1
|
Fan H, Zhou J, Wang Q, Zhang M, Huang Z, Han J, Ying Y, Yu Z, Kai G. Comprehensive Genome-Wide Analysis and Expression Profiling of Pathogenesis-Related Protein 1 ( PR-1) Genes in Salvia miltiorrhiza. Food Sci Nutr 2025; 13:e70117. [PMID: 40313798 PMCID: PMC12041668 DOI: 10.1002/fsn3.70117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 05/03/2025] Open
Abstract
The pathogenesis-related 1 (PR-1) gene family is essential for plant defense and stress response. In this study, 11 SmPR-1 genes were identified in Salvia miltiorrhiza through comprehensive genomic analysis, all of which encoded proteins with conserved CAP (cysteine-rich secretory protein, antigen 5, and pathogenesis-related 1) domains and signal peptides. Phylogenetic analysis categorized these genes into five evolutionary clusters, reflecting their evolutionary divergence. Chromosomal localization analysis revealed that the SmPR-1 gene family is distributed across three chromosomes: Chr1 contains six genes, Chr6 contains three, and Chr8 contains one. Intraspecific collinearity analysis indicated segmental duplications of SmPR-1-5 and SmPR-1-11 on Chr1. Interspecific collinearity analysis showed that five SmPR-1 genes are collinear with both Arabidopsis thaliana and Scutellaria baicalensis, with SmPR-1-1 also exhibiting collinearity with Oryza sativa and Zea mays. Tissue-specific expression profiling indicated high expression levels in the flowers and stems, indicating their roles in various developmental processes. Differential expression patterns under hormonal and biotic stress revealed that SmPR-1-5 was particularly responsive to brassinosteroid (BR) treatment. Subcellular localization analysis indicated that SmPR-1-5 was present in both the cytoplasm and nucleus, suggesting its involvement in intracellular signaling. Additionally, CMV infection triggered a time-dependent expression pattern, activating specific genes during the early and late infection stages. These findings provide valuable insights into the functional roles of SmPR-1 genes in stress responses and immunity, laying the groundwork for breeding disease-resistant S. miltiorrhiza varieties. Future research should explore the regulatory mechanisms and interactions of SmPR-1 genes with other defense pathways to fully understand their contribution to plant resistance.
Collapse
Affiliation(s)
- Huiyan Fan
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Jingzhi Zhou
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Qichao Wang
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Minhui Zhang
- College of Pharmaceutical ScienceFujian University of Traditional Chinese MedicineFuzhouChina
| | - Ziru Huang
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Jiayi Han
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yiling Ying
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Zhenming Yu
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Guoyin Kai
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- College of Pharmaceutical ScienceFujian University of Traditional Chinese MedicineFuzhouChina
| |
Collapse
|
2
|
Wei S, Zheng B, Wang S, Yang X, Chen Y, Yin T. Integrated analysis of Populus deltoides PR1 genes uncovered a PdePR1 as a defense marker against foliar rust. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109769. [PMID: 40101467 DOI: 10.1016/j.plaphy.2025.109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
Pathogenesis-related protein 1 (PR1), a hallmark of plant disease resistance, plays pivotal roles in defense signaling. In this study, we identified 16 intronless PR1 genes in Populus deltoides, all classified within the CAP superfamily (cysteine-rich secretory protein, antigen 5, and pathogenesis-related 1) and characterized by conserved N-terminal signal peptides, caveolin-binding motifs, and CAP-derived peptides. Phylogenomic reconstruction of 231 PR1 homologs across 15 plant species traced their origin to Chara braunii, with lineage-specific expansions driven by gene duplication. Evolutionary analyses revealed strong purifying selection acting on ancestral PR1 paralogs to confer a selective advantage for disease resistance. Integrated transcriptomic profiling and quantitative RT-PCR analyses identified PdePR1_10 as a key marker gene for defense activation, exhibiting significant induction at two days post-inoculation in resistant poplars. Co-expression network analysis indicated that PdePR1_10 interacts with several defense-related genes, including NBS-LRR resistance genes, signaling kinases, and hormone biosynthesis enzymes. Specifically, the W-box cis-regulatory element in the PdePR1_10 promoter is hypothesized to interact with WRKY transcription factors, activating PdePR1_10 expression through a salicylic acid (SA)-dependent signaling pathway. Transgenic poplars overexpressing PdePR1_10 exhibited significantly enhanced rust resistance, confirming its critical in defense response. In summary, we thoroughly elucidated the biological functions and regulatory mechanisms of PR1 genes in rust resistance and provided a valuable transgenic poplar line for future studies.
Collapse
Affiliation(s)
- Suyun Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China; College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing, 210037, China
| | - Baoyu Zheng
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing, 210037, China
| | - Siyu Wang
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Yang
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, Nanjing, 210037, China
| | - Yingnan Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
| | - Tongming Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
3
|
Siriwan W, Charoenlappanit S, Phaonakrop N, Thaisakun S, Roytrakul S. Identification of peptidome-based biomarkers of cassava mosaic disease resistance in different cassava varieties. Sci Rep 2025; 15:12653. [PMID: 40221509 PMCID: PMC11993728 DOI: 10.1038/s41598-025-97452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
Cassava, a major economic crop in Thailand, yielded over 3 million USD in exports in 2023. However, its production has been declining since 2021 due to cassava mosaic disease (CMD) outbreaks, which affect cassava plantations. CMD infections have recently increased due to the scarcity of healthy stems and CMD-resistant varieties, the latter being key to controlling its spread. Developing novel methods is critical for accelerating the cultivation of high-yield, CMD-resistant varieties. In this study, signature peptide patterns were determined using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography-tandem MS (LC-MS/MS) to screen for CMD-resistant varieties. Peptide mass fingerprint (PMF) analyses revealed distinct peptide barcodes across 11 varieties, clearly delineating CMD-resistant and CMD-tolerant phenotypes. LC-MS/MS and orthogonal partial least squares-discriminant analysis (OPLS-DA) further demonstrated clear distinctions between the peptide profiles of different phenotypes. Heatmap and PMF analyses consistently revealed unique peptide patterns across the varieties. Volcano plot analysis identified seven upregulated peptides-TATTVAGS, PAAGGGGG, PNELLSYSE, SSIEEGGS, GGGVGGPL, NNGGGFSV, and GPGPAPAA-in CMD-resistant plants. These peptides were associated with proteins containing CONSTANS-like zinc finger, C2H2-type, GST N-terminal, Tubby-like F-box, nuclear-localized AT-hook motif, auxin response factor, and C2 domains. Altogether, this study identified peptidome-based biomarkers for screening CMD-resistant varieties; however, further validation using larger samples is necessary.
Collapse
Affiliation(s)
- Wanwisa Siriwan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic and Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic and Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, National Center for Genetic and Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic and Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand.
| |
Collapse
|
4
|
Hamel LP, Poirier-Gravel F, Paré MÈ, Tardif R, Comeau MA, Lavoie PO, Langlois A, Goulet MC, Michaud D, D'Aoust MA. Molecular changes in agroinfiltrated leaves of Nicotiana benthamiana expressing suppressor of silencing P19 and coronavirus-like particles. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40185497 DOI: 10.1111/pbi.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
The production of coronavirus disease 2019 vaccines can be achieved by transient expression of the spike (S) protein of severe acute respiratory syndrome coronavirus 2 in agroinfiltrated leaves of Nicotiana benthamiana. Relying on bacterial vector Agrobacterium tumefaciens, this process is favoured by co-expression of viral silencing suppressor P19. Upon expression, the S protein enters the cell secretory pathway, before being trafficked to the plasma membrane where formation of coronavirus-like particles (CoVLPs) occurs. We previously characterized the effects of influenza virus hemagglutinin forming VLPs through similar processes. However, leaf samples were only collected after 6 days of expression, and it is unknown whether influenza VLPs (HA-VLPs) and CoVLPs induce similar responses. Here, time course sampling was used to profile responses of N. benthamiana leaf cells expressing P19 only, or P19 and the S protein. The latter triggered early but transient activation of the unfolded protein response and waves of transcription factor genes involved in immunity. Accordingly, defence genes were induced with different expression kinetics, including those promoting lignification, terpene biosynthesis, and oxidative stress. Cross-talk between stress hormone pathways also occurred, including repression of jasmonic acid biosynthesis genes after agroinfiltration, and dampening of salicylic acid responses upon S protein accumulation. Overall, HA-VLP- and CoVLP-induced responses broadly overlapped, suggesting nanoparticle production to have the most effects on plant immunity, regardless of the virus surface proteins expressed. Taking advantage of RNAseq inferences, we finally show the co-expression of Kunitz trypsin inhibitors to reduce CoVLP-induced defence and leaf symptoms, with no adverse effect on plant productivity.
Collapse
Affiliation(s)
- Louis-Philippe Hamel
- Medicago Inc., Montréal, Québec, Canada
- Direction Générale de la Recherche, des Programmes et des Partenariats, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, Quebec, Québec, Canada
| | | | | | | | | | - Pierre-Olivier Lavoie
- Medicago Inc., Montréal, Québec, Canada
- Aramis Biotechnologies Inc., Quebec, Québec, Canada
| | - Andréane Langlois
- Centre de recherche et d'innovation sur les végétaux, Département de phytologie, Université Laval, Quebec, Québec, Canada
| | - Marie-Claire Goulet
- Centre de recherche et d'innovation sur les végétaux, Département de phytologie, Université Laval, Quebec, Québec, Canada
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétaux, Département de phytologie, Université Laval, Quebec, Québec, Canada
| | - Marc-André D'Aoust
- Medicago Inc., Montréal, Québec, Canada
- Aramis Biotechnologies Inc., Quebec, Québec, Canada
| |
Collapse
|
5
|
Xiao F, Zhou H, Lin H. Decoding small peptides: Regulators of plant growth and stress resilience. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:596-631. [PMID: 40059863 PMCID: PMC11951405 DOI: 10.1111/jipb.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/26/2025] [Indexed: 03/29/2025]
Abstract
Small peptides (SPs) are pivotal signaling molecules that play essential roles in the precise regulation of plant growth, development, and stress responses. Recent advancements in sequencing technologies, bioinformatics approaches, and biochemical and molecular techniques have significantly enhanced the accuracy of SP identification, unveiling their diverse biological functions in plants. This review provides a comprehensive overview of the characteristics and methodologies for identifying SPs in plants. It highlights recent discoveries regarding the biological roles and signaling pathways of SPs in regulating plant growth, development, and plant-microbial interactions, as well as their contributions to plant resilience under various environmental stresses, including abiotic stress, nutrient deficiencies, and biotic challenges. Additionally, we discuss current insights into the potential applications of SPs and outline future research directions aimed at leveraging these molecules to enhance plant adaptation to environmental challenges. By integrating recent findings, this review lays a foundation for advancing the understanding and utilization of SPs to improve plant resilience and productivity.
