1
|
Xu M, Xu Y, Liu H, Liu Q, Yang Q, Long R, Chen L, He F. Genome-wide association study revealed candidate genes associated with leaf size in alfalfa (Medicago sativa L.). BMC PLANT BIOLOGY 2025; 25:180. [PMID: 39930339 PMCID: PMC11812196 DOI: 10.1186/s12870-025-06170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial leguminous forages globally, known for its high yield and quality. Leaf size plays a crucial role in influencing its photosynthetic capacity, forage yield, and quality. Therefore, understanding the genetic factors regulating leaf size is of great importance for breeding new alfalfa varieties with improved yield and quality. In this study, we performed a genome-wide association study on four leaf size-related traits in 176 alfalfa germplasm resources to identify candidate genes associated with leaf size. RESULTS Phenotypic analysis revealed varying degrees of variation among the four traits, with coefficients of variation ranging from 3.43 to 36.84%. The broad sense heritability of these traits was found to be between 38.30% and 53.23%. Correlation analysis showed a significant positive correlation among the four traits (P < 0.01). The GWAS identified 39 SNPs associated with leaf size, distributed across eight chromosomes, of which 9 SNPs were linked to multiple traits. Haplotype analysis further confirmed that the number of superior alleles in each material was positively correlated with leaf area. Finally, we identified five genes near these 39 significant SNPs that are associated with leaf size or development. CONCLUSION Our findings provide new molecular markers for marker-assisted selection in alfalfa breeding programs. Moreover, this study provides a solid foundation for subsequent functional verification and genetic improvement in alfalfa.
Collapse
Affiliation(s)
- Ming Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanchao Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hao Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingsong Liu
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, 061001, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lin Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Wang Y, Cao Y, Qin G. Multifaceted roles of TCP transcription factors in fate determination. THE NEW PHYTOLOGIST 2025; 245:95-101. [PMID: 39434425 DOI: 10.1111/nph.20188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Fate determination is indispensable for the accurate shaping and specialization of plant organs, a process critical to the structural and functional diversity in plant kingdom. The TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) family of transcription factors has been recognized for its significant contributions to plant organogenesis and morphogenesis. Recent research has shed light on the pivotal roles that TCPs play in fate determination. In this review, we delve into the current understanding of TCP functions, emphasizing their critical influence on fate determination from the organelle to the cell and organ levels. We also consolidate the molecular mechanisms through which TCPs exert their regulatory effects on fate determination. Additionally, we highlight intriguing points of TCPs that warrant further exploration in future research endeavors.
Collapse
Affiliation(s)
- Yutao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu Cao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
3
|
Zhang J, Lyu H, Chen J, Cao X, Du R, Ma L, Wang N, Zhu Z, Rao J, Wang J, Zhong K, Lyu Y, Wang Y, Lin T, Zhou Y, Zhou Y, Zhu G, Fei Z, Klee H, Huang S. Releasing a sugar brake generates sweeter tomato without yield penalty. Nature 2024; 635:647-656. [PMID: 39537922 PMCID: PMC11578880 DOI: 10.1038/s41586-024-08186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
In tomato, sugar content is highly correlated with consumer preferences, with most consumers preferring sweeter fruit1-4. However, the sugar content of commercial varieties is generally low, as it is inversely correlated with fruit size, and growers prioritize yield over flavour quality5-7. Here we identified two genes, tomato (Solanum lycopersicum) calcium-dependent protein kinase 27 (SlCDPK27; also known as SlCPK27) and its paralogue SlCDPK26, that control fruit sugar content. They act as sugar brakes by phosphorylating a sucrose synthase, which promotes degradation of the sucrose synthase. Gene-edited SlCDPK27 and SlCDPK26 knockouts increased glucose and fructose contents by up to 30%, enhancing perceived sweetness without fruit weight or yield penalty. Although there are fewer, lighter seeds in the mutants, they exhibit normal germination. Together, these findings provide insight into the regulatory mechanisms controlling fruit sugar accumulation in tomato and offer opportunities to increase sugar content in large-fruited cultivars without sacrificing size and yield.
Collapse
Affiliation(s)
- Jinzhe Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Lyu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jie Chen
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xue Cao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Du
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Nan Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiguo Zhu
- School of Life Sciences, Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Southwest United Graduate School, Kunming, China
| | - Jianglei Rao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jie Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kui Zhong
- Agriculture and Food Standardization Institute, China National Institute of Standardization, Beijing, China
| | - Yaqing Lyu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yanling Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yao Zhou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China University of Chinese Academy of Sciences, Beijing, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guangtao Zhu
- School of Life Sciences, Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Southwest United Graduate School, Kunming, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Harry Klee
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
4
|
Wang Q, Wang L, Song S, Zhao YN, Gu HH, Zhu Z, Wang J, Lu S. ORANGE interplays with TCP7 to regulate endoreduplication and leaf size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:473-490. [PMID: 39176434 DOI: 10.1111/tpj.16994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
Leaf size is a crucial agronomic trait directly affecting crop yield, which is mainly determined by coordinated cell proliferation, growth, and differentiation. Although endoreduplication is known to be correlated with the onset of cell differentiation and leaf size, the underlying molecular mechanisms are largely unclear. The DnaJ-like zinc finger domain-containing protein ORANGE (OR) was initially demonstrated to confer the massive accumulation of carotenoids in cauliflower curds. However, the cauliflower or mutant also possesses other phenotypes such as smaller curds, smaller leaves with elongated petioles, and delayed flowering. Here, we demonstrated that OR physically interacts with the transcription factor TCP7, which promotes endoreduplication by inducing the expression of the cell cycle gene CYCLIN D 1;1 (CYCD1;1). Overexpression of OR resulted in smaller rosette leaves, whereas the OR-silencing plants had larger rosette leaves than wild-type plants. Our microscopic observations and flow cytometry analysis revealed that the variation in leaf size was a result of different endoreduplication levels. Genetic analyses showed that OR functions antagonistically with TCP7 in regulating the endoreduplication levels in leaf cells. While the expression of OR is induced by TCP7, OR represses the transactivation activity of TCP7 by affecting its binding capability to the TCP-binding motif in the promoter region of CYCD1;1. Through this interaction, OR negatively regulates the expression of CYCD1;1 and reduces the nuclear ploidy level in rosette leaf cells. Our findings provide new insights into the regulatory network of leaf size and also reveal a regulatory circuit controlling endoreduplication in leaf cells.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Linjuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shuyuan Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ya-Nan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hong-Hui Gu
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jiansheng Wang
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
5
|
Soltani O, Jöst M, Hoffie I, Hensel G, Kappel C, Prag G, McKim S, Kumlehn J, Lenhard M. RING/U-box E3 protein BIR1 interacts with and ubiquitinates barley growth repressor BROAD LEAF1. PLANT PHYSIOLOGY 2024; 196:228-243. [PMID: 38829835 DOI: 10.1093/plphys/kiae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
Establishment of final leaf size in plants relies on the precise regulation of 2 interconnected processes, cell division and cell expansion. The barley (Hordeum vulgare) protein BROAD LEAF1 (BLF1) limits cell proliferation and leaf growth in the width direction. However, how the levels of this potent repressor of leaf growth are controlled remains unclear. Here, we used a yeast 2-hybrid screen to identify the BLF1-INTERACTING RING/U-BOX 1 (BIR1) E3 ubiquitin ligase that interacts with BLF1 and confirmed the interaction of the 2 proteins in planta. Inhibiting the proteasome caused overaccumulation of a BLF1-eGFP fusion protein when co-expressed with BIR1, and an in vivo ubiquitination assay in bacteria confirmed that BIR1 can mediate ubiquitination of BLF1 protein. Consistent with regulation of endogenous BLF1 in barley by proteasomal degradation, inhibition of the proteasome in BLF1-vYFP-expressing barley plants caused an accumulation of the BLF1 protein. The BIR1 protein co-localized with BLF1 in nuclei and appeared to reduce BLF1 protein levels. Analysis of bir1-1 knockout mutants suggested the involvement of BIR1 in leaf growth control, although mainly on leaf length. Together, our results suggest that proteasomal degradation, in part mediated by BIR1, helps fine-tune BLF1 protein levels in barley.
