1
|
Contiliani DF, Sretenovic S, Dailey M, Zhou M, Cheng Y, Creste S, Xiao S, Qi Y. Harnessing novel cytidine deaminases from the animal kingdom for robust multiplexed base editing in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1702-1712. [PMID: 39950393 PMCID: PMC12018838 DOI: 10.1111/pbi.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 04/25/2025]
Abstract
CRISPR-Cas-based cytosine base editors (CBEs) are prominent tools that perform site-specific and precise C-to-T conversions catalysed by cytidine deaminases. However, their use is often constrained by stringent editing preferences for genomic contexts, off-target effects and restricted editing windows. To expand the repertoire of CBEs, we systematically screened 66 novel cytidine deaminases sourced from various organisms, predominantly from the animal kingdom and benchmarked them in rice protoplasts using the nCas9-BE3 configuration. After selecting candidates in rice protoplasts and further validation in transgenic rice lines, we unveiled a few cytidine deaminases exhibiting high editing efficiencies and wide editing windows. CBEs based on these cytidine deaminases also displayed minimal frequencies of indels and C-to-R (R = A/G) conversions, suggesting high purity in C-to-T base editing. Furthermore, we highlight the highly efficient cytidine deaminase OoA3GX2 derived from Orca (killer whale) for its comparable activity across GC/CC/TC/AC sites, thus broadening the targeting scope of CBEs for robust multiplexed base editing. Finally, the whole-genome sequencing analyses revealed very few sgRNA-dependent and -independent off-target effects in independent T0 lines. This study expands the cytosine base-editing toolkit with many cytidine deaminases sourced from mammals, providing better-performing CBEs that can be further leveraged for sophisticated genome engineering strategies in rice and likely in other plant species.
Collapse
Affiliation(s)
- Danyel Fernandes Contiliani
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Graduate Program of Genetics, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSPBrazil
- Sugarcane CenterAgronomic Institute (IAC)Ribeirao PretoSPBrazil
| | - Simon Sretenovic
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Micah Dailey
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Man Zhou
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Yanhao Cheng
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Silvana Creste
- Graduate Program of Genetics, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSPBrazil
- Sugarcane CenterAgronomic Institute (IAC)Ribeirao PretoSPBrazil
| | - Shunyuan Xiao
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMarylandUSA
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMarylandUSA
| |
Collapse
|
2
|
Zhu M, Hsu CW, Peralta Ogorek LL, Taylor IW, La Cavera S, Oliveira DM, Verma L, Mehra P, Mijar M, Sadanandom A, Perez-Cota F, Boerjan W, Nolan TM, Bennett MJ, Benfey PN, Pandey BK. Single-cell transcriptomics reveal how root tissues adapt to soil stress. Nature 2025:10.1038/s41586-025-08941-z. [PMID: 40307555 DOI: 10.1038/s41586-025-08941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Land plants thrive in soils showing vastly different properties and environmental stresses1. Root systems can adapt to contrasting soil conditions and stresses, yet how their responses are programmed at the individual cell scale remains unclear. Using single-cell RNA sequencing and spatial transcriptomic approaches, we showed major expression changes in outer root cell types when comparing the single-cell transcriptomes of rice roots grown in gel versus soil conditions. These tissue-specific transcriptional responses are related to nutrient homeostasis, cell wall integrity and defence in response to heterogeneous soil versus homogeneous gel growth conditions. We also demonstrate how the model soil stress, termed compaction, triggers expression changes in cell wall remodelling and barrier formation in outer and inner root tissues, regulated by abscisic acid released from phloem cells. Our study reveals how root tissues communicate and adapt to contrasting soil conditions at single-cell resolution.
Collapse
Affiliation(s)
- Mingyuan Zhu
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Lucas L Peralta Ogorek
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Isaiah W Taylor
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Salvatore La Cavera
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lokesh Verma
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Poonam Mehra
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Medhavinee Mijar
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Ari Sadanandom
- Department of Biosciences, University of Durham, Durham, UK
| | - Fernando Perez-Cota
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Malcolm J Bennett
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK.
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
| | - Bipin K Pandey
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
3
|
Chen C, Ge F, Du H, Sun Y, Sui Y, Tang S, Shen Z, Li X, Zhang H, Mei C, Xie P, Li C, Yang S, Wei H, Shi J, Zhang D, Zhao K, Yang D, Qiao Y, Luo Z, Zhang L, Khan A, Wodajo B, Wu Y, Xia R, Wu C, Liang C, Xie Q, Yu F. A comprehensive omics resource and genetic tools for functional genomics research and genetic improvement of sorghum. MOLECULAR PLANT 2025; 18:703-719. [PMID: 40055894 DOI: 10.1016/j.molp.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/05/2025] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Sorghum, the fifth most important food crop globally, is a source of silage forage, fiber, syrup, and biofuel. Moreover, it is widely recognized as an ideal model crop for studying stress biology becaused of its ability to tolerate multiple abiotic stresses, including high salt-alkali conditions, drought, and heat. However, functional genomics studies on sorghum have been challenging, primarily due to the limited availability of genetic resources and effective genetic transformation techniques. In this study, we developed the Sorghum Genomics and Mutation Database (SGMD), aiming to advance the genetic understanding of sorghum. Our effort encompassed a telomere-to-telomere genome assembly of an inbred sorghum line, E048, yielding 729.46 Mb of sequence data representing the complete genome. Alongside the high-quality sequence data, a gene expression atlas covering 13 distinct tissues was developed. We constructed a saturated ethyl methane sulfonate mutant library comprising 13,226 independent mutants. Causal genes in chlorosis and leafy mutants from the library were easily identified by leveraging the MutMap and MutMap+ methodologies, demonstrating the powerful application of this library for identifying functional genes. To facilitate sorghum research, we performed whole-genome sequencing of 179 M2 mutant lines, resulting in 2,291,074 mutations that covered 97.54% of all genes. In addition, an Agrobacterium-mediated sorghum transformation platform was established for gene function studies. In summary, this work establishes a comprehensive platform and provides valuable resources for functional genomics investigations and genetic improvement of sorghum.
Collapse
Affiliation(s)
- Chengxuan Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyong Ge
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanchang Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sanyuan Tang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengwei Shen
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuefeng Li
- Cropedit Biotech Co., Ltd., Beijing 102206, China
| | - Huili Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuo Mei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sen Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Shi
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangxu Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dekai Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Qiao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuyong Luo
- Cropedit Biotech Co., Ltd., Beijing 102206, China
| | - Li Zhang
- Cropedit Biotech Co., Ltd., Beijing 102206, China
| | - Aimal Khan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baye Wodajo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaorong Wu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xia
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanyin Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Weldemichael MY, Gebremedhn HM. Enhancing tiny millets through genome editing: current status and future prospects. Mol Genet Genomics 2025; 300:22. [PMID: 39982542 DOI: 10.1007/s00438-025-02231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
This study aims to address the critical need for genetic improvement of small millets, which are vital yet underutilized cereal crops cultivated in semi-arid regions of Africa and Asia. Given their high nutritional value and climate resilience, small millets hold significant potential for food security and sustainable agriculture in arid regions. However, traditional breeding methods have proven to be time-consuming and inefficient in enhancing desirable traits. This study highlights the transformative potential of genome editing technologies, particularly the CRISPR/Cas9 system, in accelerating the development of improved small millet varieties. The findings presented in this paper detail recent advancements in using CRISPR/Cas for enhancing resistance to biotic stresses, including bacterial, viral, and fungal pathogens. Additionally, we explore how genome editing can be applied to improve abiotic stress tolerance, addressing challenges such as drought, cold, heat, and herbicides in small millets. We discuss the existing challenges faced by breeders, including issues related to ploidy levels, off-target effects, and limitations in organelle genome modification. The review also suggests potential strategies for overcoming these bottlenecks, aiming to develop stress-resistant super cultivars. Overall, this paper provides an overview of the current state of genome editing research in small millets while identifying future opportunities to enhance key traits for nutrient enrichment and climate resilience, ultimately paving the way for advancements in these crucial crops.
Collapse
Affiliation(s)
- Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, P.O. Box 231, Mekelle, Tigrai, Ethiopia.
| | - Hailay Mehari Gebremedhn
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, P.O. Box 231, Mekelle, Tigrai, Ethiopia
| |
Collapse
|
5
|
Tripathi JN, Muiruri S, Tripathi L. Advancements and challenges in gene editing for improvement of vegetatively propagated crops. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102653. [PMID: 39520794 DOI: 10.1016/j.pbi.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Gene editing technologies, particularly CRISPR-Cas9, have revolutionized agriculture by offering precise and efficient tools to enhance crop production. The vegetatively propagated crops, crucial for global food security, face challenges such as climate change, pests, and limited genetic diversity. CRISPR-Cas9 enables targeted modifications to improve traits like disease resistance, drought tolerance, and nutritional content, thereby boosting productivity and sustainability. Despite its transformative potential, the adoption of gene editing in vegetatively propagated crops is hampered by technical complexities and regulatory frameworks. This review explores recent advancements, challenges, and prospects of gene editing in vegetatively propagated crops, emphasizing strategies to overcome technical barriers and regulatory constraints. Addressing these issues is essential for realizing the full agricultural potential of gene editing and ensuring food security in a changing global climate.
Collapse
Affiliation(s)
| | - Samwel Muiruri
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya.
| |
Collapse
|
6
|
Adhikari B, Roy A, Reddy H, Roy D, Das C, Ghosh D, Das S, Mondal S, Nath R, Bhattacharyya PK, Jambulkar SK, Bhattacharyya S. Identification and analysis of gamma-irradiation-induced Stemphylium blight tolerant lentil ( Lens culinaris) mutant. Int J Radiat Biol 2024; 100:1722-1730. [PMID: 39383240 DOI: 10.1080/09553002.2024.2409667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024]
Abstract
In the short-season winter environment of India and Bangladesh, lentil growth and seed yield are significantly hindered by foliar blight caused by Stemphylium botryosum. As the international germplasm pool lacks a resistance source, the study aims to develop a mutant population to identify a high-yielding mutant resistance against the pathogen. A gamma-irradiated population was developed based on its GR50 dose of 248.8 Gy. The screening of almost 130,000 M2 plants identified a tolerant lentil mutant, MM216. The multi-location trials revealed that MM216 showed an impressive and robust resistance; the selected mutant line could be recommended as a donor in the lentil breeding program against the pathogen globally. A 100 g seed was exposed to a GR50 dose to develop the M1 population. At maturity, at least 100 M2 seeds of each 1300 M1 plant were harvested individually. So, almost 130,000 M2 plants were screened in the disease hot spot. The selected mutants were advanced to M7 by screening in the field and challenged in controlled conditions with the pure pathogen isolate. A resistance mutant, MM216, with a per cent disease index (PDI) of <10, was identified where the mean of the check varieties, WBL 77, was >55. The resistance ability was confirmed further in controlled conditions. The fungal and plant DNA ratio was almost negligible in the tolerant mutant, whereas it was 0.17 in WBL77 at 196 h post-inoculation. The selected mutant did not display any yield penalty, but there was a delay in flowering by a week compared to WBL77.
