1
|
Rauf A, Wang A, Li Y, Lian Z, Wei S, Khan Q, Jabbar K, Jan F, Khan I, Bibi M, Abidullah S, Li J. DUO1 Activated Zinc Finger (AtDAZ) protein role in the generative cell body morphogenesis. PLANT MOLECULAR BIOLOGY 2025; 115:15. [PMID: 39777569 DOI: 10.1007/s11103-024-01542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Arabidopsis MYB transcription factor, AtDUO1 regulates generative cell body (GC) morphogenesis from round to semi and fully elongated forms before pollen mitosis-II (PM II). It was hypothesised that DUO1 might regulate morphogenesis through any of its direct target genes or components of the DUO1-DAZ1 network. The developmental analysis of plants harbouring T-DNA insertions in some DUO1 target genes using light and fluorescence microscopy revealed abnormal GC morphogenesis only in daz1 and daz2, but gcs1, trm16, mapkkk10, mapkkk20, tet11, and tip1 all undergo normal elongation indicating that these target genes have no important roles in morphogenesis or may be redundant. The important regulatory role of DUO1 was confirmed through the observed incomplete rescue of morphogenesis of mutant duo1-1 GCs by DAZ1 and independently by a C-terminally deleted version of DUO1 (DUO1∆C3) lacking activation sequences. The evidence supports the important role of DAZ1 in GC shape partial morphogenesis. The C-terminus of DUO1 may regulate some target genes that affect GC body elongation. Furthermore, an intact DUO1 is shown to be indispensable for GC shape and nucleus elongation and subsequently for timely division and sperm cell morphogenesis. The development of the GC cytoplasmic projection is regulated independently of DUO1, and all its target genes were able to form it.
Collapse
Affiliation(s)
- Abdur Rauf
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China.
- Department of Genetic and Genome Biology, University of Leicester, Leicestershire, UK.
- Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan.
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| | - Anbang Wang
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China
| | - Yujia Li
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China
| | - Zhihao Lian
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China
| | - Shouxing Wei
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China
| | - Qayash Khan
- Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Kashmala Jabbar
- Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Farooq Jan
- Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ikramullah Khan
- Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Mamoona Bibi
- Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Syed Abidullah
- Abdul Wali Khan University Mardan, Garden Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Jingyang Li
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China.
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| |
Collapse
|
2
|
Rao Z, Sun R, Liu S, Ai W, Song L, Wang X, Xu Q. Abnormal transition from meiosis I to meiosis II induces male sterility in a seedless artificial hybrid of citrus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:1. [PMID: 39697765 PMCID: PMC11649890 DOI: 10.1007/s11032-024-01521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Male sterility is an important trait for breeding and for the seedless fruit production in citrus. We identified one seedling which exhibiting male sterility and seedlessness (named ms1 hereafter), from a cross between two fertile parents, with sour orange (Citrus aurantium) as seed parent and Ponkan mandarin (Citrus reticulata) as pollen parent. Analysis using pollen viability staining, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) revealed that the mature pollen of the ms1 was aborted, displaying collapse and deformity. Further cytological analysis identified the abnormal formation of monad, dyad, and tetrad instead of the normal tetrad formation, leading to meiotic failure in the seedless hybrid. By comparative transcript profiling of meiotic anther of fertile and sterile hybrids, we observed significant downregulation of CYCA1;2 (TAM) and OSD1 genes in the hybrid, which known to control the transition from meiosis I to meiosis II in plants. These results indicated abnormal meiosis led to the male sterility of the seedless hybrid and that the decreased activities of kinases and cyclins may associated with the failure of the transition of meiosis I to meiosis II during anthers development. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01521-5.
Collapse
Affiliation(s)
- Zhixiong Rao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Ruotian Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Shengjun Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Wanqi Ai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Lizhi Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| |
Collapse
|
3
|
Huang X, Sun MX. Cell fate determination during sexual plant reproduction. THE NEW PHYTOLOGIST 2025; 245:480-495. [PMID: 39613727 DOI: 10.1111/nph.20230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/09/2024] [Indexed: 12/01/2024]
Abstract
The flowering plant life cycle is completed by an alternation of diploid and haploid generations. The diploid sporophytes produce initial cells that undergo meiosis and produce spores. From haploid spores, male or female gametophytes, which produce gametes, develop. The union of gametes at fertilization restores diploidy in the zygote that initiates a new cycle of diploid sporophyte development. During this complex process, cell fate determination occurs at each of the critical stages and necessarily underpins successful plant reproduction. Here, we summarize available knowledge on the regulatory mechanism of cell fate determination at these critical stages of sexual reproduction, including sporogenesis, gametogenesis, and early embryogenesis, with particular emphasis on regulatory pathways of both male and female gametes before fertilization, and both apical and basal cell lineages of a proembryo after fertilization. Investigations reveal that cell fate determination involves multiple regulatory factors, such as positional information, differential distribution of cell fate determinants, cell-to-cell communication, and cell type-specific transcription factors. These factors temporally and spatially act for different cell type differentiation to ensure successful sexual reproduction. These new insights into regulatory mechanisms underlying sexual cell fate determination not only updates our knowledge on sexual plant reproduction, but also provides new ideas and tools for crop breeding.
Collapse
Affiliation(s)
- Xiaorong Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
4
|
Xu Y, Tian W, Yin M, Cai Z, Zhang L, Yuan D, Yi H, Wu J. The miR159a-DUO1 module regulates pollen development by modulating auxin biosynthesis and starch metabolism in citrus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1351-1369. [PMID: 38578168 DOI: 10.1111/jipb.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Achieving seedlessness in citrus varieties is one of the important objectives of citrus breeding. Male sterility associated with abnormal pollen development is an important factor in seedlessness. However, our understanding of the regulatory mechanism underlying the seedlessness phenotype in citrus is still limited. Here, we determined that the miR159a-DUO1 module played an important role in regulating pollen development in citrus, which further indirectly modulated seed development and fruit size. Both the overexpression of csi-miR159a and the knocking out of DUO1 in Hong Kong kumquat (Fortunella hindsii) resulted in small and seedless fruit phenotypes. Moreover, pollen was severely aborted in both transgenic lines, with arrested pollen mitotic I and abnormal pollen starch metabolism. Through additional cross-pollination experiments, DUO1 was proven to be the key target gene for miR159a to regulate male sterility in citrus. Based on DNA affinity purification sequencing (DAP-seq), RNA-seq, and verified interaction assays, YUC2/YUC6, SS4 and STP8 were identified as downstream target genes of DUO1, those were all positively regulated by DUO1. In transgenic F. hindsii lines, the miR159a-DUO1 module down-regulated the expression of YUC2/YUC6, which decreased indoleacetic acid (IAA) levels and modulated auxin signaling to repress pollen mitotic I. The miR159a-DUO1 module reduced the expression of the starch synthesis gene SS4 and sugar transport gene STP8 to disrupt starch metabolism in pollen. Overall, this work reveals a new mechanism by which the miR159a-DUO1 module regulates pollen development and elucidates the molecular regulatory network underlying male sterility in citrus.
Collapse
Affiliation(s)
- Yanhui Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenxiu Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minqiang Yin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenmei Cai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Rauf A, Wang A, Li Y, Lian Z, Wei S, Jabbar K, Wisal M, Khan I, Khalid M, Li J. The male germ unit association is independently regulated of GUM in Arabidopsis thaliana. PLANT DIRECT 2024; 8:e624. [PMID: 39076347 PMCID: PMC11286290 DOI: 10.1002/pld3.624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/31/2024]
Abstract
Cytoplasmic projections (CPs) formed by the generative and sperm cells link the male gametes with the vegetative cell (VC) nucleus, which are required to build the male germ unit (MGU) assemblage in the angiosperm pollen grain. As molecular and genetic controls underlying CP development and formation of the MGU are unknown, it was hypothesized that physical association between germ cells and the VC nucleus might be lost in germ unit malformed (gum) mutants or in those which either block generative cell (GC) division or that additionally prevent gamete differentiation. In vivo, analysis of marked cellular components demonstrated a linkage of sperm cells (SCs) and the VC nucleus in gum mutant alleles despite their increased physical separation. Similarly, for several independent classes of bicellular pollen mutants, undivided GCs were associated with the VC nucleus like GCs in wild-type pollen. We conclude that the early formation of GC CPs to establish the MGU is regulated independently of DUO1-DAZ1 and DUO3 transcription factors as well as cyclin-dependent kinase function (CDKA;1). As the absence of cytoplasmic protrusion was expected in the gum mutants in Arabidopsis, early histological studies reported temporal disappearance of cytoplasmic protrusion in several organisms. Our findings demonstrated the striking importance of live imaging to verify the broad conservation of the persistent MGU contact in all the angiosperms and its important role in successful double fertilization.
Collapse
Affiliation(s)
- Abdur Rauf
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences Sanya/Haikou Hainan China
- Garden Campus, Department of Botany Abdul Wali Khan University Mardan KP Pakistan
- Department of Genetic and Genome Biology University of Leicester UK
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou Hainan China
| | - Anbang Wang
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences Sanya/Haikou Hainan China
| | - Yujia Li
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences Sanya/Haikou Hainan China
| | - Zhihao Lian
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences Sanya/Haikou Hainan China
| | - Shouxing Wei
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences Sanya/Haikou Hainan China
| | | | - Muhammad Wisal
- Garden Campus, Department of Botany Abdul Wali Khan University Mardan KP Pakistan
| | - Ikramullah Khan
- Garden Campus, Department of Botany Abdul Wali Khan University Mardan KP Pakistan
| | - Muhammad Khalid
- Department of Biology, College of Science, Mathematics and Technology Wenzhou-Kean University Wenzhou China
| | - Jingyang Li
- National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences Sanya/Haikou Hainan China
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station Chinese Academy of Tropical Agricultural Sciences Haikou Hainan China
| |
Collapse
|
6
|
Mo H, Chang H, Zhao G, Hu G, Luo X, Jia X, Xu Z, Ren G, Feng L, Wendel JF, Chen X, Ren M, Li F. iJAZ-based approach to engineer lepidopteran pest resistance in multiple crop species. NATURE PLANTS 2024; 10:771-784. [PMID: 38684916 DOI: 10.1038/s41477-024-01682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
The fall armyworm (FAW) poses a significant threat to global crop production. Here we showed that overexpression of jasmonate ZIM-domain (JAZ) protein GhJAZ24 confers resistance to cotton bollworm and FAW, while also causing sterility in transgenic cotton by recruiting TOPLESS and histone deacetylase 6. We identified the NGR motif of GhJAZ24 that recognizes and binds the aminopeptidase N receptor, enabling GhJAZ24 to enter cells and disrupt histone deacetylase 3, leading to cell death. To overcome plant sterility associated with GhJAZ24 overexpression, we developed iJAZ (i, induced), an approach involving damage-induced expression and a switch from intracellular to extracellular localization of GhJAZ24. iJAZ transgenic cotton maintained fertility and showed insecticidal activity against cotton bollworm and FAW. In addition, iJAZ transgenic rice, maize and tobacco plants showed insecticidal activity against their lepidopteran pests, resulting in an iJAZ-based approach for generating alternative insecticidal proteins with distinctive mechanisms of action, thus holding immense potential for future crop engineering.