Collapse
Affiliation(s)
- Ouad Soltani
- Institut für Biochemie und Biologie, Universität Potsdam, 14476 Potsdam-Golm, Germany
| | - Moritz Jöst
- Institut für Biochemie und Biologie, Universität Potsdam, 14476 Potsdam-Golm, Germany
| | - Iris Hoffie
- Department of Physiology and Cell Biology, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Götz Hensel
- Department of Physiology and Cell Biology, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Christian Kappel
- Institut für Biochemie und Biologie, Universität Potsdam, 14476 Potsdam-Golm, Germany
| | - Gali Prag
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sarah McKim
- Division of Plant Sciences, The University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Jochen Kumlehn
- Department of Physiology and Cell Biology, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Michael Lenhard
- Institut für Biochemie und Biologie, Universität Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
6
|
Chen X, Gao J, Shen Y. Abscisic acid controls sugar accumulation essential to strawberry fruit ripening via the FaRIPK1-FaTCP7-FaSTP13/FaSPT module. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1400-1417. [PMID: 38815085 DOI: 10.1111/tpj.16862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
Strawberry is considered as a model plant for studying the ripening of abscisic acid (ABA)-regulated non-climacteric fruits, a process in which sugar plays a fundamental role, while how ABA regulates sugar accumulation remains unclear. This study provides a direct line of physiological, biochemical, and molecular evidence that ABA signaling regulates sugar accumulation via the FaRIPK1-FaTCP7-FaSTP13/FaSPT signaling pathway. Herein, FaRIPK1, a red-initial protein kinase 1 previously identified in strawberry fruit, not only interacted with the transcription factor FaTCP7 (TEOSINTE BRANCHEN 1, CYCLOIDEA, and PCF) but also phosphorylated the critical Ser89 and Thr93 sites of FaTCP7, which negatively regulated strawberry fruit ripening, as evidenced by the transient overexpression (OE) and virus-induced gene silencing transgenic system. Furthermore, the DAP-seq experiments revealed that FvTCP7 bound the motif "GTGGNNCCCNC" in the promoters of two sugar transporter genes, FaSTP13 (sugar transport protein 13) and FaSPT (sugar phosphate/phosphate translocator), inhibiting their transcription activities as determined by the electrophoretic mobility shift assay, yeast one-hybrid, and dual-luciferase reporter assays. The downregulated FaSTP13 and FaSPT transcripts in the FaTCP7-OE fruit resulted in a reduction in soluble sugar content. Consistently, the yeast absorption test revealed that the two transporters had hexose transport activity. Especially, the phosphorylation-inhibited binding of FaTCP7 to the promoters of FaSTP13 and FaSPT could result in the release of their transcriptional activities. In addition, the phosphomimetic form FaTCP7S89D or FaTCP7T93D could rescue the phenotype of FaTCP7-OE fruits. Importantly, exogenous ABA treatment enhanced the FaRIPK1-FaTCP7 interaction. Overall, we found direct evidence that ABA signaling controls sugar accumulation during strawberry fruit ripening via the "FaRIPK1-FaTCP7-FaSTP13/FaSPT" module.
Collapse
Affiliation(s)
- Xuexue Chen
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiahui Gao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
| |
Collapse
|
7
|
Shen J, Jiang Y, Pan J, Sun L, Li Q, He W, Sun P, Zhao B, Zhao H, Ke X, Guo Y, Yang T, Li Z. The GRAS transcription factor CsTL regulates tendril formation in cucumber. THE PLANT CELL 2024; 36:2818-2833. [PMID: 38630900 PMCID: PMC11289639 DOI: 10.1093/plcell/koae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/19/2024]
Abstract
Cucumber (Cucumis sativus, Cs) tendrils are slender vegetative organs that typically require manual removal to ensure orderly growth during greenhouse cultivation. Here, we identified cucumber tendril-less (tl), a Tnt1 retrotransposon-induced insertion mutant lacking tendrils. Map-based cloning identified the mutated gene, CsaV3_3G003590, which we designated as CsTL, which is homologous to Arabidopsis thaliana LATERAL SUPPRESSOR (AtLAS). Knocking out CsTL repressed tendril formation but did not affect branch initiation, whereas overexpression (OE) of CsTL resulted in the formation of two or more tendrils in one leaf axil. Although expression of two cucumber genes regulating tendril formation, Tendril (CsTEN) and Unusual Floral Organs (CsUFO), was significantly decreased in CsTL knockout lines, these two genes were not direct downstream targets of CsTL. Instead, CsTL physically interacted with CsTEN, an interaction that further enhanced CsTEN-mediated expression of CsUFO. In Arabidopsis, the CsTL homolog AtLAS acts upstream of REVOLUTA (REV) to regulate branch initiation. Knocking out cucumber CsREV inhibited branch formation without affecting tendril initiation. Furthermore, genomic regions containing CsTL and AtLAS were not syntenic between the cucumber and Arabidopsis genomes, whereas REV orthologs were found on a shared syntenic block. Our results revealed not only that cucumber CsTL possesses a divergent function in promoting tendril formation but also that CsREV retains its conserved function in shoot branching.
Collapse
Affiliation(s)
- Junjun Shen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanxin Jiang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Pan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Linhan Sun
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Qingqing Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjing He
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Piaoyun Sun
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bosi Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongjiao Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xubo Ke
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yalu Guo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Fan Y, Guo Y, Zhang H, Han R, Yang P, Liang Z, Zhang L, Zhang B. Genome-wide identification of the MED25 BINDING RING-H2 PROTEIN gene family in foxtail millet (Setaria italica L.) and the role of SiMBR2 in resistance to abiotic stress in Arabidopsis. PLANTA 2024; 260:22. [PMID: 38847958 DOI: 10.1007/s00425-024-04455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/02/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION The SiMBR genes in foxtail millet were identified and studied. Heterologous expression of SiMBR2 in Arabidopsis can improve plant tolerance to drought stress by decreasing the level of reactive oxygen species. Foxtail millet (Setaria italica L.), a C4 crop recognized for its exceptional resistance to drought stress, presents an opportunity to improve the genetic resilience of other crops by examining its unique stress response genes and understanding the underlying molecular mechanisms of drought tolerance. In our previous study, we identified several genes linked to drought stress by transcriptome analysis, including SiMBR2 (Seita.7G226600), a member of the MED25 BINDING RING-H2 PROTEIN (MBR) gene family, which is related to protein ubiquitination. Here, we have identified ten SiMBR genes in foxtail millet and conducted analyses of their structural characteristics, chromosomal locations, cis-acting regulatory elements within their promoters, and predicted transcription patterns specific to various tissues or developmental stages using bioinformatic approaches. Further investigation of the stress response of SiMBR2 revealed that its transcription is induced by treatments with salicylic acid and gibberellic acid, as well as by salt and osmotic stresses, while exposure to high or low temperatures led to a decrease in its transcription levels. Heterologous expression of SiMBR2 in Arabidopsis thaliana enhanced the plant's tolerance to water deficit by reducing the accumulation of reactive oxygen species under drought stress. In summary, this study provides support for exploring the molecular mechanisms associated with drought resistance of SiMBR genes in foxtail millet and contributing to genetic improvement and molecular breeding in other crops.
Collapse
Affiliation(s)
- Yimin Fan
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Yue Guo
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Haiying Zhang
- College of Agriculture, Shanxi Agricultural University, Taiyuan, 030006, China
| | - Rui Han
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Pu Yang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Zhen Liang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| | - Ben Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, 030031, China.
| |
Collapse
|
9
|
Song C, Hou Y, Li T, Liu Y, Wang XA, Qu W, Li L. Lon1 Inactivation Downregulates Autophagic Flux and Brassinosteroid Biogenesis, Modulating Mitochondrial Proportion and Seed Development in Arabidopsis. Int J Mol Sci 2024; 25:5425. [PMID: 38791463 PMCID: PMC11121791 DOI: 10.3390/ijms25105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial protein homeostasis is crucially regulated by protein degradation processes involving both mitochondrial proteases and cytosolic autophagy. However, it remains unclear how plant cells regulate autophagy in the scenario of lacking a major mitochondrial Lon1 protease. In this study, we observed a notable downregulation of core autophagy proteins in Arabidopsis Lon1 knockout mutant lon1-1 and lon1-2, supporting the alterations in the relative proportions of mitochondrial and vacuolar proteins over total proteins in the plant cells. To delve deeper into understanding the roles of the mitochondrial protease Lon1 and autophagy in maintaining mitochondrial protein homeostasis and plant development, we generated the lon1-2atg5-1 double mutant by incorporating the loss-of-function mutation of the autophagy core protein ATG5, known as atg5-1. The double mutant exhibited a blend of phenotypes, characterized by short plants and early senescence, mirroring those observed in the individual single mutants. Accordingly, distinct transcriptome alterations were evident in each of the single mutants, while the double mutant displayed a unique amalgamation of transcriptional responses. Heightened severity, particularly evident in reduced seed numbers and abnormal embryo development, was observed in the double mutant. Notably, aberrations in protein storage vacuoles (PSVs) and oil bodies were evident in the single and double mutants. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of genes concurrently downregulated in lon1-2, atg5-1, and lon1-2atg5-1 unveiled a significant suppression of genes associated with brassinosteroid (BR) biosynthesis and homeostasis. This downregulation likely contributes to the observed abnormalities in seed and embryo development in the mutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (C.S.); (Y.H.); (T.L.); (Y.L.); (X.-A.W.); (W.Q.)
