1
|
Bodensohn US, Dünschede B, Kuhlmann C, Kumari K, Ladig R, Grefen C, Schleiff E, Fernandez D, Schünemann D. GET3B is involved in chloroplast biogenesis and interacts with the thylakoidal ALB3 and ALB4 insertases. PLANT CELL REPORTS 2025; 44:108. [PMID: 40299103 PMCID: PMC12040988 DOI: 10.1007/s00299-025-03500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
KEY MESSAGE Proteomic, functional physiological analyses of get3b mutant plants highlight GET3B's role in chloroplast function. Genetic and interaction analyses indicate get3b and srp54 as mutual potentiators that might share terminal insertases. Protein targeting and insertion into membranes are essential for cellular organization and organelle function. The Guided Entry of Tail-anchored (GET) pathway facilitates the post-translational targeting and insertion of tail-anchored (TA) membrane proteins. Arabidopsis thaliana has four GET3 homologues, including AtGET3B and AtGET3D localized to chloroplasts. These photosynthetic organelles possess complex membrane systems, and the mechanisms underlying their protein targeting and membrane biogenesis are not fully understood. This study conducted a comprehensive proteomic analysis of get3b mutant plastids, which displayed significant alterations. Fluorometric based complex assembly as well as CO2 assimilation analyses confirmed that disruption of GET3B function displayed a significant impact on photosystem II assembly as well as carbon fixation, respectively, indicating a functional role in chloroplast biogenesis. Additionally, genetic interactions were found between GET3B and the two component STIC system, which cooperates with the cpSRP pathway which is involved in the co-translational sorting of thylakoid proteins. Further, physical interactions were observed between GET3B and the C-terminus of ALB3 and ALB4 in vitro and the full length proteins in vivo, indicating a role of GET3B in protein targeting and membrane integration within chloroplasts. These findings enhance our understanding of GET3B's involvement in stromal protein targeting and thylakoidal biogenesis.
Collapse
Affiliation(s)
- Uwe Sakamuzi Bodensohn
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, N200/3.02, 60438, Frankfurt, Germany.
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Chiara Kuhlmann
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Khushbu Kumari
- Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Roman Ladig
- German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Christopher Grefen
- Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, N200/3.02, 60438, Frankfurt, Germany
| | - Donna Fernandez
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706-1381, USA
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| |
Collapse
|
2
|
Xing J, Pan J, Yang W. Chloroplast protein translocation complexes and their regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:912-925. [PMID: 40013537 DOI: 10.1111/jipb.13875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Chloroplasts, refined through more than a billion years of evolution in plants and algae, act as highly efficient and resilient converters of solar energy. Additionally, these organelles function as complex anabolic factories, synthesizing a wide array of primary and secondary metabolites. The functionality of chloroplasts is dependent on the involvement of more than 3,000 proteins, the majority of which are encoded by the nuclear genome. These nucleus-encoded proteins must cross the chloroplast double lipid membrane to become functional. This translocation process is facilitated by the translocons at the outer and inner envelope membranes of chloroplasts (the outer chloroplast [TOC] and the inner chloroplast [TIC] complexes, respectively) and is driven by an energy-providing motor. Despite decades of research, the composition of these complexes remains highly controversial, especially regarding the TIC and motor components. However, recent studies have provided valuable insight into the TOC/TIC complexes, while also raising new questions about their mechanisms. In this review, we explore the latest advancements in understanding the structure and function of these complexes. Additionally, we briefly examine the processes of protein quality control, retrograde signaling, and discuss promising directions for future research in this field.
Collapse
Affiliation(s)
- Jiale Xing
- State Key Laboratory of Forage Breeding-by-Design and Utilization and Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junting Pan
- State Key Laboratory of Forage Breeding-by-Design and Utilization and Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqiang Yang
- State Key Laboratory of Forage Breeding-by-Design and Utilization and Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Stolle DS, Osterhoff L, Treimer P, Lambertz J, Karstens M, Keller JM, Gerlach I, Bischoff A, Dünschede B, Rödiger A, Herrmann C, Baginsky S, Hofmann E, Zoschke R, Armbruster U, Nowaczyk MM, Schünemann D. STIC2 selectively binds ribosome-nascent chain complexes in the cotranslational sorting of Arabidopsis thylakoid proteins. EMBO J 2024; 43:4699-4719. [PMID: 39192033 PMCID: PMC11480477 DOI: 10.1038/s44318-024-00211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Chloroplast-encoded multi-span thylakoid membrane proteins are crucial for photosynthetic complexes, yet the coordination of their biogenesis remains poorly understood. To identify factors that specifically support the cotranslational biogenesis of the reaction center protein D1 of photosystem (PS) II, we generated and affinity-purified stalled ribosome-nascent chain complexes (RNCs) bearing D1 nascent chains. Stalled RNCs translating the soluble ribosomal subunit uS2c were used for comparison. Quantitative tandem-mass spectrometry of the purified RNCs identified around 140 proteins specifically associated with D1 RNCs, mainly involved in protein and cofactor biogenesis, including chlorophyll biosynthesis, and other metabolic pathways. Functional analysis of STIC2, a newly identified D1 RNC interactor, revealed its cooperation with chloroplast protein SRP54 in the de novo biogenesis and repair of D1, and potentially other cotranslationally-targeted reaction center subunits of PSII and PSI. The primary binding interface between STIC2 and the thylakoid insertase Alb3 and its homolog Alb4 was mapped to STIC2's β-sheet region, and the conserved Motif III in the C-terminal regions of Alb3/4.