Collapse
Affiliation(s)
- Huijuan Mo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Huimin Chang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ge Zhao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Guanjing Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xue Jia
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenlu Xu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Guangming Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Xiaoya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
- The Shennong Laboratory, Zhengzhou, China.
| |
Collapse
|
7
|
Shi D, Huang H, Zhang Y, Qian Z, Du J, Huang L, Yan X, Lin S. The roles of non-coding RNAs in male reproductive development and abiotic stress responses during this unique process in flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111995. [PMID: 38266717 DOI: 10.1016/j.plantsci.2024.111995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Successful male reproductive development is the guarantee for sexual reproduction of flowering plants. Male reproductive development is a complicated and multi-stage process that integrates physiological processes and adaptation and tolerance to a myriad of environmental stresses. This well-coordinated process is governed by genetic and epigenetic machineries. Non-coding RNAs (ncRNAs) play pleiotropic roles in the plant growth and development. The identification, characterization and functional analysis of ncRNAs and their target genes have opened a new avenue for comprehensively revealing the regulatory network of male reproductive development and its response to environmental stresses in plants. This review briefly addresses the types, origin, biogenesis and mechanisms of ncRNAs in plants, highlights important updates on the roles of ncRNAs in regulating male reproductive development and emphasizes the contribution of ncRNAs, especially miRNAs and lncRNAs, in responses to abiotic stresses during this unique process in flowering plants.
Collapse
Affiliation(s)
- Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiting Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
8
|
Ponvert N, Johnson MA. Synergid cell calcium oscillations refine understanding of FERONIA/LORELEI signaling during interspecific hybridization. PLANT REPRODUCTION 2024; 37:57-68. [PMID: 37934279 PMCID: PMC10879309 DOI: 10.1007/s00497-023-00483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
KEY MESSAGE Pollen tubes from closely related species and mutants lacking pollen tube MYB transcription factors are able to initiate FER/LRE-dependent synergid cell calcium oscillations. Reproductive isolation leads to the evolution of new species; however, the molecular mechanisms that maintain reproductive barriers between sympatric species are not well defined. In flowering plants, sperm cells are immotile and are delivered to female gametes by the pollen grain. After landing on the stigmatic surface, the pollen grain germinates a polarized extension, the pollen tube, into floral tissue. After growing via polar extension to the female gametes and shuttling its cargo of sperm cells through its cytoplasm, the pollen tube signals its arrival and identity to synergid cells that flank the egg. If signaling is successful, the pollen tube and receptive synergid cell burst, and sperm cells are released for fusion with female gametes. To better understand cell-cell recognition during reproduction and how reproductive barriers are maintained between closely related species, pollen tube-initiated synergid cell calcium ion dynamics were examined during interspecific crosses. It was observed that interspecific pollen tubes successfully trigger synergid cell calcium oscillations-a hallmark of reproductive success-but signaling fails downstream of key signaling genes and sperm are not released. This work further defines pollen tube-synergid cell signaling as a critical block to interspecific hybridization and suggests that the FERONIA/LORELEI signaling mechanism plays multiple parallel roles during pollen tube reception.
Collapse
Affiliation(s)
- Nathaniel Ponvert
- Department of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
9
|
Wiese AJ, Torutaeva E, Honys D. The transcription factors and pathways underpinning male reproductive development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1354418. [PMID: 38390292 PMCID: PMC10882072 DOI: 10.3389/fpls.2024.1354418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
As Arabidopsis flowers mature, specialized cells within the anthers undergo meiosis, leading to the production of haploid microspores that differentiate into mature pollen grains, each containing two sperm cells for double fertilization. During pollination, the pollen grains are dispersed from the anthers to the stigma for subsequent fertilization. Transcriptomic studies have identified a large number of genes expressed over the course of male reproductive development and subsequent functional characterization of some have revealed their involvement in floral meristem establishment, floral organ growth, sporogenesis, meiosis, microsporogenesis, and pollen maturation. These genes encode a plethora of proteins, ranging from transcriptional regulators to enzymes. This review will focus on the regulatory networks that control male reproductive development, starting from flower development and ending with anther dehiscence, with a focus on transcription factors and some of their notable target genes.
Collapse
Affiliation(s)
- Anna Johanna Wiese
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Elnura Torutaeva
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - David Honys
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
10
|
Wang X, Wang J, Liu Z, Yang X, Chen X, Zhang L, Song X. The R2R3 MYB gene TaMYB305 positively regulates anther and pollen development in thermo-sensitive male-sterility wheat with Aegilops kotschyi cytoplasm. PLANTA 2024; 259:64. [PMID: 38329576 DOI: 10.1007/s00425-024-04339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
MAIN CONCLUSION The loss of TaMYB305 function down-regulated the expression of jasmonic acid synthesis pathway genes, which may disturb the jasmonic acid synthesis, resulting in abnormal pollen development and reduced fertility. The MYB family, as one of the largest transcription factor families found in plants, regulates plant development, especially the development of anthers. Therefore, it is important to identify potential MYB transcription factors associated with pollen development and to study its role in pollen development. Here, the transcripts of an R2R3 MYB gene TaMYB305 from KTM3315A, a thermo-sensitive cytoplasmic male-sterility line with Aegilops kotschyi cytoplasm (K-TCMS) wheat, was isolated. Quantitative real-time PCR (qRT-PCR) and promoter activity analysis revealed that TaMYB305 was primarily expressed in anthers. The TaMYB305 protein was localized in the nucleus, as determined by subcellular localization analysis. Our data demonstrated that silencing of TaMYB305 was related to abnormal development of stamen, including anther indehiscence and pollen abortion in KAM3315A plants. In addition, TaMYB305-silenced plants exhibited alterations in the transcriptional levels of genes involved in the synthesis of jasmonic acid (JA), indicating that TaMYB305 may regulate the expression of genes related to JA synthesis and play an important role during anther and pollen development of KTM3315A. These results provide novel insight into the function and molecular mechanism of R2R3-MYB genes in pollen development.
Collapse
Affiliation(s)
- Xiaoxia Wang
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Jingchen Wang
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Zhongyan Liu
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xinyu Yang
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xianning Chen
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Lingli Zhang
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Wang W, Malka R, Lindemeier M, Cyprys P, Tiedemann S, Sun K, Zhang X, Xiong H, Sprunck S, Sun MX. EGG CELL 1 contributes to egg-cell-dependent preferential fertilization in Arabidopsis. NATURE PLANTS 2024; 10:268-282. [PMID: 38287093 DOI: 10.1038/s41477-023-01616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
During double fertilization in angiosperms, the pollen tube delivers two sperm cells into an embryo sac; one sperm cell fuses with an egg cell, and the other sperm cell fuses with the central cell. It has long been proposed that the preference for fusion with one or another female gamete cell depends on the sperm cells and occurs during gamete recognition. However, up to now, sperm-dependent preferential fertilization has not been demonstrated, and results on preferred fusion with either female gamete have remained conflicting. To investigate this topic, we generated Arabidopsis thaliana mutants that produce single sperm-like cells or whose egg cells are eliminated; we found that although the three different types of sperm-like cell are functionally equivalent in their ability to fertilize the egg and the central cell, each type of sperm-like cell fuses predominantly with the egg cell. This indicates that it is the egg cell that controls its preferential fertilization. We also found that sperm-activating small secreted EGG CELL 1 proteins are involved in the regulation of egg-cell-dependent preferential fertilization, revealing another important role for this protein family during double fertilization.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Raphael Malka
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Maria Lindemeier
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Philipp Cyprys
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sophie Tiedemann
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Kaiting Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuecheng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China.
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Duan SF, Zhao Y, Yu JC, Xiang GS, Xiao L, Cui R, Hu QQ, Baldwin TC, Lu YC, Liang YL. Genome-wide identification and expression analysis of the C2H2-zinc finger transcription factor gene family and screening of candidate genes involved in floral development in Coptis teeta Wall. (Ranunculaceae). Front Genet 2024; 15:1349673. [PMID: 38317660 PMCID: PMC10839097 DOI: 10.3389/fgene.2024.1349673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background: C2H2-zinc finger transcription factors comprise one of the largest and most diverse gene superfamilies and are involved in the transcriptional regulation of flowering. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in a number of model plant species, little is known about their expression and function in Coptis teeta. C. teeta displays two floral phenotypes (herkogamy phenotypes). It has been proposed that the C2H2-zinc finger transcription factor family may play a crucial role in the formation of floral development and herkogamy observed in C. teeta. As such, we performed a genome-wide analysis of the C2H2-ZFP gene family in C. teeta. Results: The complexity and diversity of C. teeta C2H2 zinc finger proteins were established by evaluation of their physicochemical properties, phylogenetic relationships, exon-intron structure, and conserved motifs. Chromosome localization showed that 95 members of the C2H2 zinc-finger genes were unevenly distributed across the nine chromosomes of C. teeta, and that these genes were replicated in tandem and segmentally and had undergone purifying selection. Analysis of cis-acting regulatory elements revealed a possible involvement of C2H2 zinc-finger proteins in the regulation of phytohormones. Transcriptome data was then used to compare the expression levels of these genes during the growth and development of the two floral phenotypes (F-type and M-type). These data demonstrate that in groups A and B, the expression levels of 23 genes were higher in F-type flowers, while 15 genes showed higher expressions in M-type flowers. qRT-PCR analysis further revealed that the relative expression was highly consistent with the transcriptome data. Conclusion: These data provide a solid basis for further in-depth studies of the C2H2 zinc finger transcription factor gene family in this species and provide preliminary information on which to base further research into the role of the C2H2 ZFPs gene family in floral development in C. teeta.
