1
|
Zhu K, Chen J, Zhao L, Lu F, Deng J, Lin X, He C, Wagner D, Xiao J. Dynamic control of H2A.Zub and H3K27me3 by ambient temperature during cell fate determination in Arabidopsis. Dev Cell 2025:S1534-5807(25)00204-7. [PMID: 40267908 DOI: 10.1016/j.devcel.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/14/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Crucial to plant development, ambient temperature triggers intricate mechanisms enabling adaptive responses to temperature variations. The precise coordination of chromatin modifications in shaping cell developmental fate under diverse temperatures remains elusive. Our study, integrating comprehensive transcriptome, epigenome profiling, and genetics, demonstrates that lower ambient temperature (16°C) partially restores developmental defects caused by H3K27me3 loss in prc2 mutants by specifically depositing H2A.Zub at ectopically expressed embryonic genes in Arabidopsis, such as ABA INSENSITIVE 3 (ABI3) and LEAFY COTYLEDON 1 (LEC1). This deposition leads to downregulation of these genes and compensates for H3K27me3 depletion. Polycomb-repressive complex 1 (PRC1)-catalyzed H2A.Zub and PRC2-catalyzed H3K27me3 play roles in silencing transcription of embryonic genes for post-germination development. Low-temperature-induced reduction of TOE1 protein level decelerates H2A.Z turnover at specific loci, sustaining repression of embryonic genes and alleviating requirement for PRC2-H3K27me3 at post-germination stage. Our findings offer mechanistic insights into the cooperative epigenetic layers, facilitating plant adaptation to varying environmental temperatures.
Collapse
Affiliation(s)
- Kehui Zhu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinchao Chen
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfang Lu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Deng
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chongsheng He
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Hunan 410082, China
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6084, USA
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Gandhivel VHS, Sotelo-Parrilla P, Raju S, Jha S, Gireesh A, Harshith CY, Gut F, Vinothkumar KR, Berger F, Jeyaprakash AA, Shivaprasad PV. An Oryza-specific histone H4 variant predisposes H4 lysine 5 acetylation to modulate salt stress responses. NATURE PLANTS 2025; 11:790-807. [PMID: 40200022 DOI: 10.1038/s41477-025-01974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
Paralogous variants of canonical histones guide accessibility to DNA and function as additional layers of genome regulation. Across eukaryotes, the mechanism of action and functional significance of several variants of core histones are well known except those of histone H4. Here we show that a variant of H4 (H4.V) expressing tissue-specifically among Oryza members mediated specific epigenetic changes contributing to salt tolerance. H4.V was incorporated into specific heterochromatic sites, where it blocked the deposition of active histone marks. Stress-dependent redistribution of H4.V enabled the incorporation of acetylated H4 lysine 5 (H4K5ac) in the gene bodies. The misexpression of H4.V led to defects in reproductive development and in mounting salt stress responses. H4.V formed homotypic nucleosomes and mediated these alterations by conferring distinct molecular properties to the nucleosomes, as seen with cryo electron microscopy structures and biochemical assays. These results reveal not only an H4 variant among plants but also a chromatin regulation that might have contributed to the adaptation of semi-aquatic Oryza members.
Collapse
Affiliation(s)
- Vivek Hari-Sundar Gandhivel
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Paula Sotelo-Parrilla
- Gene Center and Department of Biochemistry, Ludwig-Maximilian-Universität, Munich, Germany
| | - Steffi Raju
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India
- SASTRA University, Thanjavur, India
| | - Shaileshanand Jha
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India
| | - Anjitha Gireesh
- Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Fabian Gut
- Gene Center and Department of Biochemistry, Ludwig-Maximilian-Universität, Munich, Germany
| | - Kutti R Vinothkumar
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India
| | - Frédéric Berger
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - A Arockia Jeyaprakash
- Gene Center and Department of Biochemistry, Ludwig-Maximilian-Universität, Munich, Germany
- Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - P V Shivaprasad
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India.
| |
Collapse
|
3
|
Van Hautegem T, Takasaki H, Lorenzo CD, Demuynck K, Claeys H, Villers T, Sprenger H, Debray K, Schaumont D, Verbraeken L, Pevernagie J, Merchie J, Cannoot B, Aesaert S, Coussens G, Yamaguchi-Shinozaki K, Nuccio ML, Van Ex F, Pauwels L, Jacobs TB, Ruttink T, Inzé D, Nelissen H. Division Zone Activity Determines the Potential of Drought-Stressed Maize Leaves to Resume Growth after Rehydration. PLANT, CELL & ENVIRONMENT 2025; 48:1242-1258. [PMID: 39444139 DOI: 10.1111/pce.15227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/19/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Drought is one of the most devastating causes of yield losses in crops like maize, and the anticipated increases in severity and duration of drought spells due to climate change pose an imminent threat to agricultural productivity. To understand the drought response, phenotypic and molecular studies are typically performed at a given time point after drought onset, representing a steady-state adaptation response. Because growth is a dynamic process, we monitored the drought response with high temporal resolution and examined cellular and transcriptomic changes after rehydration at 4 and 6 days after leaf four appearance. These data showed that division zone activity is a determinant for full organ growth recovery upon rehydration. Moreover, a prolonged maintenance of cell division by the ectopic expression of PLASTOCHRON1 extends the ability to resume growth after rehydration. The transcriptome analysis indicated that GROWTH-REGULATING FACTORS (GRFs) affect leaf growth by impacting cell division duration, which was confirmed by a prolonged recovery potential of the GRF1-overexpression line after rehydration. Finally, we used a multiplex genome editing approach to evaluate the most promising differentially expressed genes from the transcriptome study and as such narrowed down the gene space from 40 to seven genes for future functional characterization.
Collapse
Affiliation(s)
- Tom Van Hautegem
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Hironori Takasaki
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Christian Damian Lorenzo
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Kirin Demuynck
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | - Timothy Villers
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Heike Sprenger
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Kevin Debray
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Dries Schaumont
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Lennart Verbraeken
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Julie Pevernagie
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Julie Merchie
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Bernard Cannoot
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stijn Aesaert
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Griet Coussens
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | - Laurens Pauwels
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Thomas B Jacobs
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Tom Ruttink
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Dirk Inzé
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Hilde Nelissen
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Yao P, He Q, Wang Y, Sun D, Chen X, Lu L. Genome-wide profiling and functional study of short N-terminal H2B variants in Arabidopsis. J Adv Res 2024:S2090-1232(24)00557-5. [PMID: 39672233 DOI: 10.1016/j.jare.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/23/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024] Open
Abstract
INTRODUCTION Nucleosomes harboring specific histone variants show distinct chromatin localization patterns and regulatory functions, thereby playing crucial roles in epigenetic regulation. Compared to the well-understood variants of H2A and H3, the study about H2B variants is emerging. Deciphering the roles and regulatory mechanisms of H2B variants in plants will provide more knowledges about epigenetic regulations in plant biology. OBJECTIVES Using the model plant Arabidopsis thaliana as the research subject, we systematically analyzed histone H2B variants, four short N-terminal histone H2B variants (snH2Bs) were identified. The genomic distribution characteristics of these snH2Bs, their impact on plant growth, and the potential regulatory mechanisms were studied. METHODS By integrating whole-genome chromatin immunoprecipitation sequencing (ChIP-seq) and fluorescence microscopy localization analysis, the distribution of snH2Bs across the genome was identified. Single, double, and triple knock-out mutants were constructed using CRISPR-Cas9 to further explore the functions of snH2Bs in the growth process of Arabidopsis thaliana, the possible mechanisms were also discussed. RESULTS These snH2B variants are preferentially expressed in reproductive tissues and are detected in the nuclei of pollen grains. Further genome-wide profiling indicates that the snH2Bs distribute at active chromatin regions and are positively correlated with gene expression. By creating knock-out single, double, and triple mutants for these snH2Bs, we demonstrate that H2B.5 influences vegetative to reproductive transition. We also show that H2B.5 is required for proper accumulation of H3 lysine 9 acetylation and H2B mono-ubiquitination. CONCLUSION Overall, our study not only provide insights into the functions and chromatin characteristics of plant snH2Bs, but also supplies examples that illustrate the interplay between histone variants and histone modification. These findings contribute to the understanding of the fundamental principles of epigenetic regulation in eukaryotes and also highlight potential targets for crop improvement.
Collapse
Affiliation(s)
- Peng Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qin He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Danyang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430071, China.
| | - Li Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Hongshan Laboratory, Wuhan 430071, China.
| |
Collapse
|
5
|
Sena S, Prakash A, Van Staden J, Kumar V. Epigenetic control of plant regeneration: Unraveling the role of histone methylation. CURRENT PLANT BIOLOGY 2024; 40:100408. [DOI: 10.1016/j.cpb.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
6
|
Do BH, Nguyen NH. H2A.Z removal mediates the activation of genes accounting for cell elongation under light and temperature stress. PLANT CELL REPORTS 2024; 43:286. [PMID: 39562374 DOI: 10.1007/s00299-024-03366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
KEY MESSAGE The histone variant H2A.Z is crucial for the expression of genes involved in cell elongation under elevated temperatures and shade. Its removal facilitates the activation of these genes, particularly through the activities of PHYTOCHROME INTERACTING FACTORs (PIFs) and the SWR1-related INOSITOL REQUIRING 80 (INO80) complex. Arabidopsis seedlings exhibit rapid elongation of hypocotyls and cotyledon petioles in response to environmental stresses, namely elevated temperatures and shade. These phenotypic alterations are regulated by various phytohormones, notably auxin. Under these stress conditions, auxin biosynthesis is swiftly induced in the cotyledons and transported to the hypocotyls, where it stimulates cell elongation. The histone variant H2A.Z plays a pivotal role in this regulatory mechanism. H2A.Z affects the transcription of numerous genes, particularly those activated by the mentioned environmental stresses. Recent studies highlighted that the eviction of H2A.Z from gene bodies is crucial for the activation of genes, especially auxin biosynthetic and responsive genes, under conditions of elevated temperature and shade. Additionally, experimental evidence suggests that PHYTOCHROME INTERACTING FACTORs (PIFs) can recruit the SWR1-related INOSITOL REQUIRING 80 (INO80) complex to remove H2A.Z from targeted loci, thereby activating gene transcription in response to these environmental stresses. This review provides a comprehensive overview of the regulatory role of H2A.Z, emphasizing how its eviction from gene loci is instrumental in the activation of stress-responsive genes under elevated temperature and shade conditions.
