1
|
Luo J, Li Y, Jiang Y, Zhang X, Bai G, Peng Z, Yi Q, Hou X. Integrative mapping in large inbred and hybrid association panels along with an F 2 population advanced a novel understanding of general combining ability for plant height in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:90. [PMID: 40169419 DOI: 10.1007/s00122-025-04883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/11/2025] [Indexed: 04/03/2025]
Abstract
KEY MESSAGE We identified 44 QTL for PH-related traits evaluated for inbreds per se and GCA effects in large inbred and hybrid association panels and seven QTL for EH/PH in an F2 population coupled with BSA-seq. Among four co-localized QTL, seven novel potential candidate genes were significantly associated with PH-related traits, shedding new light on understanding the genetics of GCA for PH. Breeding optimal plant height (PH) is essential for improving maize (Zea mays L.) plant architecture, yield, lodging resistance, and density tolerance, yet there is limited genetic loci available regarding the general combining ability (GCA) for PH-related traits. In the current study, an inbred association panel of 312 inbred lines (IAP) along with a hybrid association panel (HAP) of 764 hybrid combinations were utilized to dissect the genetics of PH-related traits and their GCA effects across three environments. We found 44 quantitative trait loci (QTL) with 76 significant single-nucleotide polymorphisms (SNPs) for PH-related traits evaluated for inbreds per se and GCA effects; however, no overlapping loci were identified across inbreds per se and GCA effects, indicating conspicuous discrepancies in their genetics. In addition, GCA effects with complex genetic basis differed for diverse testers, which highlighted the specificity and complexity among heterotic groups. Correspondingly, we evaluated an F2 population derived from two parental lines LY-02 and LH513 with the contrasting EH/PH coupled with bulked segregant analysis by sequencing (BSA-seq) and found seven QTL for EH/PH. Among four co-localized loci across the association and QTL mapping, seven novel candidate genes were found to differently express among LY-02, LH513, and their F1 and were potentially associated with PH-related traits. The current study with combined mapping in diverse mapping populations provided a novel understanding of GCA for PH-related traits in maize.
Collapse
Affiliation(s)
- Jie Luo
- Maize Research Institute of College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yangjing Li
- Maize Research Institute of College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yulin Jiang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, GuiyangGuizhou, 550000, China
| | - Xiaoxiang Zhang
- School of Agriculture, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Guangxiao Bai
- Maize Research Institute of College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Zhonghua Peng
- Maize Research Institute of College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Qiang Yi
- Maize Research Institute of College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Xianbin Hou
- College of Agriculture and Food Engineering, Baise University, Baise, 533000, China.
| |
Collapse
|
2
|
Ji X, Liu W, Zhang F, Su Y, Ding Y, Li H. H3K36me3 and H2A.Z coordinately modulate flowering time in Arabidopsis. J Genet Genomics 2024; 51:1135-1138. [PMID: 37302474 DOI: 10.1016/j.jgg.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Affiliation(s)
- Xiaoru Ji
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wenqian Liu
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fei Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yanhua Su
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Ding
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Lu Q, Shi W, Zhang F, Ding Y. ATX1 and HUB1/2 promote recruitment of the transcription elongation factor VIP2 to modulate the floral transition in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1760-1773. [PMID: 38446797 DOI: 10.1111/tpj.16707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 03/08/2024]
Abstract
Histone 2B ubiquitination (H2Bub) and trimethylation of H3 at lysine 4 (H3K4me3) are associated with transcription activation. However, the function of these modifications in transcription in plants remains largely unknown. Here, we report that coordination of H2Bub and H3K4me3 deposition with the binding of the RNA polymerase-associated factor VERNALIZATION INDEPENDENCE2 (VIP2) to FLOWERING LOCUS C (FLC) modulates flowering time in Arabidopsis. We found that RING domain protein HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 (we refer as HUB1/2), which are responsible for H2Bub, interact with ARABIDOPSIS TRITHORAX1 (ATX1), which is required for H3K4me3 deposition, to promote the transcription of FLC and repress the flowering time. The atx1-2 hub1-10 hub2-2 triple mutant in FRIGIDIA (FRI) background displayed early flowering like FRI hub1-10 hub2-2 and overexpression of ATX1 failed to rescue the early flowering phenotype of hub1-10 hub2-2. Mutations in HUB1 and HUB2 reduced the ATX1 enrichment at FLC, indicating that HUB1 and HUB2 are required for ATX1 recruitment and H3K4me3 deposition at FLC. We also found that the VIP2 directly binds to HUB1, HUB2, and ATX1 and that loss of VIP2 in FRI hub1-10 hub2-2 and FRI atx1-2 plants resulted in early flowering like that observed in FRI vip2-10. Loss of function of HUB2 and ATX1 impaired VIP2 enrichment at FLC, and reduced the transcription initiation and elongation of FLC. In addition, mutations in VIP2 reduced HUB1 and ATX1 enrichment and H2Bub and H3K4me3 levels at FLC. Together, our findings revealed that HUB1/2, ATX1, and VIP2 coordinately modulate H2Bub and H3K4me3 deposition, FLC transcription, and flowering time.
Collapse
Affiliation(s)
- Qianqian Lu
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Wenwen Shi
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Fei Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Yong Ding
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| |
Collapse
|
4
|
Blanco-Touriñán N, Pérez-Alemany J, Bourbousse C, Latrasse D, Ait-Mohamed O, Benhamed M, Barneche F, Blázquez MA, Gallego-Bartolomé J, Alabadí D. The plant POLYMERASE-ASSOCIATED FACTOR1 complex links transcription and H2B monoubiquitination genome wide. PLANT PHYSIOLOGY 2024; 195:640-651. [PMID: 38285074 PMCID: PMC11060679 DOI: 10.1093/plphys/kiae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
The evolutionarily conserved POLYMERASE-ASSOCIATED FACTOR1 complex (Paf1C) participates in transcription, and research in animals and fungi suggests that it facilitates RNA POLYMERASE II (RNAPII) progression through chromatin. We examined the genomic distribution of the EARLY FLOWERING7 (ELF7) and VERNALIZATION INDEPENDENCE3 subunits of Paf1C in Arabidopsis (Arabidopsis thaliana). The occupancy of both subunits was confined to thousands of gene bodies and positively associated with RNAPII occupancy and the level of gene expression, supporting a role as a transcription elongation factor. We found that monoubiquitinated histone H2B, which marks most transcribed genes, was strongly reduced genome wide in elf7 seedlings. Genome-wide profiling of RNAPII revealed that in elf7 mutants, RNAPII occupancy was reduced throughout the gene body and at the transcription end site of Paf1C-targeted genes, suggesting a direct role for the complex in transcription elongation. Overall, our observations suggest a direct functional link between Paf1C activity, monoubiquitination of histone H2B, and the transition of RNAPII to productive elongation. However, for several genes, Paf1C may also act independently of H2Bub deposition or occupy these genes more stable than H2Bub marking, possibly reflecting the dynamic nature of Paf1C association and H2Bub turnover during transcription.