Collapse
Affiliation(s)
- Shao-Feng Duan
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan Zhao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ji-Chen Yu
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Gui-Sheng Xiang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lin Xiao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rui Cui
- Yunnan Land and Resources Vocational College, Kunming, Yunnan, China
| | - Qian-Qian Hu
- Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Timothy Charles Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Ying-Chun Lu
- Yunnan Agricultural University College of Education and Vocational Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan-Li Liang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
13
|
Liu K, Yin C, Ye W, Ma M, Wang Y, Wang P, Fang Y. Histone Variant H3.3 Controls Arabidopsis Fertility by Regulating Male Gamete Development. PLANT & CELL PHYSIOLOGY 2024; 65:68-78. [PMID: 37814936 DOI: 10.1093/pcp/pcad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 10/01/2023] [Indexed: 10/11/2023]
Abstract
Reprograming of chromatin structures and changes in gene expression are critical for plant male gamete development, and epigenetic marks play an important role in these processes. Histone variant H3.3 is abundant in euchromatin and is largely associated with transcriptional activation. The precise function of H3.3 in gamete development remains unclear in plants. Here, we report that H3.3 is abundantly expressed in Arabidopsis anthers and its knockout mutant h3.3-1 is sterile due to male sterility. Transcriptome analysis of young inflorescence has identified 2348 genes downregulated in h3.3-1 mutant, among which 1087 target genes are directly bound by H3.3, especially at their 3' ends. As a group, this set of H3.3 targets is enriched in the reproduction-associated processes including male gamete generation, pollen sperm cell differentiation and pollen tube growth. The function of H3.3 in male gamete development is dependent on the Anti-Silencing Factor 1A/1B (ASF1A/1B)-Histone regulator A (HIRA)-mediated pathway. Our results suggest that ASF1A/1B-HIRA-mediated H3.3 deposition at its direct targets for transcription activation forms the regulatory networks responsible for male gamete development.
Collapse
Affiliation(s)
- Kunpeng Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunmei Yin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjing Ye
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Ma
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanda Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuda Fang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Qian Z, Shi D, Zhang H, Li Z, Huang L, Yan X, Lin S. Transcription Factors and Their Regulatory Roles in the Male Gametophyte Development of Flowering Plants. Int J Mol Sci 2024; 25:566. [PMID: 38203741 PMCID: PMC10778882 DOI: 10.3390/ijms25010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Male gametophyte development in plants relies on the functions of numerous genes, whose expression is regulated by transcription factors (TFs), non-coding RNAs, hormones, and diverse environmental stresses. Several excellent reviews are available that address the genes and enzymes associated with male gametophyte development, especially pollen wall formation. Growing evidence from genetic studies, transcriptome analysis, and gene-by-gene studies suggests that TFs coordinate with epigenetic machinery to regulate the expression of these genes and enzymes for the sequential male gametophyte development. However, very little summarization has been performed to comprehensively review their intricate regulatory roles and discuss their downstream targets and upstream regulators in this unique process. In the present review, we highlight the research progress on the regulatory roles of TF families in the male gametophyte development of flowering plants. The transcriptional regulation, epigenetic control, and other regulators of TFs involved in male gametophyte development are also addressed.
Collapse
Affiliation(s)
- Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Hongxia Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Zhenzhen Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China;
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
15
|
Wang B, Liang N, Shen X, Xie Z, Zhang L, Tian B, Yuan Y, Guo J, Zhang X, Wei F, Wei X. Cytological and transcriptomic analyses provide insights into the pollen fertility of synthetic allodiploid Brassica juncea hybrids. PLANT CELL REPORTS 2023; 43:23. [PMID: 38150101 DOI: 10.1007/s00299-023-03089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/10/2023] [Indexed: 12/28/2023]
Abstract
KEY MESSAGE Imbalanced chromosomes and cell cycle arrest, along with down-regulated genes in DNA damage repair and sperm cell differentiation, caused pollen abortion in synthetic allodiploid Brassica juncea hybrids. Interspecific hybridization is considered to be a major pathway for species formation and evolution in angiosperms, but the occurrence of pollen abortion in the hybrids is common, prompting us to recheck male gamete development in allodiploid hybrids after the initial combination of different genomes. Here, we investigated the several key meiotic and mitotic events during pollen development using the newly synthesised allodiploid B. juncea hybrids (AB, 2n = 2× = 18) as a model system. Our results demonstrated the partial synapsis and pairing of non-homologous chromosomes concurrent with chaotic spindle assembly, affected chromosome assortment and distribution during meiosis, which finally caused difference in genetic constitution amongst the final tetrads. The mitotic cell cycle arrest during microspore development resulted in the production of anucleate pollen cells. Transcription analysis showed that sets of key genes regulating cyclin (CYCA1;2 and CYCA2;3), DNA damage repair (DMC1, NBS1 and MMD1), and ubiquitin-proteasome pathway (SINAT4 and UBC) were largely downregulated at the early pollen meiosis stages, and those genes involved in sperm cell differentiation (DUO1, PIRL1, PIRL9 and LBD27) and pollen wall synthesis (PME48, VGDH11 and COBL10) were mostly repressed at the late pollen mitosis stages in the synthetic allodiploid B. juncea hybrids (AB). In conclusion, this study elucidated the related mechanisms affecting pollen fertility during male gametophyte development at the cytological and transcriptomic levels in the synthetic allodiploid B. juncea hybrids.
Collapse
Affiliation(s)
- Boyang Wang
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Niannian Liang
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Xiaohan Shen
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Luyue Zhang
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Jialin Guo
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China.
| |
Collapse
|
16
|
Jia HH, Xu YT, Yin ZJ, Qing M, Xie KD, Guo WW, Wu XM. Genome-wide identification of the C2H2-Zinc finger gene family and functional validation of CsZFP7 in citrus nucellar embryogenesis. PLANT REPRODUCTION 2023; 36:287-300. [PMID: 37247027 DOI: 10.1007/s00497-023-00470-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
KEY MESSAGE Genome-wide identification of C2H2-ZF gene family in the poly- and mono-embryonic citrus species and validation of the positive role of CsZFP7 in sporophytic apomixis. The C2H2 zinc finger (C2H2-ZF) gene family is involved in plant vegetative and reproductive development. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in some horticultural plants, little is known about the C2H2-ZFPs and their function in citrus. In this work, we performed a genome-wide sequence analysis and identified 97 and 101 putative C2H2-ZF gene family members in the genomes of sweet orange (C. sinensis, poly-embryonic) and pummelo (C. grandis, mono-embryonic), respectively. Phylogenetic analysis categorized citrus C2H2-ZF gene family into four clades, and their possible functions were inferred. According to the numerous regulatory elements on promoter, citrus C2H2-ZFPs can be divided into five different regulatory function types that indicate functional differentiation. RNA-seq data revealed 20 differentially expressed C2H2-ZF genes between poly-embryonic and mono-embryonic ovules at two stages of citrus nucellar embryogenesis, among them CsZFP52 specifically expressed in mono-embryonic pummelo ovules, while CsZFP7, 37, 44, 45, 67 and 68 specifically expressed in poly-embryonic sweet orange ovules. RT-qPCR further validated that CsZFP7 specifically expressed at higher levels in poly-embryonic ovules, and down-regulation of CsZFP7 in the poly-embryonic mini citrus (Fortunella hindsii) increased rate of mono-embryonic seeds compared with the wild type, indicating the regulatory potential of CsZFP7 in nucellar embryogenesis of citrus. This work provided a comprehensive analysis of C2H2-ZF gene family in citrus, including genome organization and gene structure, phylogenetic relationships, gene duplications, possible cis-elements on promoter regions and expression profiles, especially in the poly- and mono-embryogenic ovules, and suggested that CsZFP7 is involved in nucellar embryogenesis.
Collapse
Affiliation(s)
- Hui-Hui Jia
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan-Tao Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhu-Jun Yin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei Qing
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Dong Xie
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Wu Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Meng Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Wang Y, Zhou H, He Y, Shen X, Lin S, Huang L. MYB transcription factors and their roles in the male reproductive development of flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111811. [PMID: 37574139 DOI: 10.1016/j.plantsci.2023.111811] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/29/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
As one of the largest transcription factor families with complex functional differentiation in plants, the MYB transcription factors (MYB TFs) play important roles in the physiological and biochemical processes of plant growth and development. Male reproductive development, an essential part of sexual reproduction in flowering plants, is undoubtedly regulated by MYB TFs. In this review, we summarize the roles of the MYB TFs involved in the three stages of male reproductive development: pollen grains formation and maturation, filament elongation and anther dehiscence, and fertilization. Also, the potential downstream target genes and upstream regulators of these MYB TFs are discussed. Furthermore, we propose the underlying regulatory mechanisms of these MYB TFs: (1) A complex network of MYB TFs regulates various aspects of male reproductive development; (2) MYB homologous genes in different species may be functionally conserved or differentiated; (3) MYB TFs often form regulatory complexes with bHLH TFs.
Collapse
Affiliation(s)
- Yijie Wang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Huiyan Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Yuanrong He
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya, China
| | - Xiuping Shen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Sue Lin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, Zhejiang, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
18
|
Rauf A, Khatab H, Borg M, Twell D. Genetic control of generative cell shape by DUO1 in Arabidopsis. PLANT REPRODUCTION 2023:10.1007/s00497-023-00462-x. [PMID: 37022491 PMCID: PMC10363056 DOI: 10.1007/s00497-023-00462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The main features of generative cell morphogenesis, formation of a cytoplasmic projection and elongation of the GC body, operate through independent genetic pathways. Male gametogenesis in developing angiosperm pollen involves distinctive changes in cell morphogenesis. Re-shaping and elongation of the generative cell (GC) are linked to the formation of a GC cytoplasmic projection connected to the vegetative cell nucleus. Although genetic control of GC morphogenesis is unknown, we suspected the involvement of the germline-specific MYB transcription factor DUO POLLEN1 (DUO1). We used light and fluorescence microscopy to examine male germline development in pollen of wild-type Arabidopsis and in four allelic duo1 mutants expressing introduced cell markers. Our analysis shows that the undivided GC in duo1 pollen forms a cytoplasmic projection, but the cell body fails to elongate. In contrast GCs of cyclin-dependent kinase function mutants, which fail to divide like duo1 mutants, achieve normal morphogenesis. We conclude that DUO1 has an essential role in the elongation of the GC, but DUO1-independent pathways control the development of the GC cytoplasmic projection. The two main features of GC morphogenesis therefore operate through independently regulated genetic pathways.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Hoda Khatab
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
- Department of Botany, Faculty of Science, University of Omar Al-Mukhtar, Al-Baida, Libya
| | - Michael Borg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
19
|
Lend Me Your EARs: A Systematic Review of the Broad Functions of EAR Motif-Containing Transcriptional Repressors in Plants. Genes (Basel) 2023; 14:genes14020270. [PMID: 36833197 PMCID: PMC9956375 DOI: 10.3390/genes14020270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif, defined by the consensus sequence patterns LxLxL or DLNx(x)P, is found in a diverse range of plant species. It is the most predominant form of active transcriptional repression motif identified so far in plants. Despite its small size (5 to 6 amino acids), the EAR motif is primarily involved in the negative regulation of developmental, physiological and metabolic functions in response to abiotic and biotic stresses. Through an extensive literature review, we identified 119 genes belonging to 23 different plant species that contain an EAR motif and function as negative regulators of gene expression in various biological processes, including plant growth and morphology, metabolism and homeostasis, abiotic stress response, biotic stress response, hormonal pathways and signalling, fertility, and ripening. Positive gene regulation and transcriptional activation are studied extensively, but there remains much more to be discovered about negative gene regulation and the role it plays in plant development, health, and reproduction. This review aims to fill the knowledge gap and provide insights into the role that the EAR motif plays in negative gene regulation, and provoke further research on other protein motifs specific to repressors.