Collapse
Affiliation(s)
- Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and TechnologyXinjiang UniversityUrumqi830046China
| | - Huapeng Zhou
- Key Laboratory of Bio‐resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengdu610064China
| | - Honghui Lin
- Key Laboratory of Bio‐resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengdu610064China
| |
Collapse
|
6
|
Sang T, Zhang Z, Liu G, Wang P. Navigating the landscape of plant proteomics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:740-761. [PMID: 39812500 DOI: 10.1111/jipb.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
In plants, proteins are fundamental to virtually all biological processes, such as photosynthesis, signal transduction, metabolic regulation, and stress responses. Studying protein distribution, function, modifications, and interactions at the cellular and tissue levels is critical for unraveling the complexities of these biological pathways. Protein abundance and localization are highly dynamic and vary widely across the proteome, presenting a challenge for global protein quantification and analysis. Mass spectrometry-based proteomics approaches have proven to be powerful tools for addressing this complex issue. In this review, we summarize recent advancements in proteomics research and their applications in plant biology, with an emphasis on the current state and challenges of studying post-translational modifications, single-cell proteomics, and protein-protein interactions. Additionally, we discuss future prospects for plant proteomics, highlighting potential opportunities that proteomics technologies offer in advancing plant biology research.
Collapse
Affiliation(s)
- Tian Sang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen Zhang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Guting Liu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
7
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
8
|
Chatterjee D, Sivashanmugam K. Immunomodulatory peptides: new therapeutic horizons for emerging and re-emerging infectious diseases. Front Microbiol 2024; 15:1505571. [PMID: 39760081 PMCID: PMC11695410 DOI: 10.3389/fmicb.2024.1505571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
The emergence and re-emergence of multi-drug-resistant (MDR) infectious diseases have once again posed a significant global health challenge, largely attributed to the development of bacterial resistance to conventional anti-microbial treatments. To mitigate the risk of drug resistance globally, both antibiotics and immunotherapy are essential. Antimicrobial peptides (AMPs), also referred to as host defense peptides (HDPs), present a promising therapeutic alternative for treating drug-resistant infections due to their various mechanisms of action, which encompass antimicrobial and immunomodulatory effects. Many eukaryotic organisms produce HDPs as a defense mechanism, for example Purothionin from Triticum aestivum plant, Defensins, Cathelicidins, and Histatins from humans and many such peptides are currently the focus of research because of their antibacterial, antiviral and anti-fungicidal properties. This article offers a comprehensive review of the immunomodulatory activities of HDPs derived from eukaryotic organisms including humans, plants, birds, amphibians, reptiles, and marine species along with their mechanisms of action and therapeutic benefits.
Collapse
|
9
|
Hao X, Liu F, Liu L, Wu H, Liang Z, Zhao W, Wang Y, Gu Q, Kang B. Zucchini yellow mosaic virus-induced hypersensitive response is associated with pathogenesis-related 1 protein expression and confers resistance in watermelon. PLANT CELL REPORTS 2024; 43:277. [PMID: 39528740 DOI: 10.1007/s00299-024-03364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE The pathogenesis-related 1 gene of watermelon responds to the infection of ZYMV and contributes to the resistance of its host. Zucchini yellow mosaic virus (ZYMV; family Potyviridae) is a single-stranded positive-sense RNA virus that is a serious threat to cucurbits. Previously, we observed a hypersensitivity response (HR) in the systemic leaves of the 938-16-B watermelon line infected with ZYMV, distinct from the typical HR at infected sites. In this study, we confirmed that ZYMV accumulation in 938-16-B was significantly lower than in the susceptible line H1. Upon inoculation, the entry of ZYMV-eGFP into mesophyll cells is restricted into necrotic spots in leaves, indicating that resistance to ZYMV in 938-16-B is linked to the HR. Further, grafting experiments between 938-16-B and susceptible varieties were performed, and revealed an HR induction in susceptible varieties, suggesting the transfer of resistance signal(s) from 938-16-B to susceptible varieties. Through RNA-sequencing and proteomics analyses of the H1 scions on 938-16-B rootstock, a pathogenesis-related 1 (ClPR1) gene was identified. Specifically, ClPR1 expression is unique to ZYMV-infected 938-16-B. Repression of the expression of ClPR1 prevents an HR in 938-16-B. Conversely, overexpression of ClPR1 in susceptible varieties significantly reduces ZYMV accumulation, but an HR was not induced in susceptible line. Besides the virus, jasmonic acid (JA) can also trigger an HR in 938-16-B. Intriguingly, the expression of ClPR1 (Cla97C02G034020) is induced in both of 938-16-B and H1 by MeJA, rather than salicylic acid. These results suggest that HR is associated with the expression of ClPR1 and contributes to resistance to ZYMV in 938-16-B.
Collapse
Affiliation(s)
- Xiaoyuan Hao
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, Henan, China
| | - Fengnan Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, Henan, China
| | - Liming Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, Henan, China
| | - Huijie Wu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, Henan, China
| | - Zhiling Liang
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, Henan, China
| | - Wei Zhao
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yue Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qinsheng Gu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, Henan, China
| | - Baoshan Kang
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou, 450009, Henan, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, Henan, China.
| |
Collapse
|
10
|
Li J, Yang L, Ding S, Gao M, Yan Y, Yu G, Zheng Y, Liang W. Plant PR1 rescues condensation of the plastid iron-sulfur protein by a fungal effector. NATURE PLANTS 2024; 10:1775-1789. [PMID: 39367256 DOI: 10.1038/s41477-024-01811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024]
Abstract
Plant pathogens secrete numerous effectors to promote host infection, but whether any of these toxic proteins undergoes phase separation to manipulate plant defence and how the host copes with this event remain elusive. Here we show that the effector FolSvp2, which is secreted from the fungal pathogen Fusarium oxysporum f. sp. lycopersici (Fol), translocates a tomato iron-sulfur protein (SlISP) from plastids into effector condensates in planta via phase separation. Relocation of SlISP attenuates plant reactive oxygen species production and thus facilitates Fol invasion. The action of FolSvp2 also requires K205 acetylation that prevents ubiquitination-dependent degradation of this protein in both Fol and plant cells. However, tomato has evolved a defence protein, SlPR1. Apoplastic SlPR1 physically interacts with and inhibits FolSvp2 entry into host cells and, consequently, abolishes its deleterious effect. These findings reveal a previously unknown function of PR1 in countering a new mode of effector action.
Collapse
Affiliation(s)
- Jingtao Li
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Limei Yang
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Shuzhi Ding
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mingming Gao
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yu Yan
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Gang Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaning Zheng
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
11
|
Palukaitis P, Akbarimotlagh M, Astaraki S, Shams-Bakhsh M, Yoon JY. The Forgotten Tobamovirus Genes Encoding the 54 kDa Protein and the 4-6 kDa Proteins. Viruses 2024; 16:1680. [PMID: 39599795 PMCID: PMC11599109 DOI: 10.3390/v16111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
This article reviews the literature concerning the largely forgotten tobamovirus gene products for which no functions have been ascribed. One of these gene products is the 54 kDa protein, representing the RNA-dependent RNA polymerase segment of the 183 kDa protein translated from the I1-subgenomic mRNA, but which has been found only by in vitro translation and not in plants. The other is a collection of small proteins, expressed from alternative reading frames (likely from internal ribosome entry sites) in either or both the movement protein gene or the capsid protein gene. Previously, two small proteins were referred to as the 4-6 kDa proteins, since only single proteins of such size had been characterized from tobacco mosaic virus and tomato mosaic virus genomes. Such putative proteins will be referred to here as P6 proteins, since many new proposed P6 open reading frames could be discerned, from an analysis of 45 of 47 tobamovirus genomes, with a coding capacity of >15 amino acids up to 94 amino acids, whereas other peptides with ≤15 amino acids were not considered here. The distribution of the putative P6 proteins among these tobamoviruses is described, as well as the various classes they fall into, based on their distribution with regard to the organization of other genes in the viral genomes. Models also are presented for possible functions of the 54 kDa protein and the P6 proteins, based on data in the literature.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Masoud Akbarimotlagh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Sajad Astaraki
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Masoud Shams-Bakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
12
|
Kumari D, Prasad BD, Dwivedi P, Sahni S, Kumar M, Alamri S, Adil MF, Alakeel KA. Comprehensive analysis of transcription factor binding sites and expression profiling of rice pathogenesis related genes ( OsPR1). FRONTIERS IN PLANT SCIENCE 2024; 15:1463147. [PMID: 39524559 PMCID: PMC11543534 DOI: 10.3389/fpls.2024.1463147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024]
Abstract
Pathogenesis-related (PR) proteins, found in plants, play a crucial role in responding to both biotic and abiotic stresses and are categorized into 17 distinct families based on their properties and functions. We have conducted a phylogenetic analysis of OsPR1 genes (rice PR1 genes) in conjunction with 58 putative PR1 genes identified in Brachypodium distachyon, Hordeum vulgare, Brassica rapa, and Zea mays through BLASTP predictions. We extensively investigated the responses of the remaining 11 rice PR1 genes, using OsPR1a as a reference, under various stress conditions, including phytohormone treatments (salicylic acid and brassinosteroid [BR]), wounding, and heat stress (HS). In rice, of the 32 predicted OsPR1 genes, 12 have been well-characterized for their roles in disease resistance, while the functions of the remaining genes have not been studied extensively. In our study, we selected an additional 11 OsPR1 genes for further analysis and constructed a phylogenetic tree based on the presence of a 10-amino-acid-long conserved motif within these proteins. The phylogenetic analysis revealed that both OsPR1a from earlier studies and OsPR1-74 from our current study belong to the same clade. These genes consistently exhibit upregulation in response to diverse stress treatments such as biotic stress and abiotic stresses such as heat, drought, and salinity, indicating their potential roles in enhancing stress tolerance in rice. Significantly, this study delves into the previously unexplored role of OsPR1 genes in responding to Brassinosteroid (BR) and heat stress (HS) treatments, confirming their involvement in stress responses through qRT-PCR analysis. We found that seven genes were upregulated by EBR treatment. During heat stress (HS), six and seven genes were upregulated at 1hand 4h HS, respectively. The remaining genes OsPR1-22 and OsPR1-75 were upregulated at 1h but downregulated at 4h HS and under EBR treatment. In contrast, OsPR1-76 was upregulated at both 1h and 4h HS, but downregulated under EBR treatment. Promoters of PR1 genes in rice and other crops are rich in transcription factor binding sites (TFBSs) and feature a conserved Cysteine-rich secretory protein (SCP or CAP) motif. This study advances our understanding of PR1 gene regulation and its potential to enhance stress tolerance in rice.
