complexes is the selective recognition and degradation of the damaged PSII subunit, usually the D1 reaction center subunit. FtsH proteases play a major role in D1 degradation in both cyanobacteria and chloroplasts. In the case of the cyanobacterium Synechocystis sp. PCC 6803, analysis of an N-terminal truncation mutant of D1 lacking 20 amino-acid residues has provided evidence that FtsH complexes can remove damaged D1 in a processive reaction initiated at the exposed N-terminal tail. To test the importance of the N-terminal D1 tail in higher plants, we have constructed the equivalent truncation mutant in tobacco using chloroplast transformation techniques. The resulting mutant grew poorly and only accumulated about 25% of wild-type levels of PSII in young leaves which declined as the leaves grew so that there was little PSII activity in mature leaves. Truncating D1 led to the loss of PSII supercomplexes and dimeric complexes in the membrane. Extensive and rapid non-photochemical quenching (NPQ) was still induced in the mutant, supporting the conclusion that PSII complexes are not required for NPQ. Analysis of leaves exposed to high light indicated that PSII repair in the truncation mutant was impaired at the level of synthesis and/or assembly of PSII but that D1 could still be degraded. These data support the idea that tobacco plants possess a number of back-up and compensatory pathways for removal of damaged D1 upon severe light stress.
Collapse
Affiliation(s)
- Franck Michoux
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College LondonLondon, UK
| | - Niaz Ahmad
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College LondonLondon, UK
| | - Zheng-Yi Wei
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College LondonLondon, UK
| | - Erica Belgio
- School of Biological and Chemical Sciences, Queen Mary University of LondonLondon, UK
| | - Alexander V. Ruban
- School of Biological and Chemical Sciences, Queen Mary University of LondonLondon, UK
| | - Peter J. Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College LondonLondon, UK
| |
Collapse
|
37
|
Plöchinger M, Schwenkert S, von Sydow L, Schröder WP, Meurer J. Functional Update of the Auxiliary Proteins PsbW, PsbY, HCF136, PsbN, TerC and ALB3 in Maintenance and Assembly of PSII. FRONTIERS IN PLANT SCIENCE 2016; 7:423. [PMID: 27092151 PMCID: PMC4823308 DOI: 10.3389/fpls.2016.00423] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/18/2016] [Indexed: 05/17/2023]
Abstract
Assembly of Photosystem (PS) II in plants has turned out to be a highly complex process which, at least in part, occurs in a sequential order and requires many more auxiliary proteins than subunits present in the complex. Owing to the high evolutionary conservation of the subunit composition and the three-dimensional structure of the PSII complex, most plant factors involved in the biogenesis of PSII originated from cyanobacteria and only rarely evolved de novo. Furthermore, in chloroplasts the initial assembly steps occur in the non-appressed stroma lamellae, whereas the final assembly including the attachment of the major LHCII antenna proteins takes place in the grana regions. The stroma lamellae are also the place where part of PSII repair occurs, which very likely also involves assembly factors. In cyanobacteria initial PSII assembly also occurs in the thylakoid membrane, in so-called thylakoid centers, which are in contact with the plasma membrane. Here, we provide an update on the structures, localisations, topologies, functions, expression and interactions of the low molecular mass PSII subunits PsbY, PsbW and the auxiliary factors HCF136, PsbN, TerC and ALB3, assisting in PSII complex assembly and protein insertion into the thylakoid membrane.
Collapse
Affiliation(s)
- Magdalena Plöchinger
- Department Biologie I, Molekularbiologie der Pflanzen (Botanik), Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Serena Schwenkert
- Department Biologie I, Biochemie und Physiologie der Pflanzen, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Lotta von Sydow
- Umeå Plant Science Center and Department of Chemistry, Umeå UniversityUmeå, Sweden
| | - Wolfgang P. Schröder
- Umeå Plant Science Center and Department of Chemistry, Umeå UniversityUmeå, Sweden
- *Correspondence: Wolfgang P. Schröder,
| | - Jörg Meurer
- Department Biologie I, Molekularbiologie der Pflanzen (Botanik), Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| |
Collapse
|
38
|
Lu Y. Identification and Roles of Photosystem II Assembly, Stability, and Repair Factors in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:168. [PMID: 26909098 PMCID: PMC4754418 DOI: 10.3389/fpls.2016.00168] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/31/2016] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) is a multi-component pigment-protein complex that is responsible for water splitting, oxygen evolution, and plastoquinone reduction. Components of PSII can be classified into core proteins, low-molecular-mass proteins, extrinsic oxygen-evolving complex (OEC) proteins, and light-harvesting complex II proteins. In addition to these PSII subunits, more than 60 auxiliary proteins, enzymes, or components of thylakoid protein trafficking/targeting systems have been discovered to be directly or indirectly involved in de novo assembly and/or the repair and reassembly cycle of PSII. For example, components of thylakoid-protein-targeting complexes and the chloroplast-vesicle-transport system were found to deliver PSII subunits to thylakoid membranes. Various auxiliary proteins, such as PsbP-like (Psb stands for PSII) and light-harvesting complex-like proteins, atypical short-chain dehydrogenase/reductase family proteins, and tetratricopeptide repeat proteins, were discovered to assist the de novo assembly and stability of PSII and the repair and reassembly cycle of PSII. Furthermore, a series of enzymes were discovered to catalyze important enzymatic steps, such as C-terminal processing of the D1 protein, thiol/disulfide-modulation, peptidylprolyl isomerization, phosphorylation and dephosphorylation of PSII core and antenna proteins, and degradation of photodamaged PSII proteins. This review focuses on the current knowledge of the identities and molecular functions of different types of proteins that influence the assembly, stability, and repair of PSII in the higher plant Arabidopsis thaliana.
