1
|
Wu S, Zhang Y, Luzarowska U, Yang L, Salem MA, Thirumalaikumar VP, Sade N, Galperin VE, Fernie A, Sampathkumar A, Bershtein S, Fusari CM, Brotman Y. The homeostasis of β-alanine is key for Arabidopsis reproductive growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70134. [PMID: 40181510 PMCID: PMC11969031 DOI: 10.1111/tpj.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
β-Alanine, an abundant non-proteinogenic amino acid, acts as a precursor for coenzyme A and plays a role in various stress responses. However, a comprehensive understanding of its metabolism in plants remains incomplete. Previous metabolic genome-wide association studies (mGWAS) identified ALANINE:GLYOXYLATE AMINOTRANSFERASE2 (AGT2, AT4G39660) linked to β-alanine levels in Arabidopsis under normal conditions. In this study, we aimed to deepen our insights into β-alanine regulation by conducting mGWAS under two contrasting environmental conditions: control (12 h photoperiod, 21°C, 150 μmol m-2 sec-1) and stress (harvested after 1820 min at 32°C and darkness). We identified two highly significant quantitative trait loci (QTL) for β-alanine, including the AGT2 locus associated in both environments and ALDEHYDE DEHYDROGENASE6B2 (ALDH6B2, AT2G14170) associated only under stress conditions. A coexpression-correlation network revealed that the regulatory pathway involving β-alanine levels, AGT2, and ALDH6B2 connects the branched chained amino acid (BCAA) degradation through the propionate pathway. Metabolic profiles of AGT2 overexpression (OE) and knock-out (KO) lines (agt2) across various organs and developmental stages established the critical role of AGT2 in β-alanine metabolism. This work underscores the importance of β-alanine homeostasis for proper growth and development in Arabidopsis.
Collapse
Affiliation(s)
- Si Wu
- Department of Life SciencesBen Gurion University of the NegevBeershevaIsrael
- Max Planck Institute of Molecular Plant PhysiologyAm MühlenbergPotsdam‐Golm114476Germany
- Present address:
Computational Oncology, AbbVieSouth San FranciscoCalifornia94080USA
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant PhysiologyAm MühlenbergPotsdam‐Golm114476Germany
| | - Urszula Luzarowska
- Department of Life SciencesBen Gurion University of the NegevBeershevaIsrael
- Max Planck Institute of Molecular Plant PhysiologyAm MühlenbergPotsdam‐Golm114476Germany
| | - Lei Yang
- Max Planck Institute of Molecular Plant PhysiologyAm MühlenbergPotsdam‐Golm114476Germany
| | - Mohamed A. Salem
- Max Planck Institute of Molecular Plant PhysiologyAm MühlenbergPotsdam‐Golm114476Germany
| | | | - Nir Sade
- School of Plant Sciences and Food SecurityInstitute for Cereal Crops Research, Tel Aviv UniversityTel Aviv69978Israel
| | - Vadim E. Galperin
- BLAVATNIK CENTER for Drug DiscoveryTel Aviv UniversityTel Aviv69978Israel
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant PhysiologyAm MühlenbergPotsdam‐Golm114476Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant PhysiologyAm MühlenbergPotsdam‐Golm114476Germany
| | - Shimon Bershtein
- Department of Life SciencesBen Gurion University of the NegevBeershevaIsrael
| | - Corina M. Fusari
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI‐CONICET‐UNR)Suipacha 570RosarioS2000LRJArgentina
| | - Yariv Brotman
- School of Plant Sciences and Food SecurityInstitute for Cereal Crops Research, Tel Aviv UniversityTel Aviv69978Israel
| |
Collapse
|
2
|
Xue Z, Ferrand M, Gilbault E, Zurfluh O, Clément G, Marmagne A, Huguet S, Jiménez-Gómez JM, Krapp A, Meyer C, Loudet O. Natural variation in response to combined water and nitrogen deficiencies in Arabidopsis. THE PLANT CELL 2024; 36:3378-3398. [PMID: 38916908 PMCID: PMC11371182 DOI: 10.1093/plcell/koae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 01/24/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024]
Abstract
Understanding plant responses to individual stresses does not mean that we understand real-world situations, where stresses usually combine and interact. These interactions arise at different levels, from stress exposure to the molecular networks of the stress response. Here, we built an in-depth multiomic description of plant responses to mild water (W) and nitrogen (N) limitations, either individually or combined, among 5 genetically different Arabidopsis (Arabidopsis thaliana) accessions. We highlight the different dynamics in stress response through integrative traits such as rosette growth and the physiological status of the plants. We also used transcriptomic and metabolomic profiling during a stage when the plant response was stabilized to determine the wide diversity in stress-induced changes among accessions, highlighting the limited reality of a "universal" stress response. The main effect of the W × N interaction was an attenuation of the N-deficiency syndrome when combined with mild drought, but to a variable extent depending on the accession. Other traits subject to W × N interactions are often accession specific. Multiomic analyses identified a subset of transcript-metabolite clusters that are critical to stress responses but essentially variable according to the genotype factor. Including intraspecific diversity in our descriptions of plant stress response places our findings in perspective.