Collapse
Affiliation(s)
- Diksha Kumari
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Bishun Deo Prasad
- Department of Agricultural Biotechnology & Molecular Biology, College of Basic Sciences and Humanities (CBS&H), Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Sangita Sahni
- Department of Plant Pathology, Tirhut College of Agriculture (TCA), Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India
| | - Mankesh Kumar
- Department of Plant Breeding & Genetics, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Khaled A. Alakeel
- Department: Advanced Agricultural & Food Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Sun PF, Lu MR, Liu YC, Shaw BJP, Lin CP, Chen HW, Lin YF, Hoh DZ, Ke HM, Wang IF, Lu MYJ, Young EB, Millett J, Kirschner R, Lin YCJ, Chen YL, Tsai IJ. An acidophilic fungus promotes prey digestion in a carnivorous plant. Nat Microbiol 2024; 9:2522-2537. [PMID: 39090391 PMCID: PMC11445062 DOI: 10.1038/s41564-024-01766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
Leaves of the carnivorous sundew plants (Drosera spp.) secrete mucilage that hosts microorganisms, but whether this microbiota contributes to prey digestion is unclear. We identified the acidophilic fungus Acrodontium crateriforme as the dominant species in the mucilage microbial communities, thriving in multiple sundew species across the global range. The fungus grows and sporulates on sundew glands as its preferred acidic environment, and its presence in traps increased the prey digestion process. A. crateriforme has a reduced genome similar to other symbiotic fungi. During A. crateriforme-Drosera spatulata coexistence and digestion of prey insects, transcriptomes revealed significant gene co-option in both partners. Holobiont expression patterns during prey digestion further revealed synergistic effects in several gene families including fungal aspartic and sedolisin peptidases, facilitating prey digestion in leaves, as well as nutrient assimilation and jasmonate signalling pathway expression. This study establishes that botanical carnivory is defined by adaptations involving microbial partners and interspecies interactions.
Collapse
Affiliation(s)
- Pei-Feng Sun
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Min R Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Brandon J P Shaw
- Geography and Environment, Loughborough University, Loughborough, UK
- NERC Environmental Omics Facility (NEOF), NEOF Visitor Facility, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Chieh-Ping Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hung-Wei Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Fei Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Daphne Z Hoh
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - I-Fan Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- University Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Erica B Young
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jonathan Millett
- Geography and Environment, Loughborough University, Loughborough, UK
| | - Roland Kirschner
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Ying-Chung Jimmy Lin
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- University Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
14
|
Matsuzawa M, Nakayama T, Sato MH, Hirano T. Systematic expression analysis of cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 protein (CAP) superfamily in Arabidopsis. PLANT DIRECT 2024; 8:e70003. [PMID: 39385761 PMCID: PMC11464146 DOI: 10.1002/pld3.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024]
Abstract
The Cysteine-rich secretory proteins (CRISPS), Antigen 5 (Ag5), and Pathogenesis-related 1 (PR-1) protein (CAP) superfamily members are found in multiple eukaryotic organisms, including yeasts, animals, and plants. Although one of the plant CAP family genes, PR-1 is known to respond to pathogen infection in plants, the functions of other CAP family genes in Arabidopsis remain largely unknown. In this study, we conducted a comprehensive analysis of the similarities, loci, and expression patterns of 22 Arabidopsis CAP genes/proteins, providing a clue to elucidate their molecular functions. According to the promoter-β-glucuronidase (GUS) analysis, members of the Arabidopsis CAP family were expressed in various young tissues or organs, such as root and shoot meristems, reproductive tissues, and particularly at the lateral root initiation site before the formation of the lateral root primordium, with distinct expression specificity. In particular, CAP51, CAP52, and CAP53 were specifically expressed in the cortical cells at the lateral root developing regions, suggesting that these genes may function in lateral root development. Thus, the expression patterns of Arabidopsis CAP family genes suggest that CAP family proteins may have certain function in the expressed organs or tissues in Arabidopsis plant.
Collapse
Affiliation(s)
- Megumi Matsuzawa
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| | - Takumi Nakayama
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| | - Masa H. Sato
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| | - Tomoko Hirano
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| |
Collapse
|
15
|
He T, Chen L, Wu Y, Wang J, Wu Q, Sun J, Ding C, Zhou T, Chen L, Jin A, Li Y, Zhu Q. Combined Metabolome and Transcriptome Analyses of Maize Leaves Reveal Global Effect of Biochar on Mechanisms Involved in Anti-Herbivory to Spodoptera frugiperda. Metabolites 2024; 14:498. [PMID: 39330505 PMCID: PMC11433984 DOI: 10.3390/metabo14090498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Fall armyworm (FAW, Spodoptera frugiperda) has now spread to more than 26 Chinese provinces. The government is working with farmers and researchers to find ways to prevent and control this pest. The use of biochar is one of the economic and environmentally friendly strategies to increase plant growth and improve pest resistance. We tested four v/v combinations of bamboo charcoal with coconut bran [BC1 (10:1), BC2(30:1), BC3(50:1)] against a control (CK) in maize. We found that plant height, stem thickness, fresh weight and chlorophyll content were significantly higher in BC2, in addition to the lowest FAW survival %. We then compared the metabolome and transcriptome profiles of BC2 and CK maize plants under FAW herbivory. Our results show that the levels of flavonoids, amino acids and derivatives, nucleotides and derivatives and most phenolic acids decreased, while terpenoids, organic acids, lipids and defense-related hormones increased in BC-grown maize leaves. Transcriptome sequencing revealed consistent expression profiles of genes enriched in these pathways. We also observed the increased expression of genes related to abscisic acid, jasmonic acid, auxin and MAPK signaling. Based on these observations, we discussed the possible pathways involved in maize against FAW herbivory. We conclude that bamboo charcoal induces anti-herbivory responses in maize leaves.
Collapse
Affiliation(s)
- Tianjun He
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Lin Chen
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Yingjun Wu
- Ecological Forestry Development Center of Suichang County, Lishui 323300, China;
| | - Jinchao Wang
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| | - Quancong Wu
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Jiahao Sun
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Chaohong Ding
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Tianxing Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Limin Chen
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Aiwu Jin
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| | - Yang Li
- Soil Fertilizer and Plant Protection Station of Lishui City, Lishui 323000, China
| | - Qianggen Zhu
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| |
Collapse
|
16
|
Liu Y, Jackson E, Liu X, Huang X, van der Hoorn RAL, Zhang Y, Li X. Proteolysis in plant immunity. THE PLANT CELL 2024; 36:3099-3115. [PMID: 38723588 PMCID: PMC11371161 DOI: 10.1093/plcell/koae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/23/2024] [Indexed: 09/05/2024]
Abstract
Compared with transcription and translation, protein degradation machineries can act faster and be targeted to different subcellular compartments, enabling immediate regulation of signaling events. It is therefore not surprising that proteolysis has been used extensively to control homeostasis of key regulators in different biological processes and pathways. Over the past decades, numerous studies have shown that proteolysis, where proteins are broken down to peptides or amino acids through ubiquitin-mediated degradation systems and proteases, is a key regulatory mechanism to control plant immunity output. Here, we briefly summarize the roles various proteases play during defence activation, focusing on recent findings. We also update the latest progress of ubiquitin-mediated degradation systems in modulating immunity by targeting plant membrane-localized pattern recognition receptors, intracellular nucleotide-binding domain leucine-rich repeat receptors, and downstream signaling components. Additionally, we highlight recent studies showcasing the importance of proteolysis in maintaining broad-spectrum resistance without obvious yield reduction, opening new directions for engineering elite crops that are resistant to a wide range of pathogens with high yield.
Collapse
Affiliation(s)
- Yanan Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Edan Jackson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xueru Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xingchuan Huang
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | | | - Yuelin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
17
|
Thomas WJW, Amas JC, Dolatabadian A, Huang S, Zhang F, Zandberg JD, Neik TX, Edwards D, Batley J. Recent advances in the improvement of genetic resistance against disease in vegetable crops. PLANT PHYSIOLOGY 2024; 196:32-46. [PMID: 38796840 PMCID: PMC11376385 DOI: 10.1093/plphys/kiae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/10/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Affiliation(s)
- William J W Thomas
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Junrey C Amas
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Aria Dolatabadian
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Fangning Zhang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jaco D Zandberg
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Ting Xiang Neik
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore
- NUS Agritech Centre, National University of Singapore, Singapore, 118258, Republic of Singapore
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
- Centre for Applied Bioinformatics, The University of Western Australia, Perth, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| |
Collapse
|
18
|
Huang G, Chang X, Hu Y, Li F, Wang N, Li R. SDE19, a SEC-dependent effector from 'Candidatus Liberibacter asiaticus' suppresses plant immunity and targets Citrus sinensis Sec12 to interfere with vesicle trafficking. PLoS Pathog 2024; 20:e1012542. [PMID: 39255299 DOI: 10.1371/journal.ppat.1012542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Citrus huanglongbing (HLB), which is caused by the phloem-colonizing bacteria Candidatus Liberibacter asiaticus (CLas), poses a significant threat to citrus production worldwide. The pathogenicity mechanism of HLB remains poorly understood. SEC-dependent effectors (SDEs) have been suggested to play critical roles in the interaction between citrus and CLas. Here, we explored the function of CLIBASIA_05320 (SDE19), a core SDE from CLas, and its interaction with its host target. Our data revealed that SDE19 is expressed at higher level during infection of citrus than that during infection of the Asian citrus psyllid. Subcellular localization assays showed that SDE19 is localized in the nucleus and cytoplasm and is capable of moving from cell to cell in Nicotiana benthamiana. To investigate whether SDE19 facilitates pathogen infection, we generated transgenic Arabidopsis thaliana and citrus plants overexpressing SDE19. Transgenic A. thaliana and citrus plants were more susceptible to Pseudomonas syringae pv. tomato (Pst) and Xanthomonas citri subsp. citri (Xcc), respectively. In addition, RNA-seq analysis demonstrated that overexpression of SDE19 resulted in a reprogramming of expression of genes related to biotic stimulus responses. SDE19 interacts with Citrus sinensis Sec12, a guanine nucleotide exchange factor responsible for the assembly of plant COPII (coat protein II)-coated vesicles, which mediate vesicle trafficking from the ER to the Golgi. SDE19 colocalizes with Sec12 in the ER by binding to its N-terminal catalytic region, affecting the stability of Sec12 through the 26S proteasome. This interaction hinders the secretion of apoplastic defense-related proteins such as PR1, P69B, GmGIP1, and RCR3. Furthermore, the secretion of PR1 and callose deposition is decreased in SDE19-transgenic A. thaliana. Taken together, SDE19 is a novel virulent SDE secreted by CLas that interacts with Sec12 to disrupt vesicle trafficking, inhibit defense-related proteins secretion, and promote bacterial infection. This study sheds light on how CLas manipulates the host vesicle trafficking pathway to suppress the secretion of defense-related proteins and interfere with plant immunity.