Collapse
|
20
|
Evolutionary Relationships and Divergence of Filamin Gene Family Involved in Development and Stress in Cotton ( Gossypium hirsutum L.). Genes (Basel) 2022; 13:genes13122313. [PMID: 36553581 PMCID: PMC9777546 DOI: 10.3390/genes13122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Filamin protein is characterized by an N-terminal actin-binding domain that is followed by 24 Ig (immunoglobulin)-like repeats, which act as hubs for interactions with a variety of proteins. In humans, this family has been found to be involved in cancer cell invasion and metastasis and can be involved in a variety of growth signal transduction processes, but it is less studied in plants. Therefore, in this study, 54 Filamin gene family members from 23 plant species were investigated and divided into two subfamilies: FLMN and GEX2. Subcellular localization showed that most of the Filamin gene family members were located in the cell membrane. A total of 47 Filamin gene pairs were identified, most of which were whole-genome copies. Through the analyses of cis-acting elements, expression patterns and quantitative fluorescence, it was found that GH_ A02G0519 and GH_ D02G0539 are mainly expressed in the reproductive organs of upland cotton, and their interacting proteins are also related to the fertilization process, whereas GH_A02G0216 and GH_D02G0235 were related to stress. Thus, it is speculated that two genes of the GEX2 subfamily (GH_A02G0519 and GH_D02G0539) may be involved in the reproductive development of cotton and may affect the fertilization process of cotton. This study provides a theoretical basis for the further study of the cotton Filamin gene family.
Collapse
|
21
|
Puentes-Romero AC, González SA, González-Villanueva E, Figueroa CR, Ruiz-Lara S. AtZAT4, a C 2H 2-Type Zinc Finger Transcription Factor from Arabidopsis thaliana, Is Involved in Pollen and Seed Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11151974. [PMID: 35956451 PMCID: PMC9370812 DOI: 10.3390/plants11151974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 06/01/2023]
Abstract
Pollen plays an essential role in plant fertility by delivering the male gametes to the embryo sac before double fertilization. In several plant species, including Arabidopsis, C2H2-type zinc-finger transcription factors (TFs) have been involved in different stages of pollen development and maturation. ZINC FINGER of Arabidopsis thaliana 4 (AtZAT4) is homologous to such TFs and subcellular localization analysis has revealed that AtZAT4 is located in the nucleus. Moreover, analysis of AtZAT4 expression revealed strong levels of it in flowers and siliques, suggesting a role of the encoded protein in the regulation of genes that are associated with reproductive development. We characterized a T-DNA insertional heterozygous mutant Atzat4 (+/−). The relative gene expression analysis of Atzat4 (+/−) showed significant transcript reductions in flowers and siliques. Furthermore, the Atzat4 (+/−) phenotypic characterization revealed defects in the male germline, showing a reduction in pollen tube germination and elongation. Atzat4 (+/−) presented reduced fertility, characterized by a smaller silique size compared to the wild type (WT), and a lower number of seeds per silique. Additionally, seeds displayed lower viability and germination. Altogether, our data suggest a role for AtZAT4 in fertilization and seed viability, through the regulation of gene expression associated with reproductive development.
Collapse
Affiliation(s)
- A. Carolina Puentes-Romero
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
| | - Sebastián A. González
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
| | - Enrique González-Villanueva
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
| | - Carlos R. Figueroa
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
| |
Collapse
|
22
|
Sanchez-Vera V, Landberg K, Lopez-Obando M, Thelander M, Lagercrantz U, Muñoz-Viana R, Schmidt A, Grossniklaus U, Sundberg E. The Physcomitrium patens egg cell expresses several distinct epigenetic components and utilizes homologues of BONOBO genes for cell specification. THE NEW PHYTOLOGIST 2022; 233:2614-2628. [PMID: 34942024 DOI: 10.1111/nph.17938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Although land plant germ cells have received much attention, knowledge about their specification is still limited. We thus identified transcripts enriched in egg cells of the bryophyte model species Physcomitrium patens, compared the results with angiosperm egg cells, and selected important candidate genes for functional analysis. We used laser-assisted microdissection to perform a cell-type-specific transcriptome analysis on egg cells for comparison with available expression profiles of vegetative tissues and male reproductive organs. We made reporter lines and knockout mutants of the two BONOBO (PbBNB) genes and studied their role in reproduction. We observed an overlap in gene activity between bryophyte and angiosperm egg cells, but also clear differences. Strikingly, several processes that are male-germline specific in Arabidopsis are active in the P. patens egg cell. Among those were the moss PbBNB genes, which control proliferation and identity of both female and male germlines. Pathways shared between male and female germlines were most likely present in the common ancestors of land plants, besides sex-specifying factors. A set of genes may also be involved in the switches between the diploid and haploid moss generations. Nonangiosperm gene networks also contribute to the specification of the P. patens egg cell.
Collapse
Affiliation(s)
- Victoria Sanchez-Vera
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Katarina Landberg
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Mauricio Lopez-Obando
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Mattias Thelander
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Ulf Lagercrantz
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| | - Rafael Muñoz-Viana
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Anja Schmidt
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | - Eva Sundberg
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| |
Collapse
|
23
|
Liang W, Li J, Sun L, Liu Y, Lan Z, Qian W. Deciphering the synergistic and redundant roles of CG and non-CG DNA methylation in plant development and transposable element silencing. THE NEW PHYTOLOGIST 2022; 233:722-737. [PMID: 34655488 PMCID: PMC9298111 DOI: 10.1111/nph.17804] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/11/2021] [Indexed: 05/10/2023]
Abstract
DNA methylation plays key roles in transposable element (TE) silencing and gene expression regulation. DNA methylation occurs at CG, CHG and CHH sequence contexts in plants. However, the synergistic and redundant roles of CG and non-CG methylation are poorly understood. By introducing CRISPR/Cas9-induced met1 mutation into the ddcc (drm1 drm2 cmt2 cmt3) mutant, we attempted to knock out all five DNA methyltransferases in Arabidopsis and then investigate the synergistic and redundant roles of CG and non-CG DNA methylation. We found that the homozygous ddcc met1 quintuple mutants are embryonically lethal, although met1 and ddcc mutants only display some developmental abnormalities. Unexpectedly, the ddcc met1 quintuple mutations only reduce transmission through the male gametophytes. The ddcc met1+/- mutants show apparent size divergence, which is not associated with difference in DNA methylation patterns, but associated with the difference in the levels of DNA damage. Finally, we show that a group of TEs are specifically activated in the ddcc met1+/- mutants. This work reveals that CG and non-CG DNA methylation synergistically and redundantly regulate plant reproductive development, vegetative development and TE silencing in Arabidopsis. Our findings provide insights into the roles of DNA methylation in plant development.
Collapse
Affiliation(s)
- Wenjie Liang
- State Key Laboratory of Protein and Plant Gene ResearchPeking‐Tsinghua Center for Life SciencesSchool of Life SciencesPeking UniversityBeijing100871China
| | - Jinchao Li
- State Key Laboratory of Protein and Plant Gene ResearchPeking‐Tsinghua Center for Life SciencesSchool of Life SciencesPeking UniversityBeijing100871China
- School of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Linhua Sun
- School of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Yi Liu
- State Key Laboratory of Protein and Plant Gene ResearchPeking‐Tsinghua Center for Life SciencesSchool of Life SciencesPeking UniversityBeijing100871China
| | - Zijun Lan
- State Key Laboratory of Protein and Plant Gene ResearchPeking‐Tsinghua Center for Life SciencesSchool of Life SciencesPeking UniversityBeijing100871China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene ResearchPeking‐Tsinghua Center for Life SciencesSchool of Life SciencesPeking UniversityBeijing100871China
- School of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| |
Collapse
|
24
|
Plant AR, Larrieu A, Causier B. Repressor for hire! The vital roles of TOPLESS-mediated transcriptional repression in plants. THE NEW PHYTOLOGIST 2021; 231:963-973. [PMID: 33909309 DOI: 10.1111/nph.17428] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/16/2021] [Indexed: 05/15/2023]
Abstract
Transcriptional corepressors play important roles in establishing the appropriate levels of gene expression during growth and development. The TOPLESS (TPL) family of corepressors are critical for all plant life. TPLs are involved in numerous developmental processes and in the response to extrinsic challenges. As such these proteins have been the focus of intense study since Long and colleagues first described the TPL corepressor in 2006. In this review we will explore the evolutionary history of these essential plant-specific proteins, their mechanism of action based on recent structural analyses, and the myriad of pathways in which they function. We speculate how relatively minor changes in the peptide sequence of transcriptional regulators allowed them to recruit TPL into new processes, driving innovation and resulting in TPL becoming vital for plant development.
