1
|
Dong K, Ye Z, Hu F, Shan C, Wen D, Cao J. An evolutionary dynamics analysis of the plant DEK gene family reveals the role of BnaA02g08940D in drought tolerance. Int J Biol Macromol 2025; 298:140053. [PMID: 39828179 DOI: 10.1016/j.ijbiomac.2025.140053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
DEK is a chromatin protein that interacts with DNA to influence chromatin formation, thereby affecting plant growth, development, and stress response. This study investigates the molecular evolution of the DEK family in plants, with a particular focus on the Brassica species. A total of 127 DEK genes were identified in 34 plants and classified into seven groups based on the phylogenetic analysis. The distribution of motifs and gene structure is similar within each group, indicating a high degree of conservation. The results of the collinearity analysis indicated that the DEK protein has undergone a certain degree of evolutionary conservation. The expansion of the DEK family is primarily attributable to whole-genome duplication (WGD) or segmental duplication events. The DEK protein has undergone purification during its evolutionary history, and several positively selected sites have been identified. Moreover, the examination of cis-acting elements and expression patterns revealed that the BnDEKs play a significant role in plant growth and stress response. The protein-protein interaction network identified several noteworthy proteins that interact with DEK. These analyses enhance our comprehension of the DEK gene family and establish the foundation for additional validation of its function. Further research demonstrated that the overexpression of one DEK family member, BnaA02g08940D, enhanced the transgenic Arabidopsis tolerance to drought and osmosis. This indicates that the DEK family may respond when plants are subjected to drought stress, thereby strengthening the plant's resilience.
Collapse
Affiliation(s)
- Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
2
|
Ma C, Zheng S, Yang S, Wu J, Sun X, Chen Y, Zhang P, Li Y, Wu L, Liang X, Fu Q, Li L, Zhu J, Jia X, Ye X, Xu Z, Chen R. OsCYCBL1 and OsHTR702 positively regulate rice tolerance to cold stress. Int J Biol Macromol 2025; 287:138642. [PMID: 39667477 DOI: 10.1016/j.ijbiomac.2024.138642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Chaling wild rice (Oryza rufipogon Griff.) can survive winter due to its extreme cold tolerance, whereas cultivated rice (Oryza sativa L.) cannot. Here, we found that the expression level of OsCYCBL1 decreased relatively less at low temperatures in Chaling wild rice compared with cultivated rice. Transgenic assays of OsCYCBL1 in Nipponbare (Nip) showed that overexpression of OsCYCBL1 promoted cold tolerance. Transcriptome profiling, RT-qPCR analysis, and physiological parameters measurement indicated that overexpression of OsCYCBL1 maintained better DNA damage repair capacity, balanced the cell cycle, enhanced reactive oxygen species (ROS) homeostasis, and increased wax content, directly affecting the ICE-CBF-COR cascade. Moreover, OsHTR702, a gene that interacts with OsCYCBL1, also positively regulates rice cold tolerance by affecting the ICE-CBF-COR cascade and increasing ROS homeostasis at low temperatures. In addition, overexpression of OsCYCBL1 and OsHTR702 enabled rice to survive through winter. Taken together, the current results indicate that OsCYCBL1 and OsHTR702 are related to cold tolerance in rice, making them potential targets for enhancing crop resilience to cold stress.
Collapse
Affiliation(s)
- Chuan Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Shiwei Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China.
| | - Songjin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Jiacheng Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Xingzhuo Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Yulin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Peng Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Yanting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Lingli Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Xin Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Qiuping Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Lihua Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University 211, Huimin Road, Chengdu 611130, China
| | - Xiaomei Jia
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University 211, Huimin Road, Chengdu 611130, China
| | - Xiaoying Ye
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University 211, Huimin Road, Chengdu 611130, China
| | - Zhengjun Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Rongjun Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China; Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University 211, Huimin Road, Chengdu 611130, China; Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Sundaram R, Gandhi S, Jonak C, Vasudevan D. Characterization of the Arabidopsis thaliana chromatin remodeler DEK3 for its interaction with histones and DNA. Biochimie 2024; 227:248-261. [PMID: 39097158 DOI: 10.1016/j.biochi.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Chromatin structure and dynamics regulate all DNA-templated processes, such as transcription, replication, and repair. Chromatin binding factors, chromatin architectural proteins, and nucleosome remodelers modulate chromatin structure and dynamics and, thereby, the various DNA-dependent processes. Arabidopsis thaliana DEK3, a member of the evolutionarily conserved DEK domain-containing chromatin architectural proteins, is an important factor for chromatin structure and function, involved in transcriptional programming to regulate flowering time and abiotic stress tolerance. AtDEK3 contains an uncharacterized N-terminal domain, a middle SAF domain (winged helix-like domain), and a C-terminal DEK domain, but their role in the interaction of AtDEK3 with histones and DNA remained poorly understood. Using biochemical and biophysical analyses, we provide a comprehensive in vitro characterization of the different AtDEK3 domains for their interaction with histone H3/H4 and DNA. AtDEK3 directly interacts with histone H3/H4 tetramers through its N-terminal domain and the C-terminal DEK domain in a 1:1 stoichiometry. Upon interaction with H3/H4, the unstructured N-terminal domain of AtDEK3 undergoes a conformational change and adopts an alpha-helical conformation. In addition, the in-solution envelope structures of the AtDEK3 domains and their complex with H3/H4 have been characterized. The SAF and DEK domains associate with double-stranded and four-way junction DNA. As DEK3 possesses a histone-interacting domain at the N- and the C-terminus and a DNA-binding domain in the middle and at the C-terminus, the protein might play a complex role as a chromatin remodeler.
Collapse
Affiliation(s)
- Rajivgandhi Sundaram
- Institute of Life Sciences, Bhubaneswar, 751023, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Surajit Gandhi
- Institute of Life Sciences, Bhubaneswar, 751023, India; Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Claudia Jonak
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Dileep Vasudevan
- Institute of Life Sciences, Bhubaneswar, 751023, India; Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India.
| |
Collapse
|
4
|
Hao Y, Luo H, Wang Z, Lu C, Ye X, Wang H, Miao L. Research progress on the mechanisms of fruit glossiness in cucumber. Gene 2024; 927:148626. [PMID: 38830516 DOI: 10.1016/j.gene.2024.148626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Cucumber (Cucumis sativus L.) is an important horticultural crop in China. Consumer requirements for aesthetically pleasing appearances of horticultural crops are gradually increasing, and cucumbers having a good visual appearance, as well as flavor, are important for breeding and industry development. The gloss of cucumber fruit epidermis is an important component of its appeal, and the wax layer on the fruit surface plays important roles in plant growth and forms a powerful barrier against external biotic and abiotic stresses. The wax of the cucumber epidermis is mainly composed of alkanes, and the luster of cucumber fruit is mainly determined by the alkane and silicon contents of the epidermis. Several genes, transcription factors, and transporters affect the synthesis of ultra-long-chain fatty acids and change the silicon content, further altering the gloss of the epidermis. However, the specific regulatory mechanisms are not clear. Here, progress in research on the luster of cucumber fruit epidermis from physiological, biochemical, and molecular regulatory perspectives are reviewed. Additionally, future research avenues in the field are discussed.
Collapse
Affiliation(s)
- Yiyang Hao
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Haiyan Luo
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zhiyi Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Chuanlong Lu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xiaolong Ye
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Huasen Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China.
| | - Li Miao
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
5
|
Johnstone M, Leck A, Lange T, Wilcher K, Shephard MS, Paranjpe A, Schutte S, Wells S, Kappes F, Salomonis N, Privette Vinnedge LM. The chromatin remodeler DEK promotes proliferation of mammary epithelium and is associated with H3K27me3 epigenetic modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612116. [PMID: 39314335 PMCID: PMC11419013 DOI: 10.1101/2024.09.09.612116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The DEK chromatin remodeling protein was previously shown to confer oncogenic phenotypes to human and mouse mammary epithelial cells using in vitro and knockout mouse models. However, its functional role in normal mammary gland epithelium remained unexplored. We developed two novel mouse models to study the role of Dek in normal mammary gland biology in vivo . Mammary gland-specific Dek over-expression in mice resulted in hyperproliferation of cells that visually resembled alveolar cells, and a transcriptional profile that indicated increased expression of cell cycle, mammary stem/progenitor, and lactation-associated genes. Conversely, Dek knockout mice exhibited an alveologenesis or lactation defect, resulting in dramatically reduced pup survival. Analysis of previously published single-cell RNA-sequencing of mouse mammary glands revealed that Dek is most highly expressed in mammary stem cells and alveolar progenitor cells, and to a lesser extent in basal epithelial cells, supporting the observed phenotypes. Mechanistically, we discovered that Dek is a modifier of Ezh2 methyltransferase activity, upregulating the levels of histone H3 trimethylation on lysine 27 (H3K27me3) to control gene transcription. Combined, this work indicates that Dek promotes proliferation of mammary epithelial cells via cell cycle deregulation. Furthermore, we report a novel function for Dek in alveologenesis and histone H3 K27 trimethylation.
Collapse
|
6
|
Yoshida T, Mergner J, Yang Z, Liu J, Kuster B, Fernie AR, Grill E. Integrating multi-omics data reveals energy and stress signaling activated by abscisic acid in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1112-1133. [PMID: 38613775 DOI: 10.1111/tpj.16765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024]
Abstract
Phytohormones are essential signaling molecules regulating various processes in growth, development, and stress responses. Genetic and molecular studies, especially using Arabidopsis thaliana (Arabidopsis), have discovered many important players involved in hormone perception, signal transduction, transport, and metabolism. Phytohormone signaling pathways are extensively interconnected with other endogenous and environmental stimuli. However, our knowledge of the huge and complex molecular network governed by a hormone remains limited. Here we report a global overview of downstream events of an abscisic acid (ABA) receptor, REGULATORY COMPONENTS OF ABA RECEPTOR (RCAR) 6 (also known as PYRABACTIN RESISTANCE 1 [PYR1]-LIKE [PYL] 12), by integrating phosphoproteomic, proteomic and metabolite profiles. Our data suggest that the RCAR6 overexpression constitutively decreases the protein levels of its coreceptors, namely clade A protein phosphatases of type 2C, and activates sucrose non-fermenting-1 (SNF1)-related protein kinase 1 (SnRK1) and SnRK2, the central regulators of energy and ABA signaling pathways. Furthermore, several enzymes in sugar metabolism were differentially phosphorylated and expressed in the RCAR6 line, and the metabolite profile revealed altered accumulations of several organic acids and amino acids. These results indicate that energy- and water-saving mechanisms mediated by the SnRK1 and SnRK2 kinases, respectively, are under the control of the ABA receptor-coreceptor complexes.