| |
Collapse
|
10
|
Qin W, Wang N, Yin Q, Li H, Wu AM, Qin G. Activation tagging identifies WRKY14 as a repressor of plant thermomorphogenesis in Arabidopsis. MOLECULAR PLANT 2022; 15:1725-1743. [PMID: 36155833 DOI: 10.1016/j.molp.2022.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Increases in recorded high temperatures around the world are causing plant thermomorphogenesis and decreasing crop productivity. PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is a central positive regulator of plant thermomorphogenesis. However, the molecular mechanisms underlying PIF4-regulated thermomorphogenesis remain largely unclear. In this study, we identified ABNORMAL THERMOMORPHOGENESIS 1 (ABT1) as an important negative regulator of PIF4 and plant thermomorphogenesis. Overexpression of ABT1 in the activation tagging mutant abt1-D caused shorter hypocotyls and petioles under moderately high temperature (HT). ABT1 encodes WRKY14, which belongs to subgroup II of the WRKY transcription factors. Overexpression of ABT1/WRKY14 or its close homologs, including ABT2/WRKY35, ABT3/WRKY65, and ABT4/WRKY69in transgenic plants caused insensitivity to HT, whereas the quadruple mutant abt1 abt2 abt3 abt4 exhibited greater sensitivity to HT. ABTs were expressed in hypocotyls, cotyledons, shoot apical meristems, and leaves, but their expression were suppressed by HT. Biochemical assays showed that ABT1 can interact with TCP5, a known positive regulator of PIF4, and interrupt the formation of the TCP5-PIF4 complex and repress its transcriptional activation activity. Genetic analysis showed that ABT1 functioned antagonistically with TCP5, BZR1, and PIF4 in plant thermomorphogenesis. Taken together, our results identify ABT1/WRKY14 as a critical repressor of plant thermomorphogenesis and suggest that ABT1/WRKY14, TCP5, and PIF4 may form a sophisticated regulatory module to fine-tune PIF4 activity and temperature-dependent plant growth.
Collapse
Affiliation(s)
- Wenqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Ning Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qi Yin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
11
|
He Q, Yuan R, Zhang T, An F, Wang N, Lan J, Wang X, Zhang Z, Pan Y, Wang X, Zhang J, Guo D, Qin G. Arabidopsis TIE1 and TIE2 transcriptional repressors dampen cytokinin response during root development. SCIENCE ADVANCES 2022; 8:eabn5057. [PMID: 36083905 PMCID: PMC9462699 DOI: 10.1126/sciadv.abn5057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Cytokinin plays critical roles in root development. Cytokinin signaling depends on activation of key transcription factors known as type B Arabidopsis response regulators (ARRs). However, the mechanisms underlying the finely tuned regulation of type B ARR activity remain unclear. In this study, we demonstrate that the ERF-associated amphiphilic repression (EAR) motif-containing protein TCP interactor containing ear motif protein2 (TIE2) forms a negative feedback loop to finely tune the activity of type B ARRs during root development. Disruption of TIE2 and its close homolog TIE1 causes severely shortened roots. TIE2 interacts with type B ARR1 and represses transcription of ARR1 targets. The cytokinin response is correspondingly enhanced in tie1-1 tie2-1. We further show that ARR1 positively regulates TIE1 and TIE2 by directly binding to their promoters. Our findings demonstrate that TIEs play key roles in controlling plant development and reveal an important negative feedback regulation mechanism for cytokinin signaling.
Collapse
|
12
|
Zheng X, Lan J, Yu H, Zhang J, Zhang Y, Qin Y, Su XD, Qin G. Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening. PLANT COMMUNICATIONS 2022; 3:100309. [PMID: 35605201 PMCID: PMC9284284 DOI: 10.1016/j.xplc.2022.100309] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/16/2022] [Accepted: 03/01/2022] [Indexed: 05/06/2023]
Abstract
Green petals pose a challenge for pollinators to distinguish flowers from leaves, but they are valuable as a specialty flower trait. However, little is understood about the molecular mechanisms that underlie the development of green petals. Here, we report that CINCINNATA (CIN)-like TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) proteins play key roles in the control of petal color. The septuple tcp2/3/4/5/10/13/17 mutant produced flowers with green petals due to chlorophyll accumulation. Expression of TCP4 complemented the petal phenotype of tcp2/3/4/5/10/13/17. We found that chloroplasts were converted into leucoplasts in the distal parts of wild-type petals but not in the proximal parts during flower development, whereas plastid conversion was compromised in the distal parts of tcp2/3/4/5/10/13/17 petals. TCP4 and most CIN-like TCPs were predominantly expressed in distal petal regions, consistent with the green-white pattern in wild-type petals and the petal greening observed in the distal parts of tcp2/3/4/5/10/13/17 petals. RNA-sequencing data revealed that most chlorophyll biosynthesis genes were downregulated in the white distal parts of wild-type petals, but these genes had elevated expression in the distal green parts of tcp2/3/4/5/10/13/17 petals and the green proximal parts of wild-type petals. We revealed that TCP4 repressed chlorophyll biosynthesis by directly binding to the promoters of PROTOCHLOROPHYLLIDE REDUCTASE (PORB), DIVINYL REDUCTASE (DVR), and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), which are known to promote petal greening. We found that the conversion of chloroplasts to leucoplasts and the green coloration in the proximal parts of petals appeared to be conserved among plant species. Our findings uncover a major molecular mechanism that underpins the formation of petal color patterns and provide a foundation for the breeding of plants with green flowers.
Collapse
Affiliation(s)
- Xinhui Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jingzhe Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yongmei Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xiao-Dong Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
13
|
Tang D, Jia Y, Zhang J, Li H, Cheng L, Wang P, Bao Z, Liu Z, Feng S, Zhu X, Li D, Zhu G, Wang H, Zhou Y, Zhou Y, Bryan GJ, Buell CR, Zhang C, Huang S. Genome evolution and diversity of wild and cultivated potatoes. Nature 2022; 606:535-541. [PMID: 35676481 PMCID: PMC9200641 DOI: 10.1038/s41586-022-04822-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/28/2022] [Indexed: 12/21/2022]
Abstract
Potato (Solanum tuberosum L.) is the world's most important non-cereal food crop, and the vast majority of commercially grown cultivars are highly heterozygous tetraploids. Advances in diploid hybrid breeding based on true seeds have the potential to revolutionize future potato breeding and production1-4. So far, relatively few studies have examined the genome evolution and diversity of wild and cultivated landrace potatoes, which limits the application of their diversity in potato breeding. Here we assemble 44 high-quality diploid potato genomes from 24 wild and 20 cultivated accessions that are representative of Solanum section Petota, the tuber-bearing clade, as well as 2 genomes from the neighbouring section, Etuberosum. Extensive discordance of phylogenomic relationships suggests the complexity of potato evolution. We find that the potato genome substantially expanded its repertoire of disease-resistance genes when compared with closely related seed-propagated solanaceous crops, indicative of the effect of tuber-based propagation strategies on the evolution of the potato genome. We discover a transcription factor that determines tuber identity and interacts with the mobile tuberization inductive signal SP6A. We also identify 561,433 high-confidence structural variants and construct a map of large inversions, which provides insights for improving inbred lines and precluding potential linkage drag, as exemplified by a 5.8-Mb inversion that is associated with carotenoid content in tubers. This study will accelerate hybrid potato breeding and enrich our understanding of the evolution and biology of potato as a global staple food crop.
Collapse
Affiliation(s)
- Dié Tang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuxin Jia
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jinzhe Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongbo Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Graduate School Experimental Plant Sciences, Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Lin Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Pei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhigui Bao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhihong Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuangshuang Feng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xijian Zhu
- The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, China
| | - Dawei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guangtao Zhu
- The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, China
| | - Hongru Wang
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Yao Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yongfeng Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Glenn J Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, UK
| | - C Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Chunzhi Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
14
|
Urano K, Maruyama K, Koyama T, Gonzalez N, Inzé D, Yamaguchi-Shinozaki K, Shinozaki K. CIN-like TCP13 is essential for plant growth regulation under dehydration stress. PLANT MOLECULAR BIOLOGY 2022; 108:257-275. [PMID: 35050466 PMCID: PMC8873074 DOI: 10.1007/s11103-021-01238-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/23/2021] [Indexed: 05/17/2023]
Abstract
A dehydration-inducible Arabidopsis CIN-like TCP gene, TCP13, acts as a key regulator of plant growth in leaves and roots under dehydration stress conditions. Plants modulate their shape and growth in response to environmental stress. However, regulatory mechanisms underlying the changes in shape and growth under environmental stress remain elusive. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) family of transcription factors (TFs) are key regulators for limiting the growth of leaves through negative effect of auxin response. Here, we report that stress-inducible CIN-like TCP13 plays a key role in inducing morphological changes in leaves and growth regulation in leaves and roots that confer dehydration stress tolerance in Arabidopsis thaliana. Transgenic Arabidopsis plants overexpressing TCP13 (35Spro::TCP13OX) exhibited leaf rolling, and reduced leaf growth under osmotic stress. The 35Spro::TCP13OX transgenic leaves showed decreased water loss from leaves, and enhanced dehydration tolerance compared with their control counterparts. Plants overexpressing a chimeric repressor domain SRDX-fused TCP13 (TCP13pro::TCP13SRDX) showed severely serrated leaves and enhanced root growth. Transcriptome analysis of TCP13pro::TCP13SRDX transgenic plants revealed that TCP13 affects the expression of dehydration- and abscisic acid (ABA)-regulated genes. TCP13 is also required for the expression of dehydration-inducible auxin-regulated genes, INDOLE-3-ACETIC ACID5 (IAA5) and LATERAL ORGAN BOUNDARIES (LOB) DOMAIN 1 (LBD1). Furthermore, tcp13 knockout mutant plants showed ABA-insensitive root growth and reduced dehydration-inducible gene expression. Our findings provide new insight into the molecular mechanism of CIN-like TCP that is involved in both auxin and ABA response under dehydration stress.