Collapse
Affiliation(s)
- Alastair Robert Plant
- Faculty of Biological Sciences, Centre for Plant Science, University of Leeds, Leeds, LS2 9JT, UK
| | - Antoine Larrieu
- Faculty of Biological Sciences, Centre for Plant Science, University of Leeds, Leeds, LS2 9JT, UK
| | - Barry Causier
- Faculty of Biological Sciences, Centre for Plant Science, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
25
|
Julca I, Ferrari C, Flores-Tornero M, Proost S, Lindner AC, Hackenberg D, Steinbachová L, Michaelidis C, Gomes Pereira S, Misra CS, Kawashima T, Borg M, Berger F, Goldberg J, Johnson M, Honys D, Twell D, Sprunck S, Dresselhaus T, Becker JD, Mutwil M. Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants. NATURE PLANTS 2021; 7:1143-1159. [PMID: 34253868 DOI: 10.1101/2020.10.29.361501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/02/2021] [Indexed: 05/19/2023]
Abstract
The appearance of plant organs mediated the explosive radiation of land plants, which shaped the biosphere and allowed the establishment of terrestrial animal life. The evolution of organs and immobile gametes required the coordinated acquisition of novel gene functions, the co-option of existing genes and the development of novel regulatory programmes. However, no large-scale analyses of genomic and transcriptomic data have been performed for land plants. To remedy this, we generated gene expression atlases for various organs and gametes of ten plant species comprising bryophytes, vascular plants, gymnosperms and flowering plants. A comparative analysis of the atlases identified hundreds of organ- and gamete-specific orthogroups and revealed that most of the specific transcriptomes are significantly conserved. Interestingly, our results suggest that co-option of existing genes is the main mechanism for evolving new organs. In contrast to female gametes, male gametes showed a high number and conservation of specific genes, which indicates that male reproduction is highly specialized. The expression atlas capturing pollen development revealed numerous transcription factors and kinases essential for pollen biogenesis and function.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Camilla Ferrari
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
| | - María Flores-Tornero
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sebastian Proost
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- VIB, Center for Microbiology, Leuven, Belgium
| | | | - Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, UK
| | - Lenka Steinbachová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Christos Michaelidis
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Chandra Shekhar Misra
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tomokazu Kawashima
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna, BioCenter (VBC), Vienna, Austria
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Michael Borg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna, BioCenter (VBC), Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna, BioCenter (VBC), Vienna, Austria
| | - Jacob Goldberg
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Mark Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
26
|
Julca I, Ferrari C, Flores-Tornero M, Proost S, Lindner AC, Hackenberg D, Steinbachová L, Michaelidis C, Gomes Pereira S, Misra CS, Kawashima T, Borg M, Berger F, Goldberg J, Johnson M, Honys D, Twell D, Sprunck S, Dresselhaus T, Becker JD, Mutwil M. Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants. NATURE PLANTS 2021; 7:1143-1159. [PMID: 34253868 DOI: 10.1038/s41477-021-00958-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/02/2021] [Indexed: 05/22/2023]
Abstract
The appearance of plant organs mediated the explosive radiation of land plants, which shaped the biosphere and allowed the establishment of terrestrial animal life. The evolution of organs and immobile gametes required the coordinated acquisition of novel gene functions, the co-option of existing genes and the development of novel regulatory programmes. However, no large-scale analyses of genomic and transcriptomic data have been performed for land plants. To remedy this, we generated gene expression atlases for various organs and gametes of ten plant species comprising bryophytes, vascular plants, gymnosperms and flowering plants. A comparative analysis of the atlases identified hundreds of organ- and gamete-specific orthogroups and revealed that most of the specific transcriptomes are significantly conserved. Interestingly, our results suggest that co-option of existing genes is the main mechanism for evolving new organs. In contrast to female gametes, male gametes showed a high number and conservation of specific genes, which indicates that male reproduction is highly specialized. The expression atlas capturing pollen development revealed numerous transcription factors and kinases essential for pollen biogenesis and function.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Camilla Ferrari
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
| | - María Flores-Tornero
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sebastian Proost
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- VIB, Center for Microbiology, Leuven, Belgium
| | | | - Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, UK
| | - Lenka Steinbachová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Christos Michaelidis
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Chandra Shekhar Misra
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tomokazu Kawashima
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna, BioCenter (VBC), Vienna, Austria
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Michael Borg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna, BioCenter (VBC), Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna, BioCenter (VBC), Vienna, Austria
| | - Jacob Goldberg
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Mark Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
27
|
Abstract
The gametophyte represents the sexual phase in the alternation of generations in plants; the other, nonsexual phase is the sporophyte. Here, we review the evolutionary origins of the male gametophyte among land plants and, in particular, its ontogenesis in flowering plants. The highly reduced male gametophyte of angiosperm plants is a two- or three-celled pollen grain. Its task is the production of two male gametes and their transport to the female gametophyte, the embryo sac, where double fertilization takes place. We describe two phases of pollen ontogenesis-a developmental phase leading to the differentiation of the male germline and the formation of a mature pollen grain and a functional phase representing the pollen tube growth, beginning with the landing of the pollen grain on the stigma and ending with double fertilization. We highlight recent advances in the complex regulatory mechanisms involved, including posttranscriptional regulation and transcript storage, intracellular metabolic signaling, pollen cell wall structure and synthesis, protein secretion, and phased cell-cell communication within the reproductive tissues.
Collapse
Affiliation(s)
- Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| |
Collapse
|
28
|
Kohchi T, Yamato KT, Ishizaki K, Yamaoka S, Nishihama R. Development and Molecular Genetics of Marchantia polymorpha. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:677-702. [PMID: 33684298 DOI: 10.1146/annurev-arplant-082520-094256] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bryophytes occupy a basal position in the monophyletic evolution of land plants and have a life cycle in which the gametophyte generation dominates over the sporophyte generation, offering a significant advantage in conducting genetics. Owing to its low genetic redundancy and the availability of an array of versatile molecular tools, including efficient genome editing, the liverwort Marchantia polymorpha has become a model organism of choice that provides clues to the mechanisms underlying eco-evo-devo biology in plants. Recent analyses of developmental mutants have revealed that key genes in developmental processes are functionally well conserved in plants, despite their morphological differences, and that lineage-specific evolution occurred by neo/subfunctionalization of common ancestral genes. We suggest that M. polymorpha is an excellent platform to uncover the conserved and diversified mechanisms underlying land plant development.
Collapse
Affiliation(s)
- Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Japan;
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| |
Collapse
|
29
|
Genome-Wide Identification and Expression Patterns of the C2H2-Zinc Finger Gene Family Related to Stress Responses and Catechins Accumulation in Camellia sinensis [L.] O. Kuntze. Int J Mol Sci 2021; 22:ijms22084197. [PMID: 33919599 PMCID: PMC8074030 DOI: 10.3390/ijms22084197] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
The C2H2-zinc finger protein (C2H2-ZFP) is essential for the regulation of plant development and widely responsive to diverse stresses including drought, cold and salt stress, further affecting the late flavonoid accumulation in higher plants. Tea is known as a popular beverage worldwide and its quality is greatly dependent on the physiological status and growing environment of the tea plant. To date, the understanding of C2H2-ZFP gene family in Camellia sinensis [L.] O. Kuntze is not yet available. In the present study, 134 CsC2H2-ZFP genes were identified and randomly distributed on 15 chromosomes. The CsC2H2-ZFP gene family was classified into four clades and gene structures and motif compositions of CsC2H2-ZFPs were similar within the same clade. Segmental duplication and negative selection were the main forces driving the expansion of the CsC2H2-ZFP gene family. Expression patterns suggested that CsC2H2-ZFPs were responsive to different stresses including drought, salt, cold and methyl jasmonate (MeJA) treatment. Specially, several C2H2-ZFPs showed a significant correlation with the catechins content and responded to the MeJA treatment, which might contribute to the tea quality and specialized astringent taste. This study will lay the foundations for further research of C2H2-type zinc finger proteins on the stress responses and quality-related metabolites accumulation in C. sinensis.
Collapse
|
30
|
Arrey-Salas O, Caris-Maldonado JC, Hernández-Rojas B, Gonzalez E. Comprehensive Genome-Wide Exploration of C2H2 Zinc Finger Family in Grapevine ( Vitis vinifera L.): Insights into the Roles in the Pollen Development Regulation. Genes (Basel) 2021; 12:302. [PMID: 33672655 PMCID: PMC7924211 DOI: 10.3390/genes12020302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/02/2023] Open
Abstract
Some C2H2 zinc-finger proteins (ZFP) transcription factors are involved in the development of pollen in plants. In grapevine (Vitis vinifera L.), it has been suggested that abnormalities in pollen development lead to the phenomenon called parthenocarpy that occurs in some varieties of this cultivar. At present, a network involving several transcription factors types has been revealed and key roles have been assigned to members of the C2H2 zinc-finger proteins (ZFP) family in model plants. However, particularities of the regulatory mechanisms controlling pollen formation in grapevine remain unknown. In order to gain insight into the participation of ZFPs in grapevine gametophyte development, we performed a genome-wide identification and characterization of genes encoding ZFP (VviZFP family). A total of 98 genes were identified and renamed based on the gene distribution into grapevine genome. The analysis performed indicate significant changes throughout VviZFP genes evolution explained by high heterogeneity in sequence, length, number of ZF and presence of another conserved domains. Moreover, segmental duplication participated in the gene family expansion in grapevine. The VviZFPs were classified based on domain and phylogenetic analysis into three sets and different groups. Heat-map demonstrated differential and tissue-specific expression patterns of these genes and k-means clustering allowed to identify a group of putative orthologs to some ZFPs related to pollen development. In transgenic plants carrying the promVviZFP13::GUS and promVviZFP68::GUS constructs, GUS signals were detectable in the anther and mature pollen grains. Expression profiling of selected VviZFP genes showed differential expression pattern during flower development and provides a basis for deepening in the understanding of VviZFPs role on grapevine reproductive development.
Collapse
Affiliation(s)
- Oscar Arrey-Salas
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile;
| | | | - Bairon Hernández-Rojas
- Ph.D Program in Sciences Mention in Modeling of Chemical and Biological Systems, Faculty of Engineering, University of Talca, Calle 1 Poniente, 1141, 3462227 Talca, Chile;
| | - Enrique Gonzalez
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile;
| |
Collapse
|
31
|
Borg M, Papareddy RK, Dombey R, Axelsson E, Nodine MD, Twell D, Berger F. Epigenetic reprogramming rewires transcription during the alternation of generations in Arabidopsis. eLife 2021; 10:e61894. [PMID: 33491647 PMCID: PMC7920552 DOI: 10.7554/elife.61894] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Alternation between morphologically distinct haploid and diploid life forms is a defining feature of most plant and algal life cycles, yet the underlying molecular mechanisms that govern these transitions remain unclear. Here, we explore the dynamic relationship between chromatin accessibility and epigenetic modifications during life form transitions in Arabidopsis. The diploid-to-haploid life form transition is governed by the loss of H3K9me2 and DNA demethylation of transposon-associated cis-regulatory elements. This event is associated with dramatic changes in chromatin accessibility and transcriptional reprogramming. In contrast, the global loss of H3K27me3 in the haploid form shapes a chromatin accessibility landscape that is poised to re-initiate the transition back to diploid life after fertilisation. Hence, distinct epigenetic reprogramming events rewire transcription through major reorganisation of the regulatory epigenome to guide the alternation of generations in flowering plants.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | | | - Rodolphe Dombey
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - Elin Axelsson
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - David Twell
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
- Department of Genetics, University of LeicesterLeicesterUnited Kingdom
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| |
Collapse
|
32
|
Xu L, Xiong X, Liu W, Liu T, Yu Y, Cao J. BcMF30a and BcMF30c, Two Novel Non-Tandem CCCH Zinc-Finger Proteins, Function in Pollen Development and Pollen Germination in Brassica campestris ssp. chinensis. Int J Mol Sci 2020; 21:ijms21176428. [PMID: 32899329 PMCID: PMC7504113 DOI: 10.3390/ijms21176428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/19/2020] [Accepted: 08/31/2020] [Indexed: 01/04/2023] Open
Abstract
Chinese cabbage (Brassica campestris) is an economically important leaf vegetable crop worldwide. Mounting studies have shown that cysteine-cysteine-cysteine-histidine (CCCH) zinc-finger protein genes are involved in various plant growth and development processes. However, research on the involvement of these genes in male reproductive development is still in its infancy. Here, we identified 11 male fertility-related CCCH genes in Chinese cabbage. Among them, a pair of paralogs encoding novel non-tandem CCCH zinc-finger proteins, Brassica campestris Male Fertility 30a (BcMF30a) and BcMF30c, were further characterized. They were highly expressed in pollen during microgametogenesis and continued to express in germinated pollen. Further analyses demonstrated that both BcMF30a and BcMF30c may play a dual role as transcription factors and RNA-binding proteins in plant cells. Functional analysis showed that partial bcmf30a bcmf30c pollen grains were aborted due to the degradation of pollen inclusion at the microgametogenesis phase, and the germination rate of viable pollen was also greatly reduced, indicating that BcMF30a and BcMF30c are required for both pollen development and pollen germination. This research provided insights into the function of CCCH proteins in regulating male reproductive development and laid a theoretical basis for hybrid breeding of Chinese cabbage.