Collapse
Affiliation(s)
- Dominique S Stolle
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Lena Osterhoff
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Paul Treimer
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Jan Lambertz
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Marie Karstens
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Ines Gerlach
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Potsdam, Germany
| | - Annika Bischoff
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Anja Rödiger
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christian Herrmann
- Physical Chemistry I, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Sacha Baginsky
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Potsdam, Germany
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Potsdam, Germany
- Molecular Photosynthesis, Faculty of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
4
|
Susila H, Gawarecka K, Youn G, Jurić S, Jeong H, Ahn JH. THYLAKOID FORMATION 1 interacts with FLOWERING LOCUS T and modulates temperature-responsive flowering in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:60-75. [PMID: 39136360 DOI: 10.1111/tpj.16970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/25/2024] [Indexed: 09/27/2024]
Abstract
The intracellular localization of the florigen FLOWERING LOCUS T (FT) is important for its long-distance transport toward the shoot apical meristem. However, the mechanisms regulating the FT localization remain poorly understood. Here, we discovered that in Arabidopsis thaliana, the chloroplast-localized protein THYLAKOID FORMATION 1 (THF1) physically interacts with FT, sequestering FT in the outer chloroplast envelope. Loss of THF1 function led to temperature-insensitive flowering, resulting in early flowering, especially under low ambient temperatures. THF1 mainly acts in the leaf vasculature and shoot apex to prevent flowering. Mutation of CONSTANS or FT completely suppressed the early flowering of thf1-1 mutants. FT and THF1 interact via their anion binding pocket and coiled-coil domain (CCD), respectively. Deletion of the CCD in THF1 by gene editing caused temperature-insensitive early flowering similar to that observed in the thf1-1 mutant. FT levels in the outer chloroplast envelope decreased in the thf1-1 mutant, suggesting that THF1 is important for sequestering FT. Furthermore, THF1 protein levels decreased in seedlings grown at high ambient temperature, suggesting an explanation for its role in plant responses to ambient temperature. A thf1-1 phosphatidylglycerolphosphate synthase 1 (pgp1) double mutant exhibited additive acceleration of flowering at 23 and 16°C, compared to the single mutants, indicating that THF1 and phosphatidylglycerol (PG) act as independent but synergistic regulators of temperature-responsive flowering. Collectively, our results provide an understanding of the genetic pathway involving THF1 and its role in temperature-responsive flowering and reveal a previously unappreciated additive interplay between THF1 and PG in temperature-responsive flowering.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, 6201, Australia
| | - Katarzyna Gawarecka
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Geummin Youn
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Snježana Jurić
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Hyewon Jeong
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hoon Ahn
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
5
|
Jalil S, Ali Q, Khan AU, Nazir MM, Ali S, Zulfiqar F, Javed MA, Jin X. Molecular and biochemical characterization of rice developed through conventional integration of nDart1-0 transposon gene. Sci Rep 2023; 13:8139. [PMID: 37208408 DOI: 10.1038/s41598-023-35095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 05/12/2023] [Indexed: 05/21/2023] Open
Abstract
Mutations, the genetic variations in genomic sequences, play an important role in molecular biology and biotechnology. During DNA replication or meiosis, one of the mutations is transposons or jumping genes. An indigenous transposon nDart1-0 was successfully introduced into local indica cultivar Basmati-370 from transposon-tagged line viz., GR-7895 (japonica genotype) through conventional breeding technique, successive backcrossing. Plants from segregating populationsshowed variegated phenotypes were tagged as BM-37 mutants. Blast analysis of the sequence data revealed that the GTP-binding protein, located on the BAC clone OJ1781_H11 of chromosome 5, contained an insertion of DNA transposon nDart1-0. The nDart1-0 has "A" at position 254 bp, whereas nDart1 homologs have "G", which efficiently distinguishes nDart1-0 from its homologs. The histological analysis revealed that the chloroplast of mesophyll cells in BM-37 was disrupted with reduction in size of starch granules and higher number of osmophillic plastoglobuli, which resulted in decreased chlorophyll contents and carotenoids, gas exchange parameters (Pn, g, E, Ci), and reduced expression level of genes associated with chlorophyll biosynthesis, photosynthesis and chloroplast development. Along with the rise of GTP protein, the salicylic acid (SA) and gibberellic acid (GA) and antioxidant contents(SOD) and MDA levels significantly enhanced, while, the cytokinins (CK), ascorbate peroxidase (APX), catalase (CAT), total flavanoid contents (TFC) and total phenolic contents (TPC) significantly reduced in BM-37 mutant plants as compared with WT plants. These results support the notion that GTP-binding proteins influence the process underlying chloroplast formation. Therefore, it is anticipated that to combat biotic or abiotic stress conditions, the nDart1-0 tagged mutant (BM-37) of Basmati-370 would be beneficial.