Collapse
Affiliation(s)
- Guiyan Huang
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Xiaopeng Chang
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Yanan Hu
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Fuxuan Li
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Ruimin Li
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| |
Collapse
|
19
|
Zribi I, Ghorbel M, Jrad O, Masmoudi K, Brini F. The wheat pathogenesis-related protein (TdPR1.2) enhanced tolerance to abiotic and biotic stresses in transgenic Arabidopsis plants. PROTOPLASMA 2024; 261:1035-1049. [PMID: 38687397 DOI: 10.1007/s00709-024-01955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
In plants, the pathogenesis-related (PR) proteins have been identified as important regulators of biotic and abiotic stresses. PR proteins branch out into 19 different classes (PR1-PR19). Basically, all PR proteins display a well-established method of action, with the notable exception of PR1, which is a member of a large superfamily of proteins with a common CAP domain. We have previously isolated and characterized the first PR1 from durum wheat, called TdPR-1.2. In the current research work, TdPR1.2 gene was used to highlight its functional activities under various abiotic (sodium chloride (100 mM NaCl) and oxidative stresses (3 mM H2O2), hormonal salicylic acid (SA), abscisic acid (ABA) and jasmonic acid (JA), and abiotic stresses (Botrytis cinerea and Alternaria solani). Enhancement survival index was detected in Arabidopsis transgenic plants expressing TdPR1.2 gene. Moreover, quantitative real-time reverse transcription PCR (qRT-PCR) analysis demonstrated induction of antioxidant enzymes such as catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). It equally revealed a decrease of malondialdehyde (MDA) as well as hydrogen peroxide (H2O2) levels in transgenic Arabidopsis plants compared to control lines, confirming the role of TdPR1.2 in terms of alleviating biotic and abiotic stresses in transgenic Arabidopsis plants. Eventually, RT-qPCR results showed a higher expression of biotic stress-related genes (PR1 and PDF1.2) in addition to a downregulation of the wound-related gene (LOX3 and VSP2) in transgenic lines treated with jasmonic acid (JA). Notably, these findings provide evidence for the outstanding functions of PR1.2 from durum wheat which can be further invested to boost tolerance in crop plants to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Ikram Zribi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, BP "1177" 3018, Sfax, Tunisia
| | - Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, 81451, Ha'il City, Saudi Arabia
| | - Olfa Jrad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, BP "1177" 3018, Sfax, Tunisia
| | - Khaled Masmoudi
- College of Food and Agriculture, Arid Land Department, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, BP "1177" 3018, Sfax, Tunisia.
| |
Collapse
|
20
|
Nakagami S, Wang Z, Han X, Tsuda K. Regulation of Bacterial Growth and Behavior by Host Plant. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:69-96. [PMID: 38857544 DOI: 10.1146/annurev-phyto-010824-023359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Plants are associated with diverse bacteria in nature. Some bacteria are pathogens that decrease plant fitness, and others are beneficial bacteria that promote plant growth and stress resistance. Emerging evidence also suggests that plant-associated commensal bacteria collectively contribute to plant health and are essential for plant survival in nature. Bacteria with different characteristics simultaneously colonize plant tissues. Thus, plants need to accommodate bacteria that provide service to the host plants, but they need to defend against pathogens at the same time. How do plants achieve this? In this review, we summarize how plants use physical barriers, control common goods such as water and nutrients, and produce antibacterial molecules to regulate bacterial growth and behavior. Furthermore, we highlight that plants use specialized metabolites that support or inhibit specific bacteria, thereby selectively recruiting plant-associated bacterial communities and regulating their function. We also raise important questions that need to be addressed to improve our understanding of plant-bacteria interactions.
Collapse
Affiliation(s)
- Satoru Nakagami
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Zhe Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Xiaowei Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Kenichi Tsuda
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| |
Collapse
|
21
|
Yu X, Huang Z, Cheng Y, Hu K, Zhou Y, Yao H, Shen J, Huang Y, Zhuang X, Cai Y. Comparative Genomics Screens Identify a Novel Small Secretory Peptide, SlSolP12, which Activates Both Local and Systemic Immune Response in Tomatoes and Exhibits Broad-Spectrum Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18507-18519. [PMID: 39113497 DOI: 10.1021/acs.jafc.4c03633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Small secreted peptides (SSPs) are essential for defense mechanisms in plant-microbe interactions, acting as danger-associated molecular patterns (DAMPs). Despite the first discovery of SSPs over three decades ago, only a limited number of SSP families, particularly within Solanaceae plants, have been identified due to inefficient approaches. This study employed comparative genomics screens with Solanaceae proteomes (tomato, tobacco, and pepper) to discover a novel SSP family, SolP. Bioinformatics analysis suggests that SolP may serve as an endogenous signal initiating the plant PTI response. Interestingly, SolP family members from tomato, tobacco, and pepper share an identical sequence (VTSNALALVNRFAD), named SlSolP12 (also referred to as NtSolP15 or CaSolP1). Biochemical and phenotypic analyses revealed that synthetic SlSolP12 peptide triggers multiple defense responses: ROS burst, MAPK activation, callose deposition, stomatal closure, and expression of immune defense genes. Furthermore, SlSolP12 enhances systemic resistance against Botrytis cinerea infection in tomato plants and interferes with classical peptides, flg22 and Systemin, which modulate the immune response. Remarkably, SolP12 activates ROS in diverse plant species, such as Arabidopsis thaliana, soybean, and rice, showing a broad spectrum of biological activities. This study provides valuable approaches for identifying endogenous SSPs and highlights SlSolP12 as a novel DAMP that could serve as a useful target for crop protection.
Collapse
Affiliation(s)
- Xiaosong Yu
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Zhongchao Huang
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Yuanyuan Cheng
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Keyi Hu
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Yan Zhou
- Chengdu Lusyno Biotechnology Co., Ltd., Chengdu 610000, Sichuan, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 310000, Zhejiang, China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Xiaohong Zhuang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| |
Collapse
|
22
|
Del Corpo D, Coculo D, Greco M, De Lorenzo G, Lionetti V. Pull the fuzes: Processing protein precursors to generate apoplastic danger signals for triggering plant immunity. PLANT COMMUNICATIONS 2024; 5:100931. [PMID: 38689495 PMCID: PMC11371470 DOI: 10.1016/j.xplc.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The apoplast is one of the first cellular compartments outside the plasma membrane encountered by phytopathogenic microbes in the early stages of plant tissue invasion. Plants have developed sophisticated surveillance mechanisms to sense danger events at the cell surface and promptly activate immunity. However, a fine tuning of the activation of immune pathways is necessary to mount a robust and effective defense response. Several endogenous proteins and enzymes are synthesized as inactive precursors, and their post-translational processing has emerged as a critical mechanism for triggering alarms in the apoplast. In this review, we focus on the precursors of phytocytokines, cell wall remodeling enzymes, and proteases. The physiological events that convert inactive precursors into immunomodulatory active peptides or enzymes are described. This review also explores the functional synergies among phytocytokines, cell wall damage-associated molecular patterns, and remodeling, highlighting their roles in boosting extracellular immunity and reinforcing defenses against pests.
Collapse
Affiliation(s)
- Daniele Del Corpo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Daniele Coculo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Marco Greco
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
23
|
Han Z, Schneiter R. Dual functionality of pathogenesis-related proteins: defensive role in plants versus immunosuppressive role in pathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1368467. [PMID: 39157512 PMCID: PMC11327054 DOI: 10.3389/fpls.2024.1368467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024]
Abstract
Plants respond to pathogen exposure by activating the expression of a group of defense-related proteins known as Pathogenesis-Related (PR) proteins, initially discovered in the 1970s. These PR proteins are categorized into 17 distinct families, denoted as PR1-PR17. Predominantly secreted, most of these proteins execute their defensive roles within the apoplastic space. Several PR proteins possess well-defined enzymatic functions, such as β-glucanase (PR2), chitinases (PR3, 4, 8, 11), proteinase (PR7), or RNase (PR10). Enhanced resistance against pathogens is observed upon PR protein overexpression, while their downregulation renders plants more susceptible to pathogen infections. Many of these proteins exhibit antimicrobial activity in vitro, and due to their compact size, some are classified as antimicrobial peptides. Recent research has unveiled that phytopathogens, including nematodes, fungi, and phytophthora, employ analogous proteins to bolster their virulence and suppress plant immunity. This raises a fundamental question: how can these conserved proteins act as antimicrobial agents when produced by the host plant but simultaneously suppress plant immunity when generated by the pathogen? In this hypothesis, we investigate PR proteins produced by pathogens, which we term "PR-like proteins," and explore potential mechanisms by which this class of virulence factors operate. Preliminary data suggests that these proteins may form complexes with the host's own PR proteins, thereby interfering with their defense-related functions. This analysis sheds light on the intriguing interplay between plant and pathogen-derived PR-like proteins, providing fresh insights into the intricate mechanisms governing plant-pathogen interactions.