Collapse
Affiliation(s)
- Takuya Yoshida
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Zhenyu Yang
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Jinghui Liu
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| |
Collapse
|
7
|
Gao W, Ma R, Li X, Liu J, Jiang A, Tan P, Xiong G, Du C, Zhang J, Zhang X, Fang X, Yi Z, Zhang J. Construction of Genetic Map and QTL Mapping for Seed Size and Quality Traits in Soybean ( Glycine max L.). Int J Mol Sci 2024; 25:2857. [PMID: 38474104 DOI: 10.3390/ijms25052857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Soybean (Glycine max L.) is the main source of vegetable protein and edible oil for humans, with an average content of about 40% crude protein and 20% crude fat. Soybean yield and quality traits are mostly quantitative traits controlled by multiple genes. The quantitative trait loci (QTL) mapping for yield and quality traits, as well as for the identification of mining-related candidate genes, is of great significance for the molecular breeding and understanding the genetic mechanism. In this study, 186 individual plants of the F2 generation derived from crosses between Changjiangchun 2 and Yushuxian 2 were selected as the mapping population to construct a molecular genetic linkage map. A genetic map containing 445 SSR markers with an average distance of 5.3 cM and a total length of 2375.6 cM was obtained. Based on constructed genetic map, 11 traits including hundred-seed weight (HSW), seed length (SL), seed width (SW), seed length-to-width ratio (SLW), oil content (OIL), protein content (PRO), oleic acid (OA), linoleic acid (LA), linolenic acid (LNA), palmitic acid (PA), stearic acid (SA) of yield and quality were detected by the multiple- d size traits and 113 QTLs related to quality were detected by the multiple QTL model (MQM) mapping method across generations F2, F2:3, F2:4, and F2:5. A total of 71 QTLs related to seed size traits and 113 QTLs related to quality traits were obtained in four generations. With those QTLs, 19 clusters for seed size traits and 20 QTL clusters for quality traits were summarized. Two promising clusters, one related to seed size traits and the other to quality traits, have been identified. The cluster associated with seed size traits spans from position 27876712 to 29009783 on Chromosome 16, while the cluster linked to quality traits spans from position 12575403 to 13875138 on Chromosome 6. Within these intervals, a reference genome of William82 was used for gene searching. A total of 36 candidate genes that may be involved in the regulation of soybean seed size and quality were screened by gene functional annotation and GO enrichment analysis. The results will lay the theoretical and technical foundation for molecularly assisted breeding in soybean.
Collapse
Affiliation(s)
- Weiran Gao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Ronghan Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xi Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jiaqi Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Aohua Jiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Pingting Tan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Guoxi Xiong
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Chengzhang Du
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Jijun Zhang
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Xiaochun Zhang
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Xiaomei Fang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Zelin Yi
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jian Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Masoabi M, Burger NFV, Botha AM, Le Roux ML, Vlok M, Snyman S, Van der Vyver C. Overexpression of the Small Ubiquitin-Like Modifier protease OTS1 gene enhances drought tolerance in sugarcane (Saccharum spp. hybrid). PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1121-1141. [PMID: 37856570 DOI: 10.1111/plb.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Sugarcane is an economically important crop plant across the globe as it is the primary source of sugar and biofuel. Its growth and development are greatly influenced by water availability; therefore, in periods of water scarcity, yields are severely compromised. Small Ubiquitin-Like Modifier (SUMO) proteases play an important role in stress responses by regulating the SUMO-related post-translational modification of proteins. In an attempt to enhance drought tolerance in sugarcane, this crop was genetically transformed with a cysteine protease (OVERLY TOLERANT TO SALT-1; OTS1) from Arabidopsis thaliana using particle bombardment. Transgenic plants were analysed in terms of photosynthetic capacity, oxidative damage, antioxidant accumulation and the SUMO-enrich protein profile was assessed. Sugarcane transformed with the AtOTS1 gene displayed enhanced drought tolerance and delayed leaf senescence under water deficit compared to the untransformed wild type (WT). The AtOTS1 transgenic plants maintained a high relative moisture content and higher photosynthesis rate when compared to the WT. In addition, when the transgene was expressed at high levels, the transformed plants were able to maintain higher stomatal conductance and chlorophyl content under moderate stress compared to the WT. Under severe water deficit stress, the transgenic plants accumulated less malondialdehyde and maintained membrane integrity. SUMOylation of total protein and protease activity was lower in the AtOTS1 transformed plants compared to the WT, with several SUMO-enriched proteins exclusively expressed in the transgenics when exposed to water deficit stress. SUMOylation of proteins likely influenced various mechanisms contributing to enhanced drought tolerance in sugarcane.
Collapse
Affiliation(s)
- M Masoabi
- Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - N F V Burger
- Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa
| | - A-M Botha
- Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa
| | - M L Le Roux
- Department of Genetics, University of Stellenbosch, Stellenbosch, South Africa
| | - M Vlok
- Mass Spectrometry Unit, Central Analytic Facility, Stellenbosch University, Stellenbosch, South Africa
| | - S Snyman
- South African Sugarcane Research Institute, Mount Edgecombe, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - C Van der Vyver
- Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
9
|
Pierzynska-Mach A, Czada C, Vogel C, Gwosch E, Osswald X, Bartoschek D, Diaspro A, Kappes F, Ferrando-May E. DEK oncoprotein participates in heterochromatin replication via SUMO-dependent nuclear bodies. J Cell Sci 2023; 136:jcs261329. [PMID: 37997922 PMCID: PMC10753498 DOI: 10.1242/jcs.261329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The correct inheritance of chromatin structure is key for maintaining genome function and cell identity and preventing cellular transformation. DEK, a conserved non-histone chromatin protein, has recognized tumor-promoting properties, its overexpression being associated with poor prognosis in various cancer types. At the cellular level, DEK displays pleiotropic functions, influencing differentiation, apoptosis and stemness, but a characteristic oncogenic mechanism has remained elusive. Here, we report the identification of DEK bodies, focal assemblies of DEK that regularly occur at specific, yet unidentified, sites of heterochromatin replication exclusively in late S-phase. In these bodies, DEK localizes in direct proximity to active replisomes in agreement with a function in the early maturation of heterochromatin. A high-throughput siRNA screen, supported by mutational and biochemical analyses, identifies SUMO as one regulator of DEK body formation, linking DEK to the complex SUMO protein network that controls chromatin states and cell fate. This work combines and refines our previous data on DEK as a factor essential for heterochromatin integrity and facilitating replication under stress, and delineates an avenue of further study for unraveling the contribution of DEK to cancer development.
Collapse
Affiliation(s)
| | - Christina Czada
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Christopher Vogel
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Eva Gwosch
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Xenia Osswald
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Denis Bartoschek
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Alberto Diaspro
- Nanoscopy & NIC@IIT, Istituto Italiano di Tecnologia, Genoa 16152, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Ferdinand Kappes
- Duke Kunshan University, Division of Natural and Applied Sciences, Kunshan 215316, People's Republic of China
| | - Elisa Ferrando-May
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
- German Cancer Research Center, Heidelberg 69120, Germany
| |
Collapse
|
10
|
Hawk TE, Piya S, Zadegan SB, Li P, Rice JH, Hewezi T. The soybean immune receptor GmBIR1 regulates host transcriptome, spliceome, and immunity during cyst nematode infection. THE NEW PHYTOLOGIST 2023; 239:2335-2352. [PMID: 37337845 DOI: 10.1111/nph.19087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
BAK1-INTERACTING RECEPTOR LIKE KINASE1 (BIR1) is a negative regulator of various aspects of disease resistance and immune responses. Here, we investigated the functional role of soybean (Glycine max) BIR1 (GmBIR1) during soybean interaction with soybean cyst nematode (SCN, Heterodera glycines) and the molecular mechanism through which GmBIR1 regulates plant immunity. Overexpression of wild-type variant of GmBIR1 (WT-GmBIR1) using transgenic soybean hairy roots significantly increased soybean susceptibility to SCN, whereas overexpression of kinase-dead variant (KD-GmBIR1) significantly increased plant resistance. Transcriptome analysis revealed that genes oppositely regulated in WT-GmBIR1 and KD-GmBIR1 upon SCN infection were enriched primarily in defense and immunity-related functions. Quantitative phosphoproteomic analysis identified 208 proteins as putative substrates of the GmBIR1 signaling pathway, 114 of which were differentially phosphorylated upon SCN infection. In addition, the phosphoproteomic data pointed to a role of the GmBIR1 signaling pathway in regulating alternative pre-mRNA splicing. Genome-wide analysis of splicing events provided compelling evidence supporting a role of the GmBIR1 signaling pathway in establishing alternative splicing during SCN infection. Our results provide novel mechanistic insights into the function of the GmBIR1 signaling pathway in regulating soybean transcriptome and spliceome via differential phosphorylation of splicing factors and regulation of splicing events of pre-mRNA decay- and spliceosome-related genes.
Collapse
Affiliation(s)
- Tracy E Hawk
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sobhan Bahrami Zadegan
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Peitong Li
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - John H Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
11
|
Wilcher KE, Page ERH, Privette Vinnedge LM. The impact of the chromatin binding DEK protein in hematopoiesis and acute myeloid leukemia. Exp Hematol 2023; 123:18-27. [PMID: 37172756 PMCID: PMC10330528 DOI: 10.1016/j.exphem.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Hematopoiesis is an exquisitely regulated process of cellular differentiation to create diverse cell types of the blood. Genetic mutations, or aberrant regulation of gene transcription, can interrupt normal hematopoiesis. This can have dire pathological consequences, including acute myeloid leukemia (AML), in which generation of the myeloid lineage of differentiated cells is interrupted. In this literature review, we discuss how the chromatin remodeling DEK protein can control hematopoietic stem cell quiescence, hematopoietic progenitor cell proliferation, and myelopoiesis. We further discuss the oncogenic consequences of the t(6;9) chromosomal translocation, which creates the DEK-NUP214 (aka: DEK-CAN) fusion gene, during the pathogenesis of AML. Combined, the literature indicates that DEK is crucial for maintaining homeostasis of hematopoietic stem and progenitor cells, including myeloid progenitors.
Collapse
Affiliation(s)
- Katherine E Wilcher
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Current: Wright State University Boonshoft School of Medicine, Fairborn, OH
| | - Evan R H Page
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Lisa M Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.
| |
Collapse
|
12
|
Fiorillo A, Manai M, Visconti S, Camoni L. The Salt Tolerance-Related Protein (STRP) Is a Positive Regulator of the Response to Salt Stress in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1704. [PMID: 37111928 PMCID: PMC10145591 DOI: 10.3390/plants12081704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Salt stress is a major abiotic stress limiting plant survival and crop productivity. Plant adaptation to salt stress involves complex responses, including changes in gene expression, regulation of hormone signaling, and production of stress-responsive proteins. The Salt Tolerance-Related Protein (STRP) has been recently characterized as a Late Embryogenesis Abundant (LEA)-like, intrinsically disordered protein involved in plant responses to cold stress. In addition, STRP has been proposed as a mediator of salt stress response in Arabidopsis thaliana, but its role has still to be fully clarified. Here, we investigated the role of STRP in salt stress responses in A. thaliana. The protein rapidly accumulates under salt stress due to a reduction of proteasome-mediated degradation. Physiological and biochemical responses of the strp mutant and STRP-overexpressing (STRP OE) plants demonstrate that salt stress impairs seed germination and seedling development more markedly in the strp mutant than in A. thaliana wild type (wt). At the same time, the inhibitory effect is significantly reduced in STRP OE plants. Moreover, the strp mutant has a lower ability to counteract oxidative stress, cannot accumulate the osmocompatible solute proline, and does not increase abscisic acid (ABA) levels in response to salinity stress. Accordingly, the opposite effect was observed in STRP OE plants. Overall, obtained results suggest that STRP performs its protective functions by reducing the oxidative burst induced by salt stress, and plays a role in the osmotic adjustment mechanisms required to preserve cellular homeostasis. These findings propose STRP as a critical component of the response mechanisms to saline stress in A. thaliana.