Collapse
Affiliation(s)
- Bich Hang Do
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
7
|
Akbarzadeh A, Ming TJ, Schulze AD, Kaukinen KH, Li S, Günther OP, Houde ALS, Miller KM. Developing molecular classifiers to detect environmental stressors, smolt stages and morbidity in coho salmon, Oncorhynchus kisutch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175626. [PMID: 39168345 DOI: 10.1016/j.scitotenv.2024.175626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Aquatic species are increasingly confronted with environmental stressors because of climate change. Although molecular technologies have advanced our understanding of how organisms respond to stressors in laboratory settings, the ability to detect physiological responses to specific stressors under complex field conditions remains underdeveloped. This research applied multi-stressor challenge trials on coho salmon, employing the "Salmon Fit-Chips" genomic tool and a random forest-based classification model to develop classifiers predictive for chronic thermal and hypoxic stress, as well as salinity acclimation, smolt stage and morbidity status. The study also examined how smolts and de-smolts (smolts not having entered SW during the smolt window) responded transcriptionally to exposure to saltwater. Using RF classifiers optimized with 4 to 12 biomarkers, we identified transcriptional signatures that accurately predicted the presence of each stressor and physiological state, achieving prediction accuracy rates between 86.8 % and 100 %, regardless of other background stressors present. Stressor recovery time was established by placing fish back into non-stressor conditions after stress exposure, providing important context to stressor detections in field applications. Recovery from thermal and hypoxic stress requires about 3 and 2 days, respectively, with >3 days needed for re-acclimation to freshwater for seawater acclimated fish. The study also found non-additive (synergistic) effects of multiple stressors on mortality risk. Importantly, osmotic stress associated with de-smolts was the most important predictor of mortality. In saltwater, de-smolts exposed to salinity, high temperature, and hypoxia experienced a 9-fold increase in mortality compared to those only exposed to saltwater, suggesting a synergistic response to multiple stressors. These findings suggest that delays in hatchery releases to support release of larger fish need to be carefully scrutinized to ensure fish are not being released as de-smolts, which are highly susceptible to additional climate-induced stressors like rising temperatures and reduced dissolved oxygen levels in the marine environment.
Collapse
Affiliation(s)
- Arash Akbarzadeh
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada; Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Angela D Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Oliver P Günther
- Günther Analytics, 402-5775 Hampton Place, Vancouver, BC V6T 2G6, Canada
| | - Aimee Lee S Houde
- Environmental Dynamics Inc. (EDI), 208A - 2520 Bowen Road, Nanaimo, BC V9T 3L3, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
8
|
Ji X, Liu W, Zhang F, Su Y, Ding Y, Li H. H3K36me3 and H2A.Z coordinately modulate flowering time in Arabidopsis. J Genet Genomics 2024; 51:1135-1138. [PMID: 37302474 DOI: 10.1016/j.jgg.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Affiliation(s)
- Xiaoru Ji
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wenqian Liu
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fei Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yanhua Su
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Ding
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Rudy E, Tanwar UK, Szlachtowska Z, Grabsztunowicz M, Arasimowicz-Jelonek M, Sobieszczuk-Nowicka E. Unveiling the role of epigenetics in leaf senescence: a comparative study to identify different epigenetic regulations of senescence types in barley leaves. BMC PLANT BIOLOGY 2024; 24:863. [PMID: 39272009 PMCID: PMC11401419 DOI: 10.1186/s12870-024-05573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Developmental leaf senescence (DLS) is an irreversible process followed by cell death. Dark-induced leaf senescence (DILS) is a reversible process that allows adaptations to changing environmental conditions. As a result of exposure to adverse environmental changes, plants have developed mechanisms that enable them to survive. One of these is the redirection of metabolism into the senescence pathway. The plant seeks to optimise resource allocation. Our research aims to demonstrate how epigenetic machinery regulates leaf senescence, including its irreversibility. RESULTS In silico analyses allowed the complex identification and characterisation of 117 genes involved in epigenetic processes in barley. These genes include those responsible for DNA methylation, post-translational histone modifications, and ATP-dependent chromatin remodelling complexes. We then performed RNAseq analysis after DILS and DLS to evaluate their expression in senescence-dependent leaf metabolism. Principal component analysis revealed that evaluated gene expression in developmental senescence was similar to controls, while induced senescence displayed a distinct profile. Western blot experiments revealed that senescence engages senescence-specific histone modification. During DILS and DLS, the methylation of histone proteins H3K4me3 and H3K9me2 increased. H3K9ac acetylation levels significantly decreased during DILS and remained unchanged during DLS. CONCLUSIONS The study identified different epigenetic regulations of senescence types in barley leaves. These findings are valuable for exploring epigenetic regulation of senescence-related molecular mechanisms, particularly in response to premature, induced leaf senescence. Based on the results, we suggest the presence of an epigenetically regulated molecular switch between cell survival and cell death in DILS, highlighting an epigenetically driven cell survival metabolic response.
Collapse
Affiliation(s)
- Elżbieta Rudy
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland
| | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland
| | - Zofia Szlachtowska
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland
| | - Magda Grabsztunowicz
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Str., Poznań, 61-614, Poland.
| |
Collapse
|
10
|
Han T, Khan MA, Wang Y, Tan W, Li C, Ai P, Zhao W, Li Z, Wang Z. Identification of SDG gene family members and exploration of flowering related genes in different cultivars of chrysanthemums and their wild ancestors. BMC PLANT BIOLOGY 2024; 24:813. [PMID: 39210253 PMCID: PMC11360836 DOI: 10.1186/s12870-024-05465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The SET domain genes (SDGs) are significant contributors to various aspects of plant growth and development, mainly includes flowering, pollen development, root growth, regulation of the biological clock and branching patterns. To clarify the biological functions of the chrysanthemum SDG family, the SDG family members of four chrysanthemum cultivars and three related wild species were identified; their physical and chemical properties, protein domains and conserved motifs were predicted and analyzed. The results showed that 59, 67, 67, 102, 106, 114, and 123 SDGs were identified from Chrysanthemum nankingense, Chrysanthemum lavandulifolium, Chrysanthemum seticuspe, Chrysanthemum × morifolium cv. 'Hechengxinghuo', 'Zhongshanzigui', 'Quanxiangshuichang' and 'Jinbeidahong', respectively. The SDGs were divided into 5-7 subfamilies by cluster analysis; different conserved motifs were observed in particular families. The SDGs of C. lavandulifolium and C. seticuspe were distributed unevenly on 9 chromosomes. SDG promoters of different species include growth and development, photo-response, stress response and hormone responsive elements, among them, the cis-acting elements related to MeJA response had the largest proportion. The expression of chrysanthemum SDG genes was observed for most variable selected genes which has close association with important Arabidopsis thaliana genes related to flowering regulation. The qPCR results showed that the expression trend of SDG genes varied in different tissues at different growth stages with high expression in the flowering period. The ClSDG29 showed higher expression in the flower and bud tissues, which indicate that ClSDG29 might be associated with flowering regulation in chrysanthemum. In summary, the results of this study can provide a basis for subsequent research on chrysanthemum flowering time regulation.
Collapse
Affiliation(s)
- Ting Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Muhammad Ayoub Khan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Yiming Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Wenchao Tan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Chenran Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Penghui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Zhongai Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Zicheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China.
| |
Collapse
|
11
|
Kubaczka MG, Godoy Herz MA, Chen WC, Zheng D, Petrillo E, Tian B, Kornblihtt AR. Light regulates widespread plant alternative polyadenylation through the chloroplast. Proc Natl Acad Sci U S A 2024; 121:e2405632121. [PMID: 39150783 PMCID: PMC11348263 DOI: 10.1073/pnas.2405632121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/16/2024] [Indexed: 08/18/2024] Open
Abstract
Transcription of eukaryotic protein-coding genes generates immature mRNAs that are subjected to a series of processing events, including capping, splicing, cleavage, and polyadenylation (CPA), and chemical modifications of bases. Alternative polyadenylation (APA) greatly contributes to mRNA diversity in the cell. By determining the length of the 3' untranslated region, APA generates transcripts with different regulatory elements, such as miRNA and RBP binding sites, which can influence mRNA stability, turnover, and translation. In the model plant Arabidopsis thaliana, APA is involved in the control of seed dormancy and flowering. In view of the physiological importance of APA in plants, we decided to investigate the effects of light/dark conditions and compare the underlying mechanisms to those elucidated for alternative splicing (AS). We found that light controls APA in approximately 30% of Arabidopsis genes. Similar to AS, the effect of light on APA requires functional chloroplasts, is not affected in mutants of the phytochrome and cryptochrome photoreceptor pathways, and is observed in roots only when the communication with the photosynthetic tissues is not interrupted. Furthermore, mitochondrial and TOR kinase activities are necessary for the effect of light. However, unlike AS, coupling with transcriptional elongation does not seem to be involved since light-dependent APA regulation is neither abolished in mutants of the TFIIS transcript elongation factor nor universally affected by chromatin relaxation caused by histone deacetylase inhibition. Instead, regulation seems to correlate with changes in the abundance of constitutive CPA factors, also mediated by the chloroplast.