Collapse
Affiliation(s)
- Kaoru Urano
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
- Institute of Agrobiological Sciences, NARO 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan.
| | - Kyonoshin Maruyama
- Plant Biotechnology Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Tomotsugu Koyama
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seikacho, Kyoto, 619-0284, Japan
| | - Nathalie Gonzalez
- INRAE, Université de Bordeaux, UMR1332 Biologie du Fruit Et Pathologie, 33882, Villenave d'Ornon Cedex, France
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| |
Collapse
|
15
|
Zhong S, Li L, Wang Z, Ge Z, Li Q, Bleckmann A, Wang J, Song Z, Shi Y, Liu T, Li L, Zhou H, Wang Y, Zhang L, Wu HM, Lai L, Gu H, Dong J, Cheung AY, Dresselhaus T, Qu LJ. RALF peptide signaling controls the polytubey block in Arabidopsis. Science 2022; 375:290-296. [PMID: 35050671 PMCID: PMC9040003 DOI: 10.1126/science.abl4683] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fertilization of an egg by multiple sperm (polyspermy) leads to lethal genome imbalance and chromosome segregation defects. In Arabidopsis thaliana, the block to polyspermy is facilitated by a mechanism that prevents polytubey (the arrival of multiple pollen tubes to one ovule). We show here that FERONIA, ANJEA, and HERCULES RECEPTOR KINASE 1 receptor-like kinases located at the septum interact with pollen tube-specific RALF6, 7, 16, 36, and 37 peptide ligands to establish this polytubey block. The same combination of RALF (rapid alkalinization factor) peptides and receptor complexes controls pollen tube reception and rupture inside the targeted ovule. Pollen tube rupture releases the polytubey block at the septum, which allows the emergence of secondary pollen tubes upon fertilization failure. Thus, orchestrated steps in the fertilization process in Arabidopsis are coordinated by the same signaling components to guarantee and optimize reproductive success.
Collapse
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Ling Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Zhijuan Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Zengxiang Ge
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Qiyun Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Andrea Bleckmann
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Jizong Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Zihan Song
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Yihao Shi
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Tianxu Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Luhan Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Huabin Zhou
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yanyan Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Li Zhang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Luhua Lai
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- The National Plant Gene Research Center (Beijing), Beijing 100101, People’s Republic of China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- The National Plant Gene Research Center (Beijing), Beijing 100101, People’s Republic of China
| |
Collapse
|
16
|
Li Y, Hou Z, Li W, Li H, Lu S, Gan Z, Du H, Li T, Zhang Y, Kong F, Cheng Y, He M, Ma L, Liao C, Li Y, Dong L, Liu B, Cheng Q. The legume-specific transcription factor E1 controls leaf morphology in soybean. BMC PLANT BIOLOGY 2021; 21:531. [PMID: 34773981 PMCID: PMC8590347 DOI: 10.1186/s12870-021-03301-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 10/28/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND The leaf is a determinate organ essential for photosynthesis, whose size and shape determine plant architecture and strongly affect agronomic traits. In soybean, the molecular mechanism of leaf development is not well understood. The flowering repressor gene E1, which encodes a legume-specific B3-like protein, is known to be the gene with the largest influence on soybean flowering and maturity. However, knowledge of its potential other functions remains poor. RESULTS Here, we identified a novel function of E1 protein in leaf development. Unifoliolate leaves of E1-overexpression (E1-OE) lines were smaller and curlier than those of wild type DongNong 50 (DN50) and Williams 82 (W82). Transverse histological sections showed disorganized cells and significantly elevated palisade tissue number, spongy tissue number, and bulliform cell number in E1-OE lines. Our results indicate that E1 binds to the promoters of the leaf- development-related CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor genes to negatively regulate their expression. CONCLUSIONS Our findings identify E1 as an important new factor in soybean leaf development.
Collapse
Affiliation(s)
- Yongli Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 516000, China
| | - Zhihong Hou
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163000, China
| | - Weiwei Li
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Keshan, 161606, China
| | - Haiyang Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210000, China
| | - Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 516000, China
| | - Zhuoran Gan
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 516000, China
| | - Hao Du
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 516000, China
| | - Tai Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 516000, China
| | - Yuhang Zhang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 516000, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 516000, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150000, China
- University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Yuhan Cheng
- Beijing International Urban Agricultural Science and Technology Park, Zhong Nong Fu Tong, Beijng, 100000, China
| | - Milan He
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 516000, China
| | - Lixin Ma
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 516000, China
| | - Chunmei Liao
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 516000, China
| | - Yaru Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 516000, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 516000, China.
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 516000, China.
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150000, China.
- University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 516000, China.
| |
Collapse
|
17
|
Plant AR, Larrieu A, Causier B. Repressor for hire! The vital roles of TOPLESS-mediated transcriptional repression in plants. THE NEW PHYTOLOGIST 2021; 231:963-973. [PMID: 33909309 DOI: 10.1111/nph.17428] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/16/2021] [Indexed: 05/15/2023]
Abstract
Transcriptional corepressors play important roles in establishing the appropriate levels of gene expression during growth and development. The TOPLESS (TPL) family of corepressors are critical for all plant life. TPLs are involved in numerous developmental processes and in the response to extrinsic challenges. As such these proteins have been the focus of intense study since Long and colleagues first described the TPL corepressor in 2006. In this review we will explore the evolutionary history of these essential plant-specific proteins, their mechanism of action based on recent structural analyses, and the myriad of pathways in which they function. We speculate how relatively minor changes in the peptide sequence of transcriptional regulators allowed them to recruit TPL into new processes, driving innovation and resulting in TPL becoming vital for plant development.
Collapse
Affiliation(s)
- Alastair Robert Plant
- Faculty of Biological Sciences, Centre for Plant Science, University of Leeds, Leeds, LS2 9JT, UK
| | - Antoine Larrieu
- Faculty of Biological Sciences, Centre for Plant Science, University of Leeds, Leeds, LS2 9JT, UK
| | - Barry Causier
- Faculty of Biological Sciences, Centre for Plant Science, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
18
|
Lan J, Zhang J, Yuan R, Yu H, An F, Sun L, Chen H, Zhou Y, Qian W, He H, Qin G. TCP transcription factors suppress cotyledon trichomes by impeding a cell differentiation-regulating complex. PLANT PHYSIOLOGY 2021; 186:434-451. [PMID: 33576799 PMCID: PMC8154074 DOI: 10.1093/plphys/kiab053] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/21/2021] [Indexed: 05/04/2023]
Abstract
Trichomes are specialized epidermal cells that act as barriers against biotic and abiotic stresses. Although the formation of trichomes on hairy organs is well studied, the molecular mechanisms of trichome inhibition on smooth organs are still largely unknown. Here, we demonstrate that the CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors inhibit the formation of trichomes on cotyledons in Arabidopsis (Arabidopsis thaliana). The tcp2/3/4/5/10/13/17 septuple mutant produces cotyledons with ectopic trichomes on the adaxial sides. The expression patterns of TCP genes are developmentally regulated during cotyledon development. TCP proteins directly interact with GLABRA3 (GL3), a key component of the MYB transcription factor/basic helix-loop-helix domain protein/WD40-repeat proteins (MYB-bHLH-WD40, MBW) complex essential for trichome formation, to interfere with the transactivation activity of the MBW complex in cotyledons. TCPs also disrupt the MBW complex-R3 MYB negative feedback loop by directly promoting the expression of R3 MYB genes, which enhance the repression of the MBW complex. Our findings reveal a molecular framework in which TCPs suppress trichome formation on adaxial sides of cotyledons by repressing the activity of the MBW complex at the protein level and the transcripts of R3 MYB genes at the transcriptional level.