Collapse
Affiliation(s)
- Bipasha Adhikari
- Crop Research Unit, Genetics and Plant Breeding, Mohanpur, India
| | - Anirban Roy
- Crop Research Unit, Genetics and Plant Breeding, Mohanpur, India
- Ramakrishna Mission Vivekananda Educational Research Institute, Narendrapur, India
| | - Hemakumar Reddy
- Crop Research Unit, Genetics and Plant Breeding, Mohanpur, India
| | - Debarati Roy
- Crop Research Unit, Genetics and Plant Breeding, Mohanpur, India
| | - Camellia Das
- Crop Research Unit, Genetics and Plant Breeding, Mohanpur, India
| | - Dhriti Ghosh
- Crop Research Unit, Genetics and Plant Breeding, Mohanpur, India
| | - Souvik Das
- Crop Research Unit, Genetics and Plant Breeding, Mohanpur, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Institute, Trombay, India
| | - Rajib Nath
- Crop Research Unit, Genetics and Plant Breeding, Mohanpur, India
| | | | - Sanjay K Jambulkar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Institute, Trombay, India
| | | |
Collapse
|
7
|
Habde SV, Punniyamoorthy D, Jegadeesan S. Mutation profiling through whole genome sequencing of electron beam-induced black gram ( Vigna mungo L. Hepper) mutant. Int J Radiat Biol 2024; 100:1665-1682. [PMID: 39374376 DOI: 10.1080/09553002.2024.2409666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/31/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE Black gram (Vigna mungo [L.] Hepper) is an important annual legume with great economic, nutritional and ecological significance. Novel variations through induced mutagenesis can accelerate narrow genetic base-impeded black gram improvement. This is a first study on characterization of genome-wide mutation spectrum induced by electron beam (EB). MATERIALS AND METHODS Black gram genotype 'Pant U-31' was irradiated with 400 Gy EB generated in a 10 MeV LINAC. A stable mutant PM-32 (M6) was re-sequenced by combining Illumina (BIOO Scientific, Inc., Austin, TX) and Nanopore Technologies (Oxford, UK). Variants were predicted in reference to the available whole genome scaffold level draft assembly of parent 'Pant U-31'. RESULTS Genome analysis predicted a total of 76,893 genes of which 58,517 were annotated. The identified variants totaling 728,161, largely comprised (91.56%) of single base substitutions (SBSs) with a transition (Ti) to transversion (Tv) ratio of 1.95. Of the indels constituting 8.44% of total induced variants, insertions accounted for 4.29%, with preponderance of multiple bases (53.63%) and 2-5 bp insertions as the major class (33.71%). Multiple-base deletions (2-5 bases) formed the bulk (31.14%) of the total deletions. The genic variants (2438) with estimated high and moderate effects were located within 1271 predicted genes. A higher number of mutations were observed on chromosomes Vm1 (588) and Vm3 (428) with the highest frequency on chromosome Vm3 (every 0.07 Mb). CONCLUSIONS Our study reiterated the mutagenic utility of EB for inducing SBSs and small indels genome-wide. The knowledge gained from SNP-level profiling of EB-induced mutations can expedite comparative mutation breeding studies in legumes.
Collapse
Affiliation(s)
- Sonali Vijay Habde
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Souframanien Jegadeesan
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
8
|
Singh D, Chaudhary P, Taunk J, Singh CK, Chinnusamy V, Sevanthi AM, Singh VJ, Pal M. Targeting Induced Local Lesions in Genomes (TILLING): advances and opportunities for fast tracking crop breeding. Crit Rev Biotechnol 2024; 44:817-836. [PMID: 37455414 DOI: 10.1080/07388551.2023.2231630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
The intensification of food production via conventional crop breeding alone is inadequate to cater for global hunger. The development of precise and expeditious high throughput reverse genetics approaches has hugely benefited modern plant breeding programs. Targeting Induced Local Lesions in Genomes (TILLING) is one such reverse genetics approach which employs chemical/physical mutagenesis to create new genetic sources and identifies superior/novel alleles. Owing to technical limitations and sectional applicability of the original TILLING protocol, it has been timely modified. Successions include: EcoTILLING, Double stranded EcoTILLING (DEcoTILLING), Self-EcoTILLING, Individualized TILLING (iTILLING), Deletion-TILLING (De-TILLING), PolyTILLING, and VeggieTILLING. This has widened its application to a variety of crops and needs. They can characterize mutations in coding as well as non-coding regions and can overcome complexities associated with the large genomes. Combining next generation sequencing tools with the existing TILLING protocols has enabled screening of huge germplasm collections and mutant populations for the target genes. In silico TILLING platforms have transformed TILLING into an exciting breeding approach. The present review outlines these multifarious TILLING modifications for precise mutation detection and their application in advance breeding programmes together with relevant case studies. Appropriate use of these protocols will open up new avenues for crop improvement in the twenty first century.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Vikram Jeet Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
9
|
Quiroz D, Oya S, Lopez-Mateos D, Zhao K, Pierce A, Ortega L, Ali A, Carbonell-Bejerano P, Yarov-Yarovoy V, Suzuki S, Hayashi G, Osakabe A, Monroe G. H3K4me1 recruits DNA repair proteins in plants. THE PLANT CELL 2024; 36:2410-2426. [PMID: 38531669 PMCID: PMC11132887 DOI: 10.1093/plcell/koae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/28/2024]
Abstract
DNA repair proteins can be recruited by their histone reader domains to specific epigenomic features, with consequences on intragenomic mutation rate variation. Here, we investigated H3K4me1-associated hypomutation in plants. We first examined 2 proteins which, in plants, contain Tudor histone reader domains: PRECOCIOUS DISSOCIATION OF SISTERS 5 (PDS5C), involved in homology-directed repair, and MUTS HOMOLOG 6 (MSH6), a mismatch repair protein. The MSH6 Tudor domain of Arabidopsis (Arabidopsis thaliana) binds to H3K4me1 as previously demonstrated for PDS5C, which localizes to H3K4me1-rich gene bodies and essential genes. Mutations revealed by ultradeep sequencing of wild-type and msh6 knockout lines in Arabidopsis show that functional MSH6 is critical for the reduced rate of single-base substitution (SBS) mutations in gene bodies and H3K4me1-rich regions. We explored the breadth of these mechanisms among plants by examining a large rice (Oryza sativa) mutation data set. H3K4me1-associated hypomutation is conserved in rice as are the H3K4me1-binding residues of MSH6 and PDS5C Tudor domains. Recruitment of DNA repair proteins by H3K4me1 in plants reveals convergent, but distinct, epigenome-recruited DNA repair mechanisms from those well described in humans. The emergent model of H3K4me1-recruited repair in plants is consistent with evolutionary theory regarding mutation modifier systems and offers mechanistic insight into intragenomic mutation rate variation in plants.
Collapse
Affiliation(s)
- Daniela Quiroz
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics, University of California Davis, Davis, CA 95616, USA
| | - Satoyo Oya
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Laboratory of Genetics, Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Diego Lopez-Mateos
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Kehan Zhao
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Alice Pierce
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Lissandro Ortega
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Alissza Ali
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | | | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Sae Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-0814, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-0814, Japan
| | - Akihisa Osakabe
- Laboratory of Genetics, Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Grey Monroe
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics, University of California Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Ling Y, Zhang Y, Huang M, Guo T, Yang G. Genome-Wide Profile of Mutations Induced by Carbon Ion Beam Irradiation of Dehulled Rice Seeds. Int J Mol Sci 2024; 25:5195. [PMID: 38791234 PMCID: PMC11121050 DOI: 10.3390/ijms25105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
As a physical mutagen, carbon ion beam (CIB) irradiation can induce high-frequency mutation, which is user-friendly and environment-friendly in plant breeding. In this study, we resequenced eight mutant lines which were screened out from the progeny of the CIB-irradiated dehulled rice seeds. Among these mutants, CIB induced 135,535 variations, which include single base substitutions (SBSs), and small insertion and deletion (InDels). SBSs are the most abundant mutation, and account for 88% of all variations. Single base conversion is the main type of SBS, and the average ratio of transition and transversion is 1.29, and more than half of the InDels are short-segmented mutation (1-2 bp). A total of 69.2% of the SBSs and InDels induced by CIBs occurred in intergenic regions on the genome. Surprisingly, the average mutation frequency in our study is 9.8 × 10-5/bp and much higher than that of the previous studies, which may result from the relatively high irradiation dosage and the dehulling of seeds for irradiation. By analyzing the mutation of every 1 Mb in the genome of each mutant strain, we found some unusual high-frequency (HF) mutation regions, where SBSs and InDels colocalized. This study revealed the mutation mechanism of dehulled rice seeds by CIB irradiation on the genome level, which will enrich our understanding of the mutation mechanism of CIB radiation and improve mutagenesis efficiency.
Collapse
Affiliation(s)
- Ying Ling
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Y.Z.); (M.H.)
| | - Yuming Zhang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Y.Z.); (M.H.)
| | - Ming Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Y.Z.); (M.H.)
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Y.Z.); (M.H.)
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| | - Guili Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Y.Z.); (M.H.)
| |
Collapse
|
11
|
Punniyamoorthy D, Souframanien J. Gamma-rays induced genome wide stable mutations in cowpea deciphered through whole genome sequencing. Int J Radiat Biol 2024; 100:1072-1084. [PMID: 38683196 DOI: 10.1080/09553002.2024.2345087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/30/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Gamma rays are the most widely exploited physical mutagen in plant mutation breeding. They are known to be involved in the development of more than 60% of global cowpea (Vigna unguiculata (L.) Walp.) mutant varieties. Nevertheless, the nature and type of genome-wide mutations induced by gamma rays have not been studied in cowpea and therefore, the present investigation was undertaken. MATERIALS AND METHODS Genomic DNAs from three stable gamma rays-induced mutants (large seed size, small seed size and disease resistant mutant) of cowpea cultivar 'CPD103' in M6 generation along with its progenitor were used for Illumina-based whole-genome resequencing. RESULTS Gamma rays induced a relatively higher frequency (88.9%) of single base substitutions (SBSs) with an average transition to transversion ratio (Ti/Tv) of 3.51 in M6 generation. A > G transitions, including its complementary T > C transitions, predominated the transition mutations, while all four types of transversion mutations were detected with frequencies over 6.5%. Indels (small insertions and deletions) constituted about 11% of the total induced variations, wherein small insertions (6.3%) were relatively more prominent than small deletions (4.8%). Among the indels, single-base indels and, in particular, those involving A/T bases showed a preponderance, albeit indels of up to three bases were detected in low proportions. Distributed across all 11 chromosomes, only a fraction of SBSs (19.45%) and indels (20.2%) potentially altered the encoded amino acids/peptides. The inherent mutation rate induced by gamma rays in cowpea was observed to be in the order of 1.4 × 10-7 per base pair in M6 generation. CONCLUSION Gamma-rays with a greater tendency to induce SBSs and, to a lesser extent, indels could be efficiently and effectively exploited in cowpea mutation breeding.
Collapse
Affiliation(s)
| | - Jegadeesan Souframanien
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
12
|
Ishii K, Kazama Y, Hirano T, Fawcett JA, Sato M, Hirai MY, Sakai F, Shirakawa Y, Ohbu S, Abe T. Genomic view of heavy-ion-induced deletions associated with distribution of essential genes in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1352564. [PMID: 38693931 PMCID: PMC11061394 DOI: 10.3389/fpls.2024.1352564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/11/2024] [Indexed: 05/03/2024]
Abstract
Heavy-ion beam, a type of ionizing radiation, has been applied to plant breeding as a powerful mutagen and is a promising tool to induce large deletions and chromosomal rearrangements. The effectiveness of heavy-ion irradiation can be explained by linear energy transfer (LET; keV µm-1). Heavy-ion beams with different LET values induce different types and sizes of mutations. It has been suggested that deletion size increases with increasing LET value, and complex chromosomal rearrangements are induced in higher LET radiations. In this study, we mapped heavy-ion beam-induced deletions detected in Arabidopsis mutants to its genome. We revealed that deletion sizes were similar between different LETs (100 to 290 keV μm-1), that their upper limit was affected by the distribution of essential genes, and that the detected chromosomal rearrangements avoid disrupting the essential genes. We also focused on tandemly arrayed genes (TAGs), where two or more homologous genes are adjacent to one another in the genome. Our results suggested that 100 keV µm-1 of LET is enough to disrupt TAGs and that the distribution of essential genes strongly affects the heritability of mutations overlapping them. Our results provide a genomic view of large deletion inductions in the Arabidopsis genome.