Collapse
Affiliation(s)
- Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | - Jaime Pérez-Alemany
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | - Clara Bourbousse
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (CNRS), CNRS, INSERM, Université PSL, 75230 Paris, France
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (Université Paris-Saclay-CNRS), 91190 Gif-sur-Yvette, France
| | - Ouardia Ait-Mohamed
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (CNRS), CNRS, INSERM, Université PSL, 75230 Paris, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (Université Paris-Saclay-CNRS), 91190 Gif-sur-Yvette, France
| | - Fredy Barneche
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (CNRS), CNRS, INSERM, Université PSL, 75230 Paris, France
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | | | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| |
Collapse
|
5
|
Chiteri KO, Rairdin A, Sandhu K, Redsun S, Farmer A, O'Rourke JA, Cannon SB, Singh A. Combining GWAS and comparative genomics to fine map candidate genes for days to flowering in mung bean. BMC Genomics 2024; 25:270. [PMID: 38475739 DOI: 10.1186/s12864-024-10156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Mung bean (Vigna radiata (L.) Wilczek), is an important pulse crop in the global south. Early flowering and maturation are advantageous traits for adaptation to northern and southern latitudes. This study investigates the genetic basis of the Days-to-Flowering trait (DTF) in mung bean, combining genome-wide association studies (GWAS) in mung bean and comparisons with orthologous genes involved with control of DTF responses in soybean (Glycine max (L) Merr) and Arabidopsis (Arabidopsis thaliana). RESULTS The most significant associations for DTF were on mung bean chromosomes 1, 2, and 4. Only the SNPs on chromosomes 1 and 4 were heavily investigated using downstream analysis. The chromosome 1 DTF association is tightly linked with a cluster of locally duplicated FERONIA (FER) receptor-like protein kinase genes, and the SNP occurs within one of the FERONIA genes. In Arabidopsis, an orthologous FERONIA gene (AT3G51550), has been reported to regulate the expression of the FLOWERING LOCUS C (FLC). For the chromosome 4 DTF locus, the strongest candidates are Vradi04g00002773 and Vradi04g00002778, orthologous to the Arabidopsis PhyA and PIF3 genes, encoding phytochrome A (a photoreceptor protein sensitive to red to far-red light) and phytochrome-interacting factor 3, respectively. The soybean PhyA orthologs include the classical loci E3 and E4 (genes GmPhyA3, Glyma.19G224200, and GmPhyA2, Glyma.20G090000). The mung bean PhyA ortholog has been previously reported as a candidate for DTF in studies conducted in South Korea. CONCLUSION The top two identified SNPs accounted for a significant proportion (~ 65%) of the phenotypic variability in mung bean DTF by the six significant SNPs (39.61%), with a broad-sense heritability of 0.93. The strong associations of DTF with genes that have orthologs with analogous functions in soybean and Arabidopsis provide strong circumstantial evidence that these genes are causal for this trait. The three reported loci and candidate genes provide useful targets for marker-assisted breeding in mung beans.
Collapse
Affiliation(s)
- Kevin O Chiteri
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Ashlyn Rairdin
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | | | - Sven Redsun
- National Center for Genome Resources, Santa Fe, NM, 87505, United States
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM, 87505, United States
| | - Jamie A O'Rourke
- Department of Agronomy, Iowa State University, Ames, IA, United States
- USDA - Agricultural Research Service, Corn Insects, and Crop Genetics Research Unit, Ames, IA, United States
| | - Steven B Cannon
- Department of Agronomy, Iowa State University, Ames, IA, United States.
- USDA - Agricultural Research Service, Corn Insects, and Crop Genetics Research Unit, Ames, IA, United States.
| | - Arti Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States.
| |
Collapse
|
6
|
Zhang Y, Fan X, Liang D, Guo Q, Zhang X, Nie M, Li C, Meng S, Zhang X, Xu P, Guo W, Wang H, Liu Q, Wu Y. The Identification of a Yield-Related Gene Controlling Multiple Traits Using GWAS in Sorghum ( Sorghum bicolor L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1557. [PMID: 37050183 PMCID: PMC10097259 DOI: 10.3390/plants12071557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Sorghum bicolor (L.) is one of the oldest crops cultivated by human beings which has been used in food and wine making. To understand the genetic diversity of sorghum breeding resources and further guide molecular-marker-assisted breeding, six yield-related traits were analyzed for 214 sorghum germplasm from all over the world, and 2,811,016 single-nucleotide polymorphisms (SNPs) markers were produced by resequencing these germplasms. After controlling Q and K, QTLs were found to be related to the traits using three algorisms. Interestingly, an important QTL was found which may affect multiple traits in this study. It was the most likely candidate gene for the gene SORBI_3008G116500, which was a homolog of Arabidopsis thaliana gene-VIP5 found by analyzing the annotation of the gene in the LD block. The haplotype analysis showed that the SORBI_3008G116500hap3 was the elite haplotype, and it only existed in Chinese germplasms. The traits were proven to be more associated with the SNPs of the SORBI_3008G116500 promoter through gene association studies. Overall, the QTLs and the genes identified in this study would benefit molecular-assisted yield breeding in sorghum.