Collapse
Affiliation(s)
- Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Jinzhe Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Rongrong Yuan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Fengying An
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Linhua Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Yue Zhou
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Hang He
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
19
|
Shen J, Ge D, Song X, Xiao J, Liu X, Che G, Gu R, Wang Z, Cheng Z, Song W, Liu L, Chen J, Han L, Yan L, Liu R, Zhou Z, Zhang X. Roles of CsBRC1-like in leaf and lateral branch development in cucumber. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110681. [PMID: 33288003 DOI: 10.1016/j.plantsci.2020.110681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/28/2020] [Accepted: 09/12/2020] [Indexed: 05/24/2023]
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) family genes, as plant-specific transcription factors, play vital roles in flower pattern, leaf development and plant architecture. Our recent study shows that the TCP gene BRANCHED1 (CsBRC1) specifically regulates shoot branching in cucumber. Here, we found CsBRC1 had a closely related paralogous gene CsBRC1-like. The synteny analysis revealed that these two genes originated from a segmental duplication. CsBRC1-like displayed different expression patterns in cucumber compared with CsBRC1, indicating that they may have functional differentiation. Ectopic expression of CsBRC1-like in Arabidopsis brc1-1 mutant resulted in reduced rosette branches and rosette leaves, whereas silencing CsBRC1-like in cucumber only led to a deformed true leaf of seedling rather than affecting the shoot branching. RNA-seq analysis of wild-type and CsBRC1-like-RNAi plants implicated that CsBRC1-like might regulate early leaf development through affecting the transcripts of auxin and cytokinin related genes in cucumber. Moreover, CsBRC1-like directly interacts with CsTCP10a and CsBRC1 in vivo. Our results demonstrated that CsBRC1-like has a specific role in regulating leaf development, and CsBRC1-like and CsBRC1 may have overlapping roles in shoot branching.
Collapse
Affiliation(s)
- Junjun Shen
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Danfeng Ge
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaofei Song
- Analysis and Testing Centre, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Jiajing Xiao
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Gen Che
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Ran Gu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Liu Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jiacai Chen
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Lijie Han
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Liying Yan
- College of Horticulture Science and Technology, Hebei Normal University of Science& Technology, Qinhuangdao 066004, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Variation and Genetic Parameters of Leaf Morphological Traits of Eight Families from Populus simonii × P. nigra. FORESTS 2020. [DOI: 10.3390/f11121319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Leaf morphology in Populus L. varies extensively among sections, species and clones under strong genetic control. P. nigra L. (section Aigeiros), with large and triangular leaves, is a commercial forest tree of economic importance for fast growth and high yield in Europe. P. simonii Carr. (section Tacamahaca) with small land rhomboid ovate leaves performs cold and dry resistance/tolerance in the semi-arid region of Northern China. Leaf morphological traits could be used as early indicators to improve the efficiency of selection. In order to investigate the genetic variation pattern of leaf morphology traits, estimate breeding values (combining ability), as well as evaluate crossing combinations of parents, 1872 intersectional progenies from eight families (P. simonii × P. nigra) and their parents were planted with cuttings for the clonal replicate field trial in Northern China. Four leaf size traits (area, perimeter, length, width) and roundness were measured with leaf samples from the 1-year-old clonal plantation. Significant differences regarding leaf traits were found between and among three female clones of P. simonii from Inner Mongolia, China and six male clones of P. nigra from Casale Monferrato, Italy. The genetic variation coefficient, heritability and genetic variance component of most traits in male parents were greater than these of female parents. Heritability estimates of male and female parents were above 0.56 and 0.17, respectively. Plentiful leaf variations with normal and continuous distributions exited in the hybrid progenies among and within families with the genetic variation coefficient and heritability above 28.49 and 0.24, respectively. Heritability estimates showed that leaf area was the most heritable trait, followed by leaf width. The breeding value ranking of parents allowed us to select the parental clones for new crosses and extend the mating design. Two male parental clones (N430 and N429) had greater breeding values (general combining ability, GCA) of leaf size traits than other clones. The special combining ability (SCA) of the crossing combination between P. simonii cl. ZL-3 and P. nigra cl. N430 was greater than that of others. Eight putatively superior genotypes, most combined with the female parental clone ZL-3, can be selected for future testing under near-commercial conditions. Significant genetic and phenotypic correlations were found between five leaf morphology traits with the coefficients above 0.9, except for leaf roundness. The results showed that leaf morphology traits were under strong genetic control and the parental clones with high GCA and SCA effects could be utilized in heterosis breeding, which will provide a starting point for devising a new selection strategy of parents and progenies.
Collapse
|
21
|
Ali S, Khan N, Xie L. Molecular and Hormonal Regulation of Leaf Morphogenesis in Arabidopsis. Int J Mol Sci 2020; 21:ijms21145132. [PMID: 32698541 PMCID: PMC7404056 DOI: 10.3390/ijms21145132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/28/2022] Open
Abstract
Shoot apical meristems (SAM) are tissues that function as a site of continuous organogenesis, which indicates that a small pool of pluripotent stem cells replenishes into lateral organs. The coordination of intercellular and intracellular networks is essential for maintaining SAM structure and size and also leads to patterning and formation of lateral organs. Leaves initiate from the flanks of SAM and then develop into a flattened structure with variable sizes and forms. This process is mainly regulated by the transcriptional regulators and mechanical properties that modulate leaf development. Leaf initiation along with proper orientation is necessary for photosynthesis and thus vital for plant survival. Leaf development is controlled by different components such as hormones, transcription factors, miRNAs, small peptides, and epigenetic marks. Moreover, the adaxial/abaxial cell fate, lamina growth, and shape of margins are determined by certain regulatory mechanisms. The over-expression and repression of various factors responsible for leaf initiation, development, and shape have been previously studied in several mutants. However, in this review, we collectively discuss how these factors modulate leaf development in the context of leaf initiation, polarity establishment, leaf flattening and shape.
Collapse
Affiliation(s)
- Shahid Ali
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Correspondence: (S.A.); (L.X.)
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Linan Xie
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (S.A.); (L.X.)
| |
Collapse
|
22
|
The Regulation of CIN-like TCP Transcription Factors. Int J Mol Sci 2020; 21:ijms21124498. [PMID: 32599902 PMCID: PMC7349945 DOI: 10.3390/ijms21124498] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 01/07/2023] Open
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR 1 and 2 (TCP) family proteins are the plant-specific transcription factors extensively participating in diverse developmental processes by integrating external cues with internal signals. The roles of CINCINNATA (CIN)-like TCPs are conserved in control of the morphology and size of leaves, petal development, trichome formation and plant flowering. The tight regulation of CIN-like TCP activity at transcriptional and post-transcriptional levels are central for plant developmental plasticity in response to the ever-changing environmental conditions. In this review, we summarize recent progresses with regard to the function and regulation of CIN-like TCPs. CIN-like TCPs are regulated by abiotic and biotic cues including light, temperature and pathogens. They are also finely controlled by microRNA319 (miRNA319), chromatin remodeling complexes and auxin homeostasis. The protein degradation plays critical roles in tightly controlling the activity of CIN-like TCPs as well.
Collapse
|
23
|
Kim JH, Lim SD, Jang CS. Oryza sativa drought-, heat-, and salt-induced RING finger protein 1 (OsDHSRP1) negatively regulates abiotic stress-responsive gene expression. PLANT MOLECULAR BIOLOGY 2020; 103:235-252. [PMID: 32206999 DOI: 10.1007/s11103-020-00989-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/02/2020] [Indexed: 05/13/2023]
Abstract
Plants are sessile and unable to avoid environmental stresses, such as drought, high temperature, and high salinity, which often limit the overall plant growth. Plants have evolved many complex mechanisms to survive these abiotic stresses via post-translational modifications. Recent evidence suggests that ubiquitination plays a crucial role in regulating abiotic stress responses in plants by regulating their substrate proteins. Here, we reported the molecular function of a RING finger E3 ligase, Oryza sativa Drought, Heat and Salt-induced RING finger protein 1 (OsDHSRP1), involved in regulating plant abiotic stress tolerance via the Ub/26S proteasome system. The OsDHSRP1 gene transcripts were highly expressed under various abiotic stresses such as NaCl, drought, and heat and the phytohormone abscisic acid (ABA). In addition, in vitro ubiquitination assays demonstrated that the OsDHSRP1 protein possesses a RING-H2 type domain that confers ligase functionality. The results of yeast two-hybrid (Y2H), in vitro pull-down, and bimolecular fluorescence complementation assays support that OsDHSRP1 is able to regulate two substrates, O. sativa glyoxalase (OsGLYI-11.2) and O. sativa abiotic stress-induced cysteine proteinase 1 (OsACP1). We further confirmed that these two substrate proteins were ubiquitinated by OsDHSRP1 E3 ligase and caused protein degradation via the Ub/26S proteasome system. The Arabidopsis plants overexpressing OsDHSRP1 exhibited hypersensitivity to drought, heat, and NaCl stress and a decrease in their germination rates and root lengths compared to the control plants because the degradation of the OsGLYI-11.2 protein maintained lower glyoxalase levels, which increased the methylglyoxal amount in transgenic Arabidopsis plants. However, the OsDHSRP1-overexpressing plants showed no significant difference when treated with ABA. Our finding supports the hypothesis that the OsDHSRP1 E3 ligase acts as a negative regulator, and the degradation of its substrate proteins via ubiquitination plays important roles in regulating various abiotic stress responses via an ABA-independent pathway.