Collapse
Affiliation(s)
- Liai Xu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.X.); (W.L.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Xingpeng Xiong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.X.); (W.L.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Weimiao Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.X.); (W.L.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Tingting Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.X.); (W.L.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Youjian Yu
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A & F University, Lin’an 311300, China;
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (L.X.); (X.X.); (W.L.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-131-8501-1958
| |
Collapse
|
33
|
Jiang D, Borg M, Lorković ZJ, Montgomery SA, Osakabe A, Yelagandula R, Axelsson E, Berger F. The evolution and functional divergence of the histone H2B family in plants. PLoS Genet 2020; 16:e1008964. [PMID: 32716939 PMCID: PMC7410336 DOI: 10.1371/journal.pgen.1008964] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/06/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Chromatin regulation of eukaryotic genomes depends on the formation of nucleosome complexes between histone proteins and DNA. Histone variants, which are diversified by sequence or expression pattern, can profoundly alter chromatin properties. While variants in histone H2A and H3 families are well characterized, the extent of diversification of histone H2B proteins is less understood. Here, we report a systematic analysis of the histone H2B family in plants, which have undergone substantial divergence during the evolution of each major group in the plant kingdom. By characterising Arabidopsis H2Bs, we substantiate this diversification and reveal potential functional specialization that parallels the phylogenetic structure of emergent clades in eudicots. In addition, we identify a new class of highly divergent H2B variants, H2B.S, that specifically accumulate during chromatin compaction of dry seed embryos in multiple species of flowering plants. Our findings thus identify unsuspected diverse properties among histone H2B proteins in plants that has manifested into potentially novel groups of histone variants. In addition to well-studied variants from core histones families H2A and H3, we report that land plants diversified their H2B family, leading to specialized H2B variants with specific patterns of expression, genomic distributions and properties.
Collapse
Affiliation(s)
- Danhua Jiang
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Michael Borg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Zdravko J. Lorković
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Sean A. Montgomery
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Akihisa Osakabe
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Ramesh Yelagandula
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Elin Axelsson
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
- * E-mail:
| |
Collapse
|
34
|
Song SK, Jang HU, Kim YH, Lee BH, Lee MM. Overexpression of three related root-cap outermost-cell-specific C2H2-type zinc-finger protein genes suppresses the growth of Arabidopsis in an EAR-motif-dependent manner. BMB Rep 2020. [PMID: 32172729 PMCID: PMC7118352 DOI: 10.5483/bmbrep.2020.53.3.286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The root meristem of Arabidopsis thaliana is protected by the root cap, the size of which is tightly regulated by the balance between the formative cell divisions and the dispersal of the outermost cells. We isolated an enhancer-tagged dominant mutant displaying the short and twisted root by the overexpression of ZINC-FINGER OF ARABIDOPSIS THALIANA1 (ZAT1) encoding an EAR motif-containing zinc-finger protein. The growth inhibition by ZAT1 was shared by ZAT4 and ZAT9, the ZAT1 homologues. The ZAT1 promoter was specifically active in the outermost cells of the root cap, in which ZAT1-GFP was localized when expressed by the ZAT1 promoter. The outermost cell-specific expression pattern of ZAT1 was not altered in the sombrero (smb) or smb bearskin1 (brn1) brn2 accumulating additional root-cap layers. In contrast, ZAT4-GFP and ZAT9- GFP fusion proteins were distributed to the inner root-cap cells in addition to the outermost cells where ZAT4 and ZAT9 promoters were active. Overexpression of ZAT1 induced the ectopic expression of PUTATIVE ASPARTIC PROTEASE3 involved in the programmed cell death. The EAR motif was essential for the growth inhibition by ZAT1. These results suggest that the three related ZATs might regulate the maturation of the outermost cells of the root cap.
Collapse
Affiliation(s)
- Sang-Kee Song
- Department of Biology, Chosun University, Gwangju 61452, Korea
| | - Hyeon-Ung Jang
- Department of Biology, Chosun University, Gwangju 61452, Korea
| | - Yo Han Kim
- Department of Biology, Chosun University, Gwangju 61452, Korea
| | - Bang Heon Lee
- Department of Biology, Chosun University, Gwangju 61452, Korea
| | - Myeong Min Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
35
|
Lyu T, Liu W, Hu Z, Xiang X, Liu T, Xiong X, Cao J. Molecular characterization and expression analysis reveal the roles of Cys 2/His 2 zinc-finger transcription factors during flower development of Brassica rapa subsp. chinensis. PLANT MOLECULAR BIOLOGY 2020; 102:123-141. [PMID: 31776846 DOI: 10.1007/s11103-019-00935-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Conserved motif, gene structure, expression and interaction analysis of C2H2-ZFPs in Brassica rapa, and identified types of genes may play essential roles in flower development, and BrZFP38 was proved to function in flower development by affecting pollen formation. Flower development plays a central role in determining the reproduction of higher plants, and Cys2/His2 zinc-finger proteins (C2H2-ZFPs) widely participate in the transcriptional regulation of flower development. C2H2-ZFPs with various structures are the most widespread DNA-binding transcription factors in plants. In this study, conserved protein motif and gene structures were analyzed to investigate systematically the molecular features of Brassica rapa C2H2-ZFP genes. Expression of B. rapa C2H2-ZFPs in multiple tissues showed that more than half of the family members with different types ZFs were expressed in flowers. The specific expression profiles of these C2H2-ZFPs in different B. rapa floral bud stages were further evaluated to identify their potential roles in flower development. Interaction networks were constructed in B. rapa based on the orthology of flower-related C2H2-ZFP genes in Arabidopsis. The putative cis-regulatory elements in the promoter regions of these C2H2-ZFP genes were thoroughly analyzed to elucidate their transcriptional regulation. Results showed that the orthologs of known-function flower-related C2H2-ZFP genes were conserved and differentiated in B. rapa. A C2H2-ZFP was proved to function in B. rapa flower development. Our study provides a systematic investigation of the molecular characteristics and expression profiles of C2H2-ZFPs in B. rapa and promotes further work in function and transcriptional regulation of flower development.
Collapse
Affiliation(s)
- Tianqi Lyu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Weimiao Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Ziwei Hu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Xun Xiang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Tingting Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Xingpeng Xiong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| |
Collapse
|
36
|
The Roles of Arabidopsis C1-2i Subclass of C2H2-type Zinc-Finger Transcription Factors. Genes (Basel) 2019; 10:genes10090653. [PMID: 31466344 PMCID: PMC6770587 DOI: 10.3390/genes10090653] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 01/07/2023] Open
Abstract
The Cys2His2 (C2H2)-type zinc-finger protein (ZFP) family, which includes 176 members in Arabidopsis thaliana, is one of the largest families of putative transcription factors in plants. Of the Arabidopsis ZFP members, only 33 members are conserved in other eukaryotes, with 143 considered to be plant specific. C2H2-type ZFPs have been extensively studied and have been shown to play important roles in plant development and environmental stress responses by transcriptional regulation. The ethylene-responsive element binding-factor-associated amphiphilic repression (EAR) domain (GCC box) has been found to have a critical role in the tolerance response to abiotic stress. Many of the plant ZFPs containing the EAR domain, such as AZF1/2/3, ZAT7, ZAT10, and ZAT12, have been shown to function as transcriptional repressors. In this review, we mainly focus on the C1-2i subclass of C2H2 ZFPs and summarize the latest research into their roles in various stress responses. The role of C2H2-type ZFPs in response to the abiotic and biotic stress signaling network is not well explained, and amongst them, C1-2i is one of the better-characterized classifications in response to environmental stresses. These studies of the C1-2i subclass ought to furnish the basis for future studies to discover the pathways and receptors concerned in stress defense. Research has implied possible protein-protein interactions between members of C1-2i under various stresses, for which we have proposed a hypothetical model.
Collapse
|
37
|
Lyu T, Hu Z, Liu W, Cao J. Arabidopsis Cys 2/His 2 zinc-finger protein MAZ1 is essential for intine formation and exine pattern. Biochem Biophys Res Commun 2019; 518:299-305. [PMID: 31427085 DOI: 10.1016/j.bbrc.2019.08.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 11/25/2022]
Abstract
Cys2/His2 zinc-finger protein (C2H2-ZFP) is widely involved in the reproductive development of plants, but its role in pollen development is still elusive. Here, we identified a pollen-related C2H2-ZFP gene named as MALE FERTILITY-ASSOCIATED ZINC FINGER PROTEIN 1 (MAZ1), which was first isolated from Arabidopsis thaliana. MAZ1 showed a preferential expression pattern in early anther development. Its mutation resulted in aberrant primexine deposition at the tetrad stage, followed by a defective multiple-layer pattern of exine with irregular baculum and no tectum. Furthermore, microspore development was arrested, and no intine layer was formed. These developmental defects led to fertility reduction and pollen abortion. This study reveals the essential role of MAZ1 in pollen wall development.
Collapse
Affiliation(s)
- Tianqi Lyu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China.
| | - Ziwei Hu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China.
| | - Weimiao Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China.