Collapse
Affiliation(s)
- Yizhong Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
- Sorghum Research Institute, Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Shanxi Agricultural University, Yuci 030600, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture (In Preparation), Shanxi Agricultural University, Taiyuan 030031, China
| | - Xinqi Fan
- Sorghum Research Institute, Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Shanxi Agricultural University, Yuci 030600, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture (In Preparation), Shanxi Agricultural University, Taiyuan 030031, China
| | - Du Liang
- Sorghum Research Institute, Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Shanxi Agricultural University, Yuci 030600, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture (In Preparation), Shanxi Agricultural University, Taiyuan 030031, China
| | - Qi Guo
- Sorghum Research Institute, Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Shanxi Agricultural University, Yuci 030600, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture (In Preparation), Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaojuan Zhang
- Sorghum Research Institute, Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Shanxi Agricultural University, Yuci 030600, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture (In Preparation), Shanxi Agricultural University, Taiyuan 030031, China
| | - Mengen Nie
- Sorghum Research Institute, Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Shanxi Agricultural University, Yuci 030600, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture (In Preparation), Shanxi Agricultural University, Taiyuan 030031, China
| | - Chunhong Li
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shan Meng
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xianggui Zhang
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Peng Xu
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wenqi Guo
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huiyan Wang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
- Sorghum Research Institute, Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Shanxi Agricultural University, Yuci 030600, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture (In Preparation), Shanxi Agricultural University, Taiyuan 030031, China
| | - Qingshan Liu
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, State Key Laboratory of Sustainable Dryland Agriculture (In Preparation), Shanxi Agricultural University, Taiyuan 030031, China
| | - Yuxiang Wu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
7
|
Li C, Guo Y, Wang L, Yan S. The SMC5/6 complex recruits the PAF1 complex to facilitate DNA double-strand break repair in Arabidopsis. EMBO J 2023; 42:e112756. [PMID: 36815434 PMCID: PMC10068331 DOI: 10.15252/embj.2022112756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most toxic forms of DNA damage, which threatens genome stability. Homologous recombination is an error-free DSB repair pathway, in which the evolutionarily conserved SMC5/6 complex (SMC5/6) plays essential roles. The PAF1 complex (PAF1C) is well known to regulate transcription. Here we show that SMC5/6 recruits PAF1C to facilitate DSB repair in plants. In a genetic screen for DNA damage response mutants (DDRMs), we found that the Arabidopsis ddrm4 mutant is hypersensitive to DSB-inducing agents and is defective in homologous recombination. DDRM4 encodes PAF1, a core subunit of PAF1C. Further biochemical and genetic studies reveal that SMC5/6 recruits PAF1C to DSB sites, where PAF1C further recruits the E2 ubiquitin-conjugating enzymes UBC1/2, which interact with the E3 ubiquitin ligases HUB1/2 to mediate the monoubiquitination of histone H2B at DSBs. These results implicate SMC5/6-PAF1C-UBC1/2-HUB1/2 as a new axis for DSB repair through homologous recombination, revealing a new mechanism of SMC5/6 and uncovering a novel function of PAF1C.
Collapse
Affiliation(s)
- Cunliang Li
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yuyu Guo
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Lili Wang
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Shunping Yan
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
8
|
Eshel G, Duppen N, Wang G, Oh D, Kazachkova Y, Herzyk P, Amtmann A, Gordon M, Chalifa‐Caspi V, Oscar MA, Bar‐David S, Marshall‐Colon A, Dassanayake M, Barak S. Positive selection and heat-response transcriptomes reveal adaptive features of the Brassicaceae desert model, Anastatica hierochuntica. THE NEW PHYTOLOGIST 2022; 236:1006-1026. [PMID: 35909295 PMCID: PMC9804903 DOI: 10.1111/nph.18411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant adaptation to a desert environment and its endemic heat stress is poorly understood at the molecular level. The naturally heat-tolerant Brassicaceae species Anastatica hierochuntica is an ideal extremophyte model to identify genetic adaptations that have evolved to allow plants to tolerate heat stress and thrive in deserts. We generated an A. hierochuntica reference transcriptome and identified extremophyte adaptations by comparing Arabidopsis thaliana and A. hierochuntica transcriptome responses to heat, and detecting positively selected genes in A. hierochuntica. The two species exhibit similar transcriptome adjustment in response to heat and the A. hierochuntica transcriptome does not exist in a constitutive heat 'stress-ready' state. Furthermore, the A. hierochuntica global transcriptome as well as heat-responsive orthologs, display a lower basal and higher heat-induced expression than in A. thaliana. Genes positively selected in multiple extremophytes are associated with stomatal opening, nutrient acquisition, and UV-B induced DNA repair while those unique to A. hierochuntica are consistent with its photoperiod-insensitive, early-flowering phenotype. We suggest that evolution of a flexible transcriptome confers the ability to quickly react to extreme diurnal temperature fluctuations characteristic of a desert environment while positive selection of genes involved in stress tolerance and early flowering could facilitate an opportunistic desert lifestyle.
Collapse
Affiliation(s)
- Gil Eshel
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Nick Duppen
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Guannan Wang
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Dong‐Ha Oh
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Yana Kazachkova
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Pawel Herzyk
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Anna Amtmann
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Michal Gordon
- Bioinformatics Core Facility, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Vered Chalifa‐Caspi
- Bioinformatics Core Facility, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Michelle Arland Oscar
- Blaustein Center for Scientific CooperationBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Shirli Bar‐David
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Amy Marshall‐Colon
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Maheshi Dassanayake
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Simon Barak
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| |
Collapse
|
9
|
Zhang H, Li X, Song R, Zhan Z, Zhao F, Li Z, Jiang D. Cap-binding complex assists RNA polymerase II transcription in plant salt stress response. PLANT, CELL & ENVIRONMENT 2022; 45:2780-2793. [PMID: 35773782 DOI: 10.1111/pce.14388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/14/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Adaptive response to stress involves an extensive reprogramming of gene expression. Under stressful conditions, the induction of efficient changes in messenger RNA (mRNA) production is crucial for maximized plant survival. Transcription and pre-mRNA processing are two closely related steps in mRNA biogenesis, yet how they are controlled in plant stress response remains elusive. Here, we show that the Arabidopsis nuclear cap-binding complex (CBC) component CBP20 directly interacts with ELF7, a subunit of the transcription elongation factor RNA Pol II-associated factor 1 complex (PAF1c) to promote RNA Pol II transcription in plant response to salt stress. CBP20 and ELF7 coregulate the expression of a large number of genes including those crucial for salt tolerance. Both CBP20 and ELF7 are required for enhanced RNA Pol II elongation at salt-activated genes. Though CBP20 also regulates intron splicing, this function is largely independent of ELF7. Our study reveals the function of an RNA processing regulator CBC in assisting efficient RNA Pol II transcription and pinpoints the complex roles of CBC on mRNA production in plant salt stress resistance.