Collapse
Affiliation(s)
- Kotaro Ishii
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
- Department of Radiation Measurement and Dose Assessment, Institute for Radiological Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yusuke Kazama
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Japan
| | - Tomonari Hirano
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jeffrey A. Fawcett
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), Wako, Japan
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Japan
| | | | - Yuki Shirakawa
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
| | - Sumie Ohbu
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
| | - Tomoko Abe
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Japan
| |
Collapse
|
13
|
Berrigan EM, Wang L, Carrillo H, Echegoyen K, Kappes M, Torres J, Ai-Perreira A, McCoy E, Shane E, Copeland CD, Ragel L, Georgousakis C, Lee S, Reynolds D, Talgo A, Gonzalez J, Zhang L, Rajurkar AB, Ruiz M, Daniels E, Maree L, Pariyar S, Busch W, Pereira TD. Fast and Efficient Root Phenotyping via Pose Estimation. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0175. [PMID: 38629082 PMCID: PMC11020144 DOI: 10.34133/plantphenomics.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Image segmentation is commonly used to estimate the location and shape of plants and their external structures. Segmentation masks are then used to localize landmarks of interest and compute other geometric features that correspond to the plant's phenotype. Despite its prevalence, segmentation-based approaches are laborious (requiring extensive annotation to train) and error-prone (derived geometric features are sensitive to instance mask integrity). Here, we present a segmentation-free approach that leverages deep learning-based landmark detection and grouping, also known as pose estimation. We use a tool originally developed for animal motion capture called SLEAP (Social LEAP Estimates Animal Poses) to automate the detection of distinct morphological landmarks on plant roots. Using a gel cylinder imaging system across multiple species, we show that our approach can reliably and efficiently recover root system topology at high accuracy, few annotated samples, and faster speed than segmentation-based approaches. In order to make use of this landmark-based representation for root phenotyping, we developed a Python library (sleap-roots) for trait extraction directly comparable to existing segmentation-based analysis software. We show that pose-derived root traits are highly accurate and can be used for common downstream tasks including genotype classification and unsupervised trait mapping. Altogether, this work establishes the validity and advantages of pose estimation-based plant phenotyping. To facilitate adoption of this easy-to-use tool and to encourage further development, we make sleap-roots, all training data, models, and trait extraction code available at: https://github.com/talmolab/sleap-roots and https://osf.io/k7j9g/.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wolfgang Busch
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
14
|
He J, Zeng C, Li M. Plant Functional Genomics Based on High-Throughput CRISPR Library Knockout Screening: A Perspective. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300203. [PMID: 38465224 PMCID: PMC10919289 DOI: 10.1002/ggn2.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Indexed: 03/12/2024]
Abstract
Plant biology studies in the post-genome era have been focused on annotating genome sequences' functions. The established plant mutant collections have greatly accelerated functional genomics research in the past few decades. However, most plant genome sequences' roles and the underlying regulatory networks remain substantially unknown. Clustered, regularly interspaced short palindromic repeat (CRISPR)-associated systems are robust, versatile tools for manipulating plant genomes with various targeted DNA perturbations, providing an excellent opportunity for high-throughput interrogation of DNA elements' roles. This study compares methods frequently used for plant functional genomics and then discusses different DNA multi-targeted strategies to overcome gene redundancy using the CRISPR-Cas9 system. Next, this work summarizes recent reports using CRISPR libraries for high-throughput gene knockout and function discoveries in plants. Finally, this work envisions the future perspective of optimizing and leveraging CRISPR library screening in plant genomes' other uncharacterized DNA sequences.
Collapse
Affiliation(s)
- Jianjie He
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Can Zeng
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| |
Collapse
|
15
|
Gupta P, Dholaniya PS, Princy K, Madhavan AS, Sreelakshmi Y, Sharma R. Augmenting tomato functional genomics with a genome-wide induced genetic variation resource. FRONTIERS IN PLANT SCIENCE 2024; 14:1290937. [PMID: 38328621 PMCID: PMC10848261 DOI: 10.3389/fpls.2023.1290937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024]
Abstract
Induced mutations accelerate crop improvement by providing novel disease resistance and yield alleles. However, the alleles with no perceptible phenotype but have an altered function remain hidden in mutagenized plants. The whole-genome sequencing (WGS) of mutagenized individuals uncovers the complete spectrum of mutations in the genome. Genome-wide induced mutation resources can improve the targeted breeding of tomatoes and facilitate functional genomics. In this study, we sequenced 132 doubly ethyl methanesulfonate (EMS)-mutagenized lines of tomato and detected approximately 41 million novel mutations and 5.5 million short InDels not present in the parental cultivar. Approximately 97% of the genome had mutations, including the genes, promoters, UTRs, and introns. More than one-third of genes in the mutagenized population had one or more deleterious mutations predicted by Sorting Intolerant From Tolerant (SIFT). Nearly one-fourth of deleterious genes mapped on tomato metabolic pathways modulate multiple pathway steps. In addition to the reported GC>AT transition bias for EMS, our population also had a substantial number of AT>GC transitions. Comparing mutation frequency among synonymous codons revealed that the most preferred codon is the least mutagenic toward EMS. The validation of a potato leaf-like mutation, reduction in carotenoids in ζ-carotene isomerase mutant fruits, and chloroplast relocation loss in phototropin1 mutant validated the mutation discovery pipeline. Our database makes a large repertoire of mutations accessible to functional genomics studies and breeding of tomatoes.
Collapse
Affiliation(s)
- Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
- Department of Biological Sciences, SRM University-AP, Amaravati, Andhra Pradesh, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Kunnappady Princy
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Athira Sethu Madhavan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
16
|
Berrigan EM, Wang L, Carrillo H, Echegoyen K, Kappes M, Torres J, Ai-Perreira A, McCoy E, Shane E, Copeland CD, Ragel L, Georgousakis C, Lee S, Reynolds D, Talgo A, Gonzalez J, Zhang L, Rajurkar AB, Ruiz M, Daniels E, Maree L, Pariyar S, Busch W, Pereira TD. Fast and efficient root phenotyping via pose estimation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567949. [PMID: 38045278 PMCID: PMC10690188 DOI: 10.1101/2023.11.20.567949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Image segmentation is commonly used to estimate the location and shape of plants and their external structures. Segmentation masks are then used to localize landmarks of interest and compute other geometric features that correspond to the plant's phenotype. Despite its prevalence, segmentation-based approaches are laborious (requiring extensive annotation to train), and error-prone (derived geometric features are sensitive to instance mask integrity). Here we present a segmentation-free approach which leverages deep learning-based landmark detection and grouping, also known as pose estimation. We use a tool originally developed for animal motion capture called SLEAP (Social LEAP Estimates Animal Poses) to automate the detection of distinct morphological landmarks on plant roots. Using a gel cylinder imaging system across multiple species, we show that our approach can reliably and efficiently recover root system topology at high accuracy, few annotated samples, and faster speed than segmentation-based approaches. In order to make use of this landmark-based representation for root phenotyping, we developed a Python library (sleap-roots) for trait extraction directly comparable to existing segmentation-based analysis software. We show that landmark-derived root traits are highly accurate and can be used for common downstream tasks including genotype classification and unsupervised trait mapping. Altogether, this work establishes the validity and advantages of pose estimation-based plant phenotyping. To facilitate adoption of this easy-to-use tool and to encourage further development, we make sleap-roots, all training data, models, and trait extraction code available at: https://github.com/talmolab/sleap-roots and https://osf.io/k7j9g/.
Collapse
Affiliation(s)
| | - Lin Wang
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Hannah Carrillo
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Kimberly Echegoyen
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Mikayla Kappes
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Jorge Torres
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Angel Ai-Perreira
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Erica McCoy
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Emily Shane
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Charles D. Copeland
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Lauren Ragel
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | | | - Sanghwa Lee
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Dawn Reynolds
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Avery Talgo
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Juan Gonzalez
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Ling Zhang
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Ashish B. Rajurkar
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Michel Ruiz
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Erin Daniels
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Liezl Maree
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Shree Pariyar
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Wolfgang Busch
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| | - Talmo D. Pereira
- Salk Institute for Biological Studies, La Jolla, CA 92037 United States of America
| |
Collapse
|
17
|
Xiong H, Guo H, Fu M, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Du Q, Zhang J, Qiu L, Xie X, Zhou L, Chen Z, Liu L. A large-scale whole-exome sequencing mutant resource for functional genomics in wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2047-2056. [PMID: 37401008 PMCID: PMC10502753 DOI: 10.1111/pbi.14111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
Hexaploid wheat (Triticum aestivum), a major staple crop, has a remarkably large genome of ~14.4 Gb (containing 106 913 high-confidence [HC] and 159 840 low-confidence [LC] genes in the Chinese Spring v2.1 reference genome), which poses a major challenge for functional genomics studies. To overcome this hurdle, we performed whole-exome sequencing to generate a nearly saturated wheat mutant database containing 18 025 209 mutations induced by ethyl methanesulfonate (EMS), carbon (C)-ion beams, or γ-ray mutagenesis. This database contains an average of 47.1 mutations per kb in each gene-coding sequence: the potential functional mutations were predicted to cover 96.7% of HC genes and 70.5% of LC genes. Comparative analysis of mutations induced by EMS, γ-rays, or C-ion beam irradiation revealed that γ-ray and C-ion beam mutagenesis induced a more diverse array of variations than EMS, including large-fragment deletions, small insertions/deletions, and various non-synonymous single nucleotide polymorphisms. As a test case, we combined mutation analysis with phenotypic screening and rapidly mapped the candidate gene responsible for the phenotype of a yellow-green leaf mutant to a 2.8-Mb chromosomal region. Furthermore, a proof-of-concept reverse genetics study revealed that mutations in gibberellic acid biosynthesis and signalling genes could be associated with negative impacts on plant height. Finally, we built a publically available database of these mutations with the corresponding germplasm (seed stock) repository to facilitate advanced functional genomics studies in wheat for the broad plant research community.
Collapse
Affiliation(s)
- Hongchun Xiong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular BreedingNational Center of Space Mutagenesis for Crop ImprovementBeijingChina
| | - Huijun Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular BreedingNational Center of Space Mutagenesis for Crop ImprovementBeijingChina
| | - Meiyu Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular BreedingNational Center of Space Mutagenesis for Crop ImprovementBeijingChina
| | - Yongdun Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular BreedingNational Center of Space Mutagenesis for Crop ImprovementBeijingChina
| | - Linshu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular BreedingNational Center of Space Mutagenesis for Crop ImprovementBeijingChina
| | - Jiayu Gu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular BreedingNational Center of Space Mutagenesis for Crop ImprovementBeijingChina
| | - Shirong Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular BreedingNational Center of Space Mutagenesis for Crop ImprovementBeijingChina
| | - Yuping Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular BreedingNational Center of Space Mutagenesis for Crop ImprovementBeijingChina
| | - Qidi Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular BreedingNational Center of Space Mutagenesis for Crop ImprovementBeijingChina
| | - Jiazi Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular BreedingNational Center of Space Mutagenesis for Crop ImprovementBeijingChina
| | - Lin Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular BreedingNational Center of Space Mutagenesis for Crop ImprovementBeijingChina
| | - Xiaomei Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular BreedingNational Center of Space Mutagenesis for Crop ImprovementBeijingChina
| | - Libin Zhou
- Biophysics GroupInstitute of Modern Physics, Chinese Academy of SciencesLanzhouChina
| | - Zhongxu Chen
- Department of Life ScienceTcuni Inc.ChengduChina
| | - Luxiang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Crop Molecular BreedingNational Center of Space Mutagenesis for Crop ImprovementBeijingChina
| |
Collapse
|
18
|
Jalilian A, Bagheri A, Chalvon V, Meusnier I, Kroj T, Kakhki AM. The RLCK subfamily VII-4 controls pattern-triggered immunity and basal resistance to bacterial and fungal pathogens in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1345-1356. [PMID: 37248636 DOI: 10.1111/tpj.16323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Receptor-like cytoplasmic kinases (RLCKs) mediate the intracellular signaling downstream of pattern-recognition receptors (PRRs). Several RLCKs from subfamily VII of rice (Oryza sativa) have important roles in plant immunity, but the role of RLCK VII-4 in pattern-triggered immune (PTI) signaling and resistance to pathogens has not yet been investigated. Here, we generated by multiplex clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated genome editing rice sextuple mutant lines where the entire RLCK VII-4 subfamily is inactivated and then analyzed the resulting lines for their response to chitin and flg22 and for their immunity to Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae. Analysis of the rlckvii-4 mutants revealed that they have an impaired reactive oxygen system burst and reduced defense gene expression in response to flg22 and chitin. This indicates that members of the rice RLCK VII-4 subfamily are required for immune signaling downstream of multiple PRRs. Furthermore, we found that the rice RLCK VII-4 subfamily is important for chitin-induced callose deposition and mitogen-activated protein kinase activation and that it is crucial for basal resistance against Xoo and M. oryzae pathogens. This establishes that the RLCK VII-4 subfamily has critical functions in the regulation of multiple PTI pathways in rice and opens the way for deciphering the precise role of its members in the control of rice PTI.