Collapse
Affiliation(s)
- Zeyun Xue
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Marina Ferrand
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Elodie Gilbault
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Olivier Zurfluh
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
| | - José M Jiménez-Gómez
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Anne Krapp
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Christian Meyer
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Olivier Loudet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| |
Collapse
|
3
|
Naake T, Zhu F, Alseekh S, Scossa F, Perez de Souza L, Borghi M, Brotman Y, Mori T, Nakabayashi R, Tohge T, Fernie AR. Genome-wide association studies identify loci controlling specialized seed metabolites in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1705-1721. [PMID: 37758174 PMCID: PMC10904349 DOI: 10.1093/plphys/kiad511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Plants synthesize specialized metabolites to facilitate environmental and ecological interactions. During evolution, plants diversified in their potential to synthesize these metabolites. Quantitative differences in metabolite levels of natural Arabidopsis (Arabidopsis thaliana) accessions can be employed to unravel the genetic basis for metabolic traits using genome-wide association studies (GWAS). Here, we performed metabolic GWAS on seeds of a panel of 315 A. thaliana natural accessions, including the reference genotypes C24 and Col-0, for polar and semi-polar seed metabolites using untargeted ultra-performance liquid chromatography-mass spectrometry. As a complementary approach, we performed quantitative trait locus (QTL) mapping of near-isogenic introgression lines between C24 and Col-0 for specific seed specialized metabolites. Besides common QTL between seeds and leaves, GWAS revealed seed-specific QTL for specialized metabolites, indicating differences in the genetic architecture of seeds and leaves. In seeds, aliphatic methylsulfinylalkyl and methylthioalkyl glucosinolates associated with the ALKENYL HYDROXYALKYL PRODUCING loci (GS-ALK and GS-OHP) on chromosome 4 containing alkenyl hydroxyalkyl producing 2 (AOP2) and 3 (AOP3) or with the GS-ELONG locus on chromosome 5 containing methylthioalkyl malate synthase (MAM1) and MAM3. We detected two unknown sulfur-containing compounds that were also mapped to these loci. In GWAS, some of the annotated flavonoids (kaempferol 3-O-rhamnoside-7-O-rhamnoside, quercetin 3-O-rhamnoside-7-O-rhamnoside) were mapped to transparent testa 7 (AT5G07990), encoding a cytochrome P450 75B1 monooxygenase. Three additional mass signals corresponding to quercetin-containing flavonols were mapped to UGT78D2 (AT5G17050). The association of the loci and associating metabolic features were functionally verified in knockdown mutant lines. By performing GWAS and QTL mapping, we were able to leverage variation of natural populations and parental lines to study seed specialized metabolism. The GWAS data set generated here is a high-quality resource that can be investigated in further studies.