Collapse
Affiliation(s)
- M. Guillermina Kubaczka
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires1428, Argentina
| | - Micaela A. Godoy Herz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires1428, Argentina
| | - Wei-Chun Chen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Ezequiel Petrillo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires1428, Argentina
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ07103
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA19104
| | - Alberto R. Kornblihtt
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires1428, Argentina
| |
Collapse
|
12
|
Guo P, Wang TJ, Wang S, Peng X, Kim DH, Liu Y. Arabidopsis Histone Variant H2A.X Functions in the DNA Damage-Coupling Abscisic Acid Signaling Pathway. Int J Mol Sci 2024; 25:8940. [PMID: 39201623 PMCID: PMC11354415 DOI: 10.3390/ijms25168940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Environmental variations initiate chromatin modifications, leading to the exchange of histone subunits or the repositioning of nucleosomes. The phosphorylated histone variant H2A.X (γH2A.X) is recognized for the formation of foci that serve as established markers of DNA double-strand breaks (DSBs). Nevertheless, the precise roles of H2A.X in the cellular response to genotoxic stress and the impact of the plant hormone abscisic acid (ABA) remain incompletely understood. In this investigation, we implemented CRISPR/Cas9 technology to produce loss-of-function mutants of AtHTA3 and AtHTA5 in Arabidopsis. The phenotypes of the athta3 and athta5 single mutants were nearly identical to those of the wild-type Col-0. Nevertheless, the athta3 athta5 double mutants exhibited aberrant embryonic development, increased sensitivity to DNA damage, and higher sensitivity to ABA. The RT-qPCR analysis indicates that AtHTA3 and AtHTA5 negatively regulate the expression of AtABI3, a fundamental regulator in the ABA signaling pathway. Subsequent investigation demonstrated that AtABI3 participates in the genotoxic stress response by influencing the expression of DNA damage response genes, such as AtBRCA1, AtRAD51, and AtWEE1. Our research offers new insights into the role of H2A.X in the genotoxic and ABA responses of Arabidopsis.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Shuang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Xiaoyuan Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Dae Heon Kim
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| |
Collapse
|
13
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
14
|
Miao R, Zhang Y, Liu X, Yuan Y, Zang W, Li Z, Yan X, Pang Q, Zhang A. Histone variant H2A.Z is required for plant salt response by regulating gene transcription. PLANT, CELL & ENVIRONMENT 2024; 47:2693-2709. [PMID: 38576334 DOI: 10.1111/pce.14908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/11/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
As a well-conserved histone variant, H2A.Z epigenetically regulates plant growth and development as well as the interaction with environmental factors. However, the role of H2A.Z in response to salt stress remains unclear, and whether nucleosomal H2A.Z occupancy work on the gene responsiveness upon salinity is obscure. Here, we elucidate the involvement of H2A.Z in salt response by analysing H2A.Z disorder plants with impaired or overloaded H2A.Z deposition. The salt tolerance is dramatically accompanied by H2A.Z deficiency and reacquired in H2A.Z OE lines. H2A.Z disorder changes the expression profiles of large-scale of salt responsive genes, announcing that H2A.Z is required for plant salt response. Genome-wide H2A.Z mapping shows that H2A.Z level is induced by salt condition across promoter, transcriptional start site (TSS) and transcription ending sites (-1 kb to +1 kb), the peaks preferentially enrich at promoter regions near TSS. We further show that H2A.Z deposition within TSS provides a direct role on transcriptional control, which has both repressive and activating effects, while it is found generally H2A.Z enrichment negatively correlate with gene expression level response to salt stress. This study shed light on the H2A.Z function in salt tolerance, highlighting the complex regulatory mechanisms of H2A.Z on transcriptional activity for yielding appropriate responses to particularly environmental stress.
Collapse
Affiliation(s)
- Rongqing Miao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yue Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xinxin Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yue Yuan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wei Zang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zhiqi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiufeng Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Aiqin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
15
|
Franek M, Nešpor Dadejová M, Pírek P, Kryštofová K, Dobisová T, Zdráhal Z, Dvořáčková M, Lochmanová G. Histone Chaperone Deficiency in Arabidopsis Plants Triggers Adaptive Epigenetic Changes in Histone Variants and Modifications. Mol Cell Proteomics 2024; 23:100795. [PMID: 38848995 PMCID: PMC11263794 DOI: 10.1016/j.mcpro.2024.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
At the molecular scale, adaptive advantages during plant growth and development rely on modulation of gene expression, primarily provided by epigenetic machinery. One crucial part of this machinery is histone posttranslational modifications, which form a flexible system, driving transient changes in chromatin, and defining particular epigenetic states. Posttranslational modifications work in concert with replication-independent histone variants further adapted for transcriptional regulation and chromatin repair. However, little is known about how such complex regulatory pathways are orchestrated and interconnected in cells. In this work, we demonstrate the utility of mass spectrometry-based approaches to explore how different epigenetic layers interact in Arabidopsis mutants lacking certain histone chaperones. We show that defects in histone chaperone function (e.g., chromatin assembly factor-1 or nucleosome assembly protein 1 mutations) translate into an altered epigenetic landscape, which aids the plant in mitigating internal instability. We observe changes in both the levels and distribution of H2A.W.7, altogether with partial repurposing of H3.3 and changes in the key repressive (H3K27me1/2) or euchromatic marks (H3K36me1/2). These shifts in the epigenetic profile serve as a compensatory mechanism in response to impaired integration of the H3.1 histone in the fas1 mutants. Altogether, our findings suggest that maintaining genome stability involves a two-tiered approach. The first relies on flexible adjustments in histone marks, while the second level requires the assistance of chaperones for histone variant replacement.
Collapse
Affiliation(s)
- Michal Franek
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic
| | - Martina Nešpor Dadejová
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic
| | - Pavlína Pírek
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic
| | - Karolína Kryštofová
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Zbyněk Zdráhal
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martina Dvořáčková
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Gabriela Lochmanová
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
16
|
Willige BC, Yoo CY, Saldierna Guzmán JP. What is going on inside of phytochrome B photobodies? THE PLANT CELL 2024; 36:2065-2085. [PMID: 38511271 PMCID: PMC11132900 DOI: 10.1093/plcell/koae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 03/22/2024]
Abstract
Plants exhibit an enormous phenotypic plasticity to adjust to changing environmental conditions. For this purpose, they have evolved mechanisms to detect and measure biotic and abiotic factors in their surroundings. Phytochrome B exhibits a dual function, since it serves as a photoreceptor for red and far-red light as well as a thermosensor. In 1999, it was first reported that phytochromes not only translocate into the nucleus but also form subnuclear foci upon irradiation by red light. It took more than 10 years until these phytochrome speckles received their name; these foci were coined photobodies to describe unique phytochrome-containing subnuclear domains that are regulated by light. Since their initial discovery, there has been much speculation about the significance and function of photobodies. Their presumed roles range from pure experimental artifacts to waste deposits or signaling hubs. In this review, we summarize the newest findings about the meaning of phyB photobodies for light and temperature signaling. Recent studies have established that phyB photobodies are formed by liquid-liquid phase separation via multivalent interactions and that they provide diverse functions as biochemical hotspots to regulate gene expression on multiple levels.
Collapse
Affiliation(s)
- Björn Christopher Willige
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Chan Yul Yoo
- School of Biological Sciences, University of Utah, UT 84112, USA
| | - Jessica Paola Saldierna Guzmán
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
17
|
Simon L, Probst AV. Maintenance and dynamic reprogramming of chromatin organization during development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:657-670. [PMID: 36700345 DOI: 10.1111/tpj.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
Controlled transcription of genes is critical for cell differentiation and development. Gene expression regulation therefore involves a multilayered control from nucleosome composition in histone variants and their post-translational modifications to higher-order folding of chromatin fibers and chromatin interactions in nuclear space. Recent technological advances have allowed gaining insight into these mechanisms, the interplay between local and higher-order chromatin organization, and the dynamic changes that occur during stress response and developmental transitions. In this review, we will discuss chromatin organization from the nucleosome to its three-dimensional structure in the nucleus, and consider how these different layers of organization are maintained during the cell cycle or rapidly reprogrammed during development.
Collapse
Affiliation(s)
- Lauriane Simon
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Aline V Probst
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
18
|
Miebach M, Faivre L, Schubert D, Jameson P, Remus‐Emsermann M. Nonpathogenic leaf-colonizing bacteria elicit pathogen-like responses in a colonization density-dependent manner. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10137. [PMID: 38482131 PMCID: PMC10934995 DOI: 10.1002/pei3.10137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 11/02/2024]
Abstract
Leaves are colonized by a complex mix of microbes, termed the leaf microbiota. Even though the leaf microbiota is increasingly recognized as an integral part of plant life and health, our understanding of its interactions with the plant host is still limited. Here, mature, axenically grown Arabidopsis thaliana plants were spray inoculated with six diverse leaf-colonizing bacteria. The transcriptomic changes in leaves were tracked over time and significant changes in ethylene marker (ARL2) expression were observed only 2-4 days after spray inoculation. Whole-transcriptome sequencing revealed that 4 days after inoculation, leaf transcriptional changes to colonization by nonpathogenic and pathogenic bacteria differed in strength but not in the type of response. Inoculation of plants with different densities of the nonpathogenic bacterium Williamsia sp. Leaf354 showed that high bacterial titers resulted in disease phenotypes and led to severe transcriptional reprogramming with a strong focus on plant defense. An in silico epigenetic analysis of the data was congruent with the transcriptomic analysis. These findings suggest (1) that plant responses are not rapid after spray inoculation, (2) that plant responses only differ in strength, and (3) that plants respond to high titers of nonpathogenic bacteria with pathogen-like responses.
Collapse
Affiliation(s)
- Moritz Miebach
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
- Biomolecular Interaction CentreUniversity of CanterburyChristchurchNew Zealand
| | - Léa Faivre
- Department of Biology, Chemistry, Pharmacy, Institute of Biology ‐ Microbiology and Dahlem Centre of Plant Sciences]Freie Universität BerlinBerlinGermany
| | - Daniel Schubert
- Department of Biology, Chemistry, Pharmacy, Institute of Biology ‐ Microbiology and Dahlem Centre of Plant Sciences]Freie Universität BerlinBerlinGermany
| | - Paula Jameson
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Mitja Remus‐Emsermann
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
- Biomolecular Interaction CentreUniversity of CanterburyChristchurchNew Zealand
- Department of Biology, Chemistry, Pharmacy, Institute of Biology ‐ Microbiology and Dahlem Centre of Plant Sciences]Freie Universität BerlinBerlinGermany
| |
Collapse
|
19
|
Zhang D, Zhao R, Xian G, Kou Y, Ma W. A new model construction based on the knowledge graph for mining elite polyphenotype genes in crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1361716. [PMID: 38571713 PMCID: PMC10987776 DOI: 10.3389/fpls.2024.1361716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
Identifying polyphenotype genes that simultaneously regulate important agronomic traits (e.g., plant height, yield, and disease resistance) is critical for developing novel high-quality crop varieties. Predicting the associations between genes and traits requires the organization and analysis of multi-dimensional scientific data. The existing methods for establishing the relationships between genomic data and phenotypic data can only elucidate the associations between genes and individual traits. However, there are relatively few methods for detecting elite polyphenotype genes. In this study, a knowledge graph for traits regulating-genes was constructed by collecting data from the PubMed database and eight other databases related to the staple food crops rice, maize, and wheat as well as the model plant Arabidopsis thaliana. On the basis of the knowledge graph, a model for predicting traits regulating-genes was constructed by combining the data attributes of the gene nodes and the topological relationship attributes of the gene nodes. Additionally, a scoring method for predicting the genes regulating specific traits was developed to screen for elite polyphenotype genes. A total of 125,591 nodes and 547,224 semantic relationships were included in the knowledge graph. The accuracy of the knowledge graph-based model for predicting traits regulating-genes was 0.89, the precision rate was 0.91, the recall rate was 0.96, and the F1 value was 0.94. Moreover, 4,447 polyphenotype genes for 31 trait combinations were identified, among which the rice polyphenotype gene IPA1 and the A. thaliana polyphenotype gene CUC2 were verified via a literature search. Furthermore, the wheat gene TraesCS5A02G275900 was revealed as a potential polyphenotype gene that will need to be further characterized. Meanwhile, the result of venn diagram analysis between the polyphenotype gene datasets (consists of genes that are predicted by our model) and the transcriptome gene datasets (consists of genes that were differential expression in response to disease, drought or salt) showed approximately 70% and 54% polyphenotype genes were identified in the transcriptome datasets of Arabidopsis and rice, respectively. The application of the model driven by knowledge graph for predicting traits regulating-genes represents a novel method for detecting elite polyphenotype genes.