Collapse
Affiliation(s)
- Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruitian Song
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenping Zhan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengyue Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zicong Li
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Chen L, Hu P, Lu Q, Zhang F, Su Y, Ding Y. Vernalization attenuates dehydration tolerance in winter-annual Arabidopsis. PLANT PHYSIOLOGY 2022; 190:732-744. [PMID: 35670724 PMCID: PMC9434170 DOI: 10.1093/plphys/kiac264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/04/2022] [Indexed: 05/27/2023]
Abstract
In winter-annual plants, exposure to cold temperatures induces cold tolerance and accelerates flowering in the following spring. However, little is known about plant adaptations to dehydration stress after winter. Here, we found that dehydration tolerance is reduced in winter-annual Arabidopsis (Arabidopsis thaliana) after vernalization. Winter-annual Arabidopsis plants with functional FRIGIDA (FRI) exhibited high dehydration tolerance, with small stomatal apertures and hypersensitivity to exogenous abscisic acid. Dehydration tolerance and FLOWERING LOCUS C (FLC) transcript levels gradually decreased with prolonged cold exposure in FRI plants. FLC directly bound to the promoter of OPEN STOMATA1 (OST1) and activated OST1 expression. Loss of FLC function resulted in decreased dehydration tolerance and reduced OST1 transcript levels. FLC and OST1 act in the same dehydration stress pathway, with OST1 acting downstream of FLC. Our study provides insights into the mechanisms by which FRI modulates dehydration tolerance through the FLC-OST1 module. Our results suggest that winter-annual Arabidopsis integrates dehydration tolerance and flowering time to adapt to environmental changes from winter to spring.
Collapse
Affiliation(s)
| | | | - Qianqian Lu
- Ministry of Education, Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS), Center for Excellence in Molecular Plant Sciences; Biomedical Sciences and Health Laboratory of Anhui Province; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230027, China
| | - Fei Zhang
- Ministry of Education, Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS), Center for Excellence in Molecular Plant Sciences; Biomedical Sciences and Health Laboratory of Anhui Province; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230027, China
| | | | | |
Collapse
|
11
|
Jiang S, Wei J, Li N, Wang Z, Zhang Y, Xu R, Zhou L, Huang X, Wang L, Guo S, Wang Y, Song CP, Qian W, Li Y. The UBP14-CDKB1;1-CDKG2 cascade controls endoreduplication and cell growth in Arabidopsis. THE PLANT CELL 2022; 34:1308-1325. [PMID: 34999895 PMCID: PMC8972217 DOI: 10.1093/plcell/koac002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 05/31/2023]
Abstract
Endoreduplication, a process in which DNA replication occurs in the absence of mitosis, is found in all eukaryotic kingdoms, especially plants, where it is assumed to be important for cell growth and cell fate maintenance. However, a comprehensive understanding of the mechanism regulating endoreduplication is still lacking. We previously reported that UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, acts upstream of CYCLIN-DEPENDENT KINASE B1;1 (CDKB1;1) to influence endoreduplication and cell growth in Arabidopsis thaliana. The da3-1 mutant possesses large cotyledons with enlarged cells due to high ploidy levels. Here, we identified a suppressor of da3-1 (SUPPRESSOR OF da3-1 6; SUD6), encoding CYCLIN-DEPENDENT KINASE G2 (CDKG2), which promotes endoreduplication and cell growth. CDKG2/SUD6 physically associates with CDKB1;1 in vivo and in vitro. CDKB1;1 directly phosphorylates SUD6 and modulates its stability. Genetic analysis indicated that SUD6 acts downstream of DA3 and CDKB1;1 to control ploidy level and cell growth. Thus, our study establishes a regulatory cascade for UBP14/DA3-CDKB1;1-CDKG2/SUD6-mediated control of endoreduplication and cell growth in Arabidopsis.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinwei Wei
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhibiao Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yilan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lixun Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
12
|
Ikram AU, Zhang F, Xu Z, Li E, Xue G, Wang S, Zhang C, Yang Y, Su Y, Ding Y. Chromatin remodeling factors OsYAF9 and OsSWC4 interact to promote internode elongation in rice. PLANT PHYSIOLOGY 2022; 188:2199-2214. [PMID: 35157083 PMCID: PMC8968431 DOI: 10.1093/plphys/kiac031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 05/09/2023]
Abstract
Deposition of H2A.Z and H4 acetylation by SWI2/SNF2-Related 1 Chromatin Remodeling (SWR1) and Nucleosome Acetyltransferase of H4 (NuA4) complexes in specific regulatory regions modulates transcription and development. However, little is known about these complexes in Oryza sativa (rice) development. Here, we reported that OsYAF9 and OsSWC4, two subunits of SWR1 and NuA4 complexes, are involved in rice vegetative and reproductive development. Loss of OsYAF9 resulted in reduced height, fewer tillers, fewer pollen grains, and defects in embryogenesis and seed filling. OsYAF9 directly interacted with OsSWC4 in vitro and in vivo. Loss of OsSWC4 function exhibited defects in pollen germination and failure to generate seeds, whereas knockdown of OsSWC4 resulted in reduced height and fewer tillers. The reduced height caused by OsYAF9 mutation and OsSWC4 knockdown was due to shorter internodes and defects in cell elongation, and this phenotype was rescued with gibberellin (GA) treatment, suggesting that both OsYAF9 and OsSWC4 are involved in the GA biosynthesis pathway. OsSWC4 was directly bound to the AT-rich region of GA biosynthesis genes, which in turn accomplished H2A.Z deposition and H4 acetylation at the GA biosynthesis genes with OsYAF9. Together, our study provides insights into the mechanisms involving OsSWC4 and OsYAF9 forming a protein complex to promote rice internode elongation with H2A.Z deposition and H4 acetylation.
Collapse
Affiliation(s)
| | | | - Zuntao Xu
- Division of Life Sciences and Medicine, School of Life Sciences; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Enze Li
- Division of Life Sciences and Medicine, School of Life Sciences; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Gan Xue
- Division of Life Sciences and Medicine, School of Life Sciences; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Shiliang Wang
- Division of Life Sciences and Medicine, School of Life Sciences; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Cheng Zhang
- Division of Life Sciences and Medicine, School of Life Sciences; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Yachun Yang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | | | | |
Collapse
|
13
|
Li YF, Li YH, Su SS, Reif JC, Qi ZM, Wang XB, Wang X, Tian Y, Li DL, Sun RJ, Liu ZX, Xu ZJ, Fu GH, Ji YL, Chen QS, Liu JQ, Qiu LJ. SoySNP618K array: A high-resolution single nucleotide polymorphism platform as a valuable genomic resource for soybean genetics and breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:632-648. [PMID: 34914170 DOI: 10.1111/jipb.13202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/05/2021] [Indexed: 05/13/2023]
Abstract
Innovations in genomics have enabled the development of low-cost, high-resolution, single nucleotide polymorphism (SNP) genotyping arrays that accelerate breeding progress and support basic research in crop science. Here, we developed and validated the SoySNP618K array (618,888 SNPs) for the important crop soybean. The SNPs were selected from whole-genome resequencing data containing 2,214 diverse soybean accessions; 29.34% of the SNPs mapped to genic regions representing 86.85% of the 56,044 annotated high-confidence genes. Identity-by-state analyses of 318 soybeans revealed 17 redundant accessions, highlighting the potential of the SoySNP618K array in supporting gene bank management. The patterns of population stratification and genomic regions enriched through domestication were highly consistent with previous findings based on resequencing data, suggesting that the ascertainment bias in the SoySNP618K array was largely compensated for. Genome-wide association mapping in combination with reported quantitative trait loci enabled fine-mapping of genes known to influence flowering time, E2 and GmPRR3b, and of a new candidate gene, GmVIP5. Moreover, genomic prediction of flowering and maturity time in 502 recombinant inbred lines was highly accurate (>0.65). Thus, the SoySNP618K array is a valuable genomic tool that can be used to address many questions in applied breeding, germplasm management, and basic crop research.