Collapse
Affiliation(s)
- Anna Fiorillo
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
| | - Michela Manai
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
| | - Lorenzo Camoni
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
| |
Collapse
|
13
|
Zhao X, Wang J, Jin D, Cheng J, Chen H, Li Z, Wang Y, Lou H, Zhu JK, Du X, Gong Z. AtMCM10 promotes DNA replication-coupled nucleosome assembly in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:203-222. [PMID: 36541721 DOI: 10.1111/jipb.13438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Minichromosome Maintenance protein 10 (MCM10) is essential for DNA replication initiation and DNA elongation in yeasts and animals. Although the functions of MCM10 in DNA replication and repair have been well documented, the detailed mechanisms for MCM10 in these processes are not well known. Here, we identified AtMCM10 gene through a forward genetic screening for releasing a silenced marker gene. Although plant MCM10 possesses a similar crystal structure as animal MCM10, AtMCM10 is not essential for plant growth or development in Arabidopsis. AtMCM10 can directly bind to histone H3-H4 and promotes nucleosome assembly in vitro. The nucleosome density is decreased in Atmcm10, and most of the nucleosome density decreased regions in Atmcm10 are also regulated by newly synthesized histone chaperone Chromatin Assembly Factor-1 (CAF-1). Loss of both AtMCM10 and CAF-1 is embryo lethal, indicating that AtMCM10 and CAF-1 are indispensable for replication-coupled nucleosome assembly. AtMCM10 interacts with both new and parental histones. Atmcm10 mutants have lower H3.1 abundance and reduced H3K27me1/3 levels with releasing some silenced transposons. We propose that AtMCM10 deposits new and parental histones during nucleosome assembly, maintaining proper epigenetic modifications and genome stability during DNA replication.
Collapse
Affiliation(s)
- Xinjie Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dan Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hui Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jian-Kang Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuan Du
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| |
Collapse
|
14
|
Zhou J, Zhao L, Wu Y, Zhang X, Cheng S, Wei F, Zhang Y, Zhu H, Zhou Y, Feng Z, Feng H. A DEK domain-containing protein GhDEK2D mediated Gossypium hirsutum enhanced resistance to Verticillium dahliae. PLANT SIGNALING & BEHAVIOR 2022; 17:2024738. [PMID: 35034577 PMCID: PMC9176258 DOI: 10.1080/15592324.2021.2024738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
DEK is associated with DNA replication and break repair, mRNA splicing, and transcriptional regulation, which had been studied in humans and mammals. The function of DEK in plants was poorly understood. In this study, GhDEK2D was identified in Gossypium hirsutum by genome-wide and post-translational modifications. GhDEK2D had been phosphorylated, acetylated and ubiquitylated under Verticillium dahliae (Vd) challenge. The GhDEK2D-silenced cotton decreased resistance against Vd. In GhDEK2D-silenced cotton plants, the reactive oxygen species was activated, the callose, xylogen, hypersensitive reaction (HR) and expression levels of defense-related genes were reduced. Homozygous overexpressing-GhDEK2D transgenic Arabidopsis lines were more resistant to Verticillium wilt (Vw). We propose that GhDEK2D was a potential molecular target for improving resistance to Vw in cotton.
Collapse
Affiliation(s)
- Jinglong Zhou
- College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Yi Zhou College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Yi Zhou College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yajie Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Sheng Cheng
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Yi Zhou
- College of Agriculture, Yangtze University, Jingzhou, China
- Yi Zhou College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zili Feng State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- CONTACT Hongjie Feng
| |
Collapse
|
15
|
Greene AN, Solomon MB, Privette Vinnedge LM. Novel molecular mechanisms in Alzheimer's disease: The potential role of DEK in disease pathogenesis. Front Aging Neurosci 2022; 14:1018180. [PMID: 36275000 PMCID: PMC9582447 DOI: 10.3389/fnagi.2022.1018180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease and age-related dementias (AD/ADRD) are debilitating diseases that exact a significant physical, emotional, cognitive, and financial toll on the individual and their social network. While genetic risk factors for early-onset AD have been identified, the molecular and genetic drivers of late-onset AD, the most common subtype, remain a mystery. Current treatment options are limited for the 35 million people in the United States with AD/ADRD. Thus, it is critically important to identify novel molecular mechanisms of dementia-related pathology that may be targets for the development of new interventions. Here, we summarize the overarching concepts regarding AD/ADRD pathogenesis. Then, we highlight one potential molecular driver of AD/ADRD, the chromatin remodeling protein DEK. We discuss in vitro, in vivo, and ex vivo findings, from our group and others, that link DEK loss with the cellular, molecular, and behavioral signatures of AD/ADRD. These include associations between DEK loss and cellular and molecular hallmarks of AD/ADRD, including apoptosis, Tau expression, and Tau hyperphosphorylation. We also briefly discuss work that suggests sex-specific differences in the role of DEK in AD/ADRD pathogenesis. Finally, we discuss future directions for exploiting the DEK protein as a novel player and potential therapeutic target for the treatment of AD/ADRD.
Collapse
Affiliation(s)
- Allie N. Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matia B. Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Psychology, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
16
|
Greene AN, Nguyen ET, Paranjpe A, Lane A, Privette Vinnedge LM, Solomon MB. In silico gene expression and pathway analysis of DEK in the human brain across the lifespan. Eur J Neurosci 2022; 56:4720-4743. [PMID: 35972263 PMCID: PMC9730547 DOI: 10.1111/ejn.15791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
DEK, a chromatin-remodelling phosphoprotein, is associated with various functions and biological pathways in the periphery, including inflammation, oncogenesis, DNA repair, and transcriptional regulation. We recently identified an association between DEK loss and central nervous system diseases, such as Alzheimer's. To understand DEK's potential role in disease, it is critical to characterize DEK in healthy human brain to distinguish between neural DEK expression and function in healthy versus diseased states like dementia. We utilized two public databases, BrainCloud and Human Brain Transcriptome, and analysed DEK mRNA expression across the lifespan in learning and memory relevant brain regions. Since DEK loss induces phenotypes associated with brain ageing (e.g., DNA damage and apoptosis), we hypothesized that neural DEK expression may be highest during foetal development and lower in elderly individuals. In agreement with this hypothesis, DEK was most prominently expressed during foetal development in all queried forebrain areas, relative to other ages. Consistent with its roles in the periphery, pathways related to DEK in the brain were associated with cellular proliferation, DNA replication and repair, apoptosis, and inflammation. We also found novel neural development-relevant pathways (e.g., synaptic transmission, neurite outgrowth, and myelination) to be enriched from genes correlated with DEK expression. These findings suggest that DEK is important for human brain development. Overall, we highlight age-related changes in neural DEK expression across the human lifespan and illuminate novel biological pathways associated with DEK that are distinct from normal brain ageing. These findings may further our understanding of how DEK impacts brain function and disease susceptibility.
Collapse
Affiliation(s)
- Allie N. Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45267
| | | | - Aditi Paranjpe
- Division of Biomedical Informatics, Bioinformatics Collaborative Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Matia B. Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45267
- Department of Psychology, University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
17
|
Bulbul Ahmed M, Humayan Kabir A. Understanding of the various aspects of gene regulatory networks related to crop improvement. Gene 2022; 833:146556. [PMID: 35609798 DOI: 10.1016/j.gene.2022.146556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 05/06/2022] [Indexed: 12/30/2022]
Abstract
The hierarchical relationship between transcription factors, associated proteins, and their target genes is defined by a gene regulatory network (GRN). GRNs allow us to understand how the genotype and environment of a plant are incorporated to control the downstream physiological responses. During plant growth or environmental acclimatization, GRNs are diverse and can be differently regulated across tissue types and organs. An overview of recent advances in the development of GRN that speed up basic and applied plant research is given here. Furthermore, the overview of genome and transcriptome involving GRN research along with the exciting advancement and application are discussed. In addition, different approaches to GRN predictions were elucidated. In this review, we also describe the role of GRN in crop improvement, crop plant manipulation, stress responses, speed breeding and identifying genetic variations/locus. Finally, the challenges and prospects of GRN in plant biology are discussed.
Collapse
Affiliation(s)
- Md Bulbul Ahmed
- Plant Science Department, McGill University, 21111 lakeshore Road, Ste. Anne de Bellevue H9X3V9, Quebec, Canada; Institut de Recherche en Biologie Végétale (IRBV), University of Montreal, Montréal, Québec H1X 2B2, Canada.
| | | |
Collapse
|
18
|
Giustozzi M, Freytes SN, Jaskolowski A, Lichy M, Mateos J, Falcone Ferreyra ML, Rosano GL, Cerdán P, Casati P. Arabidopsis mediator subunit 17 connects transcription with DNA repair after UV-B exposure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1047-1067. [PMID: 35220621 DOI: 10.1111/tpj.15722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Mediator 17 (MED17) is a subunit of the Mediator complex that regulates transcription initiation in eukaryotic organisms. In yeast and humans, MED17 also participates in DNA repair, physically interacting with proteins of the nucleotide excision DNA repair system, but this function in plants has not been investigated. We studied the role of MED17 in Arabidopsis plants exposed to UV-B radiation. Our results demonstrate that med17 and OE MED17 plants have altered responses to UV-B, and that MED17 participates in various aspects of the DNA damage response (DDR). Comparison of the med17 transcriptome with that of wild-type (WT) plants showed that almost one-third of transcripts with altered expression in med17 plants were also changed by UV-B exposure in WT plants. Increased sensitivity to DNA damage after UV-B in med17 plants could result from the altered regulation of UV-B responsive transcripts but MED17 also physically interacts with DNA repair proteins, suggesting a direct role of this Mediator subunit during repair. Finally, we show that MED17 is necessary to regulate the DDR activated by ataxia telangiectasia and Rad3 related (ATR), and that programmed cell death 5 (PDCD5) overexpression reverts the deficiencies in DDR shown in med17 mutants. Our data demonstrate that MED17 is an important regulator of DDR after UV-B irradiation in Arabidopsis.