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| |
Collapse
|
38
|
Hisanaga T, Yamaoka S, Kawashima T, Higo A, Nakajima K, Araki T, Kohchi T, Berger F. Building new insights in plant gametogenesis from an evolutionary perspective. NATURE PLANTS 2019; 5:663-669. [PMID: 31285561 DOI: 10.1038/s41477-019-0466-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/29/2019] [Indexed: 05/18/2023]
Abstract
Extant bryophytes are thought to preserve characteristics of ancestral land plants, with a life cycle dominated by the haploid gametophyte. The gametophyte produces gametes in specialized organs that differentiate after an extensive phase of vegetative development. During land plant evolution, these organs became extremely reduced. As a result, in flowers of angiosperms the haploid phase of the life cycle is reduced to few-celled gametophytes, namely the embryo sac (female) and pollen (male). Although many factors contributing to gametogenesis have been identified in flowering plants, the extreme reduction of the gametophytes has prevented a clear molecular dissection of key processes of gametogenesis. Recent studies in the model bryophyte Marchantia polymorpha have identified conserved transcription factors regulating the equivalent steps in the sexual reproduction of land plants. These include FEMALE GAMETOPHYTE MYB for female gametophyte development, BONOBO for gamete progenitor cell specification, DUO POLLEN1 for sperm differentiation and members of the RWP-RK domain family for female gamete formation. These studies demonstrate that M. polymorpha is a powerful model to untangle the core processes of gametogenesis in land plants. We anticipate that a deeper understanding of gametogenesis in bryophytes will circumscribe the origin of plant germ cells and define the differentiation programmes of sperm and eggs.
Collapse
Affiliation(s)
- Tetsuya Hisanaga
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Asuka Higo
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
39
|
Singh P, Mathew IE, Verma A, Tyagi AK, Agarwal P. Analysis of Rice Proteins with DLN Repressor Motif/S. Int J Mol Sci 2019; 20:ijms20071600. [PMID: 30935059 PMCID: PMC6479872 DOI: 10.3390/ijms20071600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
Transcriptional regulation includes both activation and repression of downstream genes. In plants, a well-established class of repressors are proteins with an ERF-associated amphiphilic repression/EAR domain. They contain either DLNxxP or LxLxL as the identifying hexapeptide motif. In rice (Oryza sativa), we have identified a total of 266 DLN repressor proteins, with the former motif and its modifications thereof comprising 227 transcription factors and 39 transcriptional regulators. Apart from DLNxxP motif conservation, DLNxP and DLNxxxP motifs with variable numbers/positions of proline and those without any proline conservation have been identified. Most of the DLN repressome proteins have a single DLN motif, with higher relative percentage in the C-terminal region. We have designed a simple yeast-based experiment wherein a DLN motif can successfully cause strong repression of downstream reporter genes, when fused to a transcriptional activator of rice or yeast. The DLN hexapeptide motif is essential for repression, and at least two “DLN” residues cause maximal repression. Comparatively, rice has more DLN repressor encoding genes than Arabidopsis, and DLNSPP motif from rice is 40% stronger than the known Arabidopsis SRDX motif. The study reports a straightforward assay to analyze repressor activity, along with the identification of a strong DLN repressor from rice.
Collapse
Affiliation(s)
- Purnima Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | - Iny Elizebeth Mathew
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | - Ankit Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, South Campus Delhi University, New Delhi-110021, India.
| | - Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| |
Collapse
|
40
|
Abstract
The reproductive adaptations of land plants have played a key role in their terrestrial colonization and radiation. This encompasses mechanisms used for the production, dispersal and union of gametes to support sexual reproduction. The production of small motile male gametes and larger immotile female gametes (oogamy) in specialized multicellular gametangia evolved in the charophyte algae, the closest extant relatives of land plants. Reliance on water and motile male gametes for sexual reproduction was retained by bryophytes and basal vascular plants, but was overcome in seed plants by the dispersal of pollen and the guided delivery of non-motile sperm to the female gametes. Here we discuss the evolutionary history of male gametogenesis in streptophytes (green plants) and the underlying developmental biology, including recent advances in bryophyte and angiosperm models. We conclude with a perspective on research trends that promise to deliver a deeper understanding of the evolutionary and developmental mechanisms of male gametogenesis in plants.
Collapse
Affiliation(s)
- Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
41
|
Higo A, Kawashima T, Borg M, Zhao M, López-Vidriero I, Sakayama H, Montgomery SA, Sekimoto H, Hackenberg D, Shimamura M, Nishiyama T, Sakakibara K, Tomita Y, Togawa T, Kunimoto K, Osakabe A, Suzuki Y, Yamato KT, Ishizaki K, Nishihama R, Kohchi T, Franco-Zorrilla JM, Twell D, Berger F, Araki T. Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. Nat Commun 2018; 9:5283. [PMID: 30538242 PMCID: PMC6290024 DOI: 10.1038/s41467-018-07728-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
Evolutionary mechanisms underlying innovation of cell types have remained largely unclear. In multicellular eukaryotes, the evolutionary molecular origin of sperm differentiation is unknown in most lineages. Here, we report that in algal ancestors of land plants, changes in the DNA-binding domain of the ancestor of the MYB transcription factor DUO1 enabled the recognition of a new cis-regulatory element. This event led to the differentiation of motile sperm. After neo-functionalization, DUO1 acquired sperm lineage-specific expression in the common ancestor of land plants. Subsequently the downstream network of DUO1 was rewired leading to sperm with distinct morphologies. Conjugating green algae, a sister group of land plants, accumulated mutations in the DNA-binding domain of DUO1 and lost sperm differentiation. Our findings suggest that the emergence of DUO1 was the defining event in the evolution of sperm differentiation and the varied modes of sexual reproduction in the land plant lineage.
Collapse
Affiliation(s)
- Asuka Higo
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomokazu Kawashima
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Michael Borg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Mingmin Zhao
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Irene López-Vidriero
- Unidad de Genómica, Centro Nacional de Biotecnología, CNB-CSIC, Campus de Cantoblanco, C/Darwin 3, 28049, Madrid, Spain
| | - Hidetoshi Sakayama
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Sean A Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Hiroyuki Sekimoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Masaki Shimamura
- Department of Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Keiko Sakakibara
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Yuki Tomita
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Taisuke Togawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, 649-6493, Japan
| | - Kan Kunimoto
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Akihisa Osakabe
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, 649-6493, Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - José M Franco-Zorrilla
- Unidad de Genómica, Centro Nacional de Biotecnología, CNB-CSIC, Campus de Cantoblanco, C/Darwin 3, 28049, Madrid, Spain
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr Gasse 3, 1030, Vienna, Austria.
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
42
|
Liu L, Lu Y, Wei L, Yu H, Cao Y, Li Y, Yang N, Song Y, Liang C, Wang T. Transcriptomics analyses reveal the molecular roadmap and long non-coding RNA landscape of sperm cell lineage development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:421-437. [PMID: 30047180 DOI: 10.1111/tpj.14041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Sperm cell (SC) lineage development from the haploid microspore to SCs represents a unique biological process in which the microspore generates a larger vegetative cell (VC) and a smaller generative cell (GC) enclosed in the VC, then the GC further develops to functionally specified SCs in the VC for double fertilization. Understanding the mechanisms of SC lineage development remains a critical goal in plant biology. We isolated individual cells of the three cell types, and characterized the genome-wide atlas of long non-coding (lnc) RNAs and mRNAs of haploid SC lineage cells. Sperm cell lineage development involves global repression of genes for pluripotency, somatic development and metabolism following asymmetric microspore division and coordinated upregulation of GC/SC preferential genes. This process is accompanied by progressive loss of the active marks H3K4me3 and H3K9ac, and accumulation of the repressive methylation mark H3K9. The SC lineage has a higher ratio of lncRNAs to mRNAs and preferentially expresses a larger percentage of lncRNAs than does the non-SC lineage. A co-expression network showed that the largest set of lncRNAs in these nodes, with more than 100 links, are GC-preferential, and a small proportion of lncRNAs co-express with their neighboring genes. Single molecular fluorescence in situ hybridization showed that several candidate genes may be markers distinguishing the three cell types of the SC lineage. Our findings reveal the molecular programming and potential roles of lncRNAs in SC lineage development.
Collapse
Affiliation(s)
- Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunlong Lu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liqin Wei
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hua Yu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yinghao Cao
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Li
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunyun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengzhi Liang
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
43
|
Lyu T, Cao J. Cys₂/His₂ Zinc-Finger Proteins in Transcriptional Regulation of Flower Development. Int J Mol Sci 2018; 19:E2589. [PMID: 30200325 PMCID: PMC6164605 DOI: 10.3390/ijms19092589] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 11/17/2022] Open
Abstract
Flower development is the core of higher-plant ontogenesis and is controlled by complex gene regulatory networks. Cys₂/His₂ zinc-finger proteins (C2H2-ZFPs) constitute one of the largest transcription factor families and are highly involved in transcriptional regulation of flowering induction, floral organ morphogenesis, and pollen and pistil maturation. Nevertheless, the molecular mechanism of C2H2-ZFPs has been gradually revealed only in recent years. During flowering induction, C2H2-ZFPs can modify the chromatin of FLOWERING LOCUS C, thereby providing additional insights into the quantification of transcriptional regulation caused by chromatin regulation. C2H2-ZFPs are involved in cell division and proliferation in floral organ development and are associated with hormonal regulation, thereby revealing how a flower is partitioned into four developmentally distinct whorls. The studies reviewed in this work integrate the information from the endogenous, hormonal, and environmental regulation of flower development. The structure of C2H2-ZFPs determines their function as transcriptional regulators. The findings indicate that C2H2-ZFPs play a crucial role in flower development. In this review, we summarize the current understanding of the structure, expression, and function of C2H2-ZFPs and discuss their molecular mechanism in flower development.
Collapse
Affiliation(s)
- Tianqi Lyu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| |
Collapse
|
44
|
Nakajima K. Be my baby: patterning toward plant germ cells. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:110-115. [PMID: 29223127 DOI: 10.1016/j.pbi.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 05/28/2023]
Abstract
In flowering plants, germ cells are formed via tightly coordinated patterning processes that facilitate specification of spore mother cells and meiosis during sporogenesis, as well as functional differentiation of germ cells in gametogenesis. Studies using the conventional Arabidopsis system and the newly emerged bryophyte system have revealed novel interactions between regulatory factors that restrict the number of spore mother cells, and evolutionarily conserved factors that promote germ cell differentiation. This short review summarizes recent advances in our understanding of the cellular events that lead to the formation of germ cells in plants, and highlights questions that remain to be addressed in the field.