Collapse
Affiliation(s)
- Yan-Fei Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shan-Shan Su
- Beijing Compass Biotechnology Co. Ltd, Beijing, 102206, China
| | - Jochen C Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Germany
| | - Zhao-Ming Qi
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Xiao-Bo Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Xing Wang
- Xuzhou Institute of Agricultural Sciences of Xu-huai Region of Jiangsu, Xuzhou, 221131, China
| | - Yu Tian
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - De-Lin Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Ru-Jian Sun
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
- Hulun Buir Institution of Agricultural Sciences, Zhalantun, Inner Mongolia, 021000, China
| | - Zhang-Xiong Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ze-Jun Xu
- Xuzhou Institute of Agricultural Sciences of Xu-huai Region of Jiangsu, Xuzhou, 221131, China
| | - Guang-Hui Fu
- Suzhou Academy of Agricultural Sciences, Suzhou, 234000, China
| | - Ya-Liang Ji
- Beijing Compass Biotechnology Co. Ltd, Beijing, 102206, China
| | - Qing-Shan Chen
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Ji-Qiang Liu
- Beijing Compass Biotechnology Co. Ltd, Beijing, 102206, China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
14
|
Plant CDKs-Driving the Cell Cycle through Climate Change. PLANTS 2021; 10:plants10091804. [PMID: 34579337 PMCID: PMC8468384 DOI: 10.3390/plants10091804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
In a growing population, producing enough food has become a challenge in the face of the dramatic increase in climate change. Plants, during their evolution as sessile organisms, developed countless mechanisms to better adapt to the environment and its fluctuations. One important way is through the plasticity of their body and their forms, which are modulated during plant growth by accurate control of cell divisions. A family of serine/threonine kinases called cyclin-dependent kinases (CDK) is a key regulator of cell divisions by controlling cell cycle progression. In this review, we compile information on the primary response of plants in the regulation of the cell cycle in response to environmental stresses and show how the cell cycle proteins (mainly the cyclin-dependent kinases) involved in this regulation can act as components of environmental response signaling cascades, triggering adaptive responses to drive the cycle through climate fluctuations. Understanding the roles of CDKs and their regulators in the face of adversity may be crucial to meeting the challenge of increasing agricultural productivity in a new climate.
Collapse
|
15
|
Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K, Lämke J, Gorka M, Kappel C, Sokolowska E, Skirycz A, Graf A, Bäurle I. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nat Commun 2021; 12:3426. [PMID: 34103516 PMCID: PMC8187452 DOI: 10.1038/s41467-021-23786-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Adaptive plasticity in stress responses is a key element of plant survival strategies. For instance, moderate heat stress (HS) primes a plant to acquire thermotolerance, which allows subsequent survival of more severe HS conditions. Acquired thermotolerance is actively maintained over several days (HS memory) and involves the sustained induction of memory-related genes. Here we show that FORGETTER3/ HEAT SHOCK TRANSCRIPTION FACTOR A3 (FGT3/HSFA3) is specifically required for physiological HS memory and maintaining high memory-gene expression during the days following a HS exposure. HSFA3 mediates HS memory by direct transcriptional activation of memory-related genes after return to normal growth temperatures. HSFA3 binds HSFA2, and in vivo both proteins form heteromeric complexes with additional HSFs. Our results indicate that only complexes containing both HSFA2 and HSFA3 efficiently promote transcriptional memory by positively influencing histone H3 lysine 4 (H3K4) hyper-methylation. In summary, our work defines the major HSF complex controlling transcriptional memory and elucidates the in vivo dynamics of HSF complexes during somatic stress memory.
Collapse
Affiliation(s)
- Thomas Friedrich
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Vicky Oberkofler
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Inês Trindade
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Simone Altmann
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany ,grid.8241.f0000 0004 0397 2876Present Address: School of Life Sciences, University of Dundee, Dundee, UK
| | - Krzysztof Brzezinka
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jörn Lämke
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michal Gorka
- grid.418390.70000 0004 0491 976XMax-Planck-Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Christian Kappel
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ewelina Sokolowska
- grid.418390.70000 0004 0491 976XMax-Planck-Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Aleksandra Skirycz
- grid.418390.70000 0004 0491 976XMax-Planck-Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Alexander Graf
- grid.418390.70000 0004 0491 976XMax-Planck-Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Isabel Bäurle
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
16
|
He K, Cao X, Deng X. Histone methylation in epigenetic regulation and temperature responses. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102001. [PMID: 33508540 DOI: 10.1016/j.pbi.2021.102001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 05/26/2023]
Abstract
Methylation of histones on different lysine residues is dynamically added by distinct writer enzymes, interpreted by reader proteins, and removed by eraser enzymes. This epigenetic mark has widespread, dynamic roles in plant development and environmental responses. For example, histone methylation plays a key role in mediating plant responses to temperature, including alterations of flowering time. In this review, we summarize recent advances in understanding the mechanism by which histone methylation regulates these processes, and discuss the role of histone methylation in temperature responses, based on data from Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kaixuan He
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
17
|
Yang J, Cao Y, Ma L. Co-Transcriptional RNA Processing in Plants: Exploring from the Perspective of Polyadenylation. Int J Mol Sci 2021; 22:ijms22073300. [PMID: 33804866 PMCID: PMC8037041 DOI: 10.3390/ijms22073300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Most protein-coding genes in eukaryotes possess at least two poly(A) sites, and alternative polyadenylation is considered a contributing factor to transcriptomic and proteomic diversity. Following transcription, a nascent RNA usually undergoes capping, splicing, cleavage, and polyadenylation, resulting in a mature messenger RNA (mRNA); however, increasing evidence suggests that transcription and RNA processing are coupled. Plants, which must produce rapid responses to environmental changes because of their limited mobility, exhibit such coupling. In this review, we summarize recent advances in our understanding of the coupling of transcription with RNA processing in plants, and we describe the possible spatial environment and important proteins involved. Moreover, we describe how liquid–liquid phase separation, mediated by the C-terminal domain of RNA polymerase II and RNA processing factors with intrinsically disordered regions, enables efficient co-transcriptional mRNA processing in plants.