Collapse
Affiliation(s)
- Marisol Giustozzi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | | | - Aime Jaskolowski
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Micaela Lichy
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Julieta Mateos
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - María Lorena Falcone Ferreyra
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Germán L Rosano
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Pablo Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Casati
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| |
Collapse
|
19
|
Li Q, Sun Q, Wang D, Liu Y, Zhang P, Lu H, Zhang Y, Zhang S, Wang A, Ding X, Xiao J. Quantitative phosphoproteomics reveals the role of wild soybean GsSnRK1 as a metabolic regulator under drought and alkali stresses. J Proteomics 2022; 258:104528. [PMID: 35182787 DOI: 10.1016/j.jprot.2022.104528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 11/25/2022]
Abstract
Drought and alkali stresses cause detrimental effects on plant growth and development. SnRK1 protein kinases act as key energy and stress sensors by phosphorylation-mediated signaling in the regulation of plant defense reactions against adverse environments. To understand SnRK1-dependent phosphorylation events in signaling pathways triggered by abiotic factors, we employed quantitative phosphoproteomics to compare the global changes in phosphopeptides and phosphoproteins in 2kinm mutant Arabidopsis (SnRK1.1 T-DNA knockout and SnRK1.2 knockdown by β-estradiol-induced RNAi) complemented with wild soybean GsSnRK1(wt) or dominant negative mutant GsSnRK1(K49M) in response to drought and alkali stresses. Among 4014 phosphopeptides (representing 2380 phosphoproteins) identified in this study, we finalized 74 phosphopeptides (representing 61 phosphoproteins), and 75 phosphopeptides (representing 57 phosphoproteins) showing significant changes in phosphorylation levels under drought and alkali treatments respectively. Function enrichment and protein-protein interaction analyses indicated that the differentially-expressed phosphoproteins (DPs) under drought and alkali stresses were mainly involved in signaling transduction, stress response, carbohydrate and energy metabolism, transport and membrane trafficking, RNA splicing and processing, DNA binding and gene expression, and protein synthesis/folding/degradation. These results provide assistance to identify bona fide and novel SnRK1 phosphorylation substrates and shed new light on the biological functions of SnRK1 kinase in responses to abiotic stresses. SIGNIFICANCE: These results provide assistance to identify novel SnRK1 phosphorylation substrates and regulatory proteins, and shed new light on investigating the potential roles of reversible phosphorylation in plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Qi Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Di Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Yuanming Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Pengmin Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Haoran Lu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Yao Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China
| | - Aoxue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaodong Ding
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.
| | - Jialei Xiao
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
20
|
Mohd Afandi NS, Habib MAH, Ismail MN. Recent insights on gene expression studies on Hevea Brasiliensis fatal leaf fall diseases. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:471-484. [PMID: 35400887 PMCID: PMC8943083 DOI: 10.1007/s12298-022-01145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Hevea brasiliensis is one of the most important agricultural commodities globally, heavily cultivated in Southeast Asia. Fatal leaf fall diseases cause aggressive leaf defoliation, linked to lower latex yield and death of crops before maturity. Due to the significant consequences of the disease to H. brasiliensis, the recent gene expression studies from four fall leaf diseases of H. brasiliensis were gathered; South American leaf blight, powdery mildew, Corynespora cassiicola and Phytophthora leaf fall disease. The differential analysis observed the pattern of commonly expressed genes upon fungi triggers using RT-PCR, DDRT-PCR, Real-time qRT-PCR and RNA-Seq. We have observed that RNA-Seq is the best tool to seek novel genes. Among the identified genes with defence-against fungi were pathogenesis-related genes such as β-1,3-glucanase and chitinase, the reactive oxygen species, and the phytoalexin biosynthesis. This manuscript also provided functional elaboration on the responsive genes and predicted possible biosynthetic pathways to identify and characterise novel genes in the future. At the end of the manuscript, the PCR methods and proteomic approaches were presented for future molecular and biochemical studies in the related diseases to H. brasiliensis.
Collapse
Affiliation(s)
- Nur Syafiqah Mohd Afandi
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| | - Mohd Afiq Hazlami Habib
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| |
Collapse
|
21
|
Yung WS, Li MW, Sze CC, Wang Q, Lam HM. Histone modifications and chromatin remodelling in plants in response to salt stress. PHYSIOLOGIA PLANTARUM 2021; 173:1495-1513. [PMID: 34028035 DOI: 10.1111/ppl.13467] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
In the face of global food security crises, it is necessary to boost agricultural production. One factor hampering the attempts to increase food production is elevated soil salinity, which can be due to salt that is naturally present in the soil or a consequence of excessive or prolonged irrigation or application of fertiliser. In response to environmental stresses, plants activate multiple molecular mechanisms, including the timely activation of stress-responsive transcriptional networks. However, in the case of salt stress, the combined effects of the initial osmotic shock and the subsequent ion-specific stress increase the complexity in the selective regulation of gene expressions involved in restoring or maintaining osmotic balance, ion homeostasis and reactive oxygen species scavenging. Histone modifications and chromatin remodelling are important epigenetic processes that regulate gene expressions by modifying the chromatin status and recruiting transcription regulators. In this review, we have specifically summarised the currently available knowledge on histone modifications and chromatin remodelling in relation to plant responses to salt stress. Current findings have revealed the functional importance of chromatin modifiers in regulating salt tolerance and identified the effector genes affected by epigenetic modifications, although counteraction between modifiers within the same family may occur. Emerging evidence has also illustrated the crosstalk between epigenetic modifications and hormone signalling pathways which involves formation of protein complexes. With an improved understanding of these processes, plant breeders will be able to develop alternative strategies using genome editing technologies for crop improvement.
Collapse
Affiliation(s)
- Wai-Shing Yung
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Man-Wah Li
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ching-Ching Sze
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qianwen Wang
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
22
|
Vaziriyeganeh M, Khan S, Zwiazek JJ. Transcriptome and Metabolome Analyses Reveal Potential Salt Tolerance Mechanisms Contributing to Maintenance of Water Balance by the Halophytic Grass Puccinellia nuttalliana. FRONTIERS IN PLANT SCIENCE 2021; 12:760863. [PMID: 34777443 PMCID: PMC8586710 DOI: 10.3389/fpls.2021.760863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/29/2021] [Indexed: 06/08/2023]
Abstract
Elevated soil salinity exacerbated by human activities and global climate change poses serious threats to plant survival. Although halophytes provide many important clues concerning salt tolerance in plants, some unanswered questions remain to be addressed, including the processes of water and solute transport regulation. We performed high-throughput RNA-sequencing in roots and metabolome characterizations in roots and leaves of Puccinellia nuttalliana halophytic grass subjected to 0 (control) and 150 mM NaCl. In RNAseq, a total of 31 Gb clean bases generated were de novo assembled into 941,894 transcripts. The PIP2;2 and HKT1;5 transcript levels increased in response to the NaCl treatment implying their roles in water and ion homeostasis. Several transcription factors, including WRKY39, DEK3, HY5, and ABF2, were also overexpressed in response to NaCl. The metabolomic analysis revealed that proline and dopamine significantly increased due to the upregulation of the pathway genes under salt stress, likely contributing to salt tolerance mechanisms. Several phosphatidylcholines significantly increased in roots suggesting that the alterations of membrane lipid composition may be an important strategy in P. nuttalliana for maintaining cellular homeostasis and membrane integrity under salt stress. In leaves, the TCA cycle was enriched suggesting enhanced energy metabolism to cope with salt stress. Other features contributing to the ability of P. nuttalliana to survive under high salinity conditions include salt secretion by the salt glands and enhanced cell wall lignification of the root cells. While most of the reported transcriptomic, metabolomics, and structural alterations may have consequences to water balance maintenance by plants under salinity stress, the key processes that need to be further addressed include the role of the changes in the aquaporin gene expression profiles in the earlier reported enhancement of the aquaporin-mediated root water transport.
Collapse
Affiliation(s)
| | | | - Janusz J. Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Waidmann S, Petutschnig E, Rozhon W, Molnár G, Popova O, Mechtler K, Jonak C. GSK3-mediated phosphorylation of DEK3 regulates chromatin accessibility and stress tolerance in Arabidopsis. FEBS J 2021; 289:473-493. [PMID: 34492159 DOI: 10.1111/febs.16186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Chromatin dynamics enable the precise control of transcriptional programmes. The balance between restricting and opening of regulatory sequences on the DNA needs to be adjusted to prevailing conditions and is fine-tuned by chromatin remodelling proteins. DEK is an evolutionarily conserved chromatin architectural protein regulating important chromatin-related processes. However, the molecular link between DEK-induced chromatin reconfigurations and upstream signalling events remains unknown. Here, we show that ASKβ/AtSK31 is a salt stress-activated glycogen synthase kinase 3 (GSK3) from Arabidopsis thaliana that phosphorylates DEK3. This specific phosphorylation alters nuclear DEK3 protein complex composition and affects nucleosome occupancy and chromatin accessibility that is translated into changes in gene expression, contributing to salt stress tolerance. These findings reveal that DEK3 phosphorylation is critical for chromatin function and cellular stress response and provide a mechanistic example of how GSK3-based signalling is directly linked to chromatin, facilitating a transcriptional response.
Collapse
Affiliation(s)
- Sascha Waidmann
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Elena Petutschnig
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Wilfried Rozhon
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Gergely Molnár
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
| | - Olga Popova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna BioCenter, Austria
| | - Claudia Jonak
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria.,AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
| |
Collapse
|
24
|
Zong W, Zhao B, Xi Y, Bordiya Y, Mun H, Cerda NA, Kim DH, Sung S. DEK domain-containing proteins control flowering time in Arabidopsis. THE NEW PHYTOLOGIST 2021; 231:182-192. [PMID: 33774831 PMCID: PMC8985477 DOI: 10.1111/nph.17366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/20/2021] [Indexed: 05/07/2023]
Abstract
Evolutionarily conserved DEK domain-containing proteins have been implicated in multiple chromatin-related processes, mRNA splicing and transcriptional regulation in eukaryotes. Here, we show that two DEK proteins, DEK3 and DEK4, control the floral transition in Arabidopsis. DEK3 and DEK4 directly associate with chromatin of related flowering repressors, FLOWERING LOCUS C (FLC), and its two homologs, MADS AFFECTING FLOWERING4 (MAF4) and MAF5, to promote their expression. The binding of DEK3 and DEK4 to a histone octamer in vivo affects histone modifications at FLC, MAF4 and MAF5 loci. In addition, DEK3 and DEK4 interact with RNA polymerase II and promote the association of RNA polymerase II with FLC, MAF4 and MAF5 chromatin to promote their expression. Our results show that DEK3 and DEK4 directly interact with chromatin to facilitate the transcription of key flowering repressors and thus prevent precocious flowering in Arabidopsis.