Collapse
Affiliation(s)
- Ju Hee Kim
- Plant Genomics Laboratory, Department of Bio-Resources Sciences, Kangwon National University, Chuncheon, 200-713, South Korea
| | - Sung Don Lim
- Plant Genomics Laboratory, Department of Bio-Resources Sciences, Kangwon National University, Chuncheon, 200-713, South Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Bio-Resources Sciences, Kangwon National University, Chuncheon, 200-713, South Korea.
| |
Collapse
|
24
|
Lee D, Lal NK, Lin ZJD, Ma S, Liu J, Castro B, Toruño T, Dinesh-Kumar SP, Coaker G. Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nat Commun 2020; 11:1838. [PMID: 32296066 PMCID: PMC7160206 DOI: 10.1038/s41467-020-15601-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 03/09/2020] [Indexed: 01/08/2023] Open
Abstract
Production of reactive oxygen species (ROS) is critical for successful activation of immune responses against pathogen infection. The plant NADPH oxidase RBOHD is a primary player in ROS production during innate immunity. However, how RBOHD is negatively regulated remains elusive. Here we show that RBOHD is regulated by C-terminal phosphorylation and ubiquitination. Genetic and biochemical analyses reveal that the PBL13 receptor-like cytoplasmic kinase phosphorylates RBOHD's C-terminus and two phosphorylated residues (S862 and T912) affect RBOHD activity and stability, respectively. Using protein array technology, we identified an E3 ubiquitin ligase PIRE (PBL13 interacting RING domain E3 ligase) that interacts with both PBL13 and RBOHD. Mimicking phosphorylation of RBOHD (T912D) results in enhanced ubiquitination and decreased protein abundance. PIRE and PBL13 mutants display higher RBOHD protein accumulation, increased ROS production, and are more resistant to bacterial infection. Thus, our study reveals an intricate post-translational network that negatively regulates the abundance of a conserved NADPH oxidase.
Collapse
Affiliation(s)
- DongHyuk Lee
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Neeraj K Lal
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Zuh-Jyh Daniel Lin
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.,Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Shisong Ma
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA.,School of Life Sciences, University of Science and Technology of China, 230027, Hefei, China
| | - Jun Liu
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.,Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bardo Castro
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Tania Toruño
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Gitta Coaker
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
25
|
Yang Z, Yang J, Wang Y, Wang F, Mao W, He Q, Xu J, Wu Z, Mao C. PROTEIN PHOSPHATASE95 Regulates Phosphate Homeostasis by Affecting Phosphate Transporter Trafficking in Rice. THE PLANT CELL 2020; 32:740-757. [PMID: 31919298 PMCID: PMC7054036 DOI: 10.1105/tpc.19.00685] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/02/2019] [Accepted: 01/07/2020] [Indexed: 05/20/2023]
Abstract
Phosphate (Pi) uptake in plants depends on plasma membrane (PM)-localized phosphate transporters (PTs). OsCK2 phosphorylates PTs and inhibits their trafficking from the endoplasmic reticulum (ER) to the PM in rice (Oryza sativa), but how PTs are dephosphorylated is unknown. We demonstrate that the protein phosphatase type 2C (PP2C) protein phosphatase OsPP95 interacts with OsPT2 and OsPT8 and dephosphorylates OsPT8 at Ser-517. Rice plants overexpressing OsPP95 reduced OsPT8 phosphorylation and promoted OsPT2 and OsPT8 trafficking from the ER to the PM, resulting in Pi accumulation. Under Pi-sufficient conditions, Pi levels were lower in young leaves and higher in old leaves in ospp95 mutants than in those of the wild type, even though the overall shoot Pi levels were the same in the mutant and the wild type. In the wild type, OsPP95 accumulated under Pi starvation but was rapidly degraded under Pi-sufficient conditions. We show that OsPHO2 interacts with and induces the degradation of OsPP95. We conclude that OsPP95, a protein phosphatase negatively regulated by OsPHO2, positively regulates Pi homeostasis and remobilization by dephosphorylating PTs and affecting their trafficking to the PM, a reversible process required for adaptation to variable Pi conditions.
Collapse
Affiliation(s)
- Zhili Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxuan Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiuju He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Wang Y, Li G, Guo X, Sun R, Dong T, Yang Q, Wang Q, Li C. Dissecting the genetic architecture of seed-cotton and lint yields in Upland cotton using genome-wide association mapping. BREEDING SCIENCE 2019; 69:611-620. [PMID: 31988625 PMCID: PMC6977443 DOI: 10.1270/jsbbs.19057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/23/2019] [Indexed: 05/18/2023]
Abstract
Seed-cotton yield (SY) and lint yield (LY) are the most important yield traits of cotton. Thus, it is critical to dissect their genetic architecture. Upland cotton (Gossypium hirsutum) is widely grown worldwide. In this study, a genome-wide association mapping was performed based on the CottonSNP80K array to dissect the genetic architecture of SY and LY in Upland cotton. Twenty-three significant associations were detected within four environments, including 11 associated with SY and 12 associated with LY. Seven single nucleotide polymorphisms (SNPs), TM234, TM237, TM247, TM255, TM256, TM263, and TM264, were co-associated with the two traits, which may indicate pleiotropy or intergenic tight linkages. Five SNPs, TM13332, TM39771, TM57119, TM81653, and TM81660, were coincided with those of previous reports and could be used in marker-assisted selection. Combining functional annotations with expression analyses of the genes identified within 400 kb of the significantly associated SNPs, we hypothesize that the three genes, Gh_D05G1077 and Gh_D13G1571 for SY, and Gh_A11G0775 for LY, may have the potential to increase cotton yield. The results would provide useful information for understanding the genetic basis of yield traits in Upland cotton and for facilitating its high-yield breeding through molecular design.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Guirong Li
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Xinlei Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics,
Beijing 100081,
China
| | - Runrun Sun
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Tao Dong
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Qiuyue Yang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Qinglian Wang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Chengqi Li
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
- Corresponding author (e-mail: )
| |
Collapse
|
27
|
Ge Z, Zhao Y, Liu MC, Zhou LZ, Wang L, Zhong S, Hou S, Jiang J, Liu T, Huang Q, Xiao J, Gu H, Wu HM, Dong J, Dresselhaus T, Cheung AY, Qu LJ. LLG2/3 Are Co-receptors in BUPS/ANX-RALF Signaling to Regulate Arabidopsis Pollen Tube Integrity. Curr Biol 2019; 29:3256-3265.e5. [PMID: 31564495 PMCID: PMC7179479 DOI: 10.1016/j.cub.2019.08.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/11/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023]
Abstract
In angiosperms, two sperm cells are transported and delivered by the pollen tube to the ovule to achieve double fertilization. Extensive communication takes place between the pollen tube and the female tissues until the sperm cell cargo is ultimately released. During this process, a pollen tube surface-located receptor complex composed of ANXUR1/2 (ANX1/2) and Buddha's Paper Seal 1/2 (BUPS1/2) was reported to control the maintenance of pollen tube integrity by perceiving the autocrine peptide ligands rapid alkalinization factor 4 and 19 (RALF4/19). It was further hypothesized that pollen-tube rupture to release sperm is caused by the paracrine RALF34 peptide from the ovule interfering with this signaling pathway. In this study, we identified two Arabidopsis pollen-tube-expressed glycosylphosphatidylinositol-anchored proteins (GPI-APs), LORELEI-like-GPI-anchored protein 2 (LLG2) and LLG3, as co-receptors in the BUPS-ANX receptor complex. llg2 llg3 double mutants exhibit severe fertility defects. Mutant pollen tubes rupture early during the pollination process. Furthermore, LLG2 and LLG3 interact with ectodomains of both BUPSs and ANXURs, and this interaction is remarkably enhanced by the presence of RALF4/19 peptides. We further demonstrate that the N terminus (including a YISY motif) of the RALF4 peptide ligand interacts strongly with BUPS-ANX receptors but weakly with LLGs and is essential for its biological function, and its C-terminal region is sufficient for LLG binding. In conclusion, we propose that LLG2/3 serve as co-receptors during BUPS/ANX-RALF signaling and thereby further establish the importance of GPI-APs as key regulators in plant reproduction processes.