Collapse
|
18
|
Leng X, Thomas Q, Rasmussen SH, Marquardt S. A G(enomic)P(ositioning)S(ystem) for Plant RNAPII Transcription. TRENDS IN PLANT SCIENCE 2020; 25:744-764. [PMID: 32673579 DOI: 10.1016/j.tplants.2020.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Post-translational modifications (PTMs) of histone residues shape the landscape of gene expression by modulating the dynamic process of RNA polymerase II (RNAPII) transcription. The contribution of particular histone modifications to the definition of distinct RNAPII transcription stages remains poorly characterized in plants. Chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) resolves the genomic distribution of histone modifications. Here, we review histone PTM ChIP-seq data in Arabidopsis thaliana and find support for a Genomic Positioning System (GPS) that guides RNAPII transcription. We review the roles of histone PTM 'readers', 'writers', and 'erasers', with a focus on the regulation of gene expression and biological functions in plants. The distinct functions of RNAPII transcription during the plant transcription cycle may rely, in part, on the characteristic histone PTM profiles that distinguish transcription stages.
Collapse
Affiliation(s)
- Xueyuan Leng
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Quentin Thomas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Simon Horskjær Rasmussen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
19
|
Structure of complete Pol II-DSIF-PAF-SPT6 transcription complex reveals RTF1 allosteric activation. Nat Struct Mol Biol 2020; 27:668-677. [PMID: 32541898 DOI: 10.1038/s41594-020-0437-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Transcription by RNA polymerase II (Pol II) is carried out by an elongation complex. We previously reported an activated porcine Pol II elongation complex, EC*, encompassing the human elongation factors DSIF, PAF1 complex (PAF) and SPT6. Here we report the cryo-EM structure of the complete EC* that contains RTF1, a dissociable PAF subunit critical for chromatin transcription. The RTF1 Plus3 domain associates with Pol II subunit RPB12 and the phosphorylated C-terminal region of DSIF subunit SPT5. RTF1 also forms four α-helices that extend from the Plus3 domain along the Pol II protrusion and RPB10 to the polymerase funnel. The C-terminal 'fastener' helix retains PAF and is followed by a 'latch' that reaches the end of the bridge helix, a flexible element of the Pol II active site. RTF1 strongly stimulates Pol II elongation, and this requires the latch, possibly suggesting that RTF1 activates transcription allosterically by influencing Pol II translocation.
Collapse
|
20
|
Xiong F, Ren JJ, Yu Q, Wang YY, Lu CC, Kong LJ, Otegui MS, Wang XL. AtU2AF65b functions in abscisic acid mediated flowering via regulating the precursor messenger RNA splicing of ABI5 and FLC in Arabidopsis. THE NEW PHYTOLOGIST 2019; 223:277-292. [PMID: 30790290 DOI: 10.1111/nph.15756] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/11/2019] [Indexed: 05/20/2023]
Abstract
In mammalians and yeast, the splicing factor U2AF65/Mud2p functions in precursor messenger RNA (pre-mRNA) processing. Arabidopsis AtU2AF65b encodes a putative U2AF65 but its specific functions in plants are unknown. This paper examines the function of AtU2AF65b as a negative regulator of flowering time in Arabidopsis. We investigated the expression and function of AtU2AF65b in abscisic acid (ABA)-regulated flowering as well as the transcript abundance and pre-mRNA splicing of flowering-related genes in the knock-out mutants of AtU2AF65b. The atu2af65b mutants show early-flowering phenotype under both long-day and short-day conditions. The transcript accumulation of the flowering repressor gene FLOWERING LOCUS C (FLC) is reduced in the shoot apex of atu2af65b, due to both increased intron retention and reduced transcription activation. Reduced transcription of FLC results, at least partially, from the abnormal splicing and reduced transcript abundance of ABSCISIC ACID-INSENSITIVE 5 (ABI5), which encodes an activator of FLC in ABA-regulated flowering signaling. Additionally, the expression of AtU2AF65b is promoted by ABA. Transition to flowering and splicing of FLC and ABI5 in the atu2af65b mutants are compromised during ABA-induced flowering. ABA-responsive AtU2AF65b functions in the pre-mRNA splicing of FLC and ABI5 in shoot apex, whereby AtU2AF65b is involved in ABA-mediated flowering transition in Arabidopsis.
Collapse
Affiliation(s)
- Feng Xiong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Jing-Jing Ren
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Qin Yu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yu-Yi Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Chong-Chong Lu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lan-Jing Kong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Marisa S Otegui
- Department of Botany and Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xiu-Ling Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
21
|
Tian Y, Zheng H, Zhang F, Wang S, Ji X, Xu C, He Y, Ding Y. PRC2 recruitment and H3K27me3 deposition at FLC require FCA binding of COOLAIR. SCIENCE ADVANCES 2019; 5:eaau7246. [PMID: 31032401 PMCID: PMC6482009 DOI: 10.1126/sciadv.aau7246] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 03/14/2019] [Indexed: 05/18/2023]
Abstract
The cold-induced antisense transcript COOLAIR represses FLOWERING LOCUS C (FLC) transcription with increased H3K27me3 and decreased H3K36me3 levels in response to cold temperatures. However, the molecular connection between COOLAIR and histone modification factors in the absence of cold treatment remains unclear. We report that the RNA binding protein FCA interacts with the PRC2 subunit CURLY LEAF (CLF) and binds nascent COOLAIR transcripts to allow deposition of H3K27me3 at FLC. Loss of COOLAIR function results in a reduction in FCA and CLF enrichment, which, in turn, decreases H3K27me3 levels at FLC. The Arabidopsis protein phosphatase SSU72 physically interacts with the RRM1 motif of FCA to antagonize FCA binding with COOLAIR. Mutations in SSU72 caused early flowering, reduced FLC transcription, increased CLF enrichment and H3K27me3, and enhanced affinity between FCA and COOLAIR. Our results suggest that FCA binding of COOLAIR and SSU72 is critical for PRC2 enrichment and H3K27me3 deposition in Arabidopsis.