Collapse
Affiliation(s)
- Dandan Zhang
- Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruixue Zhao
- Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Integration Publishing Knowledge Mining and Knowledge Service, National Press and Publication Administration, Beijing, China
| | - Guojian Xian
- Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Big Data, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuantao Kou
- Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Integration Publishing Knowledge Mining and Knowledge Service, National Press and Publication Administration, Beijing, China
| | - Weilu Ma
- Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Komatsu S, Nishiuchi T, Furuya T, Tani M. Millmeter-wave irradiation regulates mRNA-expression and the ubiquitin-proteasome system in wheat exposed to flooding stress. J Proteomics 2024; 294:105073. [PMID: 38218429 DOI: 10.1016/j.jprot.2024.105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
The irradiation with millimeter-wave (MMW) of wheat seeds promotes root growth under flooding stress; however, its role is not completely clarified. Nuclear proteomics was performed, to reveal the role of MMW irradiation in enhancing flooding tolerance. The purity of nuclear fractions purified from roots was verified. Histone, which is a protein marker for nuclear-purification efficiency, was enriched; and cytosolic ascorbate peroxidase was reduced in the nuclear fraction. The principal-component analysis of proteome displayed that the irradiation of seeds affected nuclear proteins in roots grown under flooding stress. Proteins detected using proteomic analysis were verified using immunoblot analysis. Histone H3 accumulated under flooding stress; however, it decreased to the control level by irradiation. Whereas the ubiquitin accumulated in roots grown under stress when seeds were irradiated. These results suggest that MMW irradiation improves wheat-root growth under flooding stress through the regulation of mRNA-expression level and the ubiquitin-proteasome system. SIGNIFICANCE: To reveal the role of millimeter-wave irradiation in enhancing flooding tolerance in wheat, nuclear proteomics was performed. The principal-component analysis of proteome displayed that irradiation of seeds affected nuclear proteins in roots grown under flooding stress. Proteins detected using proteomic analysis were verified using immunoblot analysis. Histone H3 accumulated under flooding stress; however, it decreased to the control level with irradiation. Whereas the ubiquitin accumulated in roots grown under stress when seeds were irradiated. These results suggest that millimeter-wave irradiation improves wheat-root growth under flooding stress through the regulation of mRNA-expression level and the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Department of Applied Chemistry and Food Science, Fukui University of Technology, Fukui 910-8505, Japan.
| | - Takumi Nishiuchi
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa 920-8640, Japan
| | - Takashi Furuya
- Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan
| | - Masahiko Tani
- Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan
| |
Collapse
|
21
|
Vivek Hari Sundar G, Madhu A, Archana A, Shivaprasad PV. Plant histone variants at the nexus of chromatin readouts, stress and development. Biochim Biophys Acta Gen Subj 2024; 1868:130539. [PMID: 38072208 DOI: 10.1016/j.bbagen.2023.130539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Histones are crucial proteins that are involved in packaging the DNA as condensed chromatin inside the eukaryotic cell nucleus. Rather than being static packaging units, these molecules undergo drastic variations spatially and temporally to facilitate accessibility of DNA to replication, transcription as well as wide range of gene regulatory machineries. In addition, incorporation of paralogous variants of canonical histones in the chromatin is ascribed to specific functions. Given the peculiar requirement of plants to rapidly modulate gene expression levels on account of their sessile nature, histones and their variants serve as additional layers of gene regulation. This review summarizes the mechanisms and implications of distribution, modifications and differential incorporation of histones and their variants across plant genomes, and outlines emerging themes.
Collapse
Affiliation(s)
- G Vivek Hari Sundar
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India
| | - Aravind Madhu
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India; SASTRA University, Thirumalaisamudram, Thanjavur 613 401, India
| | - A Archana
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India; SASTRA University, Thirumalaisamudram, Thanjavur 613 401, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India.
| |
Collapse
|
22
|
Huang P, Zhang X, Cheng Z, Wang X, Miao Y, Huang G, Fu YF, Feng X. The nuclear pore Y-complex functions as a platform for transcriptional regulation of FLOWERING LOCUS C in Arabidopsis. THE PLANT CELL 2024; 36:346-366. [PMID: 37877462 PMCID: PMC10827314 DOI: 10.1093/plcell/koad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
The nuclear pore complex (NPC) has multiple functions beyond the nucleo-cytoplasmic transport of large molecules. Subnuclear compartmentalization of chromatin is critical for gene expression in animals and yeast. However, the mechanism by which the NPC regulates gene expression is poorly understood in plants. Here we report that the Y-complex (Nup107-160 complex, a subcomplex of the NPC) self-maintains its nucleoporin homeostasis and modulates FLOWERING LOCUS C (FLC) transcription via changing histone modifications at this locus. We show that Y-complex nucleoporins are intimately associated with FLC chromatin through their interactions with histone H2A at the nuclear membrane. Fluorescence in situ hybridization assays revealed that Nup96, a Y-complex nucleoporin, enhances FLC positioning at the nuclear periphery. Nup96 interacted with HISTONE DEACETYLASE 6 (HDA6), a key repressor of FLC expression via histone modification, at the nuclear membrane to attenuate HDA6-catalyzed deposition at the FLC locus and change histone modifications. Moreover, we demonstrate that Y-complex nucleoporins interact with RNA polymerase II to increase its occupancy at the FLC locus, facilitating transcription. Collectively, our findings identify an attractive mechanism for the Y-complex in regulating FLC expression via tethering the locus at the nuclear periphery and altering its histone modification.
Collapse
Affiliation(s)
- Penghui Huang
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaomei Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Cheng
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guowen Huang
- Department of Biological Sciences and Chemical Engineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Yong-Fu Fu
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianzhong Feng
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
23
|
Saldierna Guzmán JP, Zander M, Willige BC. Chromatin Immunoprecipitation to Investigate H2A.Z Dynamics in Response to Environmental Changes. Methods Mol Biol 2024; 2795:169-182. [PMID: 38594538 DOI: 10.1007/978-1-0716-3814-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
DNA methylation and posttranslational modifications of histones instruct gene expression in eukaryotes. Besides canonical histones, histone variants also play a critical role in transcriptional regulation. One of the best studied histone variants in plants is H2A.Z whose removal from gene bodies correlates with increased transcriptional activity. The eviction of H2A.Z is regulated by environmental cues such as increased ambient temperatures, and current models suggest that H2A.Z functions as a transcriptional buffer preventing environmentally responsive genes from undesired activation. To monitor temperature-dependent H2A.Z dynamics, chromatin immunoprecipitation (ChIP) of H2A.Z-occupied DNA can be performed. The following protocol describes a quick and easy ChIP approach to study in vivo H2A.Z occupancy.
Collapse
Affiliation(s)
- J Paola Saldierna Guzmán
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mark Zander
- Waksman Institute of Microbiology, Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Björn C Willige
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
24
|
Chen H, Wang W, Chen X, Niu Y, Qi Y, Yu Z, Xiong M, Xu P, Wang W, Guo T, Yang HQ, Mao Z. PIFs interact with SWI2/SNF2-related 1 complex subunit 6 to regulate H2A.Z deposition and photomorphogenesis in Arabidopsis. J Genet Genomics 2023; 50:983-992. [PMID: 37120038 DOI: 10.1016/j.jgg.2023.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Light is an essential environmental signal perceived by a broad range of photoreceptors in plants. Among them, the red/far-red light receptor phytochromes function to promote photomorphogenesis, which is critical to the survival of seedlings after seeds germination. The basic-helix-loop-helix transcription factors phytochrome-interacting factors (PIFs) are the pivotal direct downstream components of phytochromes. H2A.Z is a highly conserved histone variant regulating gene transcription, and its incorporation into nucleosomes is catalyzed by SWI2/SNF2-related 1 complex, in which SWI2/SNF2-related 1 complex subunit 6 (SWC6) and actin-related protein 6 (ARP6) serve as core subunits. Here, we show that PIFs physically interact with SWC6 in vitro and in vivo, leading to the disassociation of HY5 from SWC6. SWC6 and ARP6 regulate hypocotyl elongation partly through PIFs in red light. PIFs and SWC6 coregulate the expression of auxin-responsive genes such as IAA6, IAA19, IAA20, and IAA29 and repress H2A.Z deposition at IAA6 and IAA19 in red light. Based on previous studies and our findings, we propose that PIFs inhibit photomorphogenesis, at least in part, through repression of H2A.Z deposition at auxin-responsive genes mediated by the interactions of PIFs with SWC6 and promotion of their expression in red light.
Collapse
Affiliation(s)
- Huiru Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wanting Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yake Niu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yuanyuan Qi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ze Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Minyu Xiong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Pengbo Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
25
|
Kumar S, Seem K, Kumar S, Singh A, Krishnan SG, Mohapatra T. DNA methylome analysis provides insights into gene regulatory mechanism for better performance of rice under fluctuating environmental conditions: epigenomics of adaptive plasticity. PLANTA 2023; 259:4. [PMID: 37993704 DOI: 10.1007/s00425-023-04272-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
MAIN CONCLUSION Roots play an important role in adaptive plasticity of rice under dry/direct-sown conditions. However, hypomethylation of genes in leaves (resulting in up-regulated expression) complements the adaptive plasticity of Nagina-22 under DSR conditions. Rice is generally cultivated by transplanting which requires plenty of water for irrigation. Such a practice makes rice cultivation a challenging task under global climate change and reducing water availability. However, dry-seeded/direct-sown rice (DSR) has emerged as a resource-saving alternative to transplanted rice (TPR). Though some of the well-adapted local cultivars are used for DSR, only limited success has been achieved in developing DSR varieties mainly because of a limited knowledge of adaptability of rice under fluctuating environmental conditions. Based on better morpho-physiological and agronomic performance of Nagina-22 (N-22) under DSR conditions, N-22 and IR-64 were grown by transplanting and direct-sowing and used for whole genome methylome analysis to unravel the epigenetic basis of adaptive plasticity of rice. Comparative methylome and transcriptome analyses indicated a large number (4078) of genes regulated through DNA methylation/demethylation in N-22 under DSR conditions. Gene × environment interactions play important roles in adaptive plasticity of rice under direct-sown conditions. While genes for pectinesterase, LRK10, C2H2 zinc-finger protein, splicing factor, transposable elements, and some of the unannotated proteins were hypermethylated, the genes for regulation of transcription, protein phosphorylation, etc. were hypomethylated in CG context in the root of N-22, which played important roles in providing adaptive plasticity to N-22 under DSR conditions. Hypomethylation leading to up-regulation of gene expression in the leaf complements the adaptive plasticity of N-22 under DSR conditions. Moreover, differential post-translational modification of proteins and chromatin assembly/disassembly through DNA methylation in CHG context modulate adaptive plasticity of N-22. These findings would help developing DSR cultivars for increased water-productivity and ecological efficiency.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Archana Singh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - S Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
26
|
Sun K, Li Y, Gai Y, Wang J, Jian Y, Liu X, Wu L, Shim WB, Lee YW, Ma Z, Haas H, Yin Y. HapX-mediated H2B deub1 and SreA-mediated H2A.Z deposition coordinate in fungal iron resistance. Nucleic Acids Res 2023; 51:10238-10260. [PMID: 37650633 PMCID: PMC10602907 DOI: 10.1093/nar/gkad708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism through which pathogens counteract iron stress is unclear. Here, we found that Fusarium graminearum encounters iron excess during the colonization of wheat heads. Deletion of heme activator protein X (FgHapX), siderophore transcription factor A (FgSreA) or both attenuated virulence. Further, we found that FgHapX activates iron storage under iron excess by promoting histone H2B deubiquitination (H2B deub1) at the promoter of the responsible gene. Meanwhile, FgSreA is shown to inhibit genes mediating iron acquisition during iron excess by facilitating the deposition of histone variant H2A.Z and histone 3 lysine 27 trimethylation (H3K27 me3) at the first nucleosome after the transcription start site. In addition, the monothiol glutaredoxin FgGrx4 is responsible for iron sensing and control of the transcriptional activity of FgHapX and FgSreA via modulation of their enrichment at target genes and recruitment of epigenetic regulators, respectively. Taken together, our findings elucidated the molecular mechanisms for adaptation to iron excess mediated by FgHapX and FgSreA during infection in F. graminearum and provide novel insights into regulation of iron homeostasis at the chromatin level in eukaryotes.