Collapse
|
39
|
Chen YE, Yuan S, Schröder WP. Comparison of methods for extracting thylakoid membranes of Arabidopsis plants. PHYSIOLOGIA PLANTARUM 2016; 156:3-12. [PMID: 26337850 DOI: 10.1111/ppl.12384] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/18/2015] [Accepted: 07/15/2015] [Indexed: 05/27/2023]
Abstract
Robust and reproducible methods for extracting thylakoid membranes are required for the analysis of photosynthetic processes in higher plants such as Arabidopsis. Here, we compare three methods for thylakoid extraction using two different buffers. Method I involves homogenizing the plant material with a metal/glass blender; method II involves manually grinding the plant material in ice-cold grinding buffer with a mortar and method III entails snap-freezing followed by manual grinding with a mortar, after which the frozen powder is thawed in isolation buffer. Thylakoid membrane samples extracted using each method were analyzed with respect to protein and chlorophyll content, yields relative to starting material, oxygen-evolving activity, protein complex content and phosphorylation. We also examined how the use of fresh and frozen thylakoid material affected the extracts' contents of protein complexes. The use of different extraction buffers did not significantly alter the protein content of the extracts in any case. Method I yielded thylakoid membranes with the highest purity and oxygen-evolving activity. Method III used low amounts of starting material and was capable of capturing rapid phosphorylation changes in the sample at the cost of higher levels of contamination. Method II yielded thylakoid membrane extracts with properties intermediate between those obtained with the other two methods. Finally, frozen and freshly isolated thylakoid membranes performed identically in blue native-polyacrylamide gel electrophoresis experiments conducted in order to separate multimeric protein supracomplexes.
Collapse
Affiliation(s)
- Yang-Er Chen
- Department of Chemistry, University of Umeå, Umeå, SE-901 87, Sweden
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Shu Yuan
- College of Resources and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | | |
Collapse
|
40
|
Manavski N, Torabi S, Lezhneva L, Arif MA, Frank W, Meurer J. HIGH CHLOROPHYLL FLUORESCENCE145 Binds to and Stabilizes the psaA 5' UTR via a Newly Defined Repeat Motif in Embryophyta. THE PLANT CELL 2015; 27:2600-15. [PMID: 26307378 PMCID: PMC4815088 DOI: 10.1105/tpc.15.00234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/06/2015] [Indexed: 05/10/2023]
Abstract
The seedling-lethal Arabidopsis thaliana high chlorophyll fluorescence145 (hcf145) mutation leads to reduced stability of the plastid tricistronic psaA-psaB-rps14 mRNA and photosystem I (PSI) deficiency. Here, we genetically mapped the HCF145 gene, which encodes a plant-specific, chloroplast-localized, modular protein containing two homologous domains related to the polyketide cyclase family comprising 37 annotated Arabidopsis proteins of unknown function. Two further highly conserved and previously uncharacterized tandem repeat motifs at the C terminus, herein designated the transcript binding motif repeat (TMR) domains, confer sequence-specific RNA binding capability to HCF145. Homologous TMR motifs are often found as multiple repeats in quite diverse proteins of green and red algae and in the cyanobacterium Microcoleus sp PCC 7113 with unknown function. HCF145 represents the only TMR protein found in vascular plants. Detailed analysis of hcf145 mutants in Arabidopsis and Physcomitrella patens as well as in vivo and in vitro RNA binding assays indicate that HCF145 has been recruited in embryophyta for the stabilization of the psaA-psaB-rps14 mRNA via specific binding to its 5' untranslated region. The polyketide cyclase-related motifs support association of the TMRs to the psaA RNA, presumably pointing to a regulatory role in adjusting PSI levels according to the requirements of the plant cell.