Collapse
Affiliation(s)
- Yongke Tian
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, and Division of Molecular Cell Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui 230027, China
| | - Han Zheng
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, and Division of Molecular Cell Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui 230027, China
| | - Fei Zhang
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, and Division of Molecular Cell Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui 230027, China
| | - Shiliang Wang
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, and Division of Molecular Cell Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui 230027, China
| | - Xiaoru Ji
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, and Division of Molecular Cell Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui 230027, China
| | - Chao Xu
- School of Life Sciences, University of Science and Technology of China, and Division of Molecular Cell Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui 230027, China
| | - Yuehui He
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 201602, China
- Shanghai Chenshan Plant Science Research Center, CAS, Shanghai 201602, China
| | - Yong Ding
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, and Division of Molecular Cell Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui 230027, China
| |
Collapse
|
22
|
Jiang P, Wang S, Ikram AU, Xu Z, Jiang H, Cheng B, Ding Y. SDG721 and SDG705 are required for rice growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:530-535. [PMID: 29473711 DOI: 10.1111/jipb.12644] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/22/2018] [Indexed: 05/27/2023]
Abstract
H3K4me3 plays important roles in development, transcription, and environmental responses. Here, we report that SDG721 (SET-domain group protein 721) and SDG705 are involved in regulating rice development. SDG721 and SDG705 encode TRITHORAX-like proteins, which appear to modulate H3K4 methylation levels. Loss of SDG721 and SDG705 function resulted in GA-deficient phenotypes, including semi-dwarfism, reduced cell length, and reduced panicle branching. The transcripts levels and H3K4me3 levels of GA biosynthesis genes and GA signaling pathway genes were downregulated in the sdg721 sdg705 plants. Together, these results suggest that SDG721 and SDG705 regulate H3K4 methylation, which is crucial for plant development in rice.
Collapse
Affiliation(s)
- Pengfei Jiang
- National Engineering Laboratory of Crop Stress Resistance/ Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Shiliang Wang
- National Engineering Laboratory of Crop Stress Resistance/ Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Aziz Ul Ikram
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Zuntao Xu
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance/ Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance/ Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yong Ding
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science & Technology of China, Hefei 230027, China
| |
Collapse
|
23
|
Jiang P, Wang S, Zheng H, Li H, Zhang F, Su Y, Xu Z, Lin H, Qian Q, Ding Y. SIP1 participates in regulation of flowering time in rice by recruiting OsTrx1 to Ehd1. THE NEW PHYTOLOGIST 2018; 219:422-435. [PMID: 29611871 PMCID: PMC6001661 DOI: 10.1111/nph.15122] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/20/2018] [Indexed: 05/12/2023]
Abstract
Flowering time (heading date) in rice (Oryza sativa) is an important agronomic trait that determines yield. The levels of histone H3 lysine 4 trimethylation (H3K4me3) modulated by TRITHORAX-like proteins regulate gene transcription, flowering time and environmental stress responses. However, plant TRITHORAX-like proteins have no known DNA-binding domain, and therefore the mechanism that gives sequence specificity to these proteins remains unclear. Here, we show that the rice TRITHORAX-like protein OsTrx1 is recruited to its target, Early heading date 1 (Ehd1), by the C2H2 zinc finger protein SDG723/OsTrx1/OsSET33 Interaction Protein 1 (SIP1). SIP1 binds to the promoter of Ehd1 and interacts with OsTrx1. Mutations in SIP1 led to a late heading date under long-day and short-day conditions. Defects in OsTrx1 or SIP1 led to reduced H3K4me3 levels at Ehd1, thus reducing Ehd1 expression. Together, our results show that the transcription factor SIP1 interacts with OxTrx1, allowing OsTrx1 to specifically target Ehd1, altering H3K4me3 levels, increasing Ehd1 expression and thereby promoting flowering.
Collapse
Affiliation(s)
- Pengfei Jiang
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Shiliang Wang
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Han Zheng
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
| | - Hao Li
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefei230031China
| | - Fei Zhang
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
| | - Yanhua Su
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
| | - Zuntao Xu
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
| | - Haiyan Lin
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhou310006China
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhou310006China
| | - Yong Ding
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
| |
Collapse
|
24
|
Jiang P, Wang S, Jiang H, Cheng B, Wu K, Ding Y. The COMPASS-Like Complex Promotes Flowering and Panicle Branching in Rice. PLANT PHYSIOLOGY 2018; 176:2761-2771. [PMID: 29440594 PMCID: PMC5884598 DOI: 10.1104/pp.17.01749] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/05/2018] [Indexed: 05/21/2023]
Abstract
Flowering time (heading date) and panicle branch number are important agronomic traits that determine yield in rice (Oryza sativa). The activation of flowering requires histone methylation, but the roles of trimethylation of Lys 4 of histone 3 (H3K4me3) in modulating heading date and panicle development are unclear. Here, we showed that the COMPASS-like complex promotes flowering and panicle branching. The rice (Oryza sativa) WD40 protein OsWDR5a interacts with the TRITHORAX-like protein OsTrx1/SET domain group protein 723 (SDG723) to form the core components of the COMPASS-like complex. Plants in which OsWDR5a or OsTrx1 expression was decreased by RNA interference produced fewer secondary branches and less grain and exhibited a delayed heading date under long-day and short-day conditions, whereas loss of OsWDR5a function resulted in embryo lethality. OsWDR5a binds to Early heading date 1 to regulate its H3K4me3 and expression levels. Together, our results show that the COMPASS-like complex promotes flowering and panicle development and suggest that modulation of H3K4me3 levels by the COMPASS-like complex is critical for rice development.