Collapse
Affiliation(s)
- Thomas Naake
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Saleh Alseekh
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Federico Scossa
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Research Center for Genomics and Bioinformatics (CREA-GB), Council for Agricultural Research and Economics, Via Ardeatina 546, 00178 Rome, Italy
| | - Leonardo Perez de Souza
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Monica Borghi
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84321-5305, USA
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Be’er Sheva, Israel
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Tsurumi, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Takayuki Tohge
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Alisdair R Fernie
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
4
|
Guo X, Liang R, Lou S, Hou J, Chen L, Liang X, Feng X, Yao Y, Liu J, Liu H. Natural variation in the SVP contributes to the pleiotropic adaption of Arabidopsis thaliana across contrasted habitats. J Genet Genomics 2023; 50:993-1003. [PMID: 37633338 DOI: 10.1016/j.jgg.2023.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Coordinated plant adaptation involves the interplay of multiple traits driven by habitat-specific selection pressures. Pleiotropic effects, wherein genetic variants of a single gene control multiple traits, can expedite such adaptations. Until present, only a limited number of genes have been reported to exhibit pleiotropy. Here, we create a recombinant inbred line (RIL) population derived from two Arabidopsis thaliana (A. thaliana) ecotypes originating from divergent habitats. Using this RIL population, we identify an allelic variation in a MADS-box transcription factor, SHORT VEGETATIVE PHASE (SVP), which exerts a pleiotropic effect on leaf size and drought-versus-humidity tolerance. Further investigation reveals that a natural null variant of the SVP protein disrupts its normal regulatory interactions with target genes, including GRF3, CYP707A1/3, and AtBG1, leading to increased leaf size, enhanced tolerance to humid conditions, and changes in flowering time of humid conditions in A. thaliana. Remarkably, polymorphic variations in this gene have been traced back to early A. thaliana populations, providing a genetic foundation and plasticity for subsequent colonization of diverse habitats by influencing multiple traits. These findings advance our understanding of how plants rapidly adapt to changing environments by virtue of the pleiotropic effects of individual genes on multiple trait alterations.
Collapse
Affiliation(s)
- Xiang Guo
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ruyun Liang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shangling Lou
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jing Hou
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liyang Chen
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin Liang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaoqin Feng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yingjun Yao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jianquan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Huanhuan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
5
|
Luzarowska U, Ruß AK, Joubès J, Batsale M, Szymański J, P Thirumalaikumar V, Luzarowski M, Wu S, Zhu F, Endres N, Khedhayir S, Schumacher J, Jasinska W, Xu K, Correa Cordoba SM, Weil S, Skirycz A, Fernie AR, Li-Beisson Y, Fusari CM, Brotman Y. Hello darkness, my old friend: 3-KETOACYL-COENZYME A SYNTHASE4 is a branch point in the regulation of triacylglycerol synthesis in Arabidopsis thaliana. THE PLANT CELL 2023; 35:1984-2005. [PMID: 36869652 DOI: 10.1093/plcell/koad059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 05/30/2023]
Abstract
Plant lipids are important as alternative sources of carbon and energy when sugars or starch are limited. Here, we applied combined heat and darkness or extended darkness to a panel of ∼300 Arabidopsis (Arabidopsis thaliana) accessions to study lipid remodeling under carbon starvation. Natural allelic variation at 3-KETOACYL-COENZYME A SYNTHASE4 (KCS4), a gene encoding an enzyme involved in very long chain fatty acid (VLCFA) synthesis, underlies the differential accumulation of polyunsaturated triacylglycerols (puTAGs) under stress. Ectopic expression of KCS4 in yeast and plants proved that KCS4 is a functional enzyme localized in the endoplasmic reticulum with specificity for C22 and C24 saturated acyl-CoA. Allelic mutants and transient overexpression in planta revealed the differential role of KCS4 alleles in VLCFA synthesis and leaf wax coverage, puTAG accumulation, and biomass. Moreover, the region harboring KCS4 is under high selective pressure and allelic variation at KCS4 correlates with environmental parameters from the locales of Arabidopsis accessions. Our results provide evidence that KCS4 plays a decisive role in the subsequent fate of fatty acids released from chloroplast membrane lipids under carbon starvation. This work sheds light on both plant response mechanisms and the evolutionary events shaping the lipidome under carbon starvation.