Collapse
Affiliation(s)
- Nikolay Manavski
- Biozentrum der LMU München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Salar Torabi
- Biozentrum der LMU München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Lina Lezhneva
- Biozentrum der LMU München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Muhammad Asif Arif
- Biozentrum der LMU München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Frank
- Biozentrum der LMU München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| | - Jörg Meurer
- Biozentrum der LMU München, Department Biologie I, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
41
|
Chevalier F, Ghulam MM, Rondet D, Pfannschmidt T, Merendino L, Lerbs-Mache S. Characterization of the psbH precursor RNAs reveals a precise endoribonuclease cleavage site in the psbT/psbH intergenic region that is dependent on psbN gene expression. PLANT MOLECULAR BIOLOGY 2015; 88:357-67. [PMID: 26012647 DOI: 10.1007/s11103-015-0325-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/23/2015] [Indexed: 05/15/2023]
Abstract
The plastid psbB operon harbours 5 genes, psbB, psbT, psbH, petB and petD. A sixth gene, the psbN gene, is located on the opposite DNA strand in the psbT/psbH intergenic region. Its transcription produces antisense RNA to a large part of the psbB pentacistronic mRNA. We have investigated whether transcription of the psbN gene, i.e. production of antisense RNA, influences psbT/psbH intergenic processing. Results reveal the existence of four different psbH precursor RNAs. Three of them result from processing and one is produced by transcription initiation. One of the processed RNAs is probably created by site-specific RNA cleavage. This RNA is absent in plants where the psbN gene is not transcribed suggesting that cleavage at this site is dependent on the formation of sense/antisense double-stranded RNA. In order to characterize the nuclease that might be responsible for double-stranded RNA cleavage, we analysed csp41a and csp41b knock-out mutants and the corresponding double mutant. Both CSP41 proteins are known to interact physically and CSP41a had been shown to cleave within 3'-untranslated region stem-loop structures, which contain double-stranded RNA, in vitro. We demonstrate that the psbH RNA, that is absent in plants where the psbN gene is not transcribed, is also strongly diminished in all csp41 plants. Altogether, results reveal a site-specific endoribonuclease cleavage event that seems to depend on antisense RNA and might implicate endoribonuclease activity of CSP41a.
Collapse
Affiliation(s)
- Fabien Chevalier
- Laboratoire Physiologie Cellulaire Végétale, UMR 5168, CNRS, Grenoble, France
| | | | | | | | | | | |
Collapse
|
42
|
Photosystem II repair in plant chloroplasts--Regulation, assisting proteins and shared components with photosystem II biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:900-9. [PMID: 25615587 DOI: 10.1016/j.bbabio.2015.01.006] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/07/2015] [Accepted: 01/15/2015] [Indexed: 01/30/2023]
Abstract
Photosystem (PS) II is a multisubunit thylakoid membrane pigment-protein complex responsible for light-driven oxidation of water and reduction of plastoquinone. Currently more than 40 proteins are known to associate with PSII, either stably or transiently. The inherent feature of the PSII complex is its vulnerability in light, with the damage mainly targeted to one of its core proteins, the D1 protein. The repair of the damaged D1 protein, i.e. the repair cycle of PSII, initiates in the grana stacks where the damage generally takes place, but subsequently continues in non-appressed thylakoid domains, where many steps are common for both the repair and de novo assembly of PSII. The sequence of the (re)assembly steps of genuine PSII subunits is relatively well-characterized in higher plants. A number of novel findings have shed light into the regulation mechanisms of lateral migration of PSII subcomplexes and the repair as well as the (re)assembly of the complex. Besides the utmost importance of the PSII repair cycle for the maintenance of PSII functionality, recent research has pointed out that the maintenance of PSI is closely dependent on regulation of the PSII repair cycle. This review focuses on the current knowledge of regulation of the repair cycle of PSII in higher plant chloroplasts. Particular emphasis is paid on sequential assembly steps of PSII and the function of the number of PSII auxiliary proteins involved both in the biogenesis and repair of PSII. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
43
|
Bhuiyan NH, Friso G, Poliakov A, Ponnala L, van Wijk KJ. MET1 is a thylakoid-associated TPR protein involved in photosystem II supercomplex formation and repair in Arabidopsis. THE PLANT CELL 2015; 27:262-85. [PMID: 25587003 PMCID: PMC4330576 DOI: 10.1105/tpc.114.132787] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/09/2014] [Accepted: 12/20/2014] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) requires constant disassembly and reassembly to accommodate replacement of the D1 protein. Here, we characterize Arabidopsis thaliana MET1, a PSII assembly factor with PDZ and TPR domains. The maize (Zea mays) MET1 homolog is enriched in mesophyll chloroplasts compared with bundle sheath chloroplasts, and MET1 mRNA and protein levels increase during leaf development concomitant with the thylakoid machinery. MET1 is conserved in C3 and C4 plants and green algae but is not found in prokaryotes. Arabidopsis MET1 is a peripheral thylakoid protein enriched in stroma lamellae and is also present in grana. Split-ubiquitin assays and coimmunoprecipitations showed interaction of MET1 with stromal loops of PSII core components CP43 and CP47. From native gels, we inferred that MET1 associates with PSII subcomplexes formed during the PSII repair cycle. When grown under fluctuating light intensities, the Arabidopsis MET1 null mutant (met1) showed conditional reduced growth, near complete blockage in PSII supercomplex formation, and concomitant increase of unassembled CP43. Growth of met1 in high light resulted in loss of PSII supercomplexes and accelerated D1 degradation. We propose that MET1 functions as a CP43/CP47 chaperone on the stromal side of the membrane during PSII assembly and repair. This function is consistent with the observed differential MET1 accumulation across dimorphic maize chloroplasts.