Collapse
Affiliation(s)
- Sanaullah Jalil
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Crop Sciences Institute, National Agricultural Research Center, Islamabad, 44000, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Asad Ullah Khan
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | | | - Sharafat Ali
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Xiaoli Jin
- Department of Agronomy, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
6
|
Reiter B, Rosenhammer L, Marino G, Geimer S, Leister D, Rühle T. CGL160-mediated recruitment of the coupling factor CF1 is required for efficient thylakoid ATP synthase assembly, photosynthesis, and chloroplast development in Arabidopsis. THE PLANT CELL 2023; 35:488-509. [PMID: 36250886 PMCID: PMC9806626 DOI: 10.1093/plcell/koac306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Chloroplast ATP synthases consist of a membrane-spanning coupling factor (CFO) and a soluble coupling factor (CF1). It was previously demonstrated that CONSERVED ONLY IN THE GREEN LINEAGE160 (CGL160) promotes the formation of plant CFO and performs a similar function in the assembly of its c-ring to that of the distantly related bacterial Atp1/UncI protein. Here, we show that in Arabidopsis (Arabidopsis thaliana) the N-terminal portion of CGL160 (AtCGL160N) is required for late steps in CF1-CFO assembly. In plants that lacked AtCGL160N, CF1-CFO content, photosynthesis, and chloroplast development were impaired. Loss of AtCGL160N did not perturb c-ring formation, but led to a 10-fold increase in the numbers of stromal CF1 subcomplexes relative to that in the wild type. Co-immunoprecipitation and protein crosslinking assays revealed an association of AtCGL160 with CF1 subunits. Yeast two-hybrid assays localized the interaction to a stretch of AtCGL160N that binds to the DELSEED-containing CF1-β subdomain. Since Atp1 of Synechocystis (Synechocystis sp. PCC 6803) could functionally replace the membrane domain of AtCGL160 in Arabidopsis, we propose that CGL160 evolved from a cyanobacterial ancestor and acquired an additional function in the recruitment of a soluble CF1 subcomplex, which is critical for the modulation of CF1-CFO activity and photosynthesis.
Collapse
Affiliation(s)
- Bennet Reiter
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | - Lea Rosenhammer
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | - Giada Marino
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie NW I/B1, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Dario Leister
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität Munich, D-82152 Planegg-Martinsried, Germany
| | | |
Collapse
|
7
|
Bertini L, Proietti S, Fongaro B, Holfeld A, Picotti P, Falconieri GS, Bizzarri E, Capaldi G, Polverino de Laureto P, Caruso C. Environmental Signals Act as a Driving Force for Metabolic and Defense Responses in the Antarctic Plant Colobanthus quitensis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3176. [PMID: 36432905 PMCID: PMC9695728 DOI: 10.3390/plants11223176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
During evolution, plants have faced countless stresses of both biotic and abiotic nature developing very effective mechanisms able to perceive and counteract adverse signals. The biggest challenge is the ability to fine-tune the trade-off between plant growth and stress resistance. The Antarctic plant Colobanthus quitensis has managed to survive the adverse environmental conditions of the white continent and can be considered a wonderful example of adaptation to prohibitive conditions for millions of other plant species. Due to the progressive environmental change that the Antarctic Peninsula has undergone over time, a more comprehensive overview of the metabolic features of C. quitensis becomes particularly interesting to assess its ability to respond to environmental stresses. To this end, a differential proteomic approach was used to study the response of C. quitensis to different environmental cues. Many differentially expressed proteins were identified highlighting the rewiring of metabolic pathways as well as defense responses. Finally, a different modulation of oxidative stress response between different environmental sites was observed. The data collected in this paper add knowledge on the impact of environmental stimuli on plant metabolism and stress response by providing useful information on the trade-off between plant growth and defense mechanisms.