Collapse
Affiliation(s)
- Urszula Luzarowska
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Anne-Kathrin Ruß
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, University Bordeaux, F-33140 Villenave d'Ornon, France
| | - Marguerite Batsale
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, University Bordeaux, F-33140 Villenave d'Ornon, France
| | - Jędrzej Szymański
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, 06466 Seeland, Germany
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany
| | | | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Feng Zhu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Niklas Endres
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Sarah Khedhayir
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Julia Schumacher
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Weronika Jasinska
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Ke Xu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Simy Weil
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair Robert Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Yonghua Li-Beisson
- CEA, CNRS, BIAM, Institute de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille Univ., F-13108 Saint Paul-Lez-Durance, France
| | - Corina M Fusari
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET-UNR), Suipacha 570, S2000LRJ Rosario, Argentina
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
6
|
Bulut M, Alseekh S, Fernie AR. Natural variation of respiration-related traits in plants. PLANT PHYSIOLOGY 2023; 191:2120-2132. [PMID: 36546766 PMCID: PMC10069898 DOI: 10.1093/plphys/kiac593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Plant respiration is one of the greatest global metabolic fluxes, but rates of respiration vary massively both within different cell types as well as between different individuals and different species. Whilst this is well known, few studies have detailed population-level variation of respiration until recently. The last 20 years have seen a renaissance in studies of natural variance. In this review, we describe how experimental breeding populations and collections of large populations of accessions can be used to determine the genetic architecture of plant traits. We further detail how these approaches have been used to study the rate of respiration per se as well as traits that are intimately associated with respiration. The review highlights specific breakthroughs in these areas but also concludes that the approach should be more widely adopted in the study of respiration per se as opposed to the more frequently studied respiration-related traits.
Collapse
Affiliation(s)
- Mustafa Bulut
- Department of Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Department of Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | | |
Collapse
|
7
|
Osnato M. From the archives: A rice grain size regulatory module, GWAS of primary plant metabolism, and promoter trapping of polarity markers. THE PLANT CELL 2022; 34:3485-3486. [PMID: 35921149 PMCID: PMC9516034 DOI: 10.1093/plcell/koac229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
|
8
|
Gawarecka K, Siwinska J, Poznanski J, Onysk A, Surowiecki P, Sztompka K, Surmacz L, Ahn JH, Korte A, Swiezewska E, Ihnatowicz A. cis-prenyltransferase 3 and α/β-hydrolase are new determinants of dolichol accumulation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:479-495. [PMID: 34778961 PMCID: PMC9300173 DOI: 10.1111/pce.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Dolichols (Dols), ubiquitous components of living organisms, are indispensable for cell survival. In plants, as well as other eukaryotes, Dols are crucial for post-translational protein glycosylation, aberration of which leads to fatal metabolic disorders in humans and male sterility in plants. Until now, the mechanisms underlying Dol accumulation remain elusive. In this study, we have analysed the natural variation of the accumulation of Dols and six other isoprenoids among more than 120 Arabidopsis thaliana accessions. Subsequently, by combining QTL and GWAS approaches, we have identified several candidate genes involved in the accumulation of Dols, polyprenols, plastoquinone and phytosterols. The role of two genes implicated in the accumulation of major Dols in Arabidopsis-the AT2G17570 gene encoding a long searched for cis-prenyltransferase (CPT3) and the AT1G52460 gene encoding an α/β-hydrolase-is experimentally confirmed. These data will help to generate Dol-enriched plants which might serve as a remedy for Dol-deficiency in humans.