Collapse
Affiliation(s)
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
24
|
Pečenková T, Potocký M, Stegmann M. More than meets the eye: knowns and unknowns of the trafficking of small secreted proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3713-3730. [PMID: 38693754 DOI: 10.1093/jxb/erae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
Small proteins represent a significant portion of the cargo transported through plant secretory pathways, playing crucial roles in developmental processes, fertilization, and responses to environmental stresses. Despite the importance of small secreted proteins, substantial knowledge gaps persist regarding the regulatory mechanisms governing their trafficking along the secretory pathway, and their ultimate localization or destination. To address these gaps, we conducted a comprehensive literature review, focusing particularly on trafficking and localization of Arabidopsis small secreted proteins with potential biochemical and/or signaling roles in the extracellular space, typically those within the size range of 101-200 amino acids. Our investigation reveals that while at least six members of the 21 mentioned families have a confirmed extracellular localization, eight exhibit intracellular localization, including cytoplasmic, nuclear, and chloroplastic locations, despite the presence of N-terminal signal peptides. Further investigation into the trafficking and secretion mechanisms of small protein cargo could not only deepen our understanding of plant cell biology and physiology but also provide a foundation for genetic manipulation strategies leading to more efficient plant cultivation.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Stegmann
- Technical University Munich, School of Life Sciences, Phytopathology, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
25
|
Hamel L, Tardif R, Poirier‐Gravel F, Rasoolizadeh A, Brosseau C, Giroux G, Lucier J, Goulet M, Barrada A, Paré M, Roussel É, Comeau M, Lavoie P, Moffett P, Michaud D, D'Aoust M. Molecular responses of agroinfiltrated Nicotiana benthamiana leaves expressing suppressor of silencing P19 and influenza virus-like particles. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1078-1100. [PMID: 38041470 PMCID: PMC11022802 DOI: 10.1111/pbi.14247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
The production of influenza vaccines in plants is achieved through transient expression of viral hemagglutinins (HAs), a process mediated by the bacterial vector Agrobacterium tumefaciens. HA proteins are then produced and matured through the secretory pathway of plant cells, before being trafficked to the plasma membrane where they induce formation of virus-like particles (VLPs). Production of VLPs unavoidably impacts plant cells, as do viral suppressors of RNA silencing (VSRs) that are co-expressed to increase recombinant protein yields. However, little information is available on host molecular responses to foreign protein expression. This work provides a comprehensive overview of molecular changes occurring in Nicotiana benthamiana leaf cells transiently expressing the VSR P19, or co-expressing P19 and an influenza HA. Our data identifies general responses to Agrobacterium-mediated expression of foreign proteins, including shutdown of chloroplast gene expression, activation of oxidative stress responses and reinforcement of the plant cell wall through lignification. Our results also indicate that P19 expression promotes salicylic acid (SA) signalling, a process dampened by co-expression of the HA protein. While reducing P19 level, HA expression also induces specific signatures, with effects on lipid metabolism, lipid distribution within membranes and oxylipin-related signalling. When producing VLPs, dampening of P19 responses thus likely results from lower expression of the VSR, crosstalk between SA and oxylipin pathways, or a combination of both outcomes. Consistent with the upregulation of oxidative stress responses, we finally show that reduction of oxidative stress damage through exogenous application of ascorbic acid improves plant biomass quality during production of VLPs.
Collapse
Affiliation(s)
| | | | | | - Asieh Rasoolizadeh
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Chantal Brosseau
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Geneviève Giroux
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Jean‐François Lucier
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Marie‐Claire Goulet
- Centre de Recherche et d'innovation sur les Végétaux, Département de PhytologieUniversité LavalQuébecQuébecCanada
| | - Adam Barrada
- Centre de Recherche et d'innovation sur les Végétaux, Département de PhytologieUniversité LavalQuébecQuébecCanada
| | | | | | | | | | - Peter Moffett
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Dominique Michaud
- Centre de Recherche et d'innovation sur les Végétaux, Département de PhytologieUniversité LavalQuébecQuébecCanada
| | | |
Collapse
|
26
|
Šimkovicová M, Kramer G, Rep M, Takken FLW. Tomato R-gene-mediated resistance against Fusarium wilt originates in roots and extends to shoots via xylem to limit pathogen colonization. FRONTIERS IN PLANT SCIENCE 2024; 15:1384431. [PMID: 38751834 PMCID: PMC11094230 DOI: 10.3389/fpls.2024.1384431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Vascular wilt disease, caused by the soil-borne fungus Fusarium oxysporum (Fo), poses a threat to many crop species. Four different tomato resistance (R) genes (I-1, I-2, I-3, and I-7) have been identified to confer protection against Fo f.sp. lycopersici (Fol). These I genes are root-expressed and mount an immune response upon perception of the invading fungus. Despite immune activation, Fol is still able to colonize the xylem vessels of resistant tomato lines. Yet, the fungus remains localized in the vessels and does not colonize adjacent tissues or cause disease. The molecular mechanism constraining Fol in the vascular system of the stem remains unclear. We here demonstrate that an I-2-resistant rootstock protects a susceptible scion from Fusarium wilt, notwithstanding fungal colonization of the susceptible scion. Proteomic analyses revealed the presence of fungal effectors in the xylem sap of infected plants, showing that the lack of fungal pathogenicity is not due to its inability to express its virulence genes. To identify mobile root-derived proteins, potentially involved in controlling fungal proliferation, comparative xylem sap proteomics was performed. We identified distinct pathogenesis-related (PR) protein profiles in xylem sap from Fol-inoculated I-1, I-2, I-3, and I-7 resistant lines. Despite structural diversity, all four immune receptors trigger the accumulation of a common set of four PR proteins: PR-5x, PR-P2, and two glucan endo-1,3-β-D-glucosidases. This research provides insights into Fusarium resistance mechanisms and identifies a core set of proteins whose abundance correlates with defense against Fusarium wilt.
Collapse
Affiliation(s)
- Margarita Šimkovicová
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Frank L. W. Takken
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Dagah OMA, Silaa BB, Zhu M, Pan Q, Qi L, Liu X, Liu Y, Peng W, Ullah Z, Yudas AF, Muhammad A, Zhang X, Lu J. Exploring Immune Redox Modulation in Bacterial Infections: Insights into Thioredoxin-Mediated Interactions and Implications for Understanding Host-Pathogen Dynamics. Antioxidants (Basel) 2024; 13:545. [PMID: 38790650 PMCID: PMC11117976 DOI: 10.3390/antiox13050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Bacterial infections trigger a multifaceted interplay between inflammatory mediators and redox regulation. Recently, accumulating evidence has shown that redox signaling plays a significant role in immune initiation and subsequent immune cell functions. This review addresses the crucial role of the thioredoxin (Trx) system in the initiation of immune reactions and regulation of inflammatory responses during bacterial infections. Downstream signaling pathways in various immune cells involve thiol-dependent redox regulation, highlighting the pivotal roles of thiol redox systems in defense mechanisms. Conversely, the survival and virulence of pathogenic bacteria are enhanced by their ability to counteract oxidative stress and immune attacks. This is achieved through the reduction of oxidized proteins and the modulation of redox-sensitive signaling pathways, which are functions of the Trx system, thereby fortifying bacterial resistance. Moreover, some selenium/sulfur-containing compounds could potentially be developed into targeted therapeutic interventions for pathogenic bacteria. Taken together, the Trx system is a key player in redox regulation during bacterial infection, and contributes to host-pathogen interactions, offering valuable insights for future research and therapeutic development.
Collapse
Affiliation(s)
- Omer M. A. Dagah
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Billton Bryson Silaa
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Minghui Zhu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Qiu Pan
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Linlin Qi
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Xinyu Liu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Yuqi Liu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Wenjing Peng
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Zakir Ullah
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Appolonia F. Yudas
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Amir Muhammad
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | | | - Jun Lu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| |
Collapse
|
28
|
Zhang W, Planas-Marquès M, Mazier M, Šimkovicová M, Rocafort M, Mantz M, Huesgen PF, Takken FLW, Stintzi A, Schaller A, Coll NS, Valls M. The tomato P69 subtilase family is involved in resistance to bacterial wilt. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:388-404. [PMID: 38150324 DOI: 10.1111/tpj.16613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
The intercellular space or apoplast constitutes the main interface in plant-pathogen interactions. Apoplastic subtilisin-like proteases-subtilases-may play an important role in defence and they have been identified as targets of pathogen-secreted effector proteins. Here, we characterise the role of the Solanaceae-specific P69 subtilase family in the interaction between tomato and the vascular bacterial wilt pathogen Ralstonia solanacearum. R. solanacearum infection post-translationally activated several tomato P69s. Among them, P69D was exclusively activated in tomato plants resistant to R. solanacearum. In vitro experiments showed that P69D activation by prodomain removal occurred in an autocatalytic and intramolecular reaction that does not rely on the residue upstream of the processing site. Importantly P69D-deficient tomato plants were more susceptible to bacterial wilt and transient expression of P69B, D and G in Nicotiana benthamiana limited proliferation of R. solanacearum. Our study demonstrates that P69s have conserved features but diverse functions in tomato and that P69D is involved in resistance to R. solanacearum but not to other vascular pathogens like Fusarium oxysporum.