Collapse
Affiliation(s)
- Ahmad Jalilian
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Véronique Chalvon
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institute Agro, IRD, Montpellier, France
| | - Isabelle Meusnier
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institute Agro, IRD, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institute Agro, IRD, Montpellier, France
| | - Amin Mirshamsi Kakhki
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
19
|
Deng Y, He Z. Genome editing enables defense-yield balance in rice. STRESS BIOLOGY 2023; 3:22. [PMID: 37676404 PMCID: PMC10442007 DOI: 10.1007/s44154-023-00102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 09/08/2023]
Abstract
This brief article highlights the key findings of the study conducted by Sha et al. (Nature, doi:10.1038/s41586-023-06205-2, 2023), focusing on the cloning of the RBL1 gene from rice, which is associated with lesion mimic mutant (LMM) traits. The RBL1 gene encodes a cytidine diphosphate diacylglycerol (CDP-DAG) synthase and plays a crucial role in regulating cell death and immunity by controlling phosphatidylinositol biosynthesis. The rbl1 mutant shows autoimmunity with multi-pathogen resistance but with severe yield penalty. Using genome editing techniques, the research team successfully generated an elite allele of RBL1 that not only restores rice yield but also provides broad-spectrum resistance against both bacterial and fungal pathogens. These findings demonstrate the potential of utilizing genome editing to enhance crop productivity and pathogen resistance.
Collapse
Affiliation(s)
- Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
20
|
Ren W, Wang H, Du Y, Li Y, Feng Z, Zhou X, Kang G, Shu Q, Guo T, Guo H, Yu L, Jin W, Yang F, Li J, Ma J, Li W, Xu C, Chen X, Liu X, Yang C, Liu L, Zhou L. Multi-generation study of heavy ion beam-induced mutations and agronomic trait variations to accelerate rice breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1213807. [PMID: 37416884 PMCID: PMC10322207 DOI: 10.3389/fpls.2023.1213807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Heavy ion beam (HIB) is an effective physical mutagen that has been widely used in plant mutational breeding. Systemic knowledge of the effects caused by different HIB doses at developmental and genomic levels will facilitate efficient breeding for crops. Here we examined the effects of HIB systematically. Kitaake rice seeds were irradiated by ten doses of carbon ion beams (CIB, 25 - 300 Gy), which is the most widely used HIB. We initially examined the growth, development and photosynthetic parameters of the M1 population and found that doses exceeding 125 Gy caused significant physiological damages to rice. Subsequently, we analyzed the genomic variations in 179 M2 individuals from six treatments (25 - 150 Gy) via whole-genome sequencing (WGS). The mutation rate peaks at 100 Gy (2.66×10-7/bp). Importantly, we found that mutations shared among different panicles of the same M1 individual are at low ratios, validating the hypothesis that different panicles may be derived from different progenitor cells. Furthermore, we isolated 129 mutants with distinct phenotypic variations, including changes in agronomic traits, from 11,720 M2 plants, accounting for a 1.1% mutation rate. Among them, about 50% possess stable inheritance in M3. WGS data of 11 stable M4 mutants, including three lines with higher yields, reveal their genomic mutational profiles and candidate genes. Our results demonstrate that HIB is an effective tool that facilitates breeding, that the optimal dose range for rice is 67 - 90% median lethal dose (LD50), and that the mutants isolated here can be further used for functional genomic research, genetic analysis, and breeding.
Collapse
Affiliation(s)
- Weibin Ren
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhuo Feng
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinhui Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Guisen Kang
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingyao Shu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Huijun Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixia Yu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenjie Jin
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Fu Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jingpeng Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Wenjian Li
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaoli Xu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xia Chen
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Liu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenan Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Luxiang Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Sha G, Sun P, Kong X, Han X, Sun Q, Fouillen L, Zhao J, Li Y, Yang L, Wang Y, Gong Q, Zhou Y, Zhou W, Jain R, Gao J, Huang R, Chen X, Zheng L, Zhang W, Qin Z, Zhou Q, Zeng Q, Xie K, Xu J, Chiu TY, Guo L, Mortimer JC, Boutté Y, Li Q, Kang Z, Ronald PC, Li G. Genome editing of a rice CDP-DAG synthase confers multipathogen resistance. Nature 2023; 618:1017-1023. [PMID: 37316672 PMCID: PMC11575942 DOI: 10.1038/s41586-023-06205-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2023] [Indexed: 06/16/2023]
Abstract
The discovery and application of genome editing introduced a new era of plant breeding by giving researchers efficient tools for the precise engineering of crop genomes1. Here we demonstrate the power of genome editing for engineering broad-spectrum disease resistance in rice (Oryza sativa). We first isolated a lesion mimic mutant (LMM) from a mutagenized rice population. We then demonstrated that a 29-base-pair deletion in a gene we named RESISTANCE TO BLAST1 (RBL1) caused broad-spectrum disease resistance and showed that this mutation caused an approximately 20-fold reduction in yield. RBL1 encodes a cytidine diphosphate diacylglycerol synthase that is required for phospholipid biosynthesis2. Mutation of RBL1 results in reduced levels of phosphatidylinositol and its derivative phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). In rice, PtdIns(4,5)P2 is enriched in cellular structures that are specifically associated with effector secretion and fungal infection, suggesting that it has a role as a disease-susceptibility factor3. By using targeted genome editing, we obtained an allele of RBL1, named RBL1Δ12, which confers broad-spectrum disease resistance but does not decrease yield in a model rice variety, as assessed in small-scale field trials. Our study has demonstrated the benefits of editing an LMM gene, a strategy relevant to diverse LMM genes and crops.
Collapse
Affiliation(s)
- Gan Sha
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojing Kong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Qiping Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Juan Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Yun Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Lei Yang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Yin Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Qiuwen Gong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Yaru Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Wenqing Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Rashmi Jain
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA
- Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Renliang Huang
- National Engineering Research Center of Rice (Nanchang), Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Xiaoyang Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Lu Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Wanying Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Ziting Qin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Qi Zhou
- BGI-Shenzhen, Shenzhen, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jiandi Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | | | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jenny C Mortimer
- Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA.
- Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China.
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA.
- Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA.
| |
Collapse
|
22
|
Raineri J, Caraballo LN, Gómez M, Chan RL. The Transcription Factor HaHB11 Boosts Grain Set and Yield in Rice Plants, Allowing Them to Approach Their Ideal Phenotype. Biomolecules 2023; 13:biom13050826. [PMID: 37238696 DOI: 10.3390/biom13050826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The ideal rice phenotype is that of plants exhibiting fewer panicles with high biomass, large grain number, flag leaf area with small insertion angles, and an erected morphology improving light interception. The sunflower transcription factor HaHB11, homeodomain-leucine zipper I, confers increased seed yield and abiotic stress tolerance to Arabidopsis and maize. Here, we report the obtaining and characterization of rice plants expressing HaHB11 driven by its promoter or the 35S constitutive one. Transgenic p35S:HaHB11 plants closely resembled the ideal high-yield phenotype, whereas those carrying the pHaHB11:HaHB11 construct were hard to distinguish from the wild type. The former had an erected architecture, enhanced vegetative leaf biomass, rolled flag leaves with a larger surface, sharper insertion angles insensitive to brassinosteroids, and higher harvest index and seed biomass than the wild type. The combination of the distinct features exhibited by p35S:HaHB11 plants, including the increased number of set grains per panicle, supports the high-yield phenotype. We wondered where HaHB11 has to be expressed to achieve the high-yield phenotype and evaluated HaHB11 expression levels in all tissues. The results indicate that its expression is particularly necessary in the flag leaf and panicle to produce the ideal phenotype.
Collapse
Affiliation(s)
- Jesica Raineri
- Instituto de Agrobiotecnología del Litoral, CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe 3000, Argentina
| | - Luciano Nicolás Caraballo
- Instituto de Agrobiotecnología del Litoral, CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe 3000, Argentina
| | - Maximiliano Gómez
- Instituto de Agrobiotecnología del Litoral, CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe 3000, Argentina
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral, CONICET, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe 3000, Argentina
| |
Collapse
|
23
|
He J, Zhang K, Yan S, Tang M, Zhou W, Yin Y, Chen K, Zhang C, Li M. Genome-scale targeted mutagenesis in Brassica napus using a pooled CRISPR library. Genome Res 2023; 33:798-809. [PMID: 37290935 PMCID: PMC10317123 DOI: 10.1101/gr.277650.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/19/2023] [Indexed: 06/10/2023]
Abstract
The recently constructed mutant libraries of diploid crops by the CRISPR-Cas9 system have provided abundant resources for functional genomics and crop breeding. However, because of the genome complexity, it is a big challenge to accomplish large-scale targeted mutagenesis in polyploid plants. Here, we demonstrate the feasibility of using a pooled CRISPR library to achieve genome-scale targeted editing in an allotetraploid crop of Brassica napus A total of 18,414 sgRNAs were designed to target 10,480 genes of interest, and afterward, 1104 regenerated transgenic plants harboring 1088 sgRNAs were obtained. Editing interrogation results revealed that 93 of the 178 genes were identified as mutated, thus representing an editing efficiency of 52.2%. Furthermore, we have discovered that Cas9-mediated DNA cleavages tend to occur at all the target sites guided by the same individual sgRNA, a novel finding in polyploid plants. Finally, we show the strong capability of reverse genetic screening for various traits with the postgenotyped plants. Several genes, which might dominate the fatty acid profile and seed oil content and have yet to be reported, were unveiled from the forward genetic studies. Our research provides valuable resources for functional genomics, elite crop breeding, and a good reference for high-throughput targeted mutagenesis in other polyploid plants.
Collapse
Affiliation(s)
- Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Shuxiang Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Mi Tang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Weixian Zhou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| |
Collapse
|
24
|
Xu Y, Chen S, Xue M, Chen X, Liu Z, Wei X, Gao JP, Chen C. Mapping and validation of quantitative trait loci associated with dorsal aleurone thickness in rice (Oryza sativa). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:117. [PMID: 37093272 DOI: 10.1007/s00122-023-04368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Mapping of QTLs for dorsal aleurone thickness (DAT) was performed using chromosome segment substitution lines in rice. Three QTLs, qDAT3.1, qDAT3.2, and qDAT7.1, were detected in multiple environments. As a specified endosperm cell type, the aleurone has an abundance of various nutrients. Increasing the number of aleurone layers is a practicable way of developing highly nutritious cereals. Identifying genes that can increase aleurone thickness is useful for the breeding of aleurone traits to improve the nutritional and health values of rice. Here, we found that iodine staining could efficiently distinguish the aleurone layers, which revealed great variation of the aleurone thickness in rice, especially at the dorsal side of the seed. Therefore, we used a population of chromosome segmental substitution lines (CSSLs) derived from Koshihikari and Nona Bokra for quantitative trait locus (QTL) analysis of the dorsal aleurone thickness (DAT). Three QTLs, qDAT3.1, qDAT3.2, and qDAT7.1, were detected in multiple seasons. Among these, qDAT3.2 colocalizes with Hd6 and Hd16, two QTLs previously identified to regulate the heading date of Koshihikari, explaining the negative correlation between the DAT and days to heading (DTH) in rice. We also provide evidence that early-heading ensures the filling of rice seed under a relatively high temperature to promote aleurone thickening. qDAT7.1, the most stable QTL expressed in different environments, functions independently from heading date. Although Nona Bokra has a lower DAT, its qDAT7.1 allele significantly increased DAT in rice, which was further validated using two near-isogenic lines (NILs). These findings pave the way for further gene cloning of aleurone-related QTLs and may aid the development of highly nutritious rice.