Collapse
Affiliation(s)
- Zengxiang Ge
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuling Zhao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Ming-Che Liu
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Lele Wang
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Saiying Hou
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Jiahao Jiang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Tianxu Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Qingpei Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Junyu Xiao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China; The National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China; The National Plant Gene Research Center (Beijing), Beijing 100101, China.
| |
Collapse
|
28
|
Wang L, Cheng Y, Ma Q, Mu Y, Huang Z, Xia Q, Zhang G, Nian H. QTL fine-mapping of soybean (Glycine max L.) leaf type associated traits in two RILs populations. BMC Genomics 2019; 20:260. [PMID: 30940069 PMCID: PMC6444683 DOI: 10.1186/s12864-019-5610-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 03/14/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The different leaf type associated traits of soybean (Glycine max L.) including leaf area, leaf length, leaf width, leaf shape and petiole length are considered to be associated with seed yield. In order to identify quantitative trait loci (QTLs) affecting leaf type traits, two advanced recombinant inbred line (RIL, ZH, Zhonghuang 24 × Huaxia 3; GB, Guizao 1 × Brazil 13) populations were introduced to score phenotypic values in plants across nine different environments (years, seasons, locations and soybean growth stages). Two restriction site-associated DNA sequencing (RAD-seq) based high-density genetic linkage maps with an average distance of 1.00 centimorgan (cM) between adjacent bin markers were utilized for QTL fine mapping. RESULTS Correlation analysis showed that most of the traits were correlated with each other and regulated both by hereditary and environmental factors. A total of 190 QTLs were identified for leaf type associated traits in the two populations, of which 14 loci were found to be environmentally stable. Moreover, these detected QTLs were categorized into 34 QTL hotspots, and four important QTL hotspots with phenotypic variance ranging from 3.89-23.13% were highlighted. Furthermore, Glyma04g05840, Glyma19g37820, Glyma14g07140 and Glyma19g39340 were predicted in the intervals of the stable loci and important QTL hotspots for leaf type traits by adopting Gene Ontology (GO) enrichment analysis. CONCLUSIONS Our findings of the QTLs and the putative genes will be beneficial to gain new insights into the genetic basis for soybean leaf type traits and may further accelerate the breeding process for reasonable leaf type soybean.
Collapse
Affiliation(s)
- Liang Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Yinghui Mu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Zhifeng Huang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Qiuju Xia
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086 People’s Republic of China
| | - Gengyun Zhang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086 People’s Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| |
Collapse
|
29
|
Kim JH, Lim SD, Jang CS. Oryza sativa heat-induced RING finger protein 1 (OsHIRP1) positively regulates plant response to heat stress. PLANT MOLECULAR BIOLOGY 2019; 99:545-559. [PMID: 30730020 DOI: 10.1007/s11103-019-00835-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/30/2019] [Indexed: 05/16/2023]
Abstract
OsHIRP1 is an E3 ligase that acts as a positive regulator in the plant response to heat stress, thus providing important information relating to adaptation and regulation under heat stress in plant. Extreme temperature adversely affects plant growth, development, and productivity. Here, we report the molecular functions of Oryza sativa heat-induced RING finger protein 1 (OsHIRP1), which might play an important role in the response to heat. Transcription of the OsHIRP1 was upregulated in response to heat and drought treatment. We found that the OsHIRP1-EYFP fusion protein was localized to the nucleus after heat treatment (45 °C). Two interacting partners, OsARK4 and OsHRK1, were identified via yeast-two-hybrid screening, which were mainly targeted to the nucleus (OsARK4) and cytosol (OsHRK1), and their interactions with OsHIRP1 were confirmed by biomolecular fluorescence complementation (BiFC). An in vitro ubiquitination assay showed that OsHIRP1 E3 ligase directly ubiquitinates its interacting proteins, OsAKR4 and OsHRK1, as substrates. Using an in vitro cell-free degradation assay, we observed a clear reduction in the levels of the two proteins under high temperature (45 °C), but not under low temperature conditions (4 °C and 30 °C). Seeds of OsHIRP1-overexpressing plants exhibited high germination rates compared with the control under heat stress. The OsHIRP1-overexpressing plants presented high survival rates of approximately 62-68%, whereas control plants displayed a low recovery rate of 34% under condition of acquired thermo-tolerance. Some heat stress-inducible genes (HsfA3, HSP17.3, HSP18.2 and HSP20) were up-regulated in OsHIRP1-overexpressing Arabidopsis than control plants under heat stress conditions. Collectively, these results suggest that OsHIRP1, an E3 ligase, positively regulates plant response to heat stress.
Collapse
Affiliation(s)
- Ju Hee Kim
- Plant Genomics Laboratory, Department of Bio-resources Sciences, Kangwon National University, Chuncheon, 200-713, South Korea
| | - Sung Don Lim
- Plant Genomics Laboratory, Department of Bio-resources Sciences, Kangwon National University, Chuncheon, 200-713, South Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Bio-resources Sciences, Kangwon National University, Chuncheon, 200-713, South Korea.
| |
Collapse
|
30
|
Jiang W, Li Z, Yao X, Zheng B, Shen WH, Dong A. jaw-1D: a gain-of-function mutation responsive to paramutation-like induction of epigenetic silencing. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:459-468. [PMID: 30346598 PMCID: PMC6322565 DOI: 10.1093/jxb/ery365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
The Arabidopsis thaliana gain-of-function T-DNA insertion mutant jaw-1D produces miR319A, a microRNA that represses genes encoding CIN-like TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORs (TCPs), a family of transcription factors that play key roles in leaf morphogenesis. In this study, we show that jaw-1D is responsive to paramutation-like epigenetic silencing. A genetic cross of jaw-1D with the polycomb gene mutant curly leaf-29 (clf-29) leads to attenuation of the jaw-1D mutant plant phenotype. This induced mutation, jaw-1D*, was associated with down-regulation of miR319A, was heritable independently from clf-29, and displayed paramutation-like non-Mendelian inheritance. Down-regulation of miR319A in jaw-1D* was linked to elevated levels of histone H3 lysine 9 dimethylation and DNA methylation at the CaMV35S enhancer located within the activation-tagging T-DNA of the jaw-1D locus. Examination of 21 independent T-DNA insertion mutant lines revealed that 11 could attenuate the jaw-1D mutant phenotype in a similar way to the paramutation induced by clf-29. These paramutagenic mutant lines shared the common feature that their T-DNA insertion was present as multi-copy tandem repeats and contained high levels of CG and CHG methylation. Our results provide important insights into paramutation-like epigenetic silencing, and caution against the use of jaw-1D in genetic interaction studies.
Collapse
Affiliation(s)
- Wen Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhongfei Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaozhen Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, PR China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Université de Strasbourg, CNRS, Strasbourg, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Yuan R, Lan J, Fang Y, Yu H, Zhang J, Huang J, Qin G. The Arabidopsis USL1 controls multiple aspects of development by affecting late endosome morphology. THE NEW PHYTOLOGIST 2018; 219:1388-1405. [PMID: 29897620 PMCID: PMC6099276 DOI: 10.1111/nph.15249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/21/2018] [Indexed: 05/07/2023]
Abstract
The polar transport of auxin controls many aspects of plant development. However, the molecular mechanisms underlying auxin tranport regulation remain to be further elucidated. We identified a mutant named as usl1 (unflattened and small leaves) in a genetic screen in Arabidopsis thaliana. The usl1 displayed multiple aspects of developmental defects in leaves, embryogenesis, cotyledons, silique phyllotaxy and lateral roots in addition to abnormal leaves. USL1 encodes a protein orthologous to the yeast vacuolar protein sorting (Vps) 38p and human UV RADIATION RESISTANCE-ASSOCIATED GENE (UVRAG). Cell biology, Co-IP/MS and yeast two-hybrid were used to identify the function of USL1. USL1 colocalizes at the subcellular level with VPS29, a key factor of the retromer complex that controls auxin transport. The morphology of the VPS29-associated late endosomes (LE) is altered from small dots in the wild-type to aberrant enlarged circles in the usl1 mutants. The usl1 mutant synergistically interacts with vps29. We also found that USL1 forms a complex with AtVPS30 and AtVPS34. We propose that USL1 controls multiple aspects of plant development by affecting late endosome morphology and by regulating the PIN1 polarity. Our findings provide a new layer of the understanding on the mechanisms of plant development regulation.