Collapse
Affiliation(s)
- Wei Zong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Bo Zhao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yanpeng Xi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yogendra Bordiya
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hyungwon Mun
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nicholas A Cerda
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Dong-Hwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
25
|
You C, Zhang Y, Yang S, Wang X, Yao W, Jin W, Wang W, Hu X, Yang H. Proteomic Analysis of Generative and Vegetative Nuclei Reveals Molecular Characteristics of Pollen Cell Differentiation in Lily. FRONTIERS IN PLANT SCIENCE 2021; 12:641517. [PMID: 34163497 PMCID: PMC8215658 DOI: 10.3389/fpls.2021.641517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/01/2021] [Indexed: 06/13/2023]
Abstract
In plants, the cell fates of a vegetative cell (VC) and generative cell (GC) are determined after the asymmetric division of the haploid microspore. The VC exits the cell cycle and grows a pollen tube, while the GC undergoes further mitosis to produce two sperm cells for double fertilization. However, our understanding of the mechanisms underlying their fate differentiation remains limited. One major advantage of the nuclear proteome analysis is that it is the only method currently able to uncover the systemic differences between VC and GC due to GC being engulfed within the cytoplasm of VC, limiting the use of transcriptome. Here, we obtained pure preparations of the vegetative cell nuclei (VNs) and generative cell nuclei (GNs) from germinating lily pollens. Utilizing these high-purity VNs and GNs, we compared the differential nucleoproteins between them using state-of-the-art quantitative proteomic techniques. We identified 720 different amount proteins (DAPs) and grouped the results in 11 fate differentiation categories. Among them, we identified 29 transcription factors (TFs) and 10 cell fate determinants. Significant differences were found in the molecular activities of vegetative and reproductive nuclei. The TFs in VN mainly participate in pollen tube development. In comparison, the TFs in GN are mainly involved in cell differentiation and male gametogenesis. The identified novel TFs may play an important role in cell fate differentiation. Our data also indicate differences in nuclear pore complexes and epigenetic modifications: more nucleoporins synthesized in VN; more histone variants and chaperones; and structural maintenance of chromosome (SMC) proteins, chromatin remodelers, and DNA methylation-related proteins expressed in GN. The VC has active macromolecular metabolism and mRNA processing, while GC has active nucleic acid metabolism and translation. Moreover, the members of unfolded protein response (UPR) and programmed cell death accumulate in VN, and DNA damage repair is active in GN. Differences in the stress response of DAPs in VN vs. GN were also found. This study provides a further understanding of pollen cell differentiation mechanisms and also a sound basis for future studies of the molecular mechanisms behind cell fate differentiation.
Collapse
Affiliation(s)
- Chen You
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- College of Life Science, Henan Normal University, Xinxiang, China
| | - YuPing Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - ShaoYu Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xu Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wen Yao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - WeiHuan Jin
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - XiuLi Hu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hao Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Chen Z, Huo D, Li L, Liu Z, Li Z, Xu S, Huang Y, Wu W, Zhou C, Liu Y, Kuang M, Wu F, Li H, Qian P, Song G, Wu X, Chen J, Hou Y. Nuclear DEK preserves hematopoietic stem cells potential via NCoR1/HDAC3-Akt1/2-mTOR axis. J Exp Med 2021; 218:e20201974. [PMID: 33755722 PMCID: PMC7992411 DOI: 10.1084/jem.20201974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
The oncogene DEK is found fused with the NUP214 gene creating oncoprotein DEK-NUP214 that induces acute myeloid leukemia (AML) in patients, and secreted DEK protein functions as a hematopoietic cytokine to regulate hematopoiesis; however, the intrinsic role of nuclear DEK in hematopoietic stem cells (HSCs) remains largely unknown. Here, we show that HSCs lacking DEK display defects in long-term self-renew capacity, eventually resulting in impaired hematopoiesis. DEK deficiency reduces quiescence and accelerates mitochondrial metabolism in HSCs, in part, dependent upon activating mTOR signaling. At the molecular level, DEK recruits the corepressor NCoR1 to repress acetylation of histone 3 at lysine 27 (H3K27ac) and restricts the chromatin accessibility of HSCs, governing the expression of quiescence-associated genes (e.g., Akt1/2, Ccnb2, and p21). Inhibition of mTOR activity largely restores the maintenance and potential of Dek-cKO HSCs. These findings highlight the crucial role of nuclear DEK in preserving HSC potential, uncovering a new link between chromatin remodelers and HSC homeostasis, and have clinical implications.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dawei Huo
- Department of Cell Biology, Tianjin Medical University, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin, China
| | - Lei Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhilong Liu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhigang Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shuangnian Xu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yongxiu Huang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weiru Wu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chengfang Zhou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuanyuan Liu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mei Kuang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Feng Wu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xudong Wu
- Department of Cell Biology, Tianjin Medical University, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Hou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
27
|
Guo H, Prell M, Königs H, Xu N, Waldmann T, Hermans-Sachweh B, Ferrando-May E, Lüscher B, Kappes F. Bacterial Growth Inhibition Screen (BGIS) identifies a loss-of-function mutant of the DEK oncogene, indicating DNA modulating activities of DEK in chromatin. FEBS Lett 2021; 595:1438-1453. [PMID: 33686684 DOI: 10.1002/1873-3468.14070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
The DEK oncoprotein regulates cellular chromatin function via a number of protein-protein interactions. However, the biological relevance of its unique pseudo-SAP/SAP-box domain, which transmits DNA modulating activities in vitro, remains largely speculative. As hypothesis-driven mutations failed to yield DNA-binding null (DBN) mutants, we combined random mutagenesis with the Bacterial Growth Inhibition Screen (BGIS) to overcome this bottleneck. Re-expression of a DEK-DBN mutant in newly established human DEK knockout cells failed to reduce the increase in nuclear size as compared to wild type, indicating roles for DEK-DNA interactions in cellular chromatin organization. Our results extend the functional roles of DEK in metazoan chromatin and highlight the predictive ability of recombinant protein toxicity in E. coli for unbiased studies of eukaryotic DNA modulating protein domains.
Collapse
Affiliation(s)
- Haihong Guo
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Malte Prell
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Hiltrud Königs
- Institute of Pathology, Medical School, RWTH Aachen University, Germany
| | - Nengwei Xu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Dushu Lake Higher Education Town, Suzhou Industrial Park, China
| | - Tanja Waldmann
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Germany
| | | | - Elisa Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, Germany
| | - Bernhard Lüscher
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Ferdinand Kappes
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Dushu Lake Higher Education Town, Suzhou Industrial Park, China
| |
Collapse
|
28
|
Ho CMK, Bringmann M, Oshima Y, Mitsuda N, Bergmann DC. Transcriptional profiling reveals signatures of latent developmental potential in Arabidopsis stomatal lineage ground cells. Proc Natl Acad Sci U S A 2021; 118:e2021682118. [PMID: 33875598 PMCID: PMC8092560 DOI: 10.1073/pnas.2021682118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In many developmental contexts, cell lineages have variable or flexible potency to self-renew. What drives a cell to exit from a proliferative state and begin differentiation, or to retain the capacity to divide days or years later is not clear. Here we exploit the mixed potential of the stomatal lineage ground cell (SLGC) in the Arabidopsis leaf epidermis as a model to explore how cells might balance potential to differentiate with a reentry into proliferation. By generating transcriptomes of fluorescence-activated cell sorting-isolated populations that combinatorically define SLGCs and integrating these data with other stomatal lineage datasets, we find that SLGCs appear poised between proliferation and endoreduplication. Furthermore, we found the RNA polymerase II-related mediator complex interactor DEK and the transcription factor MYB16 accumulate differentially in the stomatal lineage and influence the extent of cell proliferation during leaf development. These findings suggest that SLGC latent potential is maintained by poising of the cell cycle machinery, as well as general and site-specific gene-expression regulators.
Collapse
Affiliation(s)
- Chin-Min Kimmy Ho
- Department of Biology, Stanford University, Stanford, CA 94305-5020;
| | - Martin Bringmann
- Department of Biology, Stanford University, Stanford, CA 94305-5020
| | - Yoshimi Oshima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 305-8562 Tsukuba, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 305-8562 Tsukuba, Japan
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305-5020;
- HHMI, Stanford University, Stanford, CA 94305
| |
Collapse
|
29
|
Bhadouriya SL, Mehrotra S, Basantani MK, Loake GJ, Mehrotra R. Role of Chromatin Architecture in Plant Stress Responses: An Update. FRONTIERS IN PLANT SCIENCE 2021; 11:603380. [PMID: 33510748 PMCID: PMC7835326 DOI: 10.3389/fpls.2020.603380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 05/08/2023]
Abstract
Sessile plants possess an assembly of signaling pathways that perceive and transmit environmental signals, ultimately resulting in transcriptional reprogramming. Histone is a key feature of chromatin structure. Numerous histone-modifying proteins act under different environmental stress conditions to help modulate gene expression. DNA methylation and histone modification are crucial for genome reprogramming for tissue-specific gene expression and global gene silencing. Different classes of chromatin remodelers including SWI/SNF, ISWI, INO80, and CHD are reported to act upon chromatin in different organisms, under diverse stresses, to convert chromatin from a transcriptionally inactive to a transcriptionally active state. The architecture of chromatin at a given promoter is crucial for determining the transcriptional readout. Further, the connection between somatic memory and chromatin modifications may suggest a mechanistic basis for a stress memory. Studies have suggested that there is a functional connection between changes in nuclear organization and stress conditions. In this review, we discuss the role of chromatin architecture in different stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Collapse
Affiliation(s)
- Sneha Lata Bhadouriya
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Mahesh K. Basantani
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow, India
| | - Gary J. Loake
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburg, Edinburg, United Kingdom
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| |
Collapse
|
30
|
Wolff H, Jakoby M, Stephan L, Koebke E, Hülskamp M. Heat Stress-Dependent Association of Membrane Trafficking Proteins With mRNPs Is Selective. FRONTIERS IN PLANT SCIENCE 2021; 12:670499. [PMID: 34249042 PMCID: PMC8264791 DOI: 10.3389/fpls.2021.670499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/27/2021] [Indexed: 05/03/2023]
Abstract
The Arabidopsis AAA ATPase SKD1 is essential for ESCRT-dependent endosomal sorting by mediating the disassembly of the ESCRTIII complex in an ATP-dependent manner. In this study, we show that SKD1 localizes to messenger ribonucleoprotein complexes upon heat stress. Consistent with this, the interactome of SKD1 revealed differential interactions under normal and stress conditions and included membrane transport proteins as well as proteins associated with RNA metabolism. Localization studies with selected interactome proteins revealed that not only RNA associated proteins but also several ESCRTIII and membrane trafficking proteins were recruited to messenger ribonucleoprotein granules after heat stress.