Collapse
Affiliation(s)
- Yiwen Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Siming Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Mingming Xue
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Xingyu Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Zhibo Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Xuefeng Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Ji-Ping Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
25
|
Jiang S, Zhang X, Yang X, Liu C, Wang L, Ma B, Miao Y, Hu J, Tan K, Wang Y, Jiang H, Wang J. A chromosome-level genome assembly of an early matured aromatic Japonica rice variety Qigeng10 to accelerate rice breeding for high grain quality in Northeast China. FRONTIERS IN PLANT SCIENCE 2023; 14:1134308. [PMID: 36909446 PMCID: PMC9995481 DOI: 10.3389/fpls.2023.1134308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Early-matured aromatic japonica rice from the Northeast is the most popular rice commodity in the Chinese market. The Qigeng10 (QG10) was one of the varieties with the largest planting area in this region in recent years. It was an early-matured japonica rice variety with a lot of superior traits such as semi-dwarf, lodging resistance, long grain, aromatic and good quality. Therefore, a high-quality assembly of Qigeng10 genome is critical and useful for japonica research and breeding. In this study, we produced a high-precision QG10 chromosome-level genome by using a combination of Nanopore and Hi-C platforms. Finally, we assembled the QG10 genome into 77 contigs with an N50 length of 11.80 Mb in 27 scaffolds with an N50 length of 30.55 Mb. The assembled genome size was 378.31Mb with 65 contigs and constituted approximately 99.59% of the 12 chromosomes. We identified a total of 1,080,819 SNPs and 682,392 InDels between QG10 and Nipponbare. We also annotated 57,599 genes by the Ab initio method, homology-based technique, and RNA-seq. Based on the assembled genome sequence, we detected the sequence variation in a total of 63 cloned genes involved in grain yield, grain size, disease tolerance, lodging resistance, fragrance, and many other important traits. Finally, we identified five elite alleles (qTGW2Nipponbare , qTGW3Nanyangzhan , GW5IR24 , GW6Suyunuo , and qGW8Basmati385 ) controlling long grain size, four elite alleles (COLD1Nipponbare , bZIP73Nipponbare , CTB4aKunmingxiaobaigu , and CTB2Kunmingxiaobaigu ) controlling cold tolerance, three non-functional alleles (DTH7Kitaake , Ghd7Hejiang19 , and Hd1Longgeng31 ) for early heading, two resistant alleles (PiaAkihikari and Pid4Digu ) for rice blast, a resistant allele STV11Kasalath for rice stripe virus, an NRT1.1BIR24 allele for higher nitrate absorption activity, an elite allele SCM3Chugoku117 for stronger culms, and the typical aromatic gene badh2-E2 for fragrance in QG10. These results not only help us to better elucidate the genetic mechanisms underlying excellent agronomic traits in QG10 but also have wide-ranging implications for genomics-assisted breeding in early-matured fragrant japonica rice.
Collapse
Affiliation(s)
- Shukun Jiang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Xijuan Zhang
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xianli Yang
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chuanzeng Liu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Lizhi Wang
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Bo Ma
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Yi Miao
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Jifang Hu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Kefei Tan
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Yuxian Wang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Hui Jiang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Junhe Wang
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin, China
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
26
|
Hase Y, Satoh K, Kitamura S. Comparative analysis of seed and seedling irradiation with gamma rays and carbon ions for mutation induction in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1149083. [PMID: 37089645 PMCID: PMC10117944 DOI: 10.3389/fpls.2023.1149083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
The molecular nature of mutations induced by ionizing radiation and chemical mutagens in plants is becoming clearer owing to the availability of high-throughput DNA sequencing technology. However, few studies have compared the induced mutations between different radiation qualities and between different irradiated materials with the same analysis method. To compare mutation induction between dry-seeds and seedlings irradiated with carbon ions and gamma rays in Arabidopsis, in this study we detected the mutations induced by seedling irradiation with gamma rays and analyzed the data together with data previously obtained for the other irradiation treatments. Mutation frequency at the equivalent dose for survival reduction was higher with gamma rays than with carbon ions, and was higher with dry-seed irradiation than with seedling irradiation. Carbon ions induced a higher frequency of deletions (2-99 bp) than gamma rays in the case of dry-seed irradiation, but this difference was less evident in the case of seedling irradiation. This result supported the inference that dry-seed irradiation under a lower water content more clearly reflects the difference in radiation quality. However, the ratio of rearrangements (inversions, translocations, and deletions larger than 100 bp), which are considered to be derived from the rejoining of two distantly located DNA breaks, was significantly higher with carbon ions than gamma rays irrespective of the irradiated material. This finding suggested that high-linear energy transfer radiation induced closely located DNA damage, irrespective of the water content of the material, that could lead to the generation of rearrangements. Taken together, the results provide an overall picture of radiation-induced mutation in Arabidopsis and will be useful for selection of a suitable radiation treatment for mutagenesis.
Collapse
|
27
|
Jankowicz-Cieslak J, Hofinger BJ, Jarc L, Junttila S, Galik B, Gyenesei A, Ingelbrecht IL, Till BJ. Spectrum and Density of Gamma and X-ray Induced Mutations in a Non-Model Rice Cultivar. PLANTS (BASEL, SWITZERLAND) 2022; 11:3232. [PMID: 36501272 PMCID: PMC9741009 DOI: 10.3390/plants11233232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Physical mutagens are a powerful tool used for genetic research and breeding for over eight decades. Yet, when compared to chemical mutagens, data sets on the effect of different mutagens and dosages on the spectrum and density of induced mutations remain lacking. To address this, we investigated the landscape of mutations induced by gamma and X-ray radiation in the most widely cultivated crop species: rice. A mutant population of a tropical upland rice, Oryza sativa L., was generated and propagated via self-fertilization for seven generations. Five dosages ranging from 75 Gy to 600 Gy in both X-ray and gamma-irradiated material were applied. In the process of a forward genetic screens, 11 unique rice mutant lines showing phenotypic variation were selected for mutation analysis via whole-genome sequencing. Thousands of candidate mutations were recovered in each mutant with single base substitutions being the most common, followed by small indels and structural variants. Higher dosages resulted in a higher accumulation of mutations in gamma-irradiated material, but not in X-ray-treated plants. The in vivo role of all annotated rice genes is yet to be directly investigated. The ability to induce a high density of single nucleotide and structural variants through mutagenesis will likely remain an important approach for functional genomics and breeding.
Collapse
Affiliation(s)
- Joanna Jankowicz-Cieslak
- Plant Breeding and Genetics Laboratory, FAO/IAEA Joint Division, International Atomic Energy Agency (IAEA), 2444 Seibersdorf, Austria
| | - Bernhard J. Hofinger
- Plant Breeding and Genetics Laboratory, FAO/IAEA Joint Division, International Atomic Energy Agency (IAEA), 2444 Seibersdorf, Austria
| | - Luka Jarc
- Plant Breeding and Genetics Laboratory, FAO/IAEA Joint Division, International Atomic Energy Agency (IAEA), 2444 Seibersdorf, Austria
| | - Sini Junttila
- Bioinformatics and Scientific Computing Core, Vienna Biocenter Core Facilities GmbH, Dr-Bohr-Gasse 3, 1030 Vienna, Austria
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku, Tykistökatu 6, 20520 Turku, Finland
- Medical Bioinformatics Centre, Turku Bioscience Centre, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Bence Galik
- Bioinformatics and Scientific Computing Core, Vienna Biocenter Core Facilities GmbH, Dr-Bohr-Gasse 3, 1030 Vienna, Austria
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility Szentágothai Research Centre, University of Pécs, H-7622 Pecs, Hungary
| | - Attila Gyenesei
- Bioinformatics and Scientific Computing Core, Vienna Biocenter Core Facilities GmbH, Dr-Bohr-Gasse 3, 1030 Vienna, Austria
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility Szentágothai Research Centre, University of Pécs, H-7622 Pecs, Hungary
| | - Ivan L. Ingelbrecht
- Plant Breeding and Genetics Laboratory, FAO/IAEA Joint Division, International Atomic Energy Agency (IAEA), 2444 Seibersdorf, Austria
| | - Bradley J. Till
- Plant Breeding and Genetics Laboratory, FAO/IAEA Joint Division, International Atomic Energy Agency (IAEA), 2444 Seibersdorf, Austria
- Veterinary Genetics Laboratory, University of California, Old Davis Road, Davis, CA 95616, USA
| |
Collapse
|
28
|
Huang J, Cook DE. The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens. FEMS Microbiol Rev 2022; 46:fuac035. [PMID: 35810003 PMCID: PMC9779921 DOI: 10.1093/femsre/fuac035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks require repair or risk corrupting the language of life. To ensure genome integrity and viability, multiple DNA double-strand break repair pathways function in eukaryotes. Two such repair pathways, canonical non-homologous end joining and homologous recombination, have been extensively studied, while other pathways such as microhomology-mediated end joint and single-strand annealing, once thought to serve as back-ups, now appear to play a fundamental role in DNA repair. Here, we review the molecular details and hierarchy of these four DNA repair pathways, and where possible, a comparison for what is known between animal and fungal models. We address the factors contributing to break repair pathway choice, and aim to explore our understanding and knowledge gaps regarding mechanisms and regulation in filamentous pathogens. We additionally discuss how DNA double-strand break repair pathways influence genome engineering results, including unexpected mutation outcomes. Finally, we review the concept of biased genome evolution in filamentous pathogens, and provide a model, termed Biased Variation, that links DNA double-strand break repair pathways with properties of genome evolution. Despite our extensive knowledge for this universal process, there remain many unanswered questions, for which the answers may improve genome engineering and our understanding of genome evolution.
Collapse
Affiliation(s)
- Jun Huang
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, United States
| | - David E Cook
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, United States
| |
Collapse
|
29
|
Ahmad M. Genomics and transcriptomics to protect rice ( Oryza sativa. L.) from abiotic stressors: -pathways to achieving zero hunger. FRONTIERS IN PLANT SCIENCE 2022; 13:1002596. [PMID: 36340401 PMCID: PMC9630331 DOI: 10.3389/fpls.2022.1002596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
More over half of the world's population depends on rice as a major food crop. Rice (Oryza sativa L.) is vulnerable to abiotic challenges including drought, cold, and salinity since it grown in semi-aquatic, tropical, or subtropical settings. Abiotic stress resistance has bred into rice plants since the earliest rice cultivation techniques. Prior to the discovery of the genome, abiotic stress-related genes were identified using forward genetic methods, and abiotic stress-tolerant lines have developed using traditional breeding methods. Dynamic transcriptome expression represents the degree of gene expression in a specific cell, tissue, or organ of an individual organism at a specific point in its growth and development. Transcriptomics can reveal the expression at the entire genome level during stressful conditions from the entire transcriptional level, which can be helpful in understanding the intricate regulatory network relating to the stress tolerance and adaptability of plants. Rice (Oryza sativa L.) gene families found comparatively using the reference genome sequences of other plant species, allowing for genome-wide identification. Transcriptomics via gene expression profiling which have recently dominated by RNA-seq complements genomic techniques. The identification of numerous important qtl,s genes, promoter elements, transcription factors and miRNAs involved in rice response to abiotic stress was made possible by all of these genomic and transcriptomic techniques. The use of several genomes and transcriptome methodologies to comprehend rice (Oryza sativa, L.) ability to withstand abiotic stress have been discussed in this review.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Visiting Scientist Plant Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
30
|
Pradhan B, Panda D, Bishi SK, Chakraborty K, Muthusamy SK, Lenka SK. Progress and prospects of C 4 trait engineering in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:920-931. [PMID: 35727191 DOI: 10.1111/plb.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Incorporating C4 photosynthetic traits into C3 crops is a rational approach for sustaining future demands for crop productivity. Using classical plant breeding, engineering this complex trait is unlikely to achieve its target. Therefore, it is critical and timely to implement novel biotechnological crop improvement strategies to accomplish this goal. However, a fundamental understanding of C3 , C4 , and C3 -C4 intermediate metabolism is crucial for the targeted use of biotechnological tools. This review assesses recent progress towards engineering C4 photosynthetic traits in C3 crops. We also discuss lessons learned from successes and failures of recent genetic engineering attempts in C3 crops, highlighting the pros and cons of using rice as a model plant for short-, medium- and long-term goals of genetic engineering. This review provides an integrated approach towards engineering improved photosynthetic efficiency in C3 crops for sustaining food, fibre and fuel production around the globe.