Collapse
Affiliation(s)
- Kewei Sun
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiqing Li
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Jingrui Wang
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunqing Jian
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xin Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liang Wu
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, USA
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hubertus Haas
- Instiute of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck A-6020, Austria
| | - Yanni Yin
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Jiang D, Berger F. Variation is important: Warranting chromatin function and dynamics by histone variants. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102408. [PMID: 37399781 DOI: 10.1016/j.pbi.2023.102408] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
The chromatin of flowering plants exhibits a wide range of sequence variants of the core and linker histones. Recent studies have demonstrated that specific histone variant enrichment, combined with post-translational modifications (PTMs) of histones, defines distinct chromatin states that impact specific chromatin functions. Chromatin remodelers are emerging as key regulators of histone variant dynamics, contributing to shaping chromatin states and regulating gene transcription in response to environment. Recognizing the histone variants by their specific readers, controlled by histone PTMs, is crucial for maintaining genome and chromatin integrity. In addition, various histone variants have been shown to play essential roles in remodeling chromatin domains to facilitate important programmed transitions throughout the plant life cycle. In this review, we discuss recent findings in this exciting field of research, which holds immense promise for many surprising discoveries related to the evolution of complexity in plant organization through a seemingly simple protein family.
Collapse
Affiliation(s)
- Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
28
|
Do BH, Hiep NT, Lao TD, Nguyen NH. Loss-of-Function Mutation of ACTIN-RELATED PROTEIN 6 (ARP6) Impairs Root Growth in Response to Salinity Stress. Mol Biotechnol 2023; 65:1414-1420. [PMID: 36627550 DOI: 10.1007/s12033-023-00653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
H2A.Z-containing nucleosomes have been found to function in various developmental programs in Arabidopsis (e.g., floral transition, warm ambient temperature, and drought stress responses). The SWI2/SNF2-Related 1 Chromatin Remodeling (SWR1) complex is known to control the deposition of H2A.Z, and it has been unraveled that ACTIN-RELATED PROTEIN 6 (ARP6) is one component of this SWR1 complex. Previous studies showed that the arp6 mutant exhibited some distinguished phenotypes such as early flowering, leaf serration, elongated hypocotyl, and reduced seed germination rate in response to osmotic stress. In this study, we aimed to investigate the changes of arp6 mutant when the plants were grown in salt stress condition. The phenotypic observation showed that the arp6 mutant was more sensitive to salt stress than the wild type. Upon salt stress condition, this mutant exhibited attenuated root phenotypes such as shorter primary root length and fewer lateral root numbers. The transcript levels of stress-responsive genes, ABA INSENSITIVE 1 (ABI1) and ABI2, were found to be impaired in the arp6 mutant in comparison with wild-type plants in response to salt stress. In addition, a meta-analysis of published data indicated a number of genes involved in auxin response were induced in arp6 mutant grown in non-stress condition. These imply that the loss of H2A.Z balance (in arp6 mutant) may lead to change stress and auxin responses resulting in alternative root morphogenesis upon both normal and salinity stress conditions.
Collapse
Affiliation(s)
- Bich Hang Do
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | | - Thuan Duc Lao
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh, Vietnam.
| |
Collapse
|
29
|
Huang X, Tian H, Park J, Oh DH, Hu J, Zentella R, Qiao H, Dassanayake M, Sun TP. The master growth regulator DELLA binding to histone H2A is essential for DELLA-mediated global transcription regulation. NATURE PLANTS 2023; 9:1291-1305. [PMID: 37537399 PMCID: PMC10681320 DOI: 10.1038/s41477-023-01477-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
The DELLA genes, also known as 'Green Revolution' genes, encode conserved master growth regulators that control plant development in response to internal and environmental cues. Functioning as nuclear-localized transcription regulators, DELLAs modulate expression of target genes via direct protein-protein interaction of their carboxy-terminal GRAS domain with hundreds of transcription factors (TFs) and epigenetic regulators. However, the molecular mechanism of DELLA-mediated transcription reprogramming remains unclear. Here by characterizing new missense alleles of an Arabidopsis DELLA, repressor of ga1-3 (RGA), and co-immunoprecipitation assays, we show that RGA binds histone H2A via the PFYRE subdomain within its GRAS domain to form a TF-RGA-H2A complex at the target chromatin. Chromatin immunoprecipitation followed by sequencing analysis further shows that this activity is essential for RGA association with its target chromatin globally. Our results indicate that, although DELLAs are recruited to target promoters by binding to TFs via the LHR1 subdomain, DELLA-H2A interaction via the PFYRE subdomain is necessary to stabilize the TF-DELLA-H2A complex at the target chromatin. This study provides insights into the two distinct key modular functions in DELLA for its genome-wide transcription regulation in plants.
Collapse
Affiliation(s)
- Xu Huang
- Department of Biology, Duke University, Durham, NC, USA
| | - Hao Tian
- Department of Biology, Duke University, Durham, NC, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jeongmoo Park
- Department of Biology, Duke University, Durham, NC, USA
- Syngenta, Research Triangle Park, Raleigh, NC, USA
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Jianhong Hu
- Department of Biology, Duke University, Durham, NC, USA
| | - Rodolfo Zentella
- Department of Biology, Duke University, Durham, NC, USA
- Agricultural Research Service, Plant Science Research Unit, US Department of Agriculture, Raleigh, NC, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Wu X, Zhang X, Huang B, Han J, Fang H. Advances in biological functions and mechanisms of histone variants in plants. Front Genet 2023; 14:1229782. [PMID: 37588047 PMCID: PMC10426802 DOI: 10.3389/fgene.2023.1229782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Nucleosome is the basic subunit of chromatin, consisting of approximately 147bp DNA wrapped around a histone octamer, containing two copies of H2A, H2B, H3 and H4. A linker histone H1 can bind nucleosomes through its conserved GH1 domain, which may promote chromatin folding into higher-order structures. Therefore, the complexity of histones act importantly for specifying chromatin and gene activities. Histone variants, encoded by separate genes and characterized by only a few amino acids differences, can affect nucleosome packaging and stability, and then modify the chromatin properties. Serving as carriers of pivotal genetic and epigenetic information, histone variants have profound significance in regulating plant growth and development, response to both biotic and abiotic stresses. At present, the biological functions of histone variants in plant have become a research hotspot. Here, we summarize recent researches on the biological functions, molecular chaperons and regulatory mechanisms of histone variants in plant, and propose some novel research directions for further study of plant histone variants research field. Our study will provide some enlightens for studying and understanding the epigenetic regulation and chromatin specialization mediated by histone variant in plant.
Collapse
Affiliation(s)
- Xi Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xu Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Borong Huang
- Developmental Biology, Laboratory of Plant Molecular and Zhejiang A & F University, Hangzhou, China
| | - Junyou Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Huihui Fang
- Developmental Biology, Laboratory of Plant Molecular and Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
31
|
Wu J, Yang Y, Wang J, Wang Y, Yin L, An Z, Du K, Zhu Y, Qi J, Shen WH, Dong A. Histone chaperones AtChz1A and AtChz1B are required for H2A.Z deposition and interact with the SWR1 chromatin-remodeling complex in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 239:189-207. [PMID: 37129076 DOI: 10.1111/nph.18940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
The histone variant H2A.Z plays key functions in transcription and genome stability in all eukaryotes ranging from yeast to human, but the molecular mechanisms by which H2A.Z is incorporated into chromatin remain largely obscure. Here, we characterized the two homologs of yeast Chaperone for H2A.Z-H2B (Chz1) in Arabidopsis thaliana, AtChz1A and AtChz1B. AtChz1A/AtChz1B were verified to bind to H2A.Z-H2B and facilitate nucleosome assembly in vitro. Simultaneous knockdown of AtChz1A and AtChz1B, which exhibit redundant functions, led to a genome-wide reduction in H2A.Z and phenotypes similar to those of the H2A.Z-deficient mutant hta9-1hta11-2, including early flowering and abnormal flower morphologies. Interestingly, AtChz1A was found to physically interact with ACTIN-RELATED PROTEIN 6 (ARP6), an evolutionarily conserved subunit of the SWR1 chromatin-remodeling complex. Genetic interaction analyses showed that atchz1a-1atchz1b-1 was hypostatic to arp6-1. Consistently, genome-wide profiling analyses revealed partially overlapping genes and fewer misregulated genes and H2A.Z-reduced chromatin regions in atchz1a-1atchz1b-1 compared with arp6-1. Together, our results demonstrate that AtChz1A and AtChz1B act as histone chaperones to assist the deposition of H2A.Z into chromatin via interacting with SWR1, thereby playing critical roles in the transcription of genes involved in flowering and many other processes.