Collapse
Affiliation(s)
- Weiqi Zhang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Marc Planas-Marquès
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | - Margarita Šimkovicová
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Mercedes Rocafort
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Frank L W Takken
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
29
|
Datta T, Kumar RS, Sinha H, Trivedi PK. Small but mighty: Peptides regulating abiotic stress responses in plants. PLANT, CELL & ENVIRONMENT 2024; 47:1207-1223. [PMID: 38164016 DOI: 10.1111/pce.14792] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Throughout evolution, plants have developed strategies to confront and alleviate the detrimental impacts of abiotic stresses on their growth and development. The combat strategies involve intricate molecular networks and a spectrum of early and late stress-responsive pathways. Plant peptides, consisting of fewer than 100 amino acid residues, are at the forefront of these responses, serving as pivotal signalling molecules. These peptides, with roles similar to phytohormones, intricately regulate plant growth, development and facilitate essential cell-to-cell communications. Numerous studies underscore the significant role of these small peptides in coordinating diverse signalling events triggered by environmental challenges. Originating from the proteolytic processing of larger protein precursors or directly translated from small open reading frames, including microRNA (miRNA) encoded peptides from primary miRNA, these peptides exert their biological functions through binding with membrane-embedded receptor-like kinases. This interaction initiates downstream cellular signalling cascades, often involving major phytohormones or reactive oxygen species-mediated mechanisms. Despite these advances, the precise modes of action for numerous other small peptides remain to be fully elucidated. In this review, we delve into the dynamics of stress physiology, mainly focusing on the roles of major small signalling peptides, shedding light on their significance in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Tapasya Datta
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Ravi S Kumar
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hiteshwari Sinha
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prabodh K Trivedi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
30
|
Zhu F, Cao MY, Zhang QP, Mohan R, Schar J, Mitchell M, Chen H, Liu F, Wang D, Fu ZQ. Join the green team: Inducers of plant immunity in the plant disease sustainable control toolbox. J Adv Res 2024; 57:15-42. [PMID: 37142184 PMCID: PMC10918366 DOI: 10.1016/j.jare.2023.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Crops are constantly attacked by various pathogens. These pathogenic microorganisms, such as fungi, oomycetes, bacteria, viruses, and nematodes, threaten global food security by causing detrimental crop diseases that generate tremendous quality and yield losses worldwide. Chemical pesticides have undoubtedly reduced crop damage; however, in addition to increasing the cost of agricultural production, the extensive use of chemical pesticides comes with environmental and social costs. Therefore, it is necessary to vigorously develop sustainable disease prevention and control strategies to promote the transition from traditional chemical control to modern green technologies. Plants possess sophisticated and efficient defense mechanisms against a wide range of pathogens naturally. Immune induction technology based on plant immunity inducers can prime plant defense mechanisms and greatly decrease the occurrence and severity of plant diseases. Reducing the use of agrochemicals is an effective way to minimize environmental pollution and promote agricultural safety. AIM OF REVIEW The purpose of this workis to offer valuable insights into the current understanding and future research perspectives of plant immunity inducers and their uses in plant disease control, ecological and environmental protection, and sustainable development of agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we have introduced the concepts of sustainable and environment-friendly concepts of green disease prevention and control technologies based on plant immunity inducers. This article comprehensively summarizes these recent advances, emphasizes the importance of sustainable disease prevention and control technologies for food security, and highlights the diverse functions of plant immunity inducers-mediated disease resistance. The challenges encountered in the potential applications of plant immunity inducers and future research orientation are also discussed.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Meng-Yao Cao
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi-Ping Zhang
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | | | - Jacob Schar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
31
|
Noel K, Wolf IR, Hughes D, Valente GT, Qi A, Huang YJ, Fitt BDL, Stotz HU. Transcriptomics of temperature-sensitive R gene-mediated resistance identifies a WAKL10 protein interaction network. Sci Rep 2024; 14:5023. [PMID: 38424101 PMCID: PMC10904819 DOI: 10.1038/s41598-024-53643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
Understanding temperature-sensitivity of R gene-mediated resistance against apoplastic pathogens is important for sustainable food production in the face of global warming. Here, we show that resistance of Brassica napus cotyledons against Leptosphaeria maculans was temperature-sensitive in introgression line Topas-Rlm7 but temperature-resilient in Topas-Rlm4. A set of 1,646 host genes was differentially expressed in Topas-Rlm4 and Topas-Rlm7 in response to temperature. Amongst these were three WAKL10 genes, including BnaA07g20220D, representing the temperature-sensitive Rlm7-1 allele and Rlm4. Network analysis identified a WAKL10 protein interaction cluster specifically for Topas-Rlm7 at 25 °C. Diffusion analysis of the Topas-Rlm4 network identified WRKY22 as a putative regulatory target of the ESCRT-III complex-associated protein VPS60.1, which belongs to the WAKL10 protein interaction community. Combined enrichment analysis of gene ontology terms considering gene expression and network data linked vesicle-mediated transport to defence. Thus, dysregulation of effector-triggered defence in Topas-Rlm7 disrupts vesicle-associated resistance against the apoplastic pathogen L. maculans.
Collapse
Affiliation(s)
- Katherine Noel
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, AL10 9AB, UK.
- LS Plant Breeding, North Barn, Manor Farm, Milton Road, Cambridge, CB24 9NG, UK.
| | - Ivan R Wolf
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, 28223, USA
| | - David Hughes
- Intelligent Data Ecosystems, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Guilherme T Valente
- School of Medicine, São Paulo State University - UNESP, Botocatu, SP, 18618687, Brazil
| | - Aiming Qi
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Yong-Ju Huang
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Bruce D L Fitt
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Henrik U Stotz
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| |
Collapse
|
32
|
Schrader M. Origins, Technological Advancement, and Applications of Peptidomics. Methods Mol Biol 2024; 2758:3-47. [PMID: 38549006 DOI: 10.1007/978-1-0716-3646-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Peptidomics is the comprehensive characterization of peptides from biological sources instead of heading for a few single peptides in former peptide research. Mass spectrometry allows to detect a multitude of peptides in complex mixtures and thus enables new strategies leading to peptidomics. The term was established in the year 2001, and up to now, this new field has grown to over 3000 publications. Analytical techniques originally developed for fast and comprehensive analysis of peptides in proteomics were specifically adjusted for peptidomics. Although it is thus closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. Fundamental technological advancements of peptidomics since have occurred in mass spectrometry and data processing, including quantification, and more slightly in separation technology. Different strategies and diverse sources of peptidomes are mentioned by numerous applications, such as discovery of neuropeptides and other bioactive peptides, including the use of biochemical assays. Furthermore, food and plant peptidomics are introduced similarly. Additionally, applications with a clinical focus are included, comprising biomarker discovery as well as immunopeptidomics. This overview extensively reviews recent methods, strategies, and applications including links to all other chapters of this book.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| |
Collapse
|
33
|
Jian Y, Gong D, Wang Z, Liu L, He J, Han X, Tsuda K. How plants manage pathogen infection. EMBO Rep 2024; 25:31-44. [PMID: 38177909 PMCID: PMC10897293 DOI: 10.1038/s44319-023-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
To combat microbial pathogens, plants have evolved specific immune responses that can be divided into three essential steps: microbial recognition by immune receptors, signal transduction within plant cells, and immune execution directly suppressing pathogens. During the past three decades, many plant immune receptors and signaling components and their mode of action have been revealed, markedly advancing our understanding of the first two steps. Activation of immune signaling results in physical and chemical actions that actually stop pathogen infection. Nevertheless, this third step of plant immunity is under explored. In addition to immune execution by plants, recent evidence suggests that the plant microbiota, which is considered an additional layer of the plant immune system, also plays a critical role in direct pathogen suppression. In this review, we summarize the current understanding of how plant immunity as well as microbiota control pathogen growth and behavior and highlight outstanding questions that need to be answered.
Collapse
Affiliation(s)
- Yinan Jian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhe Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Lijun Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Jingjing He
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Xiaowei Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| |
Collapse
|
34
|
Pečenková T, Potocký M. Small secreted proteins and exocytosis regulators: do they go along? PLANT SIGNALING & BEHAVIOR 2023; 18:2163340. [PMID: 36774640 PMCID: PMC9930824 DOI: 10.1080/15592324.2022.2163340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Small secreted proteins play an important role in plant development, as well as in reactions to changes in the environment. In Arabidopsis thaliana, they are predominantly members of highly expanded families, such as the pathogenesis-related (PR) 1-like protein family, whose most studied member PR1 is involved in plant defense responses by a so far unknown mechanism, or Clavata3/Endosperm Surrounding Region (CLE) protein family, whose members' functions in the development are well described. Our survey of the existing literature for the two families showed a lack of details on their localization, trafficking, and exocytosis. Therefore, in order to uncover the modes of their secretion, we tested the hypothesis that a direct link between the secreted cargoes and the secretion regulators such as Rab GTPases, SNAREs, and exocyst subunits could be established using in silico co-expression and clustering approaches. We employed several independent techniques to uncover that only weak co-expression links could be found for limited numbers of secreted cargoes and regulators. We propose that there might be particular spatio-temporal requirements for PR1 and CLE proteins to be synthesized and secreted, and efforts to experimentally cover these discrepancies should be invested along with functional studies.
Collapse
Affiliation(s)
- Tamara Pečenková
- Laboratory of Cell Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Potocký
- Laboratory of Cell Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
35
|
Skripnikov A. Bioassays for Identifying and Characterizing Plant Regulatory Peptides. Biomolecules 2023; 13:1795. [PMID: 38136666 PMCID: PMC10741408 DOI: 10.3390/biom13121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Plant peptides are a new frontier in plant biology, owing to their key regulatory roles in plant growth, development, and stress responses. Synthetic peptides are promising biological agents that can be used to improve crop growth and protection in an environmentally sustainable manner. Plant regulatory peptides identified in pioneering research, including systemin, PSK, HypSys, RALPH, AtPep1, CLV3, TDIF, CLE, and RGF/GLV/CLEL, hold promise for crop improvement as potent regulators of plant growth and defense. Mass spectrometry and bioinformatics are greatly facilitating the discovery and identification of new plant peptides. The biological functions of most novel plant peptides remain to be elucidated. Bioassays are an essential part in studying the biological activity of identified and putative plant peptides. Root growth assays and cultivated plant cell cultures are widely used to evaluate the regulatory potential of plant peptides during growth, differentiation, and stress reactions. These bioassays can be used as universal approaches for screening peptides from different plant species. Development of high-throughput bioassays can facilitate the screening of large numbers of identified and putative plant peptides, which have recently been discovered but remain uncharacterized for biological activity.