Collapse
Affiliation(s)
- B Pradhan
- Department of Agricultural Biotechnology, Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, India
| | - D Panda
- Department of Biodiversity & Conservation of Natural Resources, Central University of Odisha, Koraput, India
| | - S K Bishi
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - K Chakraborty
- Department of Plant Physiology, ICAR-National Rice Research Institute, Cuttack, India
| | - S K Muthusamy
- Division of Crop Improvement, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | - S K Lenka
- Department of Plant Biotechnology, Gujarat Biotechnology University, Gujarat, India
| |
Collapse
|
31
|
Knudsen S, Wendt T, Dockter C, Thomsen HC, Rasmussen M, Egevang Jørgensen M, Lu Q, Voss C, Murozuka E, Østerberg JT, Harholt J, Braumann I, Cuesta-Seijo JA, Kale SM, Bodevin S, Tang Petersen L, Carciofi M, Pedas PR, Opstrup Husum J, Nielsen MTS, Nielsen K, Jensen MK, Møller LA, Gojkovic Z, Striebeck A, Lengeler K, Fennessy RT, Katz M, Garcia Sanchez R, Solodovnikova N, Förster J, Olsen O, Møller BL, Fincher GB, Skadhauge B. FIND-IT: Accelerated trait development for a green evolution. SCIENCE ADVANCES 2022; 8:eabq2266. [PMID: 36001660 PMCID: PMC9401622 DOI: 10.1126/sciadv.abq2266] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Improved agricultural and industrial production organisms are required to meet the future global food demands and minimize the effects of climate change. A new resource for crop and microbe improvement, designated FIND-IT (Fast Identification of Nucleotide variants by droplet DigITal PCR), provides ultrafast identification and isolation of predetermined, targeted genetic variants in a screening cycle of less than 10 days. Using large-scale sample pooling in combination with droplet digital PCR (ddPCR) greatly increases the size of low-mutation density and screenable variant libraries and the probability of identifying the variant of interest. The method is validated by screening variant libraries totaling 500,000 barley (Hordeum vulgare) individuals and isolating more than 125 targeted barley gene knockout lines and miRNA or promoter variants enabling functional gene analysis. FIND-IT variants are directly applicable to elite breeding pipelines and minimize time-consuming technical steps to accelerate the evolution of germplasm.
Collapse
Affiliation(s)
- Søren Knudsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Toni Wendt
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Magnus Rasmussen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Qiongxian Lu
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Cynthia Voss
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Emiko Murozuka
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Jesper Harholt
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Ilka Braumann
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Jose A. Cuesta-Seijo
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Sandip M. Kale
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Sabrina Bodevin
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Lise Tang Petersen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Pai Rosager Pedas
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Jeppe Opstrup Husum
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Kasper Nielsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Mikkel K. Jensen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Lillian Ambus Møller
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Zoran Gojkovic
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Alexander Striebeck
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Klaus Lengeler
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Ross T. Fennessy
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Michael Katz
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Rosa Garcia Sanchez
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | | | - Jochen Förster
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Ole Olsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Centre for Synthetic Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Geoffrey B. Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Birgitte Skadhauge
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| |
Collapse
|
32
|
Wang Y, Yang L, Ma C, Zhou Y, Zhao M, Bi R, Liang X, Peng YL, Yang J, Kang Z, Li G. Genome Sequence of Magnaporthe oryzae EA18 Virulent to Multiple Widely Used Rice Varieties. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:727-730. [PMID: 35658524 DOI: 10.1094/mpmi-01-22-0030-a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Yin Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Ma
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yaru Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengfei Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqing Bi
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
| | - You-Liang Peng
- The MOA Key Laboratory of Molecular Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100094, China
| | - Jun Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
33
|
Liu S, Bao Y, Deng H, Liu G, Han Y, Wu Y, Zhang T, Chen C. The Methylation Inhibitor 5-Aza-2'-Deoxycytidine Induces Genome-Wide Hypomethylation in Rice. RICE (NEW YORK, N.Y.) 2022; 15:35. [PMID: 35779161 PMCID: PMC9250569 DOI: 10.1186/s12284-022-00580-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
DNA methylation is a conserved epigenetic modification which is vital for regulating gene expression and maintaining genome stability in both mammals and plants. Homozygous mutation of rice methyltransferase 1 (met1) gene can cause host death in rice, making it difficult to obtain plant material needed for hypomethylation research. To circumvent this challenge, the methylation inhibitor, 5-Aza-2'-deoxycytidine (AzaD), is used as a cytosine nucleoside analogue to reduce genome wide hypomethylation and is widely used in hypomethylation research. However, how AzaD affects plant methylation profiles at the genome scale is largely unknown. Here, we treated rice seedlings with AzaD and compared the AzaD treatment with osmet1-2 mutants, illustrating that there are similar CG hypomethylation and distribution throughout the whole genome. Along with global methylation loss class I transposable elements (TEs) which are farther from genes compared with class II TEs, were more significantly activated, and the RNA-directed DNA Methylation (RdDM) pathway was activated in specific genomic regions to compensate for severe CG loss. Overall, our results suggest that AzaD is an effective DNA methylation inhibitor that can influence genome wide methylation and cause a series of epigenetic variations.
Collapse
Affiliation(s)
- Shuo Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Hui Deng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
34
|
Alam MS, Maina AW, Feng Y, Wu LB, Frei M. Interactive effects of tropospheric ozone and blast disease (Magnaporthe oryzae) on different rice genotypes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48893-48907. [PMID: 35201578 PMCID: PMC9252976 DOI: 10.1007/s11356-022-19282-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/14/2022] [Indexed: 05/06/2023]
Abstract
Rising tropospheric ozone concentrations can cause rice yield losses and necessitate the breeding of ozone-tolerant rice varieties. However, ozone tolerance should not compromise the resistance to important biotic stresses such as the rice blast disease. Therefore, we investigated the interactive effects of ozone and rice blast disease on nine different rice varieties in an experiment testing an ozone treatment, blast inoculation, and their interaction. Plants were exposed to an ozone concentration of 100 ppb for 7 h per day or ambient air throughout the growth period. Half of the plants were simultaneously infected with rice blast inoculum. Grain yield was significantly reduced in the blast treatment (17%) and ozone treatment (37%), while the combination of both stresses did not further decrease grain yields compared to ozone alone. Similar trends occurred for physiological traits such as vegetation indices, normalized difference vegetation index (NDVI), photochemical reflectance index (PRI), Lichtenthaler index 2 (Lic2), and anthocyanin reflectance index 1 (ARI1), as well as stomatal conductance and lipid peroxidation. Ozone exposure mitigated the formation of visible blast symptoms, while blast inoculation did not significantly affect visible ozone symptoms. Although different genotypes showed contrasting responses to the two types of stresses, no systematic pattern was observed regarding synergies or trade-offs under the two types of stresses. Therefore, we conclude that despite the similarities in physiological stress responses to ozone and blast, the tolerance to these stresses does not appear to be genetically linked in rice.
Collapse
Affiliation(s)
- Muhammad Shahedul Alam
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, 35390, Giessen, Germany
| | | | - Yanru Feng
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, 35390, Giessen, Germany
- Institute for Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany
| | - Lin-Bo Wu
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, 35390, Giessen, Germany
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, 35390, Giessen, Germany.
| |
Collapse
|
35
|
Sun X, Li X, Lu Y, Wang S, Zhang X, Zhang K, Su X, Liu M, Feng D, Luo S, Gu A, Fu Y, Chen X, Xuan S, Wang Y, Xu D, Chen S, Ma W, Shen S, Cheng F, Zhao J. Construction of a high-density mutant population of Chinese cabbage facilitates the genetic dissection of agronomic traits. MOLECULAR PLANT 2022; 15:913-924. [PMID: 35150930 DOI: 10.1016/j.molp.2022.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Chinese cabbage (Brassica rapa ssp. pekinensis) is an economically important vegetable crop throughout the world, especially in Asia. High-quality genome sequences are available for Chinese cabbage, but gene functional studies remain challenging. To promote functional genomic studies of Chinese cabbage, we generated an ethyl methane sulfonate (EMS) mutant population of ∼8000 M2 plants using the double haploid inbred line A03 as the parent. The genome of A03 was sequenced and used as a reference for high-throughput functional characterization of gene mutations at the whole-genome level. A total of 300 M2 to M5 EMS mutants were phenotypically screened and then sequenced, revealing 750 629 SNPs and 46 272 InDel mutations that cover 98.27% of all predicted genes in the A03 genome. A forward-genetics approach was successfully used to identify two genes with chloroplast-related functions that are responsible for the yellow leaf mutant trait. A reverse-genetics approach was also used to identify associations between mutations in five genes of the glucosinolate biosynthetic pathway and variations in glucosinolate content of the mutant plants. In addition, we built the Chinese cabbage EMS mutation database (CCEMD, www.bioinformaticslab.cn/EMSmutation/home) to increase the usability of this mutant population resource. In summary, we performed large-scale screening of a heading Chinese cabbage EMS mutant collection at the phenotypic and genotypic levels, which will facilitate gene mining of Chinese cabbage and might also be useful for the study of other Brassica crops.
Collapse
Affiliation(s)
- Xiaoxue Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xing Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 271000, China
| | - Yin Lu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Shan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiaomeng Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Kang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 271000, China
| | - Xiangjie Su
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Daling Feng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Shuangxia Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Aixia Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yu Fu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 271000, China
| | - Xueping Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Shuxin Xuan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 271000, China
| | - Shumin Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 271000, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China.
| | - Shuxing Shen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China.
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 271000, China.
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
36
|
Simons JM, Herbert TC, Kauffman C, Batete MY, Simpson AT, Katsuki Y, Le D, Amundson D, Buescher EM, Weil C, Tuinstra M, Addo‐Quaye C. Systematic prediction of EMS-induced mutations in a sorghum mutant population. PLANT DIRECT 2022; 6:e404. [PMID: 35647479 PMCID: PMC9132608 DOI: 10.1002/pld3.404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 05/14/2023]
Abstract
The precise detection of causal DNA mutations (deoxyribonucleic acid) is very crucial for forward genetic studies. Several sources of errors contribute to false-positive detections by current variant-calling algorithms, which impact associating phenotypes with genotypes. To improve the accuracy of mutation detection, we implemented a binning method for the accurate detection of likely ethyl methanesulfonate (EMS)-induced mutations in a sequenced mutant population. We also implemented a clustering algorithm for detecting likely false negatives with high accuracy. Sorghum bicolor is a very valuable crop species with tremendous potential for uncovering novel gene functions associated with highly desirable agronomical traits. We demonstrate the precision of the described approach in the detection of likely EMS-induced mutations from the publicly available low-cost sequencing of the M3 generation from 600 sorghum BTx623 mutants. The approach detected 3,274,606 single nucleotide polymorphisms (SNPs), of which 96% (3,141,908) were G/C to A/T DNA substitutions, as expected by EMS-mutagenesis mode of action. We demonstrated the general applicability of the described method and showed a high concordance, 94% (3,074,759) SNPs overlap between SAMtools-based and GATK-based variant-calling algorithms. Our clustering algorithm uncovered evidence for an additional 223,048 likely false-negative shared EMS-induced mutations. The final 3,497,654 SNPs represent an 87% increase in SNPs detected from the previous analysis of the mutant population, with an average of one SNP per 125 kb in the sorghum genome. Annotation of the final SNPs revealed 10,263 high-impact and 136,639 moderate-impact SNPs, including 7217 stop-gained mutations, which averages 12 stop-gained mutations per mutant, and four high- or medium-impact SNPs per sorghum gene. We have implemented a public search database for this new genetic resource of 30,285 distinct sorghum genes containing medium- or high-impact EMS-induced mutations. Seedstock for a select 486 of the 600 described mutants are publicly available in the Germplasm Resources Information Network (GRIN) database.
Collapse
Affiliation(s)
- Jared M. Simons
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Tim C. Herbert
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Coleby Kauffman
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Marc Y. Batete
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Andrew T. Simpson
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
- Present address:
Department of Biological SciencesUniversity of IdahoMoscowIdahoUSA
| | - Yuka Katsuki
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Dong Le
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Danielle Amundson
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | | | - Clifford Weil
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
| | - Mitch Tuinstra
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
| | - Charles Addo‐Quaye
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| |
Collapse
|
37
|
Liu F, Chern M, Jain R, Martin JA, Schakwitz WS, Ronald PC. Silencing of Dicer-like protein 2a restores the resistance phenotype in the rice mutant, sxi4 (suppressor of Xa21-mediated immunity 4). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:646-657. [PMID: 35106860 DOI: 10.1111/tpj.15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The rice immune receptor XA21 confers resistance to Xanthomonas oryzae pv. oryzae (Xoo), and upon recognition of the RaxX21-sY peptide produced by Xoo, XA21 activates the plant immune response. Here we screened 21 000 mutant plants expressing XA21 to identify components involved in this response, and reported here the identification of a rice mutant, sxi4, which is susceptible to Xoo. The sxi4 mutant carries a 32-kb translocation from chromosome 3 onto chromosome 7 and displays an elevated level of DCL2a transcript, encoding a Dicer-like protein. Silencing of DCL2a in the sxi4 genetic background restores resistance to Xoo. RaxX21-sY peptide-treated leaves of sxi4 retain the hallmarks of XA21-mediated immune response. However, WRKY45-1, a known negative regulator of rice resistance to Xoo, is induced in the sxi4 mutant in response to RaxX21-sY peptide treatment. A CRISPR knockout of a short interfering RNA (TE-siRNA815) in the intron of WRKY45-1 restores the resistance phenotype in sxi4. These results suggest a model where DCL2a accumulation negatively regulates XA21-mediated immunity by altering the processing of TE-siRNA815.