Collapse
Affiliation(s)
- Heike Wolff
- Cluster of Excellence on Plant Sciences (CEPLAS), Botanical Institute, Cologne University, Cologne, Germany
| | - Marc Jakoby
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Lisa Stephan
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Eva Koebke
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Martin Hülskamp
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
- *Correspondence: Martin Hülskamp
| |
Collapse
|
31
|
Greene AN, Parks LG, Solomon MB, Privette Vinnedge LM. Loss of DEK Expression Induces Alzheimer's Disease Phenotypes in Differentiated SH-SY5Y Cells. Front Mol Neurosci 2020; 13:594319. [PMID: 33304240 PMCID: PMC7701170 DOI: 10.3389/fnmol.2020.594319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia and is characterized by the buildup of β-amyloid plaques and neurofibrillary Tau tangles. This leads to decreased synaptic efficacy, cell death, and, consequently, brain atrophy in patients. Behaviorally, this manifests as memory loss and confusion. Using a gene ontology analysis, we recently identified AD and other age-related dementias as candidate diseases associated with the loss of DEK expression. DEK is a nuclear phosphoprotein with roles in DNA repair, cellular proliferation, and inhibiting apoptosis. Work from our laboratory determined that DEK is highly expressed in the brain, particularly in regions relevant to learning and memory, including the hippocampus. Moreover, we have also determined that DEK is highly expressed in neurons. Consistent with our gene ontology analysis, we recently reported that cortical DEK protein levels are inversely proportional to dementia severity scores in elderly female patients. However, the functional role of DEK in neurons is unknown. Thus, we knocked down DEK in an in vitro neuronal model, differentiated SH-SY5Y cells, hypothesizing that DEK loss would result in cellular and molecular phenotypes consistent with AD. We found that DEK loss resulted in increased neuronal death by apoptosis (i.e., cleaved caspases 3 and 8), decreased β-catenin levels, disrupted neurite development, higher levels of total and phosphorylated Tau at Ser262, and protein aggregates. We have demonstrated that DEK loss in vitro recapitulates cellular and molecular phenotypes of AD pathology.
Collapse
Affiliation(s)
- Allie N Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lois G Parks
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matia B Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Psychology, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa M Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
32
|
The Arabidopsis L-Type Amino Acid Transporter 5 (LAT5/PUT5) Is Expressed in the Phloem and Alters Seed Nitrogen Content When Knocked Out. PLANTS 2020; 9:plants9111519. [PMID: 33182302 PMCID: PMC7695346 DOI: 10.3390/plants9111519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 11/25/2022]
Abstract
The Arabidopsis L-type Amino Acid Transporter-5 (LAT5; At3g19553) was recently studied for its role in developmental responses such as flowering and senescence, under an assumption that it is a polyamine uptake transporter (PUT5). The LATs in Arabidopsis have a wide range of substrates, including amino acids and polyamines. This report extensively studied the organ and tissue-specific expression of the LAT5/PUT5 and investigated its role in mediating amino acid transport. Organ-specific quantitative RT-PCR detected LAT5/PUT5 transcripts in all organs with a relatively higher abundance in the leaves. Tissue-specific expression analysis identified GUS activity in the phloem under the LAT5/PUT5 promoter. In silico analysis identified both amino acid transporter and antiporter domains conserved in the LAT5/PUT5 protein. The physiological role of the LAT5/PUT5 was studied through analyzing a mutant line, lat5-1, under various growth conditions. The mutant lat5-1 seedlings showed increased sensitivity to exogenous leucine in Murashige and Skoog growth medium. In soil, the lat5-1 showed reduced leaf growth and altered nitrogen content in the seeds. In planta radio-labelled leucine uptake studies showed increased accumulation of leucine in the lat5-1 plants compared to the wild type when treated in the dark prior to the isotopic feeding. These studies suggest that LAT5/PUT5 plays a role in mediating amino acid transport.
Collapse
|
33
|
Abstract
Nucleosome dynamics and properties are central to all forms of genomic activities. Among the core histones, H3 variants play a pivotal role in modulating nucleosome structure and function. Here, we focus on the impact of H3 variants on various facets of development. The deposition of the replicative H3 variant following DNA replication is essential for the transmission of the epigenomic information encoded in posttranscriptional modifications. Through this process, replicative H3 maintains cell fate while, in contrast, the replacement H3.3 variant opposes cell differentiation during early embryogenesis. In later steps of development, H3.3 and specialized H3 variants are emerging as new, important regulators of terminal cell differentiation, including neurons and gametes. The specific pathways that regulate the dynamics of the deposition of H3.3 are paramount during reprogramming events that drive zygotic activation and the initiation of a new cycle of development.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biologie et de Modélisation de la Cellule, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, University of Lyon, F-69007 Lyon, France;
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
34
|
Probst AV, Desvoyes B, Gutierrez C. Similar yet critically different: the distribution, dynamics and function of histone variants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5191-5204. [PMID: 32392582 DOI: 10.1093/jxb/eraa230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 05/23/2023]
Abstract
Organization of the genetic information into chromatin plays an important role in the regulation of all DNA template-based reactions. The incorporation of different variant versions of the core histones H3, H2A, and H2B, or the linker histone H1 results in nucleosomes with unique properties. Histone variants can differ by only a few amino acids or larger protein domains and their incorporation may directly affect nucleosome stability and higher order chromatin organization or indirectly influence chromatin function through histone variant-specific binding partners. Histone variants employ dedicated histone deposition machinery for their timely and locus-specific incorporation into chromatin. Plants have evolved specific histone variants with unique expression patterns and features. In this review, we discuss our current knowledge on histone variants in Arabidopsis, their mode of deposition, variant-specific post-translational modifications, and genome-wide distribution, as well as their role in defining different chromatin states.
Collapse
Affiliation(s)
- Aline V Probst
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| |
Collapse
|
35
|
Medina CA, Hawkins C, Liu XP, Peel M, Yu LX. Genome-Wide Association and Prediction of Traits Related to Salt Tolerance in Autotetraploid Alfalfa ( Medicago sativa L.). Int J Mol Sci 2020; 21:ijms21093361. [PMID: 32397526 PMCID: PMC7247575 DOI: 10.3390/ijms21093361%20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 05/28/2023] Open
Abstract
Soil salinity is a growing problem in world production agriculture. Continued improvement in crop salt tolerance will require the implementation of innovative breeding strategies such as marker-assisted selection (MAS) and genomic selection (GS). Genetic analyses for yield and vigor traits under salt stress in alfalfa breeding populations with three different phenotypic datasets was assessed. Genotype-by-sequencing (GBS) developed markers with allele dosage and phenotypic data were analyzed by genome-wide association studies (GWAS) and GS using different models. GWAS identified 27 single nucleotide polymorphism (SNP) markers associated with salt tolerance. Mapping SNPs markers against the Medicago truncatula reference genome revealed several putative candidate genes based on their roles in response to salt stress. Additionally, eight GS models were used to estimate breeding values of the training population under salt stress. Highest prediction accuracies and root mean square errors were used to determine the best prediction model. The machine learning methods (support vector machine and random forest) performance best with the prediction accuracy of 0.793 for yield. The marker loci and candidate genes identified, along with optimized GS prediction models, were shown to be useful in improvement of alfalfa with enhanced salt tolerance. DNA markers and the outcome of the GS will be made available to the alfalfa breeding community in efforts to accelerate genetic gains, in the development of biotic stress tolerant and more productive modern-day alfalfa cultivars.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| | - Charles Hawkins
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Xiang-Ping Liu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, Heilongjiang, China
| | - Michael Peel
- United States Department of Agriculture-Agricultural Research Service, Forage and Range Research Lab, Logan, UT 84322, USA;
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| |
Collapse
|
36
|
Medina CA, Hawkins C, Liu XP, Peel M, Yu LX. Genome-Wide Association and Prediction of Traits Related to Salt Tolerance in Autotetraploid Alfalfa ( Medicago sativa L.). Int J Mol Sci 2020; 21:E3361. [PMID: 32397526 PMCID: PMC7247575 DOI: 10.3390/ijms21093361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Soil salinity is a growing problem in world production agriculture. Continued improvement in crop salt tolerance will require the implementation of innovative breeding strategies such as marker-assisted selection (MAS) and genomic selection (GS). Genetic analyses for yield and vigor traits under salt stress in alfalfa breeding populations with three different phenotypic datasets was assessed. Genotype-by-sequencing (GBS) developed markers with allele dosage and phenotypic data were analyzed by genome-wide association studies (GWAS) and GS using different models. GWAS identified 27 single nucleotide polymorphism (SNP) markers associated with salt tolerance. Mapping SNPs markers against the Medicago truncatula reference genome revealed several putative candidate genes based on their roles in response to salt stress. Additionally, eight GS models were used to estimate breeding values of the training population under salt stress. Highest prediction accuracies and root mean square errors were used to determine the best prediction model. The machine learning methods (support vector machine and random forest) performance best with the prediction accuracy of 0.793 for yield. The marker loci and candidate genes identified, along with optimized GS prediction models, were shown to be useful in improvement of alfalfa with enhanced salt tolerance. DNA markers and the outcome of the GS will be made available to the alfalfa breeding community in efforts to accelerate genetic gains, in the development of biotic stress tolerant and more productive modern-day alfalfa cultivars.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| | - Charles Hawkins
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Xiang-Ping Liu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, Heilongjiang, China
| | - Michael Peel
- United States Department of Agriculture-Agricultural Research Service, Forage and Range Research Lab, Logan, UT 84322, USA;
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| |
Collapse
|
37
|
Zhang H, Yan M, Deng R, Song F, Jiang M. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato. Gene 2020; 727:144245. [PMID: 31715302 DOI: 10.1016/j.gene.2019.144245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
DEK involves in the modulation of cell proliferation, differentiation, apoptosis, migration and cell senescence. However, direct genetic evidence proving the functions of DEK in disease resistance against pathogens is still deficient. In the present study, four DEKs were identified in tomato genome and their roles in disease resistance in tomato were analyzed. The expression levels of DEKs were differently induced by Botrytis cinerea, Pseudomonas syringae pv. tomato (Pst) DC3000 and defense-related signaling molecules (such as jasmonic acid, aethylene precursor and salicylic acid). The DEKs' silencing by virus induced gene silencing led to decreased resistance against B. cinerea or Pst DC3000. The underlying mechanisms may be through the upregulation of the accumulation of reactive oxygen species (ROS) and the changed expression levels of defense-related genes by pathogen inoculation. These results indicate that DEKs involve in disease resistance against different pathogens and thus broaden the knowledge of DEK genes' function in tomato.