Collapse
Affiliation(s)
- Nazmul H Bhuiyan
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Anton Poliakov
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
44
|
Kuroda H, Sugiura M. Processing of the 5'-UTR and existence of protein factors that regulate translation of tobacco chloroplast psbN mRNA. PLANT MOLECULAR BIOLOGY 2014; 86:585-93. [PMID: 25201100 DOI: 10.1007/s11103-014-0248-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/31/2014] [Indexed: 05/28/2023]
Abstract
The chloroplast psbB operon includes five genes encoding photosystem II and cytochrome b 6 /f complex components. The psbN gene is located on the opposite strand. PsbN is localized in the thylakoid and is present even in the dark, although its level increases upon illumination and then decreases. However, the translation mechanism of the psbN mRNA remains unclear. Using an in vitro translation system from tobacco chloroplasts and a green fluorescent protein as a reporter protein, we show that translation occurs from a tobacco primary psbN 5'-UTR of 47 nucleotides (nt). Unlike many other chloroplast 5'-UTRs, the psbN 5'-UTR has two processing sites, at -39 and -24 upstream from the initiation site. Processing at -39 enhanced the translation rate fivefold. In contrast, processing at -24 did not affect the translation rate. These observations suggest that the two distinct processing events regulate, at least in part, the level of PsbN during development. The psbN 5'-UTR has no Shine-Dalgarno (SD)-like sequence. In vitro translation assays with excess amounts of the psbN 5'-UTR or with deleted psbN 5'-UTR sequences demonstrated that protein factors are required for translation and that their binding site is an 18 nt sequence in the 5'-UTR. Mobility shift assays using 10 other chloroplast 5'-UTRs suggested that common or similar proteins are involved in translation of a set of mRNAs lacking SD-like sequences.
Collapse
Affiliation(s)
- Hiroshi Kuroda
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho-ku, Nagoya, 467-8501, Japan,
| | | |
Collapse
|
45
|
Levey T, Westhoff P, Meierhoff K. Expression of a nuclear-encoded psbH gene complements the plastidic RNA processing defect in the PSII mutant hcf107 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:292-304. [PMID: 25081859 DOI: 10.1111/tpj.12632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
The helical-repeat RNA-binding protein HCF107 is required for processing, stabilization and translation of plastid-encoded psbH mRNA. The psbH gene encodes a small, hydrophilic subunit of the PSII complex and is part of the plastidic psbB-psbT-psbH-petB-petD transcription unit. In Arabidopsis hcf107 mutants, only trace amounts of PSII proteins can be detected. Beside drastically reduced synthesis of PsbH, the synthesis of CP47 was also reduced in these mutants, although the corresponding psbB transcripts accumulate to wild type levels. This situation raises the question, whether the reduction of CP47 is a direct consequence of the mutation, based on targeting of HCF107 to the psbB mRNA, or a secondary affect due to the absent PsbH. To clarify this issue we introduced a chimeric psbH construct comprising a sequence encoding a chloroplast transit peptide into the hcf107-2 background. We found that the nucleus-localized psbH was able to complement the mutant defect resulting in photoautotrophic plants. The PSII proteins CP47 and D1 accumulated to barely half of the wild type level. Further experiments showed that cytosolically synthesized PsbH was imported into chloroplasts and assembled into PSII complexes. Using this approach, we showed that the tetratricopeptide repeat protein HCF107 of Arabidopsis is only responsible for expression of PsbH and not for synthesis of CP47. In addition the data suggest the necessity of the small, one-helix membrane spanning protein PsbH for the accumulation of CP47 in higher plants.
Collapse
Affiliation(s)
- Tatjana Levey
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|