Collapse
Affiliation(s)
- Rongrong Yuan
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
- The Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Yuxing Fang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Jinzhe Zhang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Jiaying Huang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| |
Collapse
|
32
|
Jiménez-López D, Muñóz-Belman F, González-Prieto JM, Aguilar-Hernández V, Guzmán P. Repertoire of plant RING E3 ubiquitin ligases revisited: New groups counting gene families and single genes. PLoS One 2018; 13:e0203442. [PMID: 30169501 PMCID: PMC6118397 DOI: 10.1371/journal.pone.0203442] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/21/2018] [Indexed: 01/12/2023] Open
Abstract
E3 ubiquitin ligases of the ubiquitin proteasome system (UPS) mediate recognition of substrates and later transfer the ubiquitin (Ub). They are the most expanded components of the system. The Really Interesting New Gene (RING) domain contains 40-60 residues that are highly represented among E3 ubiquitin ligases. The Arabidopsis thaliana E3 ubiquitin ligases with a RING finger primarily contain RING-HC or RING-H2 type domains or less frequently RING-v, RING-C2, RING-D, RING-S/T and RING-G type domains. Our previous work on three E3 ubiquitin ligase families with a RING-H2 type domain, ATL, BTL, and CTL, suggested that a phylogenetic distribution based on the RING domain allowed for the creation a catalog of known domains or unknown conserved motifs. This work provided a useful and comprehensive view of particular families of RING E3 ubiquitin ligases. We updated the annotation of A. thaliana RING proteins and surveyed RING proteins from 30 species across eukaryotes. Based on domain architecture profile of the A. thaliana proteins, we catalogued 4711 RING finger proteins into 107 groups, including 66 previously described gene families or single genes and 36 novel families or undescribed genes. Forty-four groups were specific to a plant lineage while 41 groups consisted of proteins found in all eukaryotic species. Our present study updates the current classification of plant RING finger proteins and reiterates the importance of these proteins in plant growth and adaptation.
Collapse
Affiliation(s)
- Domingo Jiménez-López
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto., México
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Francisco Muñóz-Belman
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto., México
| | - Juan Manuel González-Prieto
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Victor Aguilar-Hernández
- CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Col. Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto., México
| |
Collapse
|
33
|
Yang Y, Nicolas M, Zhang J, Yu H, Guo D, Yuan R, Zhang T, Yang J, Cubas P, Qin G. The TIE1 transcriptional repressor controls shoot branching by directly repressing BRANCHED1 in Arabidopsis. PLoS Genet 2018; 14:e1007296. [PMID: 29570704 PMCID: PMC5884558 DOI: 10.1371/journal.pgen.1007296] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/04/2018] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
Shoot branching is a major determinant of plant architecture and is regulated by both endogenous and environmental factors. BRANCHED1 (BRC1) is a central local regulator that integrates signals controlling shoot branching. So far, the regulation of BRC1 activity at the protein level is still largely unknown. In this study, we demonstrated that TIE1 (TCP interactor containing EAR motif protein 1), a repressor previously identified as an important factor in the control of leaf development, also regulates shoot branching by repressing BRC1 activity. TIE1 is predominantly expressed in young axillary buds. The gain-of-function mutant tie1-D produced more branches and the overexpression of TIE1 recapitulated the increased branching of tie1-D, while disruption of TIE1 resulted in lower bud activity and fewer branches. We also demonstrated that the TIE1 protein interacts with BRC1 in vitro and in vivo. Expression of BRC1 fused with the C-terminus of the TIE1 protein in wild type caused excessive branching similar to that observed in tie1-D and brc1 loss-of-function mutants. Transcriptome analyses revealed that TIE1 regulated about 30% of the BRC1-dependent genes, including the BRC1 direct targets HB21, HB40 and HB53. These results indicate that TIE1 acts as a positive regulator of shoot branching by directly repressing BRC1 activity. Thus, our results reveal that TIE1 is an important shoot branching regulator, and provide new insights in the post-transcriptional regulation of the TCP transcription factor BRC1. Shoot branching is a key factor that not only affects plant survival but also determines food productivity in crop species. BRANCHED1 (BRC1) integrates internal and external signals to determine shoot branching. However, the regulation of BRC1 at the protein level remains elusive. We found that TIE1 (TCP interactor containing EAR motif protein 1) plays an important role in the control of shoot branching in Arabidopsis. Higher TIE1 expression levels lead to bushier Arabidopsis plants. TIE1 directly interacts with BRC1 and represses BRC1 transcriptional activity. Furthermore, BRC1 downstream target genes are downregulated by TIE1. Our findings demonstrate that TIE1 acts as a key repressor of BRC1 activity and positively regulates shoot branching.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, The People’s Republic of China
- Ocean-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, The People’s Republic of China
| | - Michael Nicolas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología/CSIC, Campus Universidad Autόnoma de Madrid, Madrid, Spain
| | - Jinzhe Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, The People’s Republic of China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, The People’s Republic of China
| | - Dongshu Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, The People’s Republic of China
| | - Rongrong Yuan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, The People’s Republic of China
| | - Tiantian Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, The People’s Republic of China
| | - Jianzhao Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, The People’s Republic of China
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología/CSIC, Campus Universidad Autόnoma de Madrid, Madrid, Spain
- * E-mail: (PC); (GQ)
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, The People’s Republic of China
- * E-mail: (PC); (GQ)
| |
Collapse
|
34
|
Yang L, Wu L, Chang W, Li Z, Miao M, Li Y, Yang J, Liu Z, Tan J. Overexpression of the maize E3 ubiquitin ligase gene ZmAIRP4 enhances drought stress tolerance in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:34-42. [PMID: 29223066 DOI: 10.1016/j.plaphy.2017.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/02/2017] [Accepted: 11/25/2017] [Indexed: 05/20/2023]
Abstract
Ubiquitin-mediated protein degradation plays a crucial role in enabling plants to effectively and efficiently cope with environmental stresses. The E3 ligases have emerged as a central component of the ubiquitination pathway and modulate plant response to abiotic stresses. However, few such studies have been reported in maize. In this study, a C3HC4-type RING finger E3 ligase in maize, ZmAIRP4 (Zea mays Abscisic acid [ABA]-Insensitive RING Protein 4), which is an ortholog of AtAIRP4, was isolated by reverse transcription polymerase chain reaction with specific primers, and its functions in tolerance to drought stress were described. ZmAIRP4 was upregulated by ABA, polyethylene glycol and sodium chloride. In vitro ubiquitination assays and subcellular localization indicated that ZmAIRP4 was an active E3 ligase predominantly localized in the cytoplasm and nucleus. Compared to wild type, ZmAIRP4-overexpressing Arabidopsis plants were hypersensitive to ABA during early seedling development, and showed enhanced drought tolerance. Moreover, the transcript levels of several drought-related downstream genes in transgenic plants were dramatically increased compared with wild type plants. Our results suggested that E3 ligase ZmAIRP4 is a positive regulator in the drought tolerance response pathway.
Collapse
Affiliation(s)
- Liang Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture, Chengdu 610066, China
| | - Lintao Wu
- Rape Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China
| | - Wei Chang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture, Chengdu 610066, China
| | - Zhi Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture, Chengdu 610066, China
| | - Mingjun Miao
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture, Chengdu 610066, China
| | - Yuejian Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture, Chengdu 610066, China
| | - Junpin Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| | - Jun Tan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| |
Collapse
|
35
|
Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu MC, Luo X, Ruan H, García-Valencia LE, Zhong S, Hou S, Huang Q, Lai L, Moura DS, Gu H, Dong J, Wu HM, Dresselhaus T, Xiao J, Cheung AY, Qu LJ. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 2017; 358:1596-1600. [PMID: 29242234 DOI: 10.1126/science.aao3642] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022]
Abstract
In flowering plants, fertilization requires complex cell-to-cell communication events between the pollen tube and the female reproductive tissues, which are controlled by extracellular signaling molecules interacting with receptors at the pollen tube surface. We found that two such receptors in Arabidopsis, BUPS1 and BUPS2, and their peptide ligands, RALF4 and RALF19, are pollen tube-expressed and are required to maintain pollen tube integrity. BUPS1 and BUPS2 interact with receptors ANXUR1 and ANXUR2 via their ectodomains, and both sets of receptors bind RALF4 and RALF19. These receptor-ligand interactions are in competition with the female-derived ligand RALF34, which induces pollen tube bursting at nanomolar concentrations. We propose that RALF34 replaces RALF4 and RALF19 at the interface of pollen tube-female gametophyte contact, thereby deregulating BUPS-ANXUR signaling and in turn leading to pollen tube rupture and sperm release.
Collapse
Affiliation(s)
- Zengxiang Ge
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Tabata Bergonci
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA.,Dep. Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Yuling Zhao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yanjiao Zou
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Shuo Du
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Ming-Che Liu
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Xingju Luo
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hao Ruan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Liliana E García-Valencia
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA.,Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City DF 04510, Mexico
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Saiying Hou
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingpei Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Luhua Lai
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Daniel S Moura
- Dep. Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.,National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Junyu Xiao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China. .,National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| |
Collapse
|