Collapse
Affiliation(s)
- Alexander Skripnikov
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya St. 16/10, 119997 Moscow, Russia;
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
36
|
Derbyshire MC, Raffaele S. Till death do us pair: Co-evolution of plant-necrotroph interactions. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102457. [PMID: 37852141 DOI: 10.1016/j.pbi.2023.102457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 10/20/2023]
Abstract
Plants use programmed cell death as a potent defense response against biotrophic pathogens that require living host cells to thrive. However, cell death can promote infection by necrotrophic pathogens. This discrepancy creates specific co-evolutionary dynamics in the interaction between plants and necrotrophs. Necrotrophic pathogens produce diverse cell death-inducing effectors that act redundantly on several plant targets and sometimes suppress plant immune responses as an additional function. Plants use surface receptors that recognize necrotrophic effectors to increase quantitative disease resistance, some of which evolved independently in several plant lineages. Co-evolution has shaped molecular mechanisms involved in plant-necrotroph interactions into robust systems, relying on degenerate and multifunctional modules, general-purpose components, and compartmentalized functioning.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Sylvain Raffaele
- Université de Toulouse, INRAE, CNRS, Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), 31326, Castanet-Tolosan, France.
| |
Collapse
|
37
|
Fan KT, Hsu CW, Chen YR. Mass spectrometry in the discovery of peptides involved in intercellular communication: From targeted to untargeted peptidomics approaches. MASS SPECTROMETRY REVIEWS 2023; 42:2404-2425. [PMID: 35765846 DOI: 10.1002/mas.21789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Endogenous peptide hormones represent an essential class of biomolecules, which regulate cell-cell communications in diverse physiological processes of organisms. Mass spectrometry (MS) has been developed to be a powerful technology for identifying and quantifying peptides in a highly efficient manner. However, it is difficult to directly identify these peptide hormones due to their diverse characteristics, dynamic regulations, low abundance, and existence in a complicated biological matrix. Here, we summarize and discuss the roles of targeted and untargeted MS in discovering peptide hormones using bioassay-guided purification, bioinformatics screening, or the peptidomics-based approach. Although the peptidomics approach is expected to discover novel peptide hormones unbiasedly, only a limited number of successful cases have been reported. The critical challenges and corresponding measures for peptidomics from the steps of sample preparation, peptide extraction, and separation to the MS data acquisition and analysis are also discussed. We also identify emerging technologies and methods that can be integrated into the discovery platform toward the comprehensive study of endogenous peptide hormones.
Collapse
Affiliation(s)
- Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
38
|
Wang P, Zhou J, Sun W, Li H, Li D, Zhuge Q. Characteristics and function of the pathogenesis-related protein 1 gene family in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111857. [PMID: 37673220 DOI: 10.1016/j.plantsci.2023.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
The pathogen-associated protein 1 (PR1) plays an important role in plant response to biotic and abiotic stresses. In this study, 17 PtPR1 genes were identified in Populus trichocarpa genome. The 17 PtPR1 genes were distributed on 7 chromosomes, and divided into A, B subfamilies by evolutionary tree analysis. RTqPCR analysis showed that the PtPR1 gene family showed different degrees of response to drought stress. PtPR1 genes showed changes in expression in response to fungal pathogen Septotinia populiperda or insect attacks (Nausinoe geometralis, Hyphantria cunea). Also, we found that subfamily B of PtPR1 may play an important role in response to biotic stress. We identified a new resistance gene PtPR1A. Overexpression of PtPR1A in Arabidopsis thaliana significantly enhanced the resistance to Pseudomonas syringae, while overexpression of PtPR1A in poplar significantly enhanced the resistance to S. populiperda. The present study investigates the expression pattern of the PtPR1 genes under biotic and abiotic stresses, and it found that the characteristics of the PtPR1 genes diverged, which provided a theoretical basis for the further study of the PtPR1 genes in the plant defense response.
Collapse
Affiliation(s)
- Pu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Zhou
- Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
39
|
Lin YH, Xu MY, Hsu CC, Damei FA, Lee HC, Tsai WL, Hoang CV, Chiang YR, Ma LS. Ustilago maydis PR-1-like protein has evolved two distinct domains for dual virulence activities. Nat Commun 2023; 14:5755. [PMID: 37716995 PMCID: PMC10505147 DOI: 10.1038/s41467-023-41459-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
The diversification of effector function, driven by a co-evolutionary arms race, enables pathogens to establish compatible interactions with hosts. Structurally conserved plant pathogenesis-related PR-1 and PR-1-like (PR-1L) proteins are involved in plant defense and fungal virulence, respectively. It is unclear how fungal PR-1L counters plant defense. Here, we show that Ustilago maydis UmPR-1La and yeast ScPRY1, with conserved phenolic resistance functions, are Ser/Thr-rich region mediated cell-surface localization proteins. However, UmPR-1La has gained specialized activity in sensing phenolics and eliciting hyphal-like formation to guide fungal growth in plants. Additionally, U. maydis hijacks maize cathepsin B-like 3 (CatB3) to release functional CAPE-like peptides by cleaving UmPR-1La's conserved CNYD motif, subverting plant CAPE-primed immunity and promoting fungal virulence. Surprisingly, CatB3 avoids cleavage of plant PR-1s, despite the presence of the same conserved CNYD motif. Our work highlights that UmPR-1La has acquired additional dual roles to suppress plant defense and sustain the infection process of fungal pathogens.
Collapse
Affiliation(s)
- Yu-Han Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Meng-Yun Xu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Chuan-Chih Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | | | - Hui-Chun Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Wei-Lun Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Cuong V Hoang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Lay-Sun Ma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan.
| |
Collapse
|
40
|
Feng YZ, Zhu QF, Xue J, Chen P, Yu Y. Shining in the dark: the big world of small peptides in plants. ABIOTECH 2023; 4:238-256. [PMID: 37970469 PMCID: PMC10638237 DOI: 10.1007/s42994-023-00100-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/24/2023] [Indexed: 11/17/2023]
Abstract
Small peptides represent a subset of dark matter in plant proteomes. Through differential expression patterns and modes of action, small peptides act as important regulators of plant growth and development. Over the past 20 years, many small peptides have been identified due to technical advances in genome sequencing, bioinformatics, and chemical biology. In this article, we summarize the classification of plant small peptides and experimental strategies used to identify them as well as their potential use in agronomic breeding. We review the biological functions and molecular mechanisms of small peptides in plants, discuss current problems in small peptide research and highlight future research directions in this field. Our review provides crucial insight into small peptides in plants and will contribute to a better understanding of their potential roles in biotechnology and agriculture.
Collapse
Affiliation(s)
- Yan-Zhao Feng
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Qing-Feng Zhu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jiao Xue
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Pei Chen
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| |
Collapse
|
41
|
Chen YL, Lin FW, Cheng KT, Chang CH, Hung SC, Efferth T, Chen YR. XCP1 cleaves Pathogenesis-related protein 1 into CAPE9 for systemic immunity in Arabidopsis. Nat Commun 2023; 14:4697. [PMID: 37542077 PMCID: PMC10403534 DOI: 10.1038/s41467-023-40406-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
Proteolytic activation of cytokines regulates immunity in diverse organisms. In animals, cysteine-dependent aspartate-specific proteases (caspases) play central roles in cytokine maturation. Although the proteolytic production of peptide cytokines is also essential for plant immunity, evidence for cysteine-dependent aspartate-specific proteases in regulating plant immunity is still limited. In this study, we found that the C-terminal proteolytic processing of a caspase-like substrate motif "CNYD" within Pathogenesis-related protein 1 (PR1) generates an immunomodulatory cytokine (CAPE9) in Arabidopsis. Salicylic acid enhances CNYD-targeted protease activity and the proteolytic release of CAPE9 from PR1 in Arabidopsis. This process involves a protease exhibiting caspase-like enzyme activity, identified as Xylem cysteine peptidase 1 (XCP1). XCP1 exhibits a calcium-modulated pH-activity profile and a comparable activity to human caspases. XCP1 is required to induce systemic immunity triggered by pathogen-associated molecular patterns. This work reveals XCP1 as a key protease for plant immunity, which produces the cytokine CAPE9 from the canonical salicylic acid signaling marker PR1 to activate systemic immunity.
Collapse
Affiliation(s)
- Ying-Lan Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Fan-Wei Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Kai-Tan Cheng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Hsin Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Taiwan Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Sheng-Chi Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan.
- Taiwan Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 402, Taiwan.
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
42
|
Guo WL, Yang HL, Zhao JP, Bian SJ, Guo YY, Chen XJ, Li XZ. A pathogenesis-related protein 1 of Cucurbita moschata responds to powdery mildew infection. Front Genet 2023; 14:1168138. [PMID: 37593115 PMCID: PMC10427922 DOI: 10.3389/fgene.2023.1168138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Pumpkin (Cucurbita moschata Duch.) productivity is severely hindered by powdery mildew (PM) worldwide. The causative agent of pumpkin PM is Podosphaera xanthii, a biotrophic fungus. Pathogenesis-related protein 1 (PR1) homolog was previously identified from transcriptomic analysis of a PM-resistant pumpkin. Here, we investigated the effects of CmPR1 gene from pumpkin for resistance to PM. Subcellular localization assay revealed that CmPR1 is a cytoplasmic protein in plants. The expression of CmPR1 gene was strongly induced by P. xanthii inoculation at 48 h and exogenous ethylene (ET), jasmonic acid (JA) and NaCl treatments, but repressed by H2O2 and salicylic acid (SA) treatments. Visual disease symptoms, histological observations of fungal growth and host cell death, and accumulation of H2O2 in transgenic tobacco plants indicated that CmPR1 overexpression significantly enhanced the resistance to Golovinomyces cichoracearum compared to wild type plants during PM pathogens infection, possibly due to inducing cell death and H2O2 accumulation near infected sites. The expression of PR1a was significantly induced in transgenic tobacco plants in response to G. cichoracearum, suggesting that CmPR1 overexpression positively modulates the resistance to PM via the SA signaling pathway. These findings indicate that CmPR1 is a defense response gene in C. moschata and can be exploited to develop disease-resistant crop varieties.
Collapse
Affiliation(s)
- Wei-Li Guo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - He-Lian Yang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Jin-Peng Zhao
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Shi-Jie Bian
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan-Yan Guo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Xue-Jin Chen
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Xin-Zheng Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
43
|
Pankaew C, Supdensong K, Tothong C, Roytrakul S, Phaonakrop N, Kongbangkerd A, Limmongkon A. Combining elicitor treatment of chitosan, methyl jasmonate, and cyclodextrin to induce the generation of immune response bioactive peptides in peanut hairy root culture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111670. [PMID: 36914116 DOI: 10.1016/j.plantsci.2023.111670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/15/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The endogenous peptides from peanut hairy root culture were induced upon elicitor treatment with chitosan (CHT), methyl jasmonate (MeJA), and cyclodextrin (CD): CHT+MeJA+CD. The peptides secreted into the liquid culture medium play an important role in plant signaling and stress responses. By performing gene ontology (GO) analysis, a number of plant proteins involved in biotic and abiotic defense responses were identified, such as endochitinase, defensin, antifungal protein, cationic peroxidase and Bowman-Birk type protease inhibitor A-II. The bioactivity of 14 peptides synthesized from secretome analysis was determined. Peptide BBP1-4, derived from the diverse region of Bowman-Birk type protease inhibitor, displayed high antioxidant activity and mimicked the property of chitinase and β-1,3-glucanase enzymes. The antimicrobial activity against S. aureus, S. typhimurium, and E. coli was evidenced with different peptide concentrations. Additionally, peptide BBP1-4 has the potential to be a useful candidate for an immune response property, as it was found to increase the expression of some pathogenesis-related (PR) proteins and stilbene biosynthesis genes in peanut hairy root tissues. The findings indicate that secreted peptides may play a role in plant responses to both abiotic and biotic stresses. These peptides, which possess bioactive properties, could be considered as potential candidates for use in the pharmaceutical, agricultural, and food industries.