Collapse
Affiliation(s)
- Furong Liu
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Mawsheng Chern
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Rashmi Jain
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Joel A Martin
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Wendy S Schakwitz
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Pamela C Ronald
- Department of Plant Pathology and Genome Center, University of California, Davis, CA, 95616, USA
- Feedstocks Division, The Joint Bioenergy Institute, Emeryville, CA, 94608, USA
| |
Collapse
|
38
|
Wang C, Han B. Twenty years of rice genomics research: From sequencing and functional genomics to quantitative genomics. MOLECULAR PLANT 2022; 15:593-619. [PMID: 35331914 DOI: 10.1016/j.molp.2022.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Since the completion of the rice genome sequencing project in 2005, we have entered the era of rice genomics, which is still in its ascendancy. Rice genomics studies can be classified into three stages: structural genomics, functional genomics, and quantitative genomics. Structural genomics refers primarily to genome sequencing for the construction of a complete map of rice genome sequence. This is fundamental for rice genetics and molecular biology research. Functional genomics aims to decode the functions of rice genes. Quantitative genomics is large-scale sequence- and statistics-based research to define the quantitative traits and genetic features of rice populations. Rice genomics has been a transformative influence on rice biological research and contributes significantly to rice breeding, making rice a good model plant for studying crop sciences.
Collapse
Affiliation(s)
- Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| |
Collapse
|
39
|
Application of Allele Specific PCR in Identifying Offspring Genotypes of Bi-Allelic SbeIIb Mutant Lines in Rice. PLANTS 2022; 11:plants11040524. [PMID: 35214855 PMCID: PMC8875723 DOI: 10.3390/plants11040524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022]
Abstract
Bi-allelic mutant lines induced by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems are important genetic materials. It is very important to establish a rapid and cheap method in identifying homozygous mutant plants from offspring segregation populations of bi-allelic mutant lines. In this study, the offspring genotypes of rice bi-allelic starch branching enzyme IIb mutant lines were identified using the allele specific PCR (AS-PCR) method. The target sequences of two alleles were aligned from their 5′ to 3′ ends, and the first different bases were used as the 3′ ends of mismatch primers. Another mismatched base was introduced at the third nucleotide from the 3′ end of mismatch primer. The PCR reaction mixture and amplification program were optimized according to the differences of mutation target sequence and mismatch primers. The offspring plant genotypes of bi-allelic mutant lines could be accurately identified using the amplified DNA fragments by agarose gel electrophoresis. This study could provide a method reference for the rapid screening of homozygous mutant plants from offspring segregation population of heterozygous and bi-allelic mutant lines.
Collapse
|
40
|
Stephan T, Burgess SM, Cheng H, Danko CG, Gill CA, Jarvis ED, Koepfli KP, Koltes JE, Lyons E, Ronald P, Ryder OA, Schriml LM, Soltis P, VandeWoude S, Zhou H, Ostrander EA, Karlsson EK. Darwinian genomics and diversity in the tree of life. Proc Natl Acad Sci U S A 2022; 119:e2115644119. [PMID: 35042807 PMCID: PMC8795533 DOI: 10.1073/pnas.2115644119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genomics encompasses the entire tree of life, both extinct and extant, and the evolutionary processes that shape this diversity. To date, genomic research has focused on humans, a small number of agricultural species, and established laboratory models. Fewer than 18,000 of ∼2,000,000 eukaryotic species (<1%) have a representative genome sequence in GenBank, and only a fraction of these have ancillary information on genome structure, genetic variation, gene expression, epigenetic modifications, and population diversity. This imbalance reflects a perception that human studies are paramount in disease research. Yet understanding how genomes work, and how genetic variation shapes phenotypes, requires a broad view that embraces the vast diversity of life. We have the technology to collect massive and exquisitely detailed datasets about the world, but expertise is siloed into distinct fields. A new approach, integrating comparative genomics with cell and evolutionary biology, ecology, archaeology, anthropology, and conservation biology, is essential for understanding and protecting ourselves and our world. Here, we describe potential for scientific discovery when comparative genomics works in close collaboration with a broad range of fields as well as the technical, scientific, and social constraints that must be addressed.
Collapse
Affiliation(s)
- Taylorlyn Stephan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817
| | - Shawn M Burgess
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817
| | - Hans Cheng
- Avian Disease and Oncology Laboratory, Agricultural Research Service, US Department of Agriculture, East Lansing, MI 48823
| | - Charles G Danko
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY 14850
| | - Clare A Gill
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY 10065
- HHMI, Chevy Chase, MD 20815
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Eric Lyons
- School of Plant Sciences, BIO5 Institute, University of Arizona, Tucson, AZ 85721
| | - Pamela Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
- The Innovative Genomics Institute, University of California, Berkeley, CA 94720
- Grass Genetics, Joint Bioenergy Institute, Emeryville, CA 94608
| | - Oliver A Ryder
- San Diego Zoo Wildlife Alliance, Escondido, CA 92027
- Department of Evolution, Behavior, and Ecology, University of California San Diego, La Jolla, CA 92093
| | - Lynn M Schriml
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Pamela Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
| | - Sue VandeWoude
- Department of Micro-, Immuno-, and Pathology, Colorado State University, Fort Collins, CO 80532
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655;
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
41
|
Frequency and Spectrum of Mutations Induced by Gamma Rays Revealed by Phenotype Screening and Whole-Genome Re-Sequencing in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23020654. [PMID: 35054839 PMCID: PMC8775868 DOI: 10.3390/ijms23020654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022] Open
Abstract
Genetic variations are an important source of germplasm diversity, as it provides an allele resource that contributes to the development of new traits for plant breeding. Gamma rays have been widely used as a physical agent for mutation creation in plants, and their mutagenic effect has attracted extensive attention. However, few studies are available on the comprehensive mutation profile at both the large-scale phenotype mutation screening and whole-genome mutation scanning. In this study, biological effects on M1 generation, large-scale phenotype screening in M2 generation, as well as whole-genome re-sequencing of seven M3 phenotype-visible lines were carried out to comprehensively evaluate the mutagenic effects of gamma rays on Arabidopsis thaliana. A total of 417 plants with visible mutated phenotypes were isolated from 20,502 M2 plants, and the phenotypic mutation frequency of gamma rays was 2.03% in Arabidopsis thaliana. On average, there were 21.57 single-base substitutions (SBSs) and 11.57 small insertions and deletions (InDels) in each line. Single-base InDels accounts for 66.7% of the small InDels. The genomic mutation frequency was 2.78 × 10−10/bp/Gy. The ratio of transition/transversion was 1.60, and 64.28% of the C > T events exhibited the pyrimidine dinucleotide sequence; 69.14% of the small InDels were located in the sequence with 1 to 4 bp terminal microhomology that was used for DNA end rejoining, while SBSs were less dependent on terminal microhomology. Nine genes, on average, were predicted to suffer from functional alteration in each re-sequenced line. This indicated that a suitable mutation gene density was an advantage of gamma rays when trying to improve elite materials for one certain or a few traits. These results will aid the full understanding of the mutagenic effects and mechanisms of gamma rays and provide a basis for suitable mutagen selection and parameter design, which can further facilitate the development of more controlled mutagenesis methods for plant mutation breeding.
Collapse
|
42
|
Liu Y, Chen X, Xue S, Quan T, Cui D, Han L, Cong W, Li M, Yun D, Liu B, Xu Z. SET DOMAIN GROUP 721 protein functions in saline-alkaline stress tolerance in the model rice variety Kitaake. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2576-2588. [PMID: 34416090 PMCID: PMC8633509 DOI: 10.1111/pbi.13683] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/12/2023]
Abstract
To isolate the genetic locus responsible for saline-alkaline stress tolerance, we developed a high-throughput activation tagging-based T-DNA insertion mutagenesis method using the model rice (Oryza sativa L.) variety Kitaake. One of the activation-tagged insertion lines, activation tagging 7 (AC7), showed increased tolerance to saline-alkaline stress. This phenotype resulted from the overexpression of a gene that encodes a SET DOMAIN GROUP 721 protein with H3K4 methyltransferase activity. Transgenic plants overexpressing OsSDG721 showed saline-alkaline stress-tolerant phenotypes, along with increased leaf angle, advanced heading and ripening dates. By contrast, ossdg721 loss-of-function mutants showed increased sensitivity to saline-alkaline stress characterized by decreased survival rates and reduction in plant height, grain size, grain weight and leaf angle. RNA sequencing (RNA-seq) analysis of wild-type Kitaake and ossdg721 mutants indicated that OsSDG721 positively regulates the expression level of HIGH-AFFINITY POTASSIUM (K+ ) TRANSPORTER1;5 (OsHKT1;5), which encodes a Na+ -selective transporter that maintains K+ /Na+ homeostasis under salt stress. Furthermore, we showed that OsSDG721 binds to and deposits the H3K4me3 mark in the promoter and coding region of OsHKT1;5, thereby upregulating OsHKT1;5 expression under saline-alkaline stress. Overall, by generating Kitaake activation-tagging pools, we established that the H3K4 methyltransferase OsSDG721 enhances saline-alkaline stress tolerance in rice.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Xi Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Shangyong Xue
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Taiyong Quan
- School of Life ScienceShandong UniversityQingdaoP. R. China
| | - Di Cui
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingP. R. China
| | - Longzhi Han
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingP. R. China
| | - Weixuan Cong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Mengting Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Dae‐Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
- Department of Biomedical Science and EngineeringKonkuk UniversitySeoulSouth Korea
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| | - Zheng‐Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunP. R. China
| |
Collapse
|
43
|
Genome-editing in millets: current knowledge and future perspectives. Mol Biol Rep 2021; 49:773-781. [PMID: 34825322 DOI: 10.1007/s11033-021-06975-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Millets are small seeded cereal crops predominantly cultivated and consumed by resource-poor farmers in the semi-arid tropics of Asia and Africa. Millets possess rich nutrients and a climate resilience property when compared to the other cereals such as rice and wheat. Millet improvement using modern genetic and genomic tools is falling behind other cereal crops due to their cultivation being restricted to less developed countries. Genome editing tools have been successfully applied to major cereal crops and, as a result, many key traits have been introduced into rice, wheat and maize. However, genome editing tools have not yet been used for most millets although they possess rich nutrients. The foxtail millet is the only millet utilised up to now for genome editing works. Limited genomic resources and lack of efficient transformation systems may slow down genome editing in millets. As millets possess many important traits of agricultural importance, high resolution studies with genome editing tools will help to understand the specific mechanism and transfer such traits to major cereals in the future. This review covers the current status of genome editing studies in millets and discusses the future prospects of genome editing in millets to understand key traits of nutrient fortification and develop climate resilient crops in the future.
Collapse
|
44
|
Lyu M, Liu H, Waititu JK, Sun Y, Wang H, Fu J, Chen Y, Liu J, Ku L, Cheng X. TEAseq-based identification of 35,696 Dissociation insertional mutations facilitates functional genomic studies in maize. J Genet Genomics 2021; 48:961-971. [PMID: 34654681 DOI: 10.1016/j.jgg.2021.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 11/26/2022]
Abstract
In plants, transposable element (TE)-triggered mutants are important resources for functional genomic studies. However, conventional approaches for genome-wide identification of TE insertion sites are costly and laborious. This study developed a novel, rapid, and high-throughput TE insertion site identification workflow based on next-generation sequencing and named it Transposable Element Amplicon Sequencing (TEAseq). Using TEAseq, we systemically profiled the Dissociation (Ds) insertion sites in 1606 independent Ds insertional mutants in advanced backcross generation using K17 as background. The Ac-containing individuals were excluded for getting rid of the potential somatic insertions. We characterized 35,696 germinal Ds insertions tagging 10,323 genes, representing approximately 23.3% of the total genes in the maize genome. The insertion sites were presented in chromosomal hotspots around the ancestral Ds loci, and insertions occurred preferentially in gene body regions. Furthermore, we mapped a loss-of-function AGL2 gene using bulked segregant RNA-sequencing assay and proved that AGL2 is essential for seed development. We additionally established an open-access database named MEILAM for easy access to Ds insertional mutations. Overall, our results have provided an efficient workflow for TE insertion identification and rich sequence-indexed mutant resources for maize functional genomic studies.