Collapse
Affiliation(s)
- Katarzyna Gawarecka
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
- Department of Life SciencesKorea UniversitySeoulKorea
| | - Joanna Siwinska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of GdanskUniversity of GdanskGdanskPoland
| | - Jaroslaw Poznanski
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| | - Agnieszka Onysk
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| | | | - Karolina Sztompka
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| | - Liliana Surmacz
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| | - Ji Hoon Ahn
- Department of Life SciencesKorea UniversitySeoulKorea
| | - Arthur Korte
- Center for Computational and Theoretical BiologyUniversity of WurzburgWurzburgGermany
| | - Ewa Swiezewska
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| | - Anna Ihnatowicz
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of GdanskUniversity of GdanskGdanskPoland
| |
Collapse
|
9
|
Zhu F, Alseekh S, Koper K, Tong H, Nikoloski Z, Naake T, Liu H, Yan J, Brotman Y, Wen W, Maeda H, Cheng Y, Fernie AR. Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. THE PLANT CELL 2022; 34:557-578. [PMID: 34623442 PMCID: PMC8774053 DOI: 10.1093/plcell/koab251] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/05/2021] [Indexed: 05/31/2023]
Abstract
Dark-induced senescence provokes profound metabolic shifts to recycle nutrients and to guarantee plant survival. To date, research on these processes has largely focused on characterizing mutants deficient in individual pathways. Here, we adopted a time-resolved genome-wide association-based approach to characterize dark-induced senescence by evaluating the photochemical efficiency and content of primary and lipid metabolites at the beginning, or after 3 or 6 days in darkness. We discovered six patterns of metabolic shifts and identified 215 associations with 81 candidate genes being involved in this process. Among these associations, we validated the roles of four genes associated with glycine, galactinol, threonine, and ornithine levels. We also demonstrated the function of threonine and galactinol catabolism during dark-induced senescence. Intriguingly, we determined that the association between tyrosine contents and TYROSINE AMINOTRANSFERASE 1 influences enzyme activity of the encoded protein and transcriptional activity of the gene under normal and dark conditions, respectively. Moreover, the single-nucleotide polymorphisms affecting the expression of THREONINE ALDOLASE 1 and the amino acid transporter gene AVT1B, respectively, only underlie the variation in threonine and glycine levels in the dark. Taken together, these results allow us to present a very detailed model of the metabolic aspects of dark-induced senescence, as well as the process itself.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Kaan Koper
- Department of Botany, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Hao Tong
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Zoran Nikoloski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Thomas Naake
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna 1030, Austria
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yariv Brotman
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hiroshi Maeda
- Department of Botany, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
10
|
Busoms S, Pérez-Martín L, Llimós M, Poschenrieder C, Martos S. Genome-Wide Association Study Reveals Key Genes for Differential Lead Accumulation and Tolerance in Natural Arabidopsis thaliana Accessions. FRONTIERS IN PLANT SCIENCE 2021; 12:689316. [PMID: 34421943 PMCID: PMC8377763 DOI: 10.3389/fpls.2021.689316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Soil contamination by lead (Pb) has become one of the major ecological threats to the environment. Understanding the mechanisms of Pb transport and deposition in plants is of great importance to achieve a global Pb reduction. We exposed a collection of 360 Arabidopsis thaliana natural accessions to a Pb-polluted soil. Germination rates, growth, and leaf Pb concentrations showed extensive variation among accessions. These phenotypic data were subjected to genome wide association studies (GWAs) and we found a significant association on chromosome 1 for low leaf Pb accumulation. Genes associated with significant SNP markers were evaluated and we selected EXTENSIN18 (EXT18) and TLC (TRAM-LAG1-CLN8) as candidates for having a role in Pb homeostasis. Six Pb-tolerant accessions, three of them exhibiting low leaf Pb content, and three of them with high leaf Pb content; two Pb-sensitive accessions; two knockout T-DNA lines of GWAs candidate genes (ext18, tlc); and Col-0 were screened under control and high-Pb conditions. The relative expression of EXT18, TLC, and other genes described for being involved in Pb tolerance was also evaluated. Analysis of Darwinian fitness, root and leaf ionome, and TEM images revealed that Pb-tolerant accessions employ two opposing strategies: (1) low translocation of Pb and its accumulation into root cell walls and vacuoles, or (2) high translocation of Pb and its efflux to inactive organelles or intracellular spaces. Plants using the first strategy exhibited higher expression of EXT18 and HMA3, thicker root cell walls and Pb vacuolar sequestration, suggesting that these genes may contribute to the deposition of Pb in the roots. On the other hand, plants translocating high amounts of Pb showed upregulation of TLC and ABC transporters, indicating that these plants were able to properly efflux Pb in the aerial tissues. We conclude that EXT18 and TLC upregulation enhances Pb tolerance promoting its sequestration: EXT18 favors the thickening of the cell walls improving Pb accumulation in roots and decreasing its toxicity, while TLC facilitates the formation of dictyosome vesicles and the Pb encapsulation in leaves. These findings are relevant for the design of phytoremediation strategies and environment restoration.