Collapse
Affiliation(s)
- Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy
| | - Aleš Holfeld
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Gloria Capaldi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | | | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
8
|
Bürger M. From the archives: Where the light goes; flower color, chloroplast transport, and phytochrome A. THE PLANT CELL 2022; 34:2570-2571. [PMID: 35474545 PMCID: PMC9252466 DOI: 10.1093/plcell/koac113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
|
9
|
Zhu D, Xiong H, Wu J, Zheng C, Lu D, Zhang L, Xu X. Protein Targeting Into the Thylakoid Membrane Through Different Pathways. Front Physiol 2022; 12:802057. [PMID: 35095563 PMCID: PMC8790069 DOI: 10.3389/fphys.2021.802057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/07/2021] [Indexed: 01/19/2023] Open
Abstract
In higher plants, chloroplasts are essential semi-autonomous organelles with complex compartments. As part of these sub-organellar compartments, the sheet-like thylakoid membranes contain abundant light-absorbing chlorophylls bound to the light-harvesting proteins and to some of the reaction center proteins. About half of the thylakoid membrane proteins are encoded by nuclear genes and synthesized in the cytosol as precursors before being imported into the chloroplast. After translocation across the chloroplast envelope by the Toc/Tic system, these proteins are subsequently inserted into or translocated across the thylakoid membranes through distinct pathways. The other half of thylakoid proteins are encoded by the chloroplast genome, synthesized in the stroma and integrated into the thylakoid through a cotranslational process. Much progress has been made in identification and functional characterization of new factors involved in protein targeting into the thylakoids, and new insights into this process have been gained. In this review, we introduce the distinct transport systems mediating the translocation of substrate proteins from chloroplast stroma to the thylakoid membrane, and present the recent advances in the identification of novel components mediating these pathways. Finally, we raise some unanswered questions involved in the targeting of chloroplast proteins into the thylakoid membrane, along with perspectives for future research.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Haibo Xiong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianghao Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
10
|
Ackermann B, Dünschede B, Pietzenuk B, Justesen BH, Krämer U, Hofmann E, Günther Pomorski T, Schünemann D. Chloroplast Ribosomes Interact With the Insertase Alb3 in the Thylakoid Membrane. FRONTIERS IN PLANT SCIENCE 2021; 12:781857. [PMID: 35003166 PMCID: PMC8733628 DOI: 10.3389/fpls.2021.781857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Members of the Oxa1/YidC/Alb3 protein family are involved in the insertion, folding, and assembly of membrane proteins in mitochondria, bacteria, and chloroplasts. The thylakoid membrane protein Alb3 mediates the chloroplast signal recognition particle (cpSRP)-dependent posttranslational insertion of nuclear-encoded light harvesting chlorophyll a/b-binding proteins and participates in the biogenesis of plastid-encoded subunits of the photosynthetic complexes. These subunits are cotranslationally inserted into the thylakoid membrane, yet very little is known about the molecular mechanisms underlying docking of the ribosome-nascent chain complexes to the chloroplast SecY/Alb3 insertion machinery. Here, we show that nanodisc-embedded Alb3 interacts with ribosomes, while the homolog Alb4, also located in the thylakoid membrane, shows no ribosome binding. Alb3 contacts the ribosome with its C-terminal region and at least one additional binding site within its hydrophobic core region. Within the C-terminal region, two conserved motifs (motifs III and IV) are cooperatively required to enable the ribosome contact. Furthermore, our data suggest that the negatively charged C-terminus of the ribosomal subunit uL4c is involved in Alb3 binding. Phylogenetic analyses of uL4 demonstrate that this region newly evolved in the green lineage during the transition from aquatic to terrestrial life.