Collapse
Affiliation(s)
- Jiabing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yue Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiachen Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Youchao Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zengxuan An
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Kangxi Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cédex, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
32
|
Abelenda JA, Trabanco N, Del Olmo I, Pozas J, Martín-Trillo MDM, Gómez-Garrido J, Esteve-Codina A, Pernas M, Jarillo JA, Piñeiro M. High ambient temperature impacts on flowering time in Brassica napus through both H2A.Z-dependent and independent mechanisms. PLANT, CELL & ENVIRONMENT 2023; 46:1427-1441. [PMID: 36575647 DOI: 10.1111/pce.14526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Knowledge concerning the integration of genetic pathways mediating the responses to environmental cues controlling flowering initiation in crops is scarce. Here, we reveal the diversity in oilseed rape (OSR) flowering response to high ambient temperature. Using a set of different spring OSR varieties, we found a consistent flowering delay at elevated temperatures. Remarkably, one of the varieties assayed exhibited the opposite behaviour. Several FT-like paralogs are plausible candidates to be part of the florigen in OSR. We revealed that BnaFTA2 plays a major role in temperature-dependent flowering initiation. Analysis of the H2A.Z histone variant occupancy at this locus in different Brassica napus varieties produced contrasting results, suggesting the involvement of additional molecular mechanisms in BnaFTA2 repression at high ambient temperature. Moreover, BnARP6 RNAi plants showed little accumulation of H2A.Z at high temperature while maintaining temperature sensitivity and delayed flowering. Furthermore, we found that H3K4me3 present in BnaFTA2 under inductive flowering conditions is reduced at high temperature, suggesting a role for this hallmark of transcriptionally active chromatin in the OSR flowering response to warming. Our work emphasises the plasticity of flowering responses in B. napus and offers venues to optimise this process in crop species grown under suboptimal environmental conditions.
Collapse
Affiliation(s)
- José A Abelenda
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - Noemí Trabanco
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - Iván Del Olmo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - Jenifer Pozas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - María Del Mar Martín-Trillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
- Dpto. de CC. Ambientales-Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Jessica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Mónica Pernas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Madrid, Spain
| |
Collapse
|
33
|
Yin C, Sun A, Zhou Y, Liu K, Wang P, Ye W, Fang Y. The dynamics of Arabidopsis H2A.Z on SMALL AUXIN UP RNAs regulates abscisic acid-auxin signaling crosstalk. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad131. [PMID: 37022978 DOI: 10.1093/jxb/erad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Extreme environmental changes threaten plant survival and worldwide food production. In response to osmotic stresses, plant hormone ABA activates stress responses and restricts plant growth. However, the epigenetic regulation of the ABA signaling and ABA-auxin crosstalk are not well known. Here we report that the histone variant H2A.Z knockdown mutant in Arabidopsis Col-0 ecotype, h2a.z-kd, has altered ABA signaling and stress performances. RNA-sequencing data showed that a majority of stress related genes are activated in h2a.z-kd. In addition, we revealed that ABA directly promotes the deposition of H2A.Z on SMALL AUXIN UP RNAs (SAURs), which is involved in ABA-repressed SAUR expression. Moreover, we found that ABA represses the transcription of H2A.Z genes through suppressing ARF7/19-HB22/25 module. Our results shed light on a dynamic and reciprocal regulation hub through H2A.Z deposition on SAURs and ARF7/19-HB22/25-mediated H2A.Z transcription to integrate ABA/auxin signaling and regulate stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Chunmei Yin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aiqing Sun
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Zhou
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Kunpeng Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjing Ye
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuda Fang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
34
|
Zhao F, Xue M, Zhang H, Li H, Zhao T, Jiang D. Coordinated histone variant H2A.Z eviction and H3.3 deposition control plant thermomorphogenesis. THE NEW PHYTOLOGIST 2023; 238:750-764. [PMID: 36647799 DOI: 10.1111/nph.18738] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Plants can sense temperature changes and adjust their development and morphology accordingly in a process called thermomorphogenesis. This phenotypic plasticity implies complex mechanisms regulating gene expression reprogramming in response to environmental alteration. Histone variants often associate with specific chromatin states; yet, how their deposition/eviction modulates transcriptional changes induced by environmental cues remains elusive. In Arabidopsis thaliana, temperature elevation-induced transcriptional activation at thermo-responsive genes entails the chromatin eviction of a histone variant H2A.Z by INO80, which is recruited to these loci via interacting with a key thermomorphogenesis regulator PIF4. Here, we show that both INO80 and the deposition chaperones of another histone variant H3.3 associate with ELF7, a critical component of the transcription elongator PAF1 complex. H3.3 promotes thermomorphogenesis and the high temperature-enhanced RNA Pol II transcription at PIF4 targets, and it is broadly required for the H2A.Z removal-induced gene activation. Reciprocally, INO80 and ELF7 regulate H3.3 deposition, and are necessary for the high temperature-induced H3.3 enrichment at PIF4 targets. Our findings demonstrate close coordination between H2A.Z eviction and H3.3 deposition in gene activation induced by high temperature, and pinpoint the importance of histone variants dynamics in transcriptional regulation.
Collapse
Affiliation(s)
- Fengyue Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Mande Xue
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
35
|
Chen W, Zhu T, Shi Y, Chen Y, Li WJ, Chan RJ, Chen D, Zhang W, Yuan YA, Wang X, Sun B. An antisense intragenic lncRNA SEAIRa mediates transcriptional and epigenetic repression of SERRATE in Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2216062120. [PMID: 36857348 PMCID: PMC10013867 DOI: 10.1073/pnas.2216062120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/27/2023] [Indexed: 03/02/2023] Open
Abstract
SERRATE (SE) is a core protein for microRNA (miRNA) biogenesis as well as for mRNA alternative splicing. Investigating the regulatory mechanism of SE expression is hence critical to understanding its detailed function in diverse biological processes. However, little about the control of SE expression has been clarified, especially through long noncoding RNA (lncRNA). Here, we identified an antisense intragenic lncRNA transcribed from the 3' end of SE, named SEAIRa. SEAIRa repressed SE expression, which in turn led to serrated leaves. SEAIRa recruited plant U-box proteins PUB25/26 with unreported RNA binding ability and a ubiquitin-like protein related to ubiquitin 1 (RUB1) for H2A monoubiquitination (H2Aub) at exon 11 of SE. In addition, PUB25/26 helped cleave SEAIRa and release the 5' domain fragment, which recruited the PRC2 complex for H3 lysine 27 trimethylation (H3K27me3) deposition at the first exon of SE. The distinct modifications of H2Aub and H3K27me3 at different sites of the SE locus cooperatively suppressed SE expression. Collectively, our results uncover an epigenetic mechanism mediated by the lncRNA SEAIRa that modulates SE expression, which is indispensable for plant growth and development.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing210023, China
- Department of Biological Sciences, National University of Singapore, Singapore117543, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore117557, Singapore
| | - Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing210023, China
| | - Yining Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, Jiangsu210095, China
| | - Ying Chen
- Department of Biological Sciences, National University of Singapore, Singapore117543, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore117557, Singapore
| | - Wei Jian Li
- Department of Biological Sciences, National University of Singapore, Singapore117543, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore117557, Singapore
| | - Ru Jing Chan
- Department of Biological Sciences, National University of Singapore, Singapore117543, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore117557, Singapore
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing210023, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, Jiangsu210095, China
| | - Yuren Adam Yuan
- Department of Biological Sciences, National University of Singapore, Singapore117543, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore117557, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore117604, Singapore
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, Jiangsu210095, China
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing210023, China
| |
Collapse
|
36
|
Huang Y, Cai W, Lu Q, Lv J, Wan M, Guan D, Yang S, He S. PMT6 Is Required for SWC4 in Positively Modulating Pepper Thermotolerance. Int J Mol Sci 2023; 24:ijms24054849. [PMID: 36902276 PMCID: PMC10003703 DOI: 10.3390/ijms24054849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
High temperature stress (HTS), with growth and development impairment, is one of the most important abiotic stresses frequently encountered by plants, in particular solanacaes such as pepper, that mainly distribute in tropical and subtropical regions. Plants activate thermotolerance to cope with this stress; however, the underlying mechanism is currently not fully understood. SWC4, a shared component of SWR1- and NuA4 complexes implicated in chromatin remodeling, was previously found to be involved in the regulation of pepper thermotolerance, but the underlying mechanism remains poorly understood. Herein, PMT6, a putative methyltranferase was originally found to interact with SWC4 by co-immunoprecipitation (Co-IP)-combined LC/MS assay. This interaction was further confirmed by bimolecular fluorescent complimentary (BiFC) and Co-IP assay, and PMT6 was further found to confer SWC4 methylation. By virus-induced gene silencing, it was found that PMT6 silencing significantly reduced pepper basal thermotolerance and transcription of CaHSP24 and significantly reduced the enrichment of chromatin-activation-related H3K9ac, H4K5ac, and H3K4me3 in TSS of CaHSP24, which was previously found to be positively regulated by CaSWC4. By contrast, the overexpression of PMT6 significantly enhanced basal thermotolerance of pepper plants. All these data indicate that PMT6 acts as a positive regulator in pepper thermotolerance, likely by methylating SWC4.
Collapse
Affiliation(s)
- Yu Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiwei Cai
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaoling Lu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingang Lv
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiyun Wan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (S.Y.); (S.H.)
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (S.Y.); (S.H.)
| |
Collapse
|
37
|
Kim J, Bordiya Y, Xi Y, Zhao B, Kim DH, Pyo Y, Zong W, Ricci WA, Sung S. Warm temperature-triggered developmental reprogramming requires VIL1-mediated, genome-wide H3K27me3 accumulation in Arabidopsis. Development 2023; 150:dev201343. [PMID: 36762655 PMCID: PMC10110417 DOI: 10.1242/dev.201343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Changes in ambient temperature immensely affect developmental programs in many species. Plants adapt to high ambient growth temperature in part by vegetative and reproductive developmental reprogramming, known as thermo-morphogenesis. Thermo-morphogenesis is accompanied by massive changes in the transcriptome upon temperature change. Here, we show that transcriptome changes induced by warm ambient temperature require VERNALIZATION INSENSITIVE 3-LIKE 1 (VIL1), a facultative component of the Polycomb repressive complex PRC2, in Arabidopsis. Warm growth temperature elicits genome-wide accumulation of H3K27me3 and VIL1 is necessary for the warm temperature-mediated accumulation of H3K27me3. Consistent with its role as a mediator of thermo-morphogenesis, loss of function of VIL1 results in hypo-responsiveness to warm ambient temperature. Our results show that VIL1 is a major chromatin regulator in responses to high ambient temperature.