Collapse
Affiliation(s)
- Chanyanut Pankaew
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Kanitha Supdensong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Chonnikan Tothong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sittiruk Roytrakul
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Narumon Phaonakrop
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Anupan Kongbangkerd
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Apinun Limmongkon
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
44
|
Han Z, Xiong D, Schneiter R, Tian C. The function of plant PR1 and other members of the CAP protein superfamily in plant-pathogen interactions. MOLECULAR PLANT PATHOLOGY 2023; 24:651-668. [PMID: 36932700 DOI: 10.1111/mpp.13320] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 05/18/2023]
Abstract
The pathogenesis-related (PR) proteins of plants have originally been identified as proteins that are strongly induced upon biotic and abiotic stress. These proteins fall into 17 distinct classes (PR1-PR17). The mode of action of most of these PR proteins has been well characterized, except for PR1, which belongs to a widespread superfamily of proteins that share a common CAP domain. Proteins of this family are not only expressed in plants but also in humans and in many different pathogens, including phytopathogenic nematodes and fungi. These proteins are associated with a diverse range of physiological functions. However, their precise mode of action has remained elusive. The importance of these proteins in immune defence is illustrated by the fact that PR1 overexpression in plants results in increased resistance against pathogens. However, PR1-like CAP proteins are also produced by pathogens and deletion of these genes results in reduced virulence, suggesting that CAP proteins can exert both defensive and offensive functions. Recent progress has revealed that plant PR1 is proteolytically cleaved to release a C-terminal CAPE1 peptide, which is sufficient to activate an immune response. The release of this signalling peptide is blocked by pathogenic effectors to evade immune defence. Moreover, plant PR1 forms complexes with other PR family members, including PR5, also known as thaumatin, and PR14, a lipid transfer protein, to enhance the host's immune response. Here, we discuss possible functions of PR1 proteins and their interactors, particularly in light of the fact that these proteins can bind lipids, which have important immune signalling functions.
Collapse
Affiliation(s)
- Zhu Han
- College of Forestry, Beijing Forestry University, Beijing, China
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dianguang Xiong
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Chengming Tian
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
45
|
Zribi I, Ghorbel M, Haddaji N, Besbes M, Brini F. Genome-Wide Identification and Expression Profiling of Pathogenesis-Related Protein 1 ( PR-1) Genes in Durum Wheat ( Triticum durum Desf.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1998. [PMID: 37653915 PMCID: PMC10223549 DOI: 10.3390/plants12101998] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 07/30/2023]
Abstract
Pathogen-related proteins (PRs) are diversified proteins with a low molecular weight implicated in plant response to biotic and abiotic stress as well in regulating different functions in plant maturation. Interestingly, no systematical study has been conducted in durum wheat (Triticum turgidum subsp. durum). In the present study, 12 PR-1 genes encoding a CAP superfamily domain were identified in the genome of Triticum turgidum subsp. durum, which is an important cereal, using in silico approaches. Additionally, phylogenetic analysis showed that the PR-1 genes were classified into three groups based on their isoelectric point and the conserved motif domain. Moreover, our analysis showed that most of the TdPR-1 proteins presented an N-terminal signal peptide. Expression patterns analysis showed that the PR-1 gene family presented temporal and spatial specificity and was induced by different abiotic stresses. This is the first report describing the genome-scale analysis of the durum wheat PR-1 gene family, and these data will help further study the roles of PR-1 genes during stress responses, leading to crop improvement.
Collapse
Affiliation(s)
- Ikram Zribi
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (M.B.)
| | - Najla Haddaji
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (M.B.)
| | - Malek Besbes
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (M.B.)
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia;
| |
Collapse
|
46
|
Zhou L, Ma Y, Zhong S, Cao J, Luo Y, Qu G. Phytohormone ethylene mediates oligogalacturonic acid-induced growth inhibition in tomato etiolated seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111643. [PMID: 36805420 DOI: 10.1016/j.plantsci.2023.111643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Plant growth and immunity are tightly interconnected. Oligogalacturonic acids (OGs) are pectic fragments and have been well investigated in plant immunity as a damage-associated molecular pattern. However, little is known regarding how OGs affect plant growth. Here, we reveal that OGs inhibit the growth of intact etiolated seedling by using the horticultural crop tomato as a model. This inhibitory effect is partially suppressed by the action of ethylene biosynthesis inhibitors, or the gene silencing of SlACS2, an essential rate-limiting enzyme for ethylene biosynthesis, suggesting that SlACS2-mediated ethylene production promotes OG-induced growth inhibition. Furthermore, OGs treatment elevates the SlACS2 protein phosphorylation, and its decrease by the kinase inhibitor K252a partially rescue OG-induced growth inhibition, indicating that SlACS2 phosphorylation involves in OG-induced growth inhibition. Moreover, the mitogen-activated protein kinase SlMPK3 could be activated by OGs treatment and can directly phosphorylate SlACS2 in vitro, and the bimolecular fluorescence complementation combining with the yeast two-hybrid assay shows that SlMPK3 interacts with SlACS2, indicating that SlMPK3 may participate in modulating the OG-induced SlACS2 phosphorylation and growth inhibition. Our results reveal a regulatory mechanism at both the transcriptional and post-transcriptional levels by which OGs inhibit the growth of intact plant seedlings.
Collapse
Affiliation(s)
- Leilei Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yingxuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
47
|
Sheng P, Xu M, Zheng Z, Liu X, Ma W, Ding T, Zhang C, Chen M, Zhang M, Cheng B, Zhang X. Peptidome and Transcriptome Analysis of Plant Peptides Involved in Bipolaris maydis Infection of Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:1307. [PMID: 36986996 PMCID: PMC10056677 DOI: 10.3390/plants12061307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Southern corn leaf blight (SCLB) caused by Bipolaris maydis threatens maize growth and yield worldwide. In this study, TMT-labeled comparative peptidomic analysis was established between infected and uninfected maize leaf samples using liquid-chromatography-coupled tandem mass spectrometry. The results were further compared and integrated with transcriptome data under the same experimental conditions. Plant peptidomic analysis identified 455 and 502 differentially expressed peptides (DEPs) in infected maize leaves on day 1 and day 5, respectively. A total of 262 common DEPs were identified in both cases. Bioinformatic analysis indicated that the precursor proteins of DEPs are associated with many pathways generated by SCLB-induced pathological changes. The expression profiles of plant peptides and genes in maize plants were considerably altered after B. maydis infection. These findings provide new insights into the molecular mechanisms of SCLB pathogenesis and offer a basis for the development of maize genotypes with SCLB resistance.
Collapse
Affiliation(s)
- Pijie Sheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Minyan Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhenzhen Zheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaojing Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Wanlu Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ting Ding
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Chenchen Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Meng Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xin Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
48
|
Fedoreyeva LI. Molecular Mechanisms of Regulation of Root Development by Plant Peptides. PLANTS (BASEL, SWITZERLAND) 2023; 12:1320. [PMID: 36987008 PMCID: PMC10053774 DOI: 10.3390/plants12061320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Peptides perform many functions, participating in the regulation of cell differentiation, regulating plant growth and development, and also involved in the response to stress factors and in antimicrobial defense. Peptides are an important class biomolecules for intercellular communication and in the transmission of various signals. The intercellular communication system based on the ligand-receptor bond is one of the most important molecular bases for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The intercellular communication system based on the receptor-ligand is one of the most important molecular foundations for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The identification of peptide hormones, their interaction with receptors, and the molecular mechanisms of peptide functioning are important for understanding the mechanisms of both intercellular communications and for regulating plant development. In this review, we drew attention to some peptides involved in the regulation of root development, which implement this regulation by the mechanism of a negative feedback loop.
Collapse
Affiliation(s)
- Larisa I Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia
| |
Collapse
|
49
|
Pastor-Fernández J, Sánchez-Bel P, Flors V, Cerezo M, Pastor V. Small Signals Lead to Big Changes: The Potential of Peptide-Induced Resistance in Plants. J Fungi (Basel) 2023; 9:265. [PMID: 36836379 PMCID: PMC9965805 DOI: 10.3390/jof9020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The plant immunity system is being revisited more and more and new elements and roles are attributed to participating in the response to biotic stress. The new terminology is also applied in an attempt to identify different players in the whole scenario of immunity: Phytocytokines are one of those elements that are gaining more attention due to the characteristics of processing and perception, showing they are part of a big family of compounds that can amplify the immune response. This review aims to highlight the latest findings on the role of phytocytokines in the whole immune response to biotic stress, including basal and adaptive immunity, and expose the complexity of their action in plant perception and signaling events.
Collapse
Affiliation(s)
- Julia Pastor-Fernández
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Paloma Sánchez-Bel
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Víctor Flors
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Miguel Cerezo
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Victoria Pastor
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| |
Collapse
|
50
|
Momo J, Rawoof A, Kumar A, Islam K, Ahmad I, Ramchiary N. Proteomics of Reproductive Development, Fruit Ripening, and Stress Responses in Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:65-95. [PMID: 36584279 DOI: 10.1021/acs.jafc.2c06564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The fruits of the tomato crop (Solanum lycopersicum L.) are increasingly consumed by humans worldwide. Due to their rich nutritional quality, pharmaceutical properties, and flavor, tomato crops have gained a salient role as standout crops among other plants. Traditional breeding and applied functional research have made progress in varying tomato germplasms to subdue biotic and abiotic stresses. Proteomic investigations within a span of few decades have assisted in consolidating the functional genomics and transcriptomic research. However, due to the volatility and dynamicity of proteins in the regulation of various biosynthetic pathways, there is a need for continuing research in the field of proteomics to establish a network that could enable a more comprehensive understanding of tomato growth and development. With this view, we provide a comprehensive review of proteomic studies conducted on the tomato plant in past years, which will be useful for future breeders and researchers working to improve the tomato crop.
Collapse
Affiliation(s)
- John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Ilyas Ahmad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| |
Collapse
|