Collapse
Affiliation(s)
- Bernd Ackermann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Björn Pietzenuk
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Bo Højen Justesen
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Anderson SA, Satyanarayan MB, Wessendorf RL, Lu Y, Fernandez DE. A homolog of GuidedEntry of Tail-anchored proteins3 functions in membrane-specific protein targeting in chloroplasts of Arabidopsis. THE PLANT CELL 2021; 33:2812-2833. [PMID: 34021351 PMCID: PMC8408437 DOI: 10.1093/plcell/koab145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 05/12/2023]
Abstract
The chloroplasts and mitochondria of photosynthetic eukaryotes contain proteins that are closely related to cytosolic Guided Entry of Tail-anchored proteins3 (Get3). Get3 is a targeting factor that efficiently escorts tail-anchored (TA) proteins to the ER. Because other components of the cytosolic-targeting pathway appear to be absent in organelles, previous investigators have asserted that organellar Get3 homologs are unlikely to act as targeting factors. However, we show here both that the Arabidopsis thaliana chloroplast homolog designated as GET3B is structurally similar to cytosolic Get3 proteins and that it selectively binds a thylakoid-localized TA protein. Based on genetic interactions between a get3b mutation and mutations affecting the chloroplast signal recognition particle-targeting pathway, as well as changes in the abundance of photosynthesis-related proteins in mutant plants, we propose that GET3B acts primarily to direct proteins to the thylakoids. Furthermore, through molecular complementation experiments, we show that function of GET3B depends on its ability to hydrolyze ATP, and this is consistent with action as a targeting factor. We propose that GET3B and related organellar Get3 homologs play a role that is analogous to that of cytosolic Get3 proteins, and that GET3B acts as a targeting factor in the chloroplast stroma to deliver TA proteins in a membrane-specific manner.
Collapse
Affiliation(s)
- Stacy A. Anderson
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Manasa B. Satyanarayan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Ryan L. Wessendorf
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Donna E. Fernandez
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
12
|
Huang L, Wang W, Zhang N, Cai Y, Liang Y, Meng X, Yuan Y, Li J, Wu D, Wang Y. LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells. THE NEW PHYTOLOGIST 2021; 231:1073-1087. [PMID: 34042184 DOI: 10.1111/nph.17426] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Rice (Oryza sativa) tiller angle is a key component for achieving ideal plant architecture and higher grain yield. However, the molecular mechanism underlying rice tiller angle remains elusive. We characterized a novel rice tiller angle mutant lazy2 (la2) and isolated the causative gene LA2 through map-based cloning. Biochemical, molecular and genetic studies were conducted to elucidate the LA2-involved tiller angle regulatory mechanism. The la2 mutant shows large tiller angle with impaired shoot gravitropism and defective asymmetric distribution of auxin. We found that starch granules in amyloplasts are completely lost in the gravity-sensing leaf sheath base cells of la2, whereas the seed development is not affected. LA2 encodes a novel chloroplastic protein that can interact with the starch biosynthetic enzyme Oryza sativa plastidic phosphoglucomutase (OspPGM) to regulate starch biosynthesis in rice shoot gravity-sensing cells. Genetic analysis showed that LA2 regulates shoot gravitropism and tiller angle by acting upstream of LA1 to mediate lateral auxin transport. Our studies revealed that LA2 acts as a novel regulator of rice tiller angle by specifically regulating starch biosynthesis in gravity-sensing cells, and established the framework of the starch-statolith-dependent rice tiller angle regulatory pathway, providing new insights into the rice tiller angle regulatory network.
Collapse
Affiliation(s)
- Linzhou Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenguang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ning Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Department of Applied Biosciences, Zhejiang University, Hangzhou, 310029, China
| | - Yueyue Cai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangbing Meng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yundong Yuan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayang Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Department of Applied Biosciences, Zhejiang University, Hangzhou, 310029, China
| | - Yonghong Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
13
|
Fry MY, Saladi SM, Clemons WM. The STI1-domain is a flexible alpha-helical fold with a hydrophobic groove. Protein Sci 2021; 30:882-898. [PMID: 33620121 PMCID: PMC7980504 DOI: 10.1002/pro.4049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/05/2023]
Abstract
STI1-domains are present in a variety of co-chaperone proteins and are required for the transfer of hydrophobic clients in various cellular processes. The domains were first identified in the yeast Sti1 protein where they were referred to as DP1 and DP2. Based on hidden Markov model searches, this domain had previously been found in other proteins including the mammalian co-chaperone SGTA, the DNA damage response protein Rad23, and the chloroplast import protein Tic40. Here, we refine the domain definition and carry out structure-based sequence alignment of STI1-domains showing conservation of five amphipathic helices. Upon examinations of these identified domains, we identify a preceding helix 0 and unifying sequence properties, determine new molecular models, and recognize that STI1-domains nearly always occur in pairs. The similarity at the sequence, structure, and molecular levels likely supports a unified functional role.