Collapse
Affiliation(s)
- Huijuan Zhang
- Collegue of Life Science, Taizhou University, Taizhou, China
| | - Mengjiao Yan
- Collegue of Life Science, Taizhou University, Taizhou, China
| | - Rong Deng
- Collegue of Life Science, Taizhou University, Taizhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ming Jiang
- Collegue of Life Science, Taizhou University, Taizhou, China.
| |
Collapse
|
38
|
Fiorillo A, Mattei M, Aducci P, Visconti S, Camoni L. The Salt Tolerance Related Protein (STRP) Mediates Cold Stress Responses and Abscisic Acid Signalling in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:1251. [PMID: 32903596 PMCID: PMC7438554 DOI: 10.3389/fpls.2020.01251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/29/2020] [Indexed: 05/10/2023]
Abstract
Low temperature stress is one of the major causes of crop yield reduction in agriculture. The alteration of gene expression pattern and the accumulation of stress-related proteins are the main strategies activated by plants under this unfavourable condition. Here we characterize the Arabidopsis thaliana Salt Tolerance Related Protein (STRP). The protein rapidly accumulates under cold treatment, and this effect is not dependent on transcriptional activation of the STRP gene, but on the inhibition of proteasome-mediated degradation. Subcellular localization of STRP was determined by the transient expression of STRP-YFP in A. thaliana protoplasts. STRP is localized into the cytosol, nucleus, and associated to the plasma membrane. Under cold stress, the membrane-associated fraction decreases, while in the cytosol and in the nucleus STRP levels strongly increase. STRP has high similarity with WCI16, a wheat Late Embryogenesis Abundant (LEA)-like protein. Despite no canonical LEA motifs in the STRP sequence are present, physicochemical characterization demonstrated that STRP shares common features with LEA proteins, being a high hydrophilic unstructured protein, highly soluble after boiling and with cryoprotectant activity. To clarify the physiological function of STRP, we characterized the phenotype and the response to low temperature stress of the strp knockout mutant. The mutation causes an equal impairment of plant growth and development both in physiological and cold stress conditions. The strp mutant is more susceptible to oxidative damage respect to the wild type, showing increased lipid peroxidation and altered membrane integrity. Furthermore, the analysis of Abscisic acid (ABA) effects on protein levels demonstrated that the hormone induces the increase of STRP levels, an effect in part ascribable to its ability to activate STRP expression. ABA treatments showed that the strp mutant displays an ABA hyposensitive phenotype in terms of seed germination, root development, stomata closure and in the expression of ABA-responsive genes. In conclusion, our results demonstrate that STRP acts as a multifunctional protein in the response mechanisms to low temperature, suggesting a crucial role for this protein in stress perception and in the translation of extracellular stimuli in an intracellular response.
Collapse
|
39
|
DEK terminates diapause by activation of quiescent cells in the crustacean Artemia. Biochem J 2019; 476:1753-1769. [PMID: 31189566 DOI: 10.1042/bcj20190169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022]
Abstract
To cope with harsh environments, the Artemia shrimp produces gastrula embryos in diapause, a state of obligate dormancy, having cellular quiescence and suppressed metabolism. The mechanism behind these cellular events remains largely unknown. Here, we study the regulation of cell quiescence using diapause embryos of Artemia We found that Artemia DEK (Ar-DEK), a nuclear factor protein, was down-regulated in the quiescent cells of diapause embryos and enriched in the activated cells of post-diapause embryos. Knockdown of Ar-DEK induced the production of diapause embryos whereas the control Artemia released free-swimming nuaplii. Our results indicate that Ar-DEK correlated with the termination of cellular quiescence via the increase in euchromatin and decrease in heterochromatin. The phenomena of quiescence have many implications beyond shrimp ecology. In cancer cells, for example, knockdown of DEK also induced a short period of cellular quiescence and increased resistance to environmental stress in MCF-7 and MKN45 cancer cell lines. Analysis of RNA sequences in Artemia and in MCF-7 revealed that the Wnt and AURKA signaling pathways were all down-regulated and the p53 signaling pathway was up-regulated upon inhibition of DEK expression. Our results provide insight into the functions of Ar-DEK in the activation of cellular quiescence during diapause formation in Artemia.
Collapse
|
40
|
Uthup TK, Karumamkandathil R, Ravindran M, Saha T. Heterografting induced DNA methylation polymorphisms in Hevea brasiliensis. PLANTA 2018; 248:579-589. [PMID: 29799082 DOI: 10.1007/s00425-018-2918-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/11/2018] [Indexed: 05/19/2023]
Abstract
Heterografting induced intraclonal epigenetic variations were detected among rubber plants. Interaction between genetically divergent root stock and scion tissues might have triggered these epigenetic changes which may eventually lead to intraclonal variability in rubber. DNA methylation in response to stress may be associated with the alteration in gene transcription leading to morphological changes in plants. Rubber tree is commercially propagated by bud grafting where the scion of a high yielding variety is grafted on to a genetically divergent root stock. Still, significant levels of intraclonal variations exist among them. Epigenetic changes associated with heterografting may be partly responsible for this conundrum. In the present study, an attempt was made to identify the impact of divergent root stock on the epigenome of scion in grafted rubber plants. Heterografts were developed by grafting eye buds from a single polyembryony derived seedling on to genetically divergent root stocks of unknown parentage. The plants were uniformly maintained and their DNA was subjected to MSAP analysis. Polymorphic DNA methylation bands corresponding to CG as well as the plant-specific CHG types of methylation were observed. Cloning of selected polymorphic regions and bisulfite sequencing confirmed the presence of methylation in the promoter and coding region of important genes including an LRR receptor kinase gene. Since divergent root stock is the major factor differentiating the grafted plants, the changes in DNA methylation patterns might have been triggered by the interaction between the two genetically different tissues of stock and scion. The study assumes importance in Hevea, because accumulation and maintenance of epigenetic changes in functional genes and promoters during subsequent cycles of vegetative propagation may contribute towards intraclonal variability eventually leading to altered phenotypes.
Collapse
Affiliation(s)
- Thomas K Uthup
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board P O, Kottayam, Kerala, 686009, India.
| | - Rekha Karumamkandathil
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board P O, Kottayam, Kerala, 686009, India
| | - Minimol Ravindran
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board P O, Kottayam, Kerala, 686009, India
| | - Thakurdas Saha
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board P O, Kottayam, Kerala, 686009, India
| |
Collapse
|
41
|
Matrka MC, Cimperman KA, Haas SR, Guasch G, Ehrman LA, Waclaw RR, Komurov K, Lane A, Wikenheiser-Brokamp KA, Wells SI. Dek overexpression in murine epithelia increases overt esophageal squamous cell carcinoma incidence. PLoS Genet 2018; 14:e1007227. [PMID: 29538372 PMCID: PMC5884580 DOI: 10.1371/journal.pgen.1007227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/04/2018] [Accepted: 01/26/2018] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer occurs as either squamous cell carcinoma (ESCC) or adenocarcinoma. ESCCs comprise almost 90% of cases worldwide, and recur with a less than 15% five-year survival rate despite available treatments. The identification of new ESCC drivers and therapeutic targets is critical for improving outcomes. Here we report that expression of the human DEK oncogene is strongly upregulated in esophageal SCC based on data in the cancer genome atlas (TCGA). DEK is a chromatin-associated protein with important roles in several nuclear processes including gene transcription, epigenetics, and DNA repair. Our previous data have utilized a murine knockout model to demonstrate that Dek expression is required for oral and esophageal SCC growth. Also, DEK overexpression in human keratinocytes, the cell of origin for SCC, was sufficient to cause hyperplasia in 3D organotypic raft cultures that mimic human skin, thus linking high DEK expression in keratinocytes to oncogenic phenotypes. However, the role of DEK over-expression in ESCC development remains unknown in human cells or genetic mouse models. To define the consequences of Dek overexpression in vivo, we generated and validated a tetracycline responsive Dek transgenic mouse model referred to as Bi-L-Dek. Dek overexpression was induced in the basal keratinocytes of stratified squamous epithelium by crossing Bi-L-Dek mice to keratin 5 tetracycline transactivator (K5-tTA) mice. Conditional transgene expression was validated in the resulting Bi-L-Dek_K5-tTA mice and was suppressed with doxycycline treatment in the tetracycline-off system. The mice were subjected to an established HNSCC and esophageal carcinogenesis protocol using the chemical carcinogen 4-nitroquinoline 1-oxide (4NQO). Dek overexpression stimulated gross esophageal tumor development, when compared to doxycycline treated control mice. Furthermore, high Dek expression caused a trend toward esophageal hyperplasia in 4NQO treated mice. Taken together, these data demonstrate that Dek overexpression in the cell of origin for SCC is sufficient to promote esophageal SCC development in vivo.
Collapse
Affiliation(s)
- Marie C. Matrka
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Katherine A. Cimperman
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Sarah R. Haas
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Geraldine Guasch
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institute Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Lisa A. Ehrman
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Ronald R. Waclaw
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Kakajan Komurov
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Adam Lane
- Division of Bone Marrow Transplant and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Kathryn A. Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine and Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Susanne I. Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| |
Collapse
|
42
|
Serrano-Lopez J, Nattamai K, Pease NA, Shephard MS, Wellendorf AM, Sertorio M, Smith EA, Geiger H, Wells SI, Cancelas JA, Privette Vinnedge LM. Loss of DEK induces radioresistance of murine restricted hematopoietic progenitors. Exp Hematol 2017; 59:40-50.e3. [PMID: 29288703 DOI: 10.1016/j.exphem.2017.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 11/18/2022]
Abstract
Self-renewing hematopoietic stem cells and multipotent progenitor cells are responsible for maintaining hematopoiesis throughout an individual's lifetime. For overall health and survival, it is critical that the genome stability of these cells is maintained and that the cell population is not exhausted. Previous reports have indicated that the DEK protein, a chromatin structural protein that functions in numerous nuclear processes, is required for DNA damage repair in vitro and long-term engraftment of hematopoietic stem cells in vivo. Therefore, we investigated the role of DEK in normal hematopoiesis and response to DNA damaging agents in vivo. Here, we report that hematopoiesis is largely unperturbed in DEK knockout mice compared with wild-type (WT) controls. However, DEK knockout mice have fewer radioprotective units, but increased capacity to survive repeated sublethal doses of radiation exposure compared with WT mice. Furthermore, this increased survival correlated with a sustained quiescent state in which DEK knockout restricted hematopoietic progenitor cells (HPC-1) were nearly three times more likely to be quiescent following irradiation compared with WT cells and were significantly more radioresistant during the early phases of myeloid reconstitution. Together, our studies indicate that DEK functions in the normal hematopoietic stress response to recurrent radiation exposure.
Collapse
Affiliation(s)
- Juana Serrano-Lopez
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kalpana Nattamai
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Nicholas A Pease
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Miranda S Shephard
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ashley M Wellendorf
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mathieu Sertorio
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Eric A Smith
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Hartmut Geiger
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Susanne I Wells
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jose A Cancelas
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lisa M Privette Vinnedge
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
43
|
Jiang D, Berger F. Histone variants in plant transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:123-130. [PMID: 27412913 DOI: 10.1016/j.bbagrm.2016.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 12/28/2022]
Abstract
Chromatin based organization of eukaryotic genome plays a profound role in regulating gene transcription. Nucleosomes form the basic subunits of chromatin by packaging DNA with histone proteins, impeding the access of DNA to transcription factors and RNA polymerases. Exchange of histone variants in nucleosomes alters the properties of nucleosomes and thus modulates DNA exposure during transcriptional regulation. Growing evidence indicates the important function of histone variants in programming transcription during developmental transitions and stress response. Here we review how histone variants and their deposition machineries regulate the nucleosome stability and dynamics, and discuss the link between histone variants and transcriptional regulation in plants. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Danhua Jiang
- Gregor Mendel Institute, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
44
|
Del Olmo I, López JA, Vázquez J, Raynaud C, Piñeiro M, Jarillo JA. Arabidopsis DNA polymerase ϵ recruits components of Polycomb repressor complex to mediate epigenetic gene silencing. Nucleic Acids Res 2016; 44:5597-614. [PMID: 26980282 PMCID: PMC4937302 DOI: 10.1093/nar/gkw156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/26/2016] [Indexed: 01/07/2023] Open
Abstract
Arabidopsis ESD7 locus encodes the catalytic subunit of the DNA Pol ϵ involved in the synthesis of the DNA leading strand and is essential for embryo viability. The hypomorphic allele esd7-1 is viable but displays a number of pleiotropic phenotypic alterations including an acceleration of flowering time. Furthermore, Pol ϵ is involved in the epigenetic silencing of the floral integrator genes FT and SOC1, but the molecular nature of the transcriptional gene silencing mechanisms involved remains elusive. Here we reveal that ESD7 interacts with components of the PRC2 such as CLF, EMF2 and MSI1, and that mutations in ESD7 cause a decrease in the levels of the H3K27me3 mark present in the chromatin of FT and SOC1. We also demonstrate that a domain of the C-terminal region of ESD7 mediates the binding to the different PRC2 components and this interaction is necessary for the proper recruitment of PRC2 to FT and SOC1 chromatin. We unveil the existence of interplay between the DNA replication machinery and the PcG complexes in epigenetic transcriptional silencing. These observations provide an insight into the mechanisms ensuring that the epigenetic code at pivotal loci in developmental control is faithfully transmitted to the progeny of eukaryotic cells.