Collapse
Affiliation(s)
- Keiji Nakajima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
45
|
Yamaoka S, Nishihama R, Yoshitake Y, Ishida S, Inoue K, Saito M, Okahashi K, Bao H, Nishida H, Yamaguchi K, Shigenobu S, Ishizaki K, Yamato KT, Kohchi T. Generative Cell Specification Requires Transcription Factors Evolutionarily Conserved in Land Plants. Curr Biol 2018; 28:479-486.e5. [PMID: 29395928 DOI: 10.1016/j.cub.2017.12.053] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/11/2017] [Accepted: 12/22/2017] [Indexed: 12/23/2022]
Abstract
Land plants differentiate germ cells in the haploid gametophyte. In flowering plants, a generative cell is specified as a precursor that subsequently divides into two sperm cells in the developing male gametophyte, pollen. Generative cell specification requires cell-cycle control and microtubule-dependent nuclear relocation (reviewed in [1-3]). However, the generative cell fate determinant and its evolutionary origin are still unknown. In bryophytes, gametophytes produce eggs and sperm in multicellular reproductive organs called archegonia and antheridia, respectively, or collectively called gametangia. Given the monophyletic origin of land plants [4-6], evolutionarily conserved mechanisms may play key roles in these diverse reproductive processes. Here, we showed that a single member of the subfamily VIIIa of basic helix-loop-helix (bHLH) transcription factors in the liverwort Marchantia polymorpha primarily accumulated in the initial cells and controlled their development into gametangia. We then demonstrated that an Arabidopsis thaliana VIIIa bHLH transiently accumulated in the smaller daughter cell after an asymmetric division of the meiosis-derived microspore and was required for generative cell specification redundantly with its paralog. Furthermore, these A. thaliana VIIIa bHLHs were functionally replaceable by the M. polymorpha VIIIa bHLH. These findings suggest the VIIIa bHLH proteins as core regulators for reproductive development, including germ cell differentiation, since an early stage of land plant evolution.
Collapse
Affiliation(s)
- Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Misaki Saito
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Keitaro Okahashi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Haonan Bao
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroyuki Nishida
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), Okazaki, Aichi 444-8585, Japan
| | | | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
46
|
Glöckle B, Urban WJ, Nagahara S, Andersen ED, Higashiyama T, Grini PE, Schnittger A. Pollen differentiation as well as pollen tube guidance and discharge are independent of the presence of gametes. Development 2018; 145:dev.152645. [PMID: 29217755 PMCID: PMC5825867 DOI: 10.1242/dev.152645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022]
Abstract
After meiosis, an unequal cell division generates the male gamete lineage in flowering plants. The generative cell will undergo a second division, giving rise to the two gametes, i.e. the sperm cells. The other cell will develop into the vegetative cell that plays a crucial role in pollen tube formation and sperm delivery. Recently, the vegetative cell has been suggested to be important for programming of the chromatin state in sperm cells and/or the resulting fertilization products. Blocking the initial unequal division genetically, we first highlight that the default differentiation state after male meiosis is a vegetative fate, which is consistent with earlier work. We find that uni-nucleated mutant microspores differentiated as wild-type vegetative cells, including chromatin remodeling and the transcriptional activation of transposable elements. Moreover, live-cell imaging revealed that this vegetative cell is sufficient for the correct guidance of the pollen tube to the female gametes. Hence, we conclude that vegetative cell differentiation and function does not depend on the formation or presence of the actual gametes but rather on external signals or a cell-autonomous pace keeper. Summary: Cell biological analyses in Arabidopsis show that the vegetative cell differentiates without the presence of the actual gametes, and is solely sufficient for pollen tube germination, guidance, ovule penetration and pollen tube discharge.
Collapse
Affiliation(s)
- Barbara Glöckle
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS - UPR2357, Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France.,Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Wojciech J Urban
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, 22609 Hamburg, Germany
| | - Shiori Nagahara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ellen D Andersen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.,JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Paul E Grini
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS - UPR2357, Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France .,University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, 22609 Hamburg, Germany
| |
Collapse
|
47
|
Peng X, Sun MX. Pollen tube, a one-way special train for special passengers. Sci Bull (Beijing) 2017; 62:1165-1166. [PMID: 36659505 DOI: 10.1016/j.scib.2017.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xiongpo Peng
- College of Life Science, Wuhan University, Wuhan 430072, China
| | - Meng-Xiang Sun
- College of Life Science, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
48
|
Zhang J, Huang Q, Zhong S, Bleckmann A, Huang J, Guo X, Lin Q, Gu H, Dong J, Dresselhaus T, Qu LJ. Sperm cells are passive cargo of the pollen tube in plant fertilization. NATURE PLANTS 2017; 3:17079. [PMID: 28585562 PMCID: PMC5960590 DOI: 10.1038/nplants.2017.79] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/03/2017] [Indexed: 05/05/2023]
Abstract
Sperm cells of seed plants have lost their motility and are transported by the vegetative pollen tube cell for fertilization, but the extent to which they regulate their own transportation is a long-standing debate. Here we show that Arabidopsis lacking two bHLH transcription factors produces pollen without sperm cells. This abnormal pollen mostly behaves like the wild type and demonstrates that sperm cells are dispensable for normal pollen tube development.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Qingpei Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Andrea Bleckmann
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Jiaying Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Xinyang Guo
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Lin
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
- The National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
- The National Plant Gene Research Center (Beijing), Beijing 100101, China
| |
Collapse
|
49
|
Pinon V, Yao X, Dong A, Shen WH. SDG2-Mediated H3K4me3 Is Crucial for Chromatin Condensation and Mitotic Division during Male Gametogenesis in Arabidopsis. PLANT PHYSIOLOGY 2017; 174:1205-1215. [PMID: 28455402 PMCID: PMC5462044 DOI: 10.1104/pp.17.00306] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/25/2017] [Indexed: 05/02/2023]
Abstract
Epigenetic reprogramming occurring during reproduction is crucial for both animal and plant development. Histone H3 Lys 4 trimethylation (H3K4me3) is an evolutionarily conserved epigenetic mark of transcriptional active euchromatin. While much has been learned in somatic cells, H3K4me3 deposition and function in gametophyte is poorly studied. Here, we demonstrate that SET DOMAIN GROUP2 (SDG2)-mediated H3K4me3 deposition participates in epigenetic reprogramming during Arabidopsis male gametogenesis. We show that loss of SDG2 barely affects meiosis and cell fate establishment of haploid cells. However, we found that SDG2 is critical for postmeiotic microspore development. Mitotic cell division progression is partly impaired in the loss-of-function sdg2-1 mutant, particularly at the second mitosis setting up the two sperm cells. We demonstrate that SDG2 is involved in promoting chromatin decondensation in the pollen vegetative nucleus, likely through its role in H3K4me3 deposition, which prevents ectopic heterochromatic H3K9me2 speckle formation. Moreover, we found that derepression of the LTR retrotransposon ATLANTYS1 is compromised in the vegetative cell of the sdg2-1 mutant pollen. Consistent with chromatin condensation and compromised transcription activity, pollen germination and pollen tube elongation, representing the key function of the vegetative cell in transporting sperm cells during fertilization, are inhibited in the sdg2-1 mutant. Taken together, we conclude that SDG2-mediated H3K4me3 is an essential epigenetic mark of the gametophyte chromatin landscape, playing critical roles in gamete mitotic cell cycle progression and pollen vegetative cell function during male gametogenesis and beyond.
Collapse
Affiliation(s)
- Violaine Pinon
- Université de Strasbourg, Centre National de la Recherche Scientifique UPR2357, F-67000 Strasbourg, France (V.P., W.-H.S.)
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of Centre National de la Recherche Scientifique-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (X.Y., A.D., W.-H.S.); and
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.Y.)
| | - Xiaozhen Yao
- Université de Strasbourg, Centre National de la Recherche Scientifique UPR2357, F-67000 Strasbourg, France (V.P., W.-H.S.)
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of Centre National de la Recherche Scientifique-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (X.Y., A.D., W.-H.S.); and
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.Y.)
| | - Aiwu Dong
- Université de Strasbourg, Centre National de la Recherche Scientifique UPR2357, F-67000 Strasbourg, France (V.P., W.-H.S.)
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of Centre National de la Recherche Scientifique-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (X.Y., A.D., W.-H.S.); and
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.Y.)
| | - Wen-Hui Shen
- Université de Strasbourg, Centre National de la Recherche Scientifique UPR2357, F-67000 Strasbourg, France (V.P., W.-H.S.);
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of Centre National de la Recherche Scientifique-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (X.Y., A.D., W.-H.S.); and
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.Y.)
| |
Collapse
|
50
|
Gibalová A, Steinbachová L, Hafidh S, Bláhová V, Gadiou Z, Michailidis C, Műller K, Pleskot R, Dupľáková N, Honys D. Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte. PLANT REPRODUCTION 2017; 30:1-17. [PMID: 27896439 DOI: 10.1007/s00497-016-0295-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 11/15/2016] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE : bZIP TF network in pollen. Transcriptional control of gene expression represents an important mechanism guiding organisms through developmental processes and providing plasticity towards environmental stimuli. Because of their sessile nature, plants require effective gene regulation for rapid response to variation in environmental and developmental conditions. Transcription factors (TFs) provide such control ensuring correct gene expression in spatial and temporal manner. Our work reports the interaction network of six bZIP TFs expressed in Arabidopsis thaliana pollen and highlights the potential functional role for AtbZIP18 in pollen. AtbZIP18 was shown to interact with three other pollen-expressed bZIP TFs-AtbZIP34, AtbZIP52, and AtbZIP61 in yeast two-hybrid assays. AtbZIP18 transcripts are highly expressed in pollen, and at the subcellular level, an AtbZIP18-GFP fusion protein was located in the nucleus and cytoplasm/ER. To address the role of AtbZIP18 in the male gametophyte, we performed phenotypic analysis of a T-DNA knockout allele, which showed slightly reduced transmission through the male gametophyte. Some of the phenotype defects in atbzip18 pollen, although observed at low penetrance, were similar to those seen at higher frequency in the T-DNA knockout of the interacting partner, AtbZIP34. To gain deeper insight into the regulatory role of AtbZIP18, we analysed atbzip18/- pollen microarray data. Our results point towards a potential repressive role for AtbZIP18 and its functional redundancy with AtbZIP34 in pollen.
Collapse
Affiliation(s)
- Antónia Gibalová
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Lenka Steinbachová
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Veronika Bláhová
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague 2, Czech Republic
- Institute of Physiology AS CR, v. v. i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
| | - Zuzana Gadiou
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Christos Michailidis
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Karel Műller
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Roman Pleskot
- Laboratory of Cell Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
- Laboratory of Pavel Jungwirth, Institute of Organic Chemistry and Biochemistry AS CR, v. v. i., Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Nikoleta Dupľáková
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany AS CR, v. v. i., Rozvojová 263, 165 02, Prague 6, Czech Republic.
| |
Collapse
|