Collapse
Affiliation(s)
- Michelle Y. Fry
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Shyam M. Saladi
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - William M. Clemons
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| |
Collapse
|
14
|
Yuan H, Pawlowski EG, Yang Y, Sun T, Thannhauser TW, Mazourek M, Schnell D, Li L. Arabidopsis ORANGE protein regulates plastid pre-protein import through interacting with Tic proteins. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1059-1072. [PMID: 33165598 DOI: 10.1093/jxb/eraa528] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/30/2020] [Indexed: 05/19/2023]
Abstract
Chloroplast-targeted proteins are actively imported into chloroplasts via the machinery spanning the double-layered membranes of chloroplasts. While the key translocons at the outer (TOC) and inner (TIC) membranes of chloroplasts are defined, proteins that interact with the core components to facilitate pre-protein import are continuously being discovered. A DnaJ-like chaperone ORANGE (OR) protein is known to regulate carotenoid biosynthesis as well as plastid biogenesis and development. In this study, we found that OR physically interacts with several Tic proteins including Tic20, Tic40, and Tic110 in the classic TIC core complex of the chloroplast import machinery. Knocking out or and its homolog or-like greatly affects the import efficiency of some photosynthetic and non-photosynthetic pre-proteins. Consistent with the direct interactions of OR with Tic proteins, the binding efficiency assay revealed that the effect of OR occurs at translocation at the inner envelope membrane (i.e. at the TIC complex). OR is able to reduce the Tic40 protein turnover rate through its chaperone activity. Moreover, OR was found to interfere with the interaction between Tic40 and Tic110, and reduces the binding of pre-proteins to Tic110 in aiding their release for translocation and processing. Our findings suggest that OR plays a new and regulatory role in stabilizing key translocons and in facilitating the late stage of plastid pre-protein translocation to regulate plastid pre-protein import.
Collapse
Affiliation(s)
- Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Emily G Pawlowski
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Danny Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Xu X, Ouyang M, Lu D, Zheng C, Zhang L. Protein Sorting within Chloroplasts. Trends Cell Biol 2020; 31:9-16. [PMID: 33121860 DOI: 10.1016/j.tcb.2020.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Chloroplasts have multiple suborganellar membranes. Correct and efficient translocation of chloroplast proteins from their site of synthesis into or across membranes to their functional compartments are fundamental processes. In recent years, several new components and regulatory mechanisms involved in chloroplast protein import and sorting have been explored. Moreover, the formation of liquid-liquid phase transition (LLPT) has been recently reported as a novel mechanism for regulating chloroplast protein sorting. Here, we overview the recent advances of both nuclear- and chloroplast-encoded protein trafficking to their final destination within chloroplasts, and discuss the novel components and regulatory mechanisms of intrachloroplast sorting. Furthermore, we propose that LLPT may be a universal and conserved mechanism for driving organelle protein trafficking and organelle biogenesis.
Collapse
Affiliation(s)
- Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Min Ouyang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China.
| |
Collapse
|
16
|
Protein import into chloroplasts via the Tic40-dependent and -independent pathways depends on the amino acid composition of the transit peptide. Biochem Biophys Res Commun 2019; 518:66-71. [PMID: 31400859 DOI: 10.1016/j.bbrc.2019.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 11/23/2022]
Abstract
Preprotein import into chloroplasts is mediated by the coordinated actions of translocons at the outer and inner envelopes of chloroplasts (Toc and Tic, respectively). The cleavable N-terminal transit peptide (TP) of preproteins plays an essential role in the import of preproteins into chloroplasts. The Tic40 protein, a component of the Tic complex, is believed to mediate the import of preproteins through the inner envelope. In this study, we aimed to obtain in vivo evidence supporting the role of Tic40 in preprotein import into chloroplasts. Contrary to previous findings, the import of various preproteins with wild-type TPs showed no difference between tic40 and wild-type protoplasts of Arabidopsis thaliana. However, the import of N-terminal mutants of the RbcS protein (RbcS-nt), in which basic amino acid residues (arginine and lysine) in the central region of the TP were substituted with neutral (alanine) or acidic (glutamic acid) amino acid residues, was dependent on Tic40. In addition, in tic40 protoplasts, the inner envelope protein Tic40 tagged with HA (hemagglutinin) showed more intermediate form present in the stroma. Based on these results, we propose that protein can be imported into chloroplast by either Tic40-independent or Tic40-dependent pathways depending on the types of TP.