Collapse
Affiliation(s)
- Sílvia Busoms
- Plant Physiology Laboratory, Faculty of Bioscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Pérez-Martín
- Plant Physiology Laboratory, Faculty of Bioscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miquel Llimós
- Plant Physiology Laboratory, Faculty of Bioscience, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Faculty of Bioscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soledad Martos
- Plant Physiology Laboratory, Faculty of Bioscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Genome-wide association studies: assessing trait characteristics in model and crop plants. Cell Mol Life Sci 2021; 78:5743-5754. [PMID: 34196733 PMCID: PMC8316211 DOI: 10.1007/s00018-021-03868-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/19/2023]
Abstract
GWAS involves testing genetic variants across the genomes of many individuals of a population to identify genotype–phenotype association. It was initially developed and has proven highly successful in human disease genetics. In plants genome-wide association studies (GWAS) initially focused on single feature polymorphism and recombination and linkage disequilibrium but has now been embraced by a plethora of different disciplines with several thousand studies being published in model and crop species within the last decade or so. Here we will provide a comprehensive review of these studies providing cases studies on biotic resistance, abiotic tolerance, yield associated traits, and metabolic composition. We also detail current strategies of candidate gene validation as well as the functional study of haplotypes. Furthermore, we provide a critical evaluation of the GWAS strategy and its alternatives as well as future perspectives that are emerging with the emergence of pan-genomic datasets.
Collapse
|
12
|
Arouisse B, Theeuwen TPJM, van Eeuwijk FA, Kruijer W. Improving Genomic Prediction Using High-Dimensional Secondary Phenotypes. Front Genet 2021; 12:667358. [PMID: 34108993 PMCID: PMC8181460 DOI: 10.3389/fgene.2021.667358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
In the past decades, genomic prediction has had a large impact on plant breeding. Given the current advances of high-throughput phenotyping and sequencing technologies, it is increasingly common to observe a large number of traits, in addition to the target trait of interest. This raises the important question whether these additional or “secondary” traits can be used to improve genomic prediction for the target trait. With only a small number of secondary traits, this is known to be the case, given sufficiently high heritabilities and genetic correlations. Here we focus on the more challenging situation with a large number of secondary traits, which is increasingly common since the arrival of high-throughput phenotyping. In this case, secondary traits are usually incorporated through additional relatedness matrices. This approach is however infeasible when secondary traits are not measured on the test set, and cannot distinguish between genetic and non-genetic correlations. An alternative direction is to extend the classical selection indices using penalized regression. So far, penalized selection indices have not been applied in a genomic prediction setting, and require plot-level data in order to reliably estimate genetic correlations. Here we aim to overcome these limitations, using two novel approaches. Our first approach relies on a dimension reduction of the secondary traits, using either penalized regression or random forests (LS-BLUP/RF-BLUP). We then compute the bivariate GBLUP with the dimension reduction as secondary trait. For simulated data (with available plot-level data), we also use bivariate GBLUP with the penalized selection index as secondary trait (SI-BLUP). In our second approach (GM-BLUP), we follow existing multi-kernel methods but replace secondary traits by their genomic predictions, with the advantage that genomic prediction is also possible when secondary traits are only measured on the training set. For most of our simulated data, SI-BLUP was most accurate, often closely followed by RF-BLUP or LS-BLUP. In real datasets, involving metabolites in Arabidopsis and transcriptomics in maize, no method could substantially improve over univariate prediction when secondary traits were only available on the training set. LS-BLUP and RF-BLUP were most accurate when secondary traits were available also for the test set.
Collapse
Affiliation(s)
- Bader Arouisse
- Biometris, Wageningen University and Research, Wageningen, Netherlands
| | - Tom P J M Theeuwen
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Netherlands
| | | | - Willem Kruijer
- Biometris, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
13
|
Characterization of effects of genetic variants via genome-scale metabolic modelling. Cell Mol Life Sci 2021; 78:5123-5138. [PMID: 33950314 PMCID: PMC8254712 DOI: 10.1007/s00018-021-03844-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Genome-scale metabolic networks for model plants and crops in combination with approaches from the constraint-based modelling framework have been used to predict metabolic traits and design metabolic engineering strategies for their manipulation. With the advances in technologies to generate large-scale genotyping data from natural diversity panels and other populations, genome-wide association and genomic selection have emerged as statistical approaches to determine genetic variants associated with and predictive of traits. Here, we review recent advances in constraint-based approaches that integrate genetic variants in genome-scale metabolic models to characterize their effects on reaction fluxes. Since some of these approaches have been applied in organisms other than plants, we provide a critical assessment of their applicability particularly in crops. In addition, we further dissect the inferred effects of genetic variants with respect to reaction rate constants, abundances of enzymes, and concentrations of metabolites, as main determinants of reaction fluxes and relate them with their combined effects on complex traits, like growth. Through this systematic review, we also provide a roadmap for future research to increase the predictive power of statistical approaches by coupling them with mechanistic models of metabolism.