Collapse
Affiliation(s)
- Iván Del Olmo
- Centro de Biotecnología y Genómica de Plantas (CBGP), UPM-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Madrid, Spain
| | - Juan A López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Cécile Raynaud
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas (CBGP), UPM-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Madrid, Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas (CBGP), UPM-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Madrid, Spain
| |
Collapse
|
45
|
Mozgová I, Köhler C, Gaudin V, Hennig L. The many faces of plant chromatin: Meeting summary of the 4th European workshop on plant chromatin 2015, Uppsala, Sweden. Epigenetics 2015; 10:1084-90. [PMID: 26646904 DOI: 10.1080/15592294.2015.1106674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In June 2015, the fourth European Workshop on Plant Chromatin took place in Uppsala, Sweden, bringing together 80 researchers studying various aspects of plant chromatin and epigenetics. The intricate relationships between plant chromatin dynamics and gene expression change, chromatin organization within the plant cell nucleus, and the impact of chromatin structure on plant development were discussed. Among the main highlights of the meeting were an ever-growing list of newly identified players in chromatin structure establishment and the development of novel tools and approaches to foster our understanding of chromatin-mediated gene regulation, taking into account the context of the plant cell nucleus and its architecture. In this report, we summarize some of the main advances and prospects of plant chromatin research presented at this meeting.
Collapse
Affiliation(s)
- Iva Mozgová
- a Department of Plant Biology ; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology ; Uppsala , Sweden
| | - Claudia Köhler
- a Department of Plant Biology ; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology ; Uppsala , Sweden
| | - Valérie Gaudin
- b INRA-AgroParisTech; Institut Jean-Pierre Bourgin ; Versailles , France
| | - Lars Hennig
- a Department of Plant Biology ; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology ; Uppsala , Sweden
| |
Collapse
|
46
|
Allahverdiyeva Y, Battchikova N, Brosché M, Fujii H, Kangasjärvi S, Mulo P, Mähönen AP, Nieminen K, Overmyer K, Salojärvi J, Wrzaczek M. Integration of photosynthesis, development and stress as an opportunity for plant biology. THE NEW PHYTOLOGIST 2015; 208:647-55. [PMID: 26174112 DOI: 10.1111/nph.13549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
With the tremendous progress of the past decades, molecular plant science is becoming more unified than ever. We now have the exciting opportunity to further connect subdisciplines and understand plants as whole organisms, as will be required to efficiently utilize them in natural and agricultural systems to meet human needs. The subfields of photosynthesis, plant developmental biology and plant stress are used as examples to discuss how plant science can become better integrated. The challenges, strategies and rich opportunities for the integration of the plant sciences are discussed. In recent years, more and more overlap between various subdisciplines has been inadvertently discovered including tradeoffs that may occur in plants engineered for biotechnological applications. Already important, bioinformatics and computational modelling will become even more central to structuring and understanding the ever growing amounts of data. The process of integrating and overlapping fields in plant biology research is advancing, but plant science will benefit from dedicating more effort and urgency to reach across its boundaries.
Collapse
Affiliation(s)
- Yagut Allahverdiyeva
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Natalia Battchikova
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Mikael Brosché
- Department of Biosciences, Plant Biology, and Viikki Plant Science Centre (ViPS), University of Helsinki, FI-00014, Helsinki, Finland
- Institute of Technology, University of Tartu, EE-50411, Tartu, Estonia
| | - Hiroaki Fujii
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Saijaliisa Kangasjärvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Paula Mulo
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Ari Pekka Mähönen
- Department of Biosciences, Plant Biology, and Viikki Plant Science Centre (ViPS), University of Helsinki, FI-00014, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Kaisa Nieminen
- Department of Biosciences, Plant Biology, and Viikki Plant Science Centre (ViPS), University of Helsinki, FI-00014, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Green Technology, FI-01301, Vantaa, Finland
| | - Kirk Overmyer
- Department of Biosciences, Plant Biology, and Viikki Plant Science Centre (ViPS), University of Helsinki, FI-00014, Helsinki, Finland
| | - Jarkko Salojärvi
- Department of Biosciences, Plant Biology, and Viikki Plant Science Centre (ViPS), University of Helsinki, FI-00014, Helsinki, Finland
| | - Michael Wrzaczek
- Department of Biosciences, Plant Biology, and Viikki Plant Science Centre (ViPS), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
47
|
Probst AV, Mittelsten Scheid O. Stress-induced structural changes in plant chromatin. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:8-16. [PMID: 26042538 DOI: 10.1016/j.pbi.2015.05.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 05/20/2023]
Abstract
Stress defense in plants is elaborated at the level of protection and adaptation. Dynamic changes in sophisticated chromatin substructures and concomitant transcriptional changes play an important role in response to stress, as illustrated by the transient rearrangement of compact heterochromatin structures or the modulation of chromatin composition and modification upon stress exposure. To connect cytological, developmental, and molecular data around stress and chromatin is currently an interesting, multifaceted, and sometimes controversial field of research. This review highlights some of the most recent findings on nuclear reorganization, histone variants, histone chaperones, DNA- and histone modifications, and somatic and meiotic heritability in connection with stress.
Collapse
Affiliation(s)
- Aline V Probst
- CNRS UMR6293 - INSERM U1103 - Clermont University, GReD, Campus Universitaire des Cézeaux, 10 Avenue Blaise Pascal, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
48
|
Dissecting the Potential Interplay of DEK Functions in Inflammation and Cancer. JOURNAL OF ONCOLOGY 2015; 2015:106517. [PMID: 26425120 PMCID: PMC4575739 DOI: 10.1155/2015/106517] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/05/2015] [Indexed: 12/12/2022]
Abstract
There is a long-standing correlation between inflammation, inflammatory cell signaling pathways, and tumor formation. Understanding the mechanisms behind inflammation-driven tumorigenesis is of great research and clinical importance. Although not entirely understood, these mechanisms include a complex interaction between the immune system and the damaged epithelium that is mediated by an array of molecular signals of inflammation—including reactive oxygen species (ROS), cytokines, and NFκB signaling—that are also oncogenic. Here, we discuss the association of the unique DEK protein with these processes. Specifically, we address the role of DEK in chronic inflammation via viral infections and autoimmune diseases, the overexpression and oncogenic activity of DEK in cancers, and DEK-mediated regulation of NFκB signaling. Combined, evidence suggests that DEK may play a complex, multidimensional role in chronic inflammation and subsequent tumorigenesis.
Collapse
|
49
|
Sequeira-Mendes J, Gutierrez C. Links between genome replication and chromatin landscapes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:38-51. [PMID: 25847096 DOI: 10.1111/tpj.12847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 05/07/2023]
Abstract
Post-embryonic organogenesis in plants requires the continuous production of cells in the organ primordia, their expansion and a coordinated exit to differentiation. Genome replication is one of the most important processes that occur during the cell cycle, as the maintenance of genomic integrity is of primary relevance for development. As it is chromatin that must be duplicated, a strict coordination occurs between DNA replication, the deposition of new histones, and the introduction of histone modifications and variants. In turn, the chromatin landscape affects several stages during genome replication. Thus, chromatin accessibility is crucial for the initial stages and to specify the location of DNA replication origins with different chromatin signatures. The chromatin landscape also determines the timing of activation during the S phase. Genome replication must occur fully, but only once during each cell cycle. The re-replication avoidance mechanisms rely primarily on restricting the availability of certain replication factors; however, the presence of specific histone modifications are also revealed as contributing to the mechanisms that avoid re-replication, in particular for heterochromatin replication. We provide here an update of genome replication mostly focused on data from Arabidopsis, and the advances that genomic approaches are likely to provide in the coming years. The data available, both in plants and animals, point to the relevance of the chromatin landscape in genome replication, and require a critical evaluation of the existing views about the nature of replication origins, the mechanisms of origin specification and the relevance of epigenetic modifications for genome replication.
Collapse
Affiliation(s)
- Joana Sequeira-Mendes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
50
|
Duc C, Benoit M, Le Goff S, Simon L, Poulet A, Cotterell S, Tatout C, Probst AV. The histone chaperone complex HIR maintains nucleosome occupancy and counterbalances impaired histone deposition in CAF-1 complex mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:707-22. [PMID: 25600486 DOI: 10.1111/tpj.12758] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/21/2014] [Accepted: 12/23/2014] [Indexed: 05/09/2023]
Abstract
Chromatin organization is essential for coordinated gene expression, genome stability, and inheritance of epigenetic information. The main components involved in chromatin assembly are specific complexes such as Chromatin Assembly Factor 1 (CAF-1) and Histone Regulator (HIR), which deposit histones in a DNA synthesis-dependent or -independent manner, respectively. Here, we characterize the role of the plant orthologs Histone Regulator A (HIRA), Ubinuclein (UBN) and Calcineurin Binding protein 1 (CABIN1), which constitute the HIR complex. Arabidopsis loss-of-function mutants for the various subunits of the complex are viable, but hira mutants show reduced fertility. We show that loss of HIRA reduces extractable histone H3 protein levels and decreases nucleosome occupancy at both actively transcribed genes and heterochromatic regions. Concomitantly, HIRA contributes to maintenance of silencing of pericentromeric repeats and certain transposons. A genetic analysis based on crosses between mutants deficient in subunits of the CAF-1 and HIR complexes showed that simultaneous loss of both the CAF-1 and HIR histone H3 chaperone complexes severely affects plant survival, growth and reproductive development. Our results suggest that HIRA partially rescues impaired histone deposition in fas mutants to preserve nucleosome occupancy, implying plasticity in histone variant interaction and deposition.
Collapse
Affiliation(s)
- Céline Duc
- Génétique, Reproduction et Développement, CNRS UMR 6293, Clermont Université, INSERM U1103, 24 Avenue des Landais, BP 80026, Aubière Cedex, 63171, France
| | | | | | | | | | | | | | | |
Collapse
|