Collapse
Affiliation(s)
- Junghyun Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yogendra Bordiya
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yanpeng Xi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bo Zhao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dong-Hwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Youngjae Pyo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Wei Zong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - William A. Ricci
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
38
|
Long J, Carter B, Johnson ET, Ogas J. Contribution of the histone variant H2A.Z to expression of responsive genes in plants. Semin Cell Dev Biol 2023; 135:85-92. [PMID: 35474148 PMCID: PMC9588091 DOI: 10.1016/j.semcdb.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/19/2022]
Abstract
The histone variant H2A.Z plays a critical role in chromatin-based processes such as transcription, replication, and repair in eukaryotes. Although many H2A.Z-associated processes and features are conserved in plants and animals, a distinguishing feature of plant chromatin is the enrichment of H2A.Z in the bodies of genes that exhibit dynamic expression, particularly in response to differentiation and the environment. Recent work sheds new light on the plant machinery that enables dynamic changes in H2A.Z enrichment and identifies additional chromatin-based pathways that contribute to transcriptional properties of H2A.Z-enriched chromatin. In particular, analysis of a variety of responsive loci reveals a repressive role for H2A.Z in expression of responsive genes and identifies roles for SWR1 and INO80 chromatin remodelers in enabling dynamic regulation of H2A.Z levels and transcription. These studies lay the groundwork for understanding how this ancient histone variant is harnessed by plants to enable responsive and dynamic gene expression (Graphical Abstract).
Collapse
Affiliation(s)
- Jiaxin Long
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Benjamin Carter
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Emily T Johnson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Joe Ogas
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
39
|
Obermeyer S, Stöckl R, Schnekenburger T, Kapoor H, Stempfl T, Schwartz U, Grasser KD. TFIIS Is Crucial During Early Transcript Elongation for Transcriptional Reprogramming in Response to Heat Stress. J Mol Biol 2023; 435:167917. [PMID: 36502880 DOI: 10.1016/j.jmb.2022.167917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
In addition to the stage of transcriptional initiation, the production of mRNAs is regulated during elongation. Accordingly, the synthesis of mRNAs by RNA polymerase II (RNAPII) in the chromatin context is modulated by various transcript elongation factors. TFIIS is an elongation factor that stimulates the transcript cleavage activity of RNAPII to reactivate stalled elongation complexes at barriers to transcription including nucleosomes. Since Arabidopsis tfIIs mutants grow normally under standard conditions, we have exposed them to heat stress (HS), revealing that tfIIs plants are highly sensitive to elevated temperatures. Transcriptomic analyses demonstrate that particularly HS-induced genes are expressed at lower levels in tfIIs than in wildtype. Mapping the distribution of elongating RNAPII uncovered that in tfIIs plants RNAPII accumulates at the +1 nucleosome of genes that are upregulated upon HS. The promoter-proximal RNAPII accumulation in tfIIs under HS conditions conforms to that observed upon inhibition of the RNAPII transcript cleavage activity. Further analysis of the RNAPII accumulation downstream of transcriptional start sites illustrated that RNAPII stalling occurs at +1 nucleosomes that are depleted in the histone variant H2A.Z upon HS. Therefore, assistance of early transcript elongation by TFIIS is required for reprogramming gene expression to establish plant thermotolerance.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Richard Stöckl
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Tobias Schnekenburger
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Henna Kapoor
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Thomas Stempfl
- Center of Excellence for Fluorescent Bioanalytics (KFB), University of Regensburg, Am Biopark 9, D-93053 Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Centre, Biology and Pre-Clinical Medicine, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany.
| |
Collapse
|
40
|
Arefian M, Prasad TSK. Susceptibility of Rice Crop to Salt Threat: Proteomic, Metabolomic, and Physiological Inspections. J Proteome Res 2023; 22:152-169. [PMID: 36417662 DOI: 10.1021/acs.jproteome.2c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rice is a staple food crop worldwide; however, salinity stress is estimated to reduce its global production by 50%. Knowledge about initial molecular signaling and proteins associated with sensing salinity among crop plants is limited. We characterized early salt effects on the proteome and metabolome of rice tissues. Omics results were validated by western blotting and multiple reaction monitoring assays and integrated with physiological changes. We identified 8160 proteins and 2045 metabolites in rice tissues. Numerous signaling pathways were induced rapidly or partially by salinity. Combined data showed the most susceptible proteins or metabolites in each pathway that likely affected the sensitivity of rice to salinity, such as PLA1, BON3 (involved in sensing stress), SnRK2, pro-resilin, GDT1, G-proteins, calmodulin activators (Ca2+ and abscisic acid signaling), MAPK3/5, MAPKK1/3 (MAPK pathway), SOS1, ABC F/D, PIP2-7, and K+ transporter-23 (transporters), OPR1, JAR1, COL1, ABA2, and MAPKK3 (phytohormones). Additionally, our results expanded the stress-sensing function of receptor-like kinases, phosphatidylinositols, and Na+ sensing proteins (IPUT1). Combined analyses revealed the most sensitive components of signaling pathways causing salt-susceptibility in rice and suggested potential targets for crop improvement.
Collapse
Affiliation(s)
- Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Mangalore 575018, India
| | | |
Collapse
|
41
|
Szymanska-Lejman M, Dziegielewski W, Dluzewska J, Kbiri N, Bieluszewska A, Poethig RS, Ziolkowski PA. The effect of DNA polymorphisms and natural variation on crossover hotspot activity in Arabidopsis hybrids. Nat Commun 2023; 14:33. [PMID: 36596804 PMCID: PMC9810609 DOI: 10.1038/s41467-022-35722-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
In hybrid organisms, genetically divergent homologous chromosomes pair and recombine during meiosis; however, the effect of specific types of polymorphisms on crossover is poorly understood. Here, to analyze this in Arabidopsis, we develop the seed-typing method that enables the massively parallel fine-mapping of crossovers by sequencing. We show that structural variants, observed in one of the generated intervals, do not change crossover frequency unless they are located directly within crossover hotspots. Both natural and Cas9-induced deletions result in lower hotspot activity but are not compensated by increases in immediately adjacent hotspots. To examine the effect of single nucleotide polymorphisms on crossover formation, we analyze hotspot activity in mismatch detection-deficient msh2 mutants. Surprisingly, polymorphic hotspots show reduced activity in msh2. In lines where only the hotspot-containing interval is heterozygous, crossover numbers increase above those in the inbred (homozygous). We conclude that MSH2 shapes crossover distribution by stimulating hotspot activity at polymorphic regions.
Collapse
Affiliation(s)
- Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Wojciech Dziegielewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Nadia Kbiri
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Bieluszewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
42
|
Somaclonal Variation-Advantage or Disadvantage in Micropropagation of the Medicinal Plants. Int J Mol Sci 2023; 24:ijms24010838. [PMID: 36614275 PMCID: PMC9821087 DOI: 10.3390/ijms24010838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Cell and tissue plant cultures are used either to save vulnerable species from extinction or to multiply valuable genotypes, or both, and are widely applied for economically important plant species. For medicinal plants, the use of in vitro technologies for the production of secondary metabolites and pathogen-free plants has been greatly developed. Two opposite aspects characterize the in vitro micropropagation of medicinal plants: maintaining genetic fidelity for the perpetuation and preservation of elites, and the identification and exploitation of somaclonal variations associated with new, useful traits. A balance between what is advantageous and what is undesirable is necessary, and this implies the identification of somaclonal variability at all levels, from the phenotypic to molecular ones. This review addresses the somaclonal variation arising from the in vitro multiplication of medicinal plants from three perspectives: cytogenetics, genetics, and epigenetics. The possible causes of the appearance of somaclones, the methods for their identification, and the extent to which they are desirable are presented comparatively for different plant species with therapeutic properties. The emphasis is on the subtle changes at the genetic and epigenetic level, as it results from the application of methods based on DNA markers.
Collapse
|
43
|
Nunez-Vazquez R, Desvoyes B, Gutierrez C. Histone variants and modifications during abiotic stress response. FRONTIERS IN PLANT SCIENCE 2022; 13:984702. [PMID: 36589114 PMCID: PMC9797984 DOI: 10.3389/fpls.2022.984702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/28/2022] [Indexed: 06/17/2023]
Abstract
Plants have developed multiple mechanisms as an adaptive response to abiotic stresses, such as salinity, drought, heat, cold, and oxidative stress. Understanding these regulatory networks is critical for coping with the negative impact of abiotic stress on crop productivity worldwide and, eventually, for the rational design of strategies to improve plant performance. Plant alterations upon stress are driven by changes in transcriptional regulation, which rely on locus-specific changes in chromatin accessibility. This process encompasses post-translational modifications of histone proteins that alter the DNA-histones binding, the exchange of canonical histones by variants that modify chromatin conformation, and DNA methylation, which has an implication in the silencing and activation of hypervariable genes. Here, we review the current understanding of the role of the major epigenetic modifications during the abiotic stress response and discuss the intricate relationship among them.
Collapse
Affiliation(s)
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| |
Collapse
|
44
|
Li T, Zhang R, Satheesh V, Wang P, Ma G, Guo J, An GY, Lei M. The chromatin remodeler BRAHMA recruits HISTONE DEACETYLASE6 to regulate root growth inhibition in response to phosphate starvation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2314-2326. [PMID: 35972795 DOI: 10.1111/jipb.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Plasticity in root system architecture (RSA) allows plants to adapt to changing nutritional status in the soil. Phosphorus availability is a major determinant of crop yield, and RSA remodeling is critical to increasing the efficiency of phosphorus acquisition. Although substantial progress has been made in understanding the signaling mechanism driving phosphate starvation responses in plants, whether and how epigenetic regulatory mechanisms contribute is poorly understood. Here, we report that the Switch defective/sucrose non-fermentable (SWI/SNF) ATPase BRAHMA (BRM) is involved in the local response to phosphate (Pi) starvation. The loss of BRM function induces iron (Fe) accumulation through increased LOW PHOSPHATE ROOT1 (LPR1) and LPR2 expression, reducing primary root length under Pi deficiency. We also demonstrate that BRM recruits the histone deacetylase (HDA) complex HDA6-HDC1 to facilitate histone H3 deacetylation at LPR loci, thereby negatively regulating local Pi deficiency responses. BRM is degraded under Pi deficiency conditions through the 26 S proteasome pathway, leading to increased histone H3 acetylation at the LPR loci. Collectively, our data suggest that the chromatin remodeler BRM, in concert with HDA6, negatively regulates Fe-dependent local Pi starvation responses by transcriptionally repressing the RSA-related genes LPR1 and LPR2 in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruyue Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Peng Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Guojie Ma
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jianfei Guo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Guo-Yong An
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
45
|
Wang JL, Di DW, Luo P, Zhang L, Li XF, Guo GQ, Wu L. The roles of epigenetic modifications in the regulation of auxin biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:959053. [PMID: 36017262 PMCID: PMC9396225 DOI: 10.3389/fpls.2022.959053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/15/2022] [Indexed: 06/01/2023]
Abstract
Auxin is one of the most important plant growth regulators of plant morphogenesis and response to environmental stimuli. Although the biosynthesis pathway of auxin has been elucidated, the mechanisms regulating auxin biosynthesis remain poorly understood. The transcription of auxin biosynthetic genes is precisely regulated by complex signaling pathways. When the genes are expressed, epigenetic modifications guide mRNA synthesis and therefore determine protein production. Recent studies have shown that different epigenetic factors affect the transcription of auxin biosynthetic genes. In this review, we focus our attention on the molecular mechanisms through which epigenetic modifications regulate auxin biosynthesis.