Collapse
|
17
|
Yang X, Li Y, Qi M, Liu Y, Li T. Targeted Control of Chloroplast Quality to Improve Plant Acclimation: From Protein Import to Degradation. FRONTIERS IN PLANT SCIENCE 2019; 10:958. [PMID: 31402924 PMCID: PMC6670758 DOI: 10.3389/fpls.2019.00958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/09/2019] [Indexed: 05/07/2023]
Abstract
The chloroplast is an important energy-producing organelle acting as an environmental sensor for the plant cell. The normal turnover of the entire damaged chloroplast and its specific components is required for efficient photosynthesis and other metabolic reactions under stress conditions. Nuclear-encoded proteins must be imported into the chloroplast through different membrane transport complexes, and the orderly protein import plays an important role in plant adaptive regulation. Under adverse environmental conditions, the damaged chloroplast or its specific components need to be degraded efficiently to ensure normal cell function. In this review, we discuss the molecular mechanism of protein import and degradation in the chloroplast. Specifically, quality control of chloroplast from protein import to degradation and associated regulatory pathways are discussed to better understand how plants adapt to environmental stress by fine-tuning chloroplast homeostasis, which will benefit breeding approaches to improve crop yield.
Collapse
|
18
|
Reinbothe S, Bartsch S, Rossig C, Davis MY, Yuan S, Reinbothe C, Gray J. A Protochlorophyllide (Pchlide) a Oxygenase for Plant Viability. FRONTIERS IN PLANT SCIENCE 2019; 10:593. [PMID: 31156665 PMCID: PMC6530659 DOI: 10.3389/fpls.2019.00593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/24/2019] [Indexed: 05/19/2023]
Abstract
Higher plants contain a small, 5-member family of Rieske non-heme oxygenases that comprise the inner plastid envelope protein TIC55, phaeophorbide a oxygenasee (PAO), chlorophyllide a oxygenase (CAO), choline monooxygenase, and a 52 kDa protein (PTC52) associated with the precursor NADPH:protochlorophyllide (Pchlide) oxidoreductase A (pPORA) A translocon (PTC). Some of these chloroplast proteins have documented roles in chlorophyll biosynthesis (CAO) and degradation (PAO and TIC55), whereas the function of PTC52 remains unresolved. Biochemical evidence provided here identifies PTC52 as Pchlide a oxygenase of the inner plastid envelope linking Pchlide b synthesis to pPORA import. Protochlorophyllide b is the preferred substrate of PORA and its lack no longer allows pPORA import. The Pchlide b-dependent import pathway of pPORA thus operates in etiolated seedlings and is switched off during greening. Using dexamethasone-induced RNA interference (RNAi) we tested if PTC52 is involved in controlling both, pPORA import and Pchlide homeostasis in planta. As shown here, RNAi plants deprived of PTC52 transcript and PTC52 protein were unable to import pPORA and died as a result of excess Pchlide a accumulation causing singlet oxygen formation during greening. In genetic studies, no homozygous ptc52 knock-out mutants could be obtained presumably as a result of embryo lethality, suggesting a role for PTC52 in the initial greening of plant embryos. Phylogenetic studies identified PTC52-like genes amongst unicellular photosynthetic bacteria and higher plants, suggesting that the biochemical function associated with PTC52 may have an ancient evolutionary origin. PTC52 also harbors conserved motifs with bacterial oxygenases such as the terminal oxygenase component of 3-ketosteroid 9-alpha-hydroxylase (KshA) from Rhodococcus rhodochrous. 3D-modeling of PTC52 structure permitted the prediction of amino acid residues that contribute to the substrate specificity of this enzyme. In vitro-mutagenesis was used to test the predicted PTC52 model and provide insights into the reaction mechanism of this Rieske non-heme oxygenase.
Collapse
Affiliation(s)
- Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
- *Correspondence: Steffen Reinbothe, John Gray,
| | - Sandra Bartsch
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Claudia Rossig
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | | | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - John Gray
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
- *Correspondence: Steffen Reinbothe, John Gray,
| |
Collapse
|
19
|
Bölter B. En route into chloroplasts: preproteins' way home. PHOTOSYNTHESIS RESEARCH 2018; 138:263-275. [PMID: 29943212 DOI: 10.1007/s11120-018-0542-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Chloroplasts are the characteristic endosymbiotic organelles of plant cells which during the course of evolution lost most of their genetic information to the nucleus. Thus, they critically depend on the host cell for allocation of nearly their complete protein supply. This includes gene expression, translation, protein targeting, and transport-all of which need to be tightly regulated and perfectly coordinated to accommodate the cells' needs. To this end, multiple signaling pathways have been implemented that interchange information between the different cellular compartments. One of the most complex and energy consuming processes is the translocation of chloroplast-destined proteins into their target organelle. It is a concerted effort from chaperones, receptor proteins, channels, and regulatory elements to ensure correct targeting, efficient transport, and subsequent folding. Although we have discovered and learned a lot about protein import into chloroplasts in the last decades, there are still many open questions and debates about the roles of individual proteins as well as the mechanistic details. In this review, I will summarize and discuss the published data with a focus on the translocation complex in the chloroplast inner envelope membrane.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany.