Collapse
Affiliation(s)
- Mingjie Lyu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huafeng Liu
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Joram Kiriga Waititu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanhui Chen
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lixia Ku
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Xiliu Cheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
45
|
Potupureddi G, Balija V, Ballichatla S, C. G. G, Awalellu K, Lekkala S, Jallipalli K, M. G. G, Mohammad E, M M, Arutla S, Burka R, Gouri Shankar L, Ayyangari Phani P, Lella Venkata S, Raman Meenakshi S, B. C. V, Vemuri RB, Brahma K, Madnala R, Patel HK, Sonti RV, Madhav MS. Mutation resource of Samba Mahsuri revealed the presence of high extent of variations among key traits for rice improvement. PLoS One 2021; 16:e0258816. [PMID: 34669755 PMCID: PMC8528289 DOI: 10.1371/journal.pone.0258816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
To create novel variants for morphological, physiological, and biotic stress tolerance traits, induced mutations were created using Ethyl Methane Sulphonate (EMS) in the background of Samba Mahsuri (BPT 5204), a popular and mega rice variety of India. A population derived from 10, 500 M1 plants and their descendants were phenotyped for a wide range of traits leading to the identification of 124 mutants having variations in key agro-morphological traits, and 106 mutants exhibiting variation for physiological traits. Higher yield is the ultimate goal of crop improvement and we identified 574 mutants having higher yield compared to wild type by having better yield attributing traits. Further, a total of 50 mutants showed better panicle exertion phenotypes as compared to Samba Mahsuri leading to enhancement of yield. Upon rigorous screening for three major biotic stresses, 8 mutants showed enhanced tolerance for yellow stem borer (YSB), and 13 different mutants each showed enhanced tolerance for sheath blight (ShB) and bacterial leaf blight (BLB), respectively. In addition, screening at multiple locations that have diverse field isolates identified 3, 3, and 5 lines for tolerance to ShB, YSB and BLB, respectively. On the whole, 1231 desired mutant lines identified at M2 were forwarded to an advanced generation (M5). PCR based allele mining indicated that the BLB tolerant mutants have a different allele than the reported alleles for well-known genes affecting bacterial blight resistance. Whole genome re-sequencing revealed substantial variation in comparison to Samba Mahsuri. The lines showing enhanced tolerance to important biotic stresses (YSB, ShB and BLB) as well as several economically important traits are unique genetic resources which can be utilized for the identification of novel genes/alleles for different traits. The lines which have better agronomic features can be used as pre-breeding lines. The entire mutant population is maintained as a national resource for genetic improvement of the rice crop.
Collapse
Affiliation(s)
- Gopi Potupureddi
- Crop Improvement, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Vishalakshi Balija
- Crop Improvement, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Suneel Ballichatla
- Crop Improvement, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Gokulan C. G.
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Komal Awalellu
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Swathi Lekkala
- Crop Improvement, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Karteek Jallipalli
- Crop Improvement, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Gayathri M. G.
- Crop Improvement, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Ershad Mohammad
- Crop Improvement, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Milton M
- Crop Improvement, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Srikanth Arutla
- Crop Improvement, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Rajender Burka
- Crop Improvement, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Laha Gouri Shankar
- Crop Protection, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | | | | | | | - Viraktamath B. C.
- Crop Improvement, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | | | - Kranthi Brahma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Raju Madnala
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | |
Collapse
|
46
|
Cable J, Ronald PC, Voytas D, Zhang F, Levy AA, Takatsuka A, Arimura SI, Jacobsen SE, Toki S, Toda E, Gao C, Zhu JK, Boch J, Van Eck J, Mahfouz M, Andersson M, Fridman E, Weiss T, Wang K, Qi Y, Jores T, Adams T, Bagchi R. Plant genome engineering from lab to field-a Keystone Symposia report. Ann N Y Acad Sci 2021; 1506:35-54. [PMID: 34435370 DOI: 10.1111/nyas.14675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022]
Abstract
Facing the challenges of the world's food sources posed by a growing global population and a warming climate will require improvements in plant breeding and technology. Enhancing crop resiliency and yield via genome engineering will undoubtedly be a key part of the solution. The advent of new tools, such as CRIPSR/Cas, has ushered in significant advances in plant genome engineering. However, several serious challenges remain in achieving this goal. Among them are efficient transformation and plant regeneration for most crop species, low frequency of some editing applications, and high attrition rates. On March 8 and 9, 2021, experts in plant genome engineering and breeding from academia and industry met virtually for the Keystone eSymposium "Plant Genome Engineering: From Lab to Field" to discuss advances in genome editing tools, plant transformation, plant breeding, and crop trait development, all vital for transferring the benefits of novel technologies to the field.
Collapse
Affiliation(s)
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, and the Joint BioEnergy Institute, Davis, California
| | - Daniel Voytas
- Department of Genetics, Cell Biology and Development; Center for Precision Plant Genomics; and Center for Genome Engineering, University of Minnesota, St. Paul, Minnesota
| | - Feng Zhang
- College of Biological Sciences, University of Minnesota, St. Paul, Minnesota
| | - Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ayumu Takatsuka
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shin-Ichi Arimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Steven E Jacobsen
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research; Department of Molecular, Cell and Developmental Biology; and Howard Hughes Medical Institute, University of California, Los Angeles, California
| | - Seiichi Toki
- Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Erika Toda
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, and College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jens Boch
- Department of Plant Biotechnology, Leibniz Universität Hannover, Hannover, Germany
| | - Joyce Van Eck
- The Boyce Thompson Institute, Ithaca, New York, and Plant Breeding and Genetics Section, Cornell University, Ithaca, New York
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Eyal Fridman
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Trevor Weiss
- Department of Genetics, Cell Biology and Development; Center for Precision Plant Genomics; and Center for Genome Engineering, University of Minnesota, St. Paul, Minnesota
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, Iowa
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, and Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland
| | - Tobias Jores
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | | | - Rammyani Bagchi
- Department of Nanoscience, The University of North Carolina at Greensboro, Greensboro, North Carolina
| |
Collapse
|
47
|
Abstract
Early root growth is critical for plant establishment and survival. We have identified a molecular pathway required for helical root tip movement known as circumnutation. Here, we report a multiscale investigation of the regulation and function of this phenomenon. We identify key cell signaling events comprising interaction of the ethylene, cytokinin, and auxin hormone signaling pathways. We identify the gene Oryza sativa histidine kinase-1 (HK1) as well as the auxin influx carrier gene OsAUX1 as essential regulators of this process in rice. Robophysical modeling and growth challenge experiments indicate circumnutation is critical for seedling establishment in rocky soil, consistent with the long-standing hypothesis that root circumnutation facilitates growth past obstacles. Thus, the integration of robotics, physics, and biology has elucidated the functional importance of root circumnutation and uncovered the molecular mechanisms underlying its regulation.
Collapse
|
48
|
Chen TC, Chern M, Steinwand M, Ruan D, Wang Y, Isharani A, Ronald P. Paladin, a tyrosine phosphatase-like protein, is required for XA21-mediated immunity in rice. PLANT COMMUNICATIONS 2021; 2:100215. [PMID: 34327325 PMCID: PMC8299082 DOI: 10.1016/j.xplc.2021.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/16/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
XA21 encodes a rice immune receptor that confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo). XA21-mediated immunity is triggered by recognition of a small protein called RaxX-sY (required for activation of XA21-mediated immunity X, tyrosine-sulfated) secreted by Xoo. To identify components regulating XA21-mediated immunity, we generated and screened a mutant population of fast-neutron-mutagenized rice expressing Ubi:Myc-XA21 for those susceptible to Xoo. Here, we report the characterization of one of these rice mutants, named sxi2 (suppressor of XA21-mediated immunity-2). Whole-genome sequencing revealed that sxi2 carries a deletion of the PALADIN (PALD) gene encoding a protein with three putative protein tyrosine phosphatase-like domains (PTP-A, -B, and -C). Expression of PALD in the sxi2 genetic background was sufficient to complement the susceptible phenotype, which requires the catalytic cysteine of the PTP-A active site to restore resistance. PALD co-immunoprecipitated with the full-length XA21 protein, whose levels are positively regulated by the presence of the PALD transgene. Furthermore, we foundd that sxi2 retains many hallmarks of XA21-mediated immunity, similar to the wild type. These results reveal that PALD, a previously uncharacterized class of phosphatase, functions in rice innate immunity, and suggest that the conserved cysteine in the PTP-A domain of PALD is required for its immune function.
Collapse
|
49
|
Gupta C, Ramegowda V, Basu S, Pereira A. Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistance. Front Genet 2021; 12:652189. [PMID: 34249082 PMCID: PMC8264776 DOI: 10.3389/fgene.2021.652189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Gene regulatory networks underpin stress response pathways in plants. However, parsing these networks to prioritize key genes underlying a particular trait is challenging. Here, we have built the Gene Regulation and Association Network (GRAiN) of rice (Oryza sativa). GRAiN is an interactive query-based web-platform that allows users to study functional relationships between transcription factors (TFs) and genetic modules underlying abiotic-stress responses. We built GRAiN by applying a combination of different network inference algorithms to publicly available gene expression data. We propose a supervised machine learning framework that complements GRAiN in prioritizing genes that regulate stress signal transduction and modulate gene expression under drought conditions. Our framework converts intricate network connectivity patterns of 2160 TFs into a single drought score. We observed that TFs with the highest drought scores define the functional, structural, and evolutionary characteristics of drought resistance in rice. Our approach accurately predicted the function of OsbHLH148 TF, which we validated using in vitro protein-DNA binding assays and mRNA sequencing loss-of-function mutants grown under control and drought stress conditions. Our network and the complementary machine learning strategy lends itself to predicting key regulatory genes underlying other agricultural traits and will assist in the genetic engineering of desirable rice varieties.
Collapse
Affiliation(s)
- Chirag Gupta
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Venkategowda Ramegowda
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Supratim Basu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
50
|
Castano-Duque L, Ghosal S, Quilloy FA, Mitchell-Olds T, Dixit S. An epigenetic pathway in rice connects genetic variation to anaerobic germination and seedling establishment. PLANT PHYSIOLOGY 2021; 186:1042-1059. [PMID: 33638990 PMCID: PMC8195528 DOI: 10.1093/plphys/kiab100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Rice production is shifting from transplanting seedlings to direct sowing of seeds. Following heavy rains, directly sown seeds may need to germinate under anaerobic environments, but most rice (Oryza sativa) genotypes cannot survive these conditions. To identify the genetic architecture of complex traits, we quantified percentage anaerobic germination (AG) in 2,700 (wet-season) and 1,500 (dry-season) sequenced rice genotypes and performed genome-wide association studies (GWAS) using 693,502 single nucleotide polymorphisms. This was followed by post-GWAS analysis with a generalized SNP-to-gene set analysis, meta-analysis, and network analysis. We determined that percentage AG is intermediate-to-high among indica subpopulations, and AG is a polygenic trait associated with transcription factors linked to ethylene responses or genes involved in metabolic processes that are known to be associated with AG. Our post-GWAS analysis identified several genes involved in a wide variety of metabolic processes. We subsequently performed functional analysis focused on the small RNA and methylation pathways. We selected CLASSY 1 (CLSY1), a gene involved in the RNA-directed DNA methylation (RdDm) pathway, for further analyses under AG and found several lines of evidence that CLSY1 influences AG. We propose that the RdDm pathway plays a role in rice responses to water status during germination and seedling establishment developmental stages.
Collapse
Affiliation(s)
| | - Sharmistha Ghosal
- Rice Breeding Platform, International Rice Research Institute. Pili Drive, Los Baños, Laguna 4031, Philippines
| | - Fergie A Quilloy
- Rice Breeding Platform, International Rice Research Institute. Pili Drive, Los Baños, Laguna 4031, Philippines
| | | | - Shalabh Dixit
- Rice Breeding Platform, International Rice Research Institute. Pili Drive, Los Baños, Laguna 4031, Philippines
| |
Collapse
|