Collapse
Affiliation(s)
- Jun-Li Wang
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Li Zhang
- Basic Forestry and Proteomics Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Feng Li
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guang-Qin Guo
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lei Wu
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
46
|
Foroozani M, Holder DH, Deal RB. Histone Variants in the Specialization of Plant Chromatin. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:149-172. [PMID: 35167758 PMCID: PMC9133179 DOI: 10.1146/annurev-arplant-070221-050044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The basic unit of chromatin, the nucleosome, is an octamer of four core histone proteins (H2A, H2B, H3, and H4) and serves as a fundamental regulatory unit in all DNA-templated processes. The majority of nucleosome assembly occurs during DNA replication when these core histones are produced en masse to accommodate the nascent genome. In addition, there are a number of nonallelic sequence variants of H2A and H3 in particular, known as histone variants, that can be incorporated into nucleosomes in a targeted and replication-independent manner. By virtue of their sequence divergence from the replication-coupled histones, these histone variants can impart unique properties onto the nucleosomes they occupy and thereby influence transcription and epigenetic states, DNA repair, chromosome segregation, and other nuclear processes in ways that profoundly affect plant biology. In this review, we discuss the evolutionary origins of these variants in plants, their known roles in chromatin, and their impacts on plant development and stress responses. We focus on the individual and combined roles of histone variants in transcriptional regulation within euchromatic and heterochromatic genome regions. Finally, we highlight gaps in our understanding of plant variants at the molecular, cellular, and organismal levels, and we propose new directions for study in the field of plant histone variants.
Collapse
Affiliation(s)
| | - Dylan H Holder
- Department of Biology, Emory University, Atlanta, Georgia, USA;
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, Georgia, USA;
| |
Collapse
|
47
|
Lambolez A, Kawamura A, Takahashi T, Rymen B, Iwase A, Favero DS, Ikeuchi M, Suzuki T, Cortijo S, Jaeger KE, Wigge PA, Sugimoto K. Warm Temperature Promotes Shoot Regeneration in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2022; 63:618-634. [PMID: 35157760 DOI: 10.1093/pcp/pcac017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Many plants are able to regenerate upon cutting, and this process can be enhanced in vitro by incubating explants on hormone-supplemented media. While such protocols have been used for decades, little is known about the molecular details of how incubation conditions influence their efficiency. In this study, we find that warm temperature promotes both callus formation and shoot regeneration in Arabidopsis thaliana. We show that such an increase in shoot regenerative capacity at higher temperatures correlates with the enhanced expression of several regeneration-associated genes, such as CUP-SHAPED COTYLEDON 1 (CUC1) encoding a transcription factor involved in shoot meristem formation and YUCCAs (YUCs) encoding auxin biosynthesis enzymes. ChIP-sequencing analyses further reveal that histone variant H2A.Z is enriched on these loci at 17°C, while its occupancy is reduced by an increase in ambient temperature to 27°C. Moreover, we provide genetic evidence to demonstrate that H2A.Z acts as a repressor of de novo shoot organogenesis since H2A.Z-depleted mutants display enhanced shoot regeneration. This study thus uncovers a new chromatin-based mechanism that influences hormone-induced regeneration and additionally highlights incubation temperature as a key parameter for optimizing in vitro tissue culture.
Collapse
Affiliation(s)
- Alice Lambolez
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyō-ku, Tōkyō 113-8654, Japan
| | - Ayako Kawamura
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Tatsuya Takahashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Bart Rymen
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg 67084, France
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - David S Favero
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Momoko Ikeuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biology, Faculty of Science, Niigata University, Ikarashi, Niigata 950-2181, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Sandra Cortijo
- UMR5004 Biochimie et Physiologie Moléculaire des Plantes, Université de Montpellier, CNRS, INRAE, Institut Agro, 2 place Pierre Viala, Montpellier 34060, France
| | - Katja E Jaeger
- Leibniz-Institut für Gemüse- und Zierpflanzenbau (IGZ) e.V., Theodor-Echtermeyer-Weg 1, Großbeeren 14979, Germany
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau (IGZ) e.V., Theodor-Echtermeyer-Weg 1, Großbeeren 14979, Germany
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyō-ku, Tōkyō 113-8654, Japan
| |
Collapse
|
48
|
Matsusaka D, Botto JF, Sanchez DH. Dual role of specific promoter tandem repeats integrating epigenetic silencing with heat response. PHYSIOLOGIA PLANTARUM 2022; 174:e13694. [PMID: 35526232 DOI: 10.1111/ppl.13694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Satellites are ubiquitous noncoding tandemly repeated sequences, yet knowledge about their biological relevance is still scarce. In plants, the few described cases point to roles in heterochromatin biology and gene regulation; however, a direct link to plant stress responses is yet to be uncovered. We present evidence that particular non-centromere tandem repeats may display a central regulatory role in the intersection between epigenetic silencing and gene expression in dynamic environments. Within the projected promoter of Arabidopsis thaliana's imprinted SDC locus, a transcriptional gene silencing targeted tandem-repeated area largely mediates epigenetic suppression and imprinting. Here, we show that this area, possibly acting as a cis-element/enhancer, appears necessary and sufficient for SDC's heat transcriptional activity in vegetative tissues. Our results indicate that these particular noncoding tandem repeats may be genic and exhibit dual roles, not only as silencers at normal temperatures but also facilitating expression upon stress. An unusual adaptive form of abiotic transcriptional control unrelated to canonical heat signaling is implied, emphasizing a potential importance of genomic satellites for plant environmental epigenetics.
Collapse
Affiliation(s)
- Daniel Matsusaka
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier F Botto
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego H Sanchez
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
49
|
Liu X, Luo M, Li M, Wei J. Transcriptomic Analysis Reveals LncRNAs Associated with Flowering of Angelica sinensis during Vernalization. Curr Issues Mol Biol 2022; 44:1867-1888. [PMID: 35678657 PMCID: PMC9164074 DOI: 10.3390/cimb44050128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
Angelica sinensis is a “low-temperature and long-day” perennial plant that produces bioactive compounds such as phthalides, organic acids, and polysaccharides for various types of clinical agents, including those with cardio-cerebrovascular, hepatoprotective, and immunomodulatory effects. To date, the regulatory mechanism of flowering under the photoperiod has been revealed, while the regulatory network of flowering genes during vernalization, especially in the role of lncRNAs, has yet to be identified. Here, lncRNAs associated with flowering were identified based on the full-length transcriptomic analysis of A. sinensis at vernalization and freezing temperatures, and the coexpressed mRNAs of lncRNAs were validated by qRT-PCR. We obtained a total of 2327 lncRNAs after assessing the protein-coding potential of coexpressed mRNAs, with 607 lncRNAs aligned against the TAIR database of model plant Arabidopsis, 345 lncRNAs identified, and 272 lncRNAs characterized on the SwissProt database. Based on the biological functions of coexpressed mRNAs, the 272 lncRNAs were divided into six categories: (1) chromatin, DNA/RNA and protein modification; (2) flowering; (3) stress response; (4) metabolism; (5) bio-signaling; and (6) energy and transport. The differential expression levels of representatively coexpressed mRNAs were almost consistent with the flowering of A. sinensis. It can be concluded that the flowering of A. sinensis is positively or negatively regulated by lncRNAs, which provides new insights into the regulation mechanism of the flowering of A. sinensis.
Collapse
Affiliation(s)
- Xiaoxia Liu
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.L.); (M.L.)
| | - Mimi Luo
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.L.); (M.L.)
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.L.); (M.L.)
- Correspondence: (M.L.); (J.W.)
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (M.L.); (J.W.)
| |
Collapse
|
50
|
Ikram AU, Zhang F, Xu Z, Li E, Xue G, Wang S, Zhang C, Yang Y, Su Y, Ding Y. Chromatin remodeling factors OsYAF9 and OsSWC4 interact to promote internode elongation in rice. PLANT PHYSIOLOGY 2022; 188:2199-2214. [PMID: 35157083 PMCID: PMC8968431 DOI: 10.1093/plphys/kiac031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 05/09/2023]
Abstract
Deposition of H2A.Z and H4 acetylation by SWI2/SNF2-Related 1 Chromatin Remodeling (SWR1) and Nucleosome Acetyltransferase of H4 (NuA4) complexes in specific regulatory regions modulates transcription and development. However, little is known about these complexes in Oryza sativa (rice) development. Here, we reported that OsYAF9 and OsSWC4, two subunits of SWR1 and NuA4 complexes, are involved in rice vegetative and reproductive development. Loss of OsYAF9 resulted in reduced height, fewer tillers, fewer pollen grains, and defects in embryogenesis and seed filling. OsYAF9 directly interacted with OsSWC4 in vitro and in vivo. Loss of OsSWC4 function exhibited defects in pollen germination and failure to generate seeds, whereas knockdown of OsSWC4 resulted in reduced height and fewer tillers. The reduced height caused by OsYAF9 mutation and OsSWC4 knockdown was due to shorter internodes and defects in cell elongation, and this phenotype was rescued with gibberellin (GA) treatment, suggesting that both OsYAF9 and OsSWC4 are involved in the GA biosynthesis pathway. OsSWC4 was directly bound to the AT-rich region of GA biosynthesis genes, which in turn accomplished H2A.Z deposition and H4 acetylation at the GA biosynthesis genes with OsYAF9. Together, our study provides insights into the mechanisms involving OsSWC4 and OsYAF9 forming a protein complex to promote rice internode elongation with H2A.Z deposition and H4 acetylation.
Collapse
Affiliation(s)
| | | | - Zuntao Xu
- Division of Life Sciences and Medicine, School of Life Sciences; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Enze Li
- Division of Life Sciences and Medicine, School of Life Sciences; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Gan Xue
- Division of Life Sciences and Medicine, School of Life Sciences; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Shiliang Wang
- Division of Life Sciences and Medicine, School of Life Sciences; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Cheng Zhang
- Division of Life Sciences and Medicine, School of Life Sciences; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Yachun Yang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | | | | |
Collapse
|