| |
Collapse
|
20
|
Proctor MS, Chidgey JW, Shukla MK, Jackson PJ, Sobotka R, Hunter CN, Hitchcock A. Plant and algal chlorophyll synthases function in Synechocystis and interact with the YidC/Alb3 membrane insertase. FEBS Lett 2018; 592:3062-3073. [PMID: 30107031 PMCID: PMC6175206 DOI: 10.1002/1873-3468.13222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/17/2023]
Abstract
In the model cyanobacterium Synechocystis sp. PCC 6803, the terminal enzyme of chlorophyll biosynthesis, chlorophyll synthase (ChlG), forms a complex with high light‐inducible proteins, the photosystem II assembly factor Ycf39 and the YidC/Alb3/OxaI membrane insertase, co‐ordinating chlorophyll delivery with cotranslational insertion of nascent photosystem polypeptides into the membrane. To gain insight into the ubiquity of this assembly complex in higher photosynthetic organisms, we produced functional foreign chlorophyll synthases in a cyanobacterial host. Synthesis of algal and plant chlorophyll synthases allowed deletion of the otherwise essential native cyanobacterial gene. Analysis of purified protein complexes shows that the interaction with YidC is maintained for both eukaryotic enzymes, indicating that a ChlG‐YidC/Alb3 complex may be evolutionarily conserved in algae and plants.
Collapse
Affiliation(s)
- Matthew S. Proctor
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldUK
| | - Jack W. Chidgey
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldUK
| | - Mahendra K. Shukla
- Institute of MicrobiologyCzech Academy of SciencesCenter AlgatechTřeboňCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Philip J. Jackson
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldUK
- Department of Chemical and Biological EngineeringChELSI InstituteUniversity of SheffieldUK
| | - Roman Sobotka
- Institute of MicrobiologyCzech Academy of SciencesCenter AlgatechTřeboňCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - C. Neil Hunter
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldUK
| | - Andrew Hitchcock
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldUK
| |
Collapse
|
21
|
Nakai M. New Perspectives on Chloroplast Protein Import. PLANT & CELL PHYSIOLOGY 2018; 59:1111-1119. [PMID: 29684214 DOI: 10.1093/pcp/pcy083] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/13/2018] [Indexed: 05/21/2023]
Abstract
Virtually all chloroplasts in extant photosynthetic eukaryotes derive from a single endosymbiotic event that probably occurred more than a billion years ago between a host eukaryotic cell and a cyanobacterium-like ancestor. Many endosymbiont genes were subsequently transferred to the host nuclear genome, concomitant with the establishment of a system for protein transport through the chloroplast double-membrane envelope. Presently, 2,000-3,000 different nucleus-encoded chloroplast proteins must be imported into the chloroplast following their synthesis in the cytosol. The TOC (translocon at the outer envelope membrane of chloroplasts) and TIC (translocon at the inner envelope membrane of chloroplasts) complexes are protein translocation machineries at the outer and inner envelope membranes, respectively, that facilitate this chloroplast protein import with the aid of a TIC-associated ATP-driven import motor. All the essential components of this protein import system seemed to have been identified through biochemical analyses and subsequent genetic studies that initiated in the late 1990s. However, in 2013, the Nakai group reported a novel inner envelope membrane TIC complex, for which a novel ATP-driven import motor associated with this TIC complex is likely to exist. In this mini review, I will summarize these recent discoveries together with new, or reanalyzed, data presented by other groups in recent years. Whereas the precise concurrent view of chloroplast protein import is still a matter of some debate, it is anticipated that the entire TOC/TIC/ATP motor system, including any novel components, will be conclusively established in the next decade. Such findings may lead to an extensively revised view of the evolution and molecular mechanisms of chloroplast protein import.
Collapse
Affiliation(s)
- Masato Nakai
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
22
|
Abstract
The plastids, including chloroplasts, are a group of interrelated organelles that confer photoautotrophic growth and the unique metabolic capabilities that are characteristic of plant systems. Plastid biogenesis relies on the expression, import, and assembly of thousands of nuclear encoded preproteins. Plastid proteomes undergo rapid remodeling in response to developmental and environmental signals to generate functionally distinct plastid types in specific cells and tissues. In this review, we will highlight the central role of the plastid protein import system in regulating and coordinating the import of functionally related sets of preproteins that are required for plastid-type transitions and maintenance.
Collapse
|