Collapse
Affiliation(s)
- Pengfei Jiang
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China 230027
- National Engineering Laboratory of Crop Stress Resistance/ Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China 230036
| | - Shiliang Wang
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China 230027
- National Engineering Laboratory of Crop Stress Resistance/ Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China 230036
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance/ Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China 230036
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance/ Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China 230036
| | - Keqiang Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan 10617
| | - Yong Ding
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China 230027
| |
Collapse
|
25
|
Zheng H, Zhang F, Wang S, Su Y, Ji X, Jiang P, Chen R, Hou S, Ding Y. MLK1 and MLK2 Coordinate RGA and CCA1 Activity to Regulate Hypocotyl Elongation in Arabidopsis thaliana. THE PLANT CELL 2018; 30:67-82. [PMID: 29255112 PMCID: PMC5810577 DOI: 10.1105/tpc.17.00830] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/28/2017] [Accepted: 12/15/2017] [Indexed: 05/03/2023]
Abstract
Gibberellins (GAs) modulate diverse developmental processes throughout the plant life cycle. However, the interaction between GAs and the circadian rhythm remains unclear. Here, we report that MUT9p-LIKE KINASE1 (MLK1) and MLK2 mediate the interaction between GAs and the circadian clock to regulate hypocotyl elongation in Arabidopsis thaliana DELLA proteins function as master growth repressors that integrate phytohormone signaling and environmental pathways in plant development. MLK1 and MLK2 interact with the DELLA protein REPRESSOR OF ga1-3 (RGA). Loss of MLK1 and MLK2 function results in plants with short hypocotyls and hyposensitivity to GAs. MLK1/2 and RGA directly interact with CIRCADIAN CLOCK ASSOCIATED1 (CCA1), which targets the promoter of DWARF4 (DWF4) to regulate its roles in cell expansion. MLK1/2 antagonize the ability of RGA to bind CCA1, and these factors coordinately regulate the expression of DWF4 RGA suppressed the ability of CCA1 to activate expression from the DWF4 promoter, but MLK1/2 reversed this suppression. Genetically, MLK1/2 act in the same pathway as RGA and CCA1 in hypocotyl elongation. Together, our results provide insight into the mechanism by which MLK1 and MLK2 antagonize the function of RGA in hypocotyl elongation and suggest that MLK1/2 coordinately mediate the regulation of plant development by GAs and the circadian rhythm in Arabidopsis.
Collapse
Affiliation(s)
- Han Zheng
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Fei Zhang
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Shiliang Wang
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
- School of Life Sciences, Anhui Agricultural University, Anhui 230036, China
| | - Yanhua Su
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Xiaoru Ji
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Pengfei Jiang
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
- School of Life Sciences, Anhui Agricultural University, Anhui 230036, China
| | - Rihong Chen
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Suiwen Hou
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yong Ding
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| |
Collapse
|
26
|
Su Y, Wang S, Zhang F, Zheng H, Liu Y, Huang T, Ding Y. Phosphorylation of Histone H2A at Serine 95: A Plant-Specific Mark Involved in Flowering Time Regulation and H2A.Z Deposition. THE PLANT CELL 2017; 29:2197-2213. [PMID: 28790150 PMCID: PMC5635989 DOI: 10.1105/tpc.17.00266] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 05/20/2023]
Abstract
Phosphorylation of histone H3 affects transcription, chromatin condensation, and chromosome segregation. However, the role of phosphorylation of histone H2A remains unclear. Here, we found that Arabidopsis thaliana MUT9P-LIKE-KINASE (MLK4) phosphorylates histone H2A on serine 95, a plant-specific modification in the histone core domain. Mutations in MLK4 caused late flowering under long-day conditions but no notable phenotype under short days. MLK4 interacts with CIRCADIAN CLOCK ASSOCIATED1 (CCA1), which allows MLK4 to bind to the GIGANTEA (GI) promoter. CCA1 interacts with YAF9a, a co-subunit of the Swi2/Snf2-related ATPase (SWR1) and NuA4 complexes, which are responsible for incorporating the histone variant H2A.Z into chromatin and histone H4 acetylase activity, respectively. Importantly, loss of MLK4 function led to delayed flowering by decreasing phosphorylation of H2A serine 95, along with attenuated accumulation of H2A.Z and the acetylation of H4 at GI, thus reducing GI expression. Together, our results provide insight into how phosphorylation of H2A serine 95 promotes flowering time and suggest that phosphorylation of H2A serine 95 modulated by MLK4 is required for the regulation of flowering time and is involved in deposition of the histone variant H2A.Z and H4 acetylation in Arabidopsis.
Collapse
Affiliation(s)
- Yanhua Su
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shiliang Wang
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Fei Zhang
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Han Zheng
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yanan Liu
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Tongtong Huang
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yong Ding
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
27
|
Linn J, Ren M, Berkowitz O, Ding W, van der Merwe MJ, Whelan J, Jost R. Root Cell-Specific Regulators of Phosphate-Dependent Growth. PLANT PHYSIOLOGY 2017; 174:1969-1989. [PMID: 28465462 PMCID: PMC5490885 DOI: 10.1104/pp.16.01698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/01/2017] [Indexed: 05/07/2023]
Abstract
Cellular specialization in abiotic stress responses is an important regulatory feature driving plant acclimation. Our in silico approach of iterative coexpression, interaction, and enrichment analyses predicted root cell-specific regulators of phosphate starvation response networks in Arabidopsis (Arabidopsis thaliana). This included three uncharacterized genes termed Phosphate starvation-induced gene interacting Root Cell Enriched (PRCE1, PRCE2, and PRCE3). Root cell-specific enrichment of 12 candidates was confirmed in promoter-GFP lines. T-DNA insertion lines of 11 genes showed changes in phosphate status and growth responses to phosphate availability compared with the wild type. Some mutants (cbl1, cipk2, prce3, and wdd1) displayed strong biomass gain irrespective of phosphate supply, while others (cipk14, mfs1, prce1, prce2, and s6k2) were able to sustain growth under low phosphate supply better than the wild type. Notably, root or shoot phosphate accumulation did not strictly correlate with organ growth. Mutant response patterns markedly differed from those of master regulators of phosphate homeostasis, PHOSPHATE STARVATION RESPONSE1 (PHR1) and PHOSPHATE2 (PHO2), demonstrating that negative growth responses in the latter can be overcome when cell-specific regulators are targeted. RNA sequencing analysis highlighted the transcriptomic plasticity in these mutants and revealed PHR1-dependent and -independent regulatory circuits with gene coexpression profiles that were highly correlated to the quantified physiological traits. The results demonstrate how in silico prediction of cell-specific, stress-responsive genes uncovers key regulators and how their manipulation can have positive impacts on plant growth under abiotic stress.
Collapse
Affiliation(s)
- Joshua Linn
- Department of Animal, Plant, and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, VIC 3083, Australia
| | - Meiyan Ren
- Department of Animal, Plant, and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, VIC 3083, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant, and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, VIC 3083, Australia
| | - Wona Ding
- College of Science and Technology, Ningbo University, Ningbo, 315211 Zhejiang Province, People's Republic of China
| | - Margaretha J van der Merwe
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia, WA 6009, Australia
| | - James Whelan
- Department of Animal, Plant, and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, VIC 3083, Australia
| | - Ricarda Jost
- Department of Animal, Plant, and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, VIC 3083, Australia
| |
Collapse
|