Collapse
|
14
|
Zhang W, Alseekh S, Zhu X, Zhang Q, Fernie AR, Kuang H, Wen W. Dissection of the domestication-shaped genetic architecture of lettuce primary metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:613-630. [PMID: 32772408 DOI: 10.1111/tpj.14950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 05/11/2023]
Abstract
Lettuce (Lactuca sativa L.) is an important vegetable crop species worldwide. The primary metabolism of this species is essential for its growth, development and reproduction as well as providing a considerable direct source of energy and nutrition for humans. Here, through investigating 77 primary metabolites in 189 accessions including all major horticultural types and wild lettuce L. serriola we showed that the metabolites in L. serriola were different from those in cultivated lettuce. The findings were consistent with the demographic model of lettuce and supported a single domestication event for this species. Selection signals among these metabolic traits were detected. Specifically, galactinol, malate, quinate and threonate were significantly affected by the domestication process and cultivar differentiation of lettuce. Galactinol and raffinose might have been selected during stem lettuce cultivation as an adaption to the local environments in China. Furthermore, we identified 154 loci significantly associated with the level of 51 primary metabolites. Three genes (LG8749721, LG8763094 and LG5482522) responsible for the levels of galactinol, raffinose, quinate and chlorogenic acid were further dissected, which may have been the target of domestication and/or affected by local adaptation. Additionally, our findings strongly suggest that human selection resulted in reduced quinate and chlorogenic acid levels in cultivated lettuce. Our study thus provides beneficial genetic resources for lettuce quality improvement and sheds light on the domestication and evolution of this important leafy green.
Collapse
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Xiang Zhu
- Thermo Fisher Scientific, Shanghai, 201206, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
15
|
Natural variation at FLM splicing has pleiotropic effects modulating ecological strategies in Arabidopsis thaliana. Nat Commun 2020; 11:4140. [PMID: 32811829 PMCID: PMC7435183 DOI: 10.1038/s41467-020-17896-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/16/2020] [Indexed: 01/06/2023] Open
Abstract
Investigating the evolution of complex phenotypes and the underlying molecular bases of their variation is critical to understand how organisms adapt to their environment. Applying classical quantitative genetics on a segregating population derived from a Can-0xCol-0 cross, we identify the MADS-box transcription factor FLOWERING LOCUS M (FLM) as a player of the phenotypic variation in plant growth and color. We show that allelic variation at FLM modulates plant growth strategy along the leaf economics spectrum, a trade-off between resource acquisition and resource conservation, observable across thousands of plant species. Functional differences at FLM rely on a single intronic substitution, disturbing transcript splicing and leading to the accumulation of non-functional FLM transcripts. Associations between this substitution and phenotypic and climatic data across Arabidopsis natural populations, show how noncoding genetic variation at a single gene might be adaptive through pleiotropic effects. FLOWERING LOCUS M (FLM) is known as a repressor of Arabidopsis flowering. Here, the authors show that a single intronic substitution of FLM modulates leaf color and plant growth strategy along the leaf economics spectrum, as well as plays a role in plant adaptation.
Collapse
|
16
|
The Gene scb-1 Underlies Variation in Caenorhabditis elegans Chemotherapeutic Responses. G3-GENES GENOMES GENETICS 2020; 10:2353-2364. [PMID: 32385045 PMCID: PMC7341127 DOI: 10.1534/g3.120.401310] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pleiotropy, the concept that a single gene controls multiple distinct traits, is prevalent in most organisms and has broad implications for medicine and agriculture. The identification of the molecular mechanisms underlying pleiotropy has the power to reveal previously unknown biological connections between seemingly unrelated traits. Additionally, the discovery of pleiotropic genes increases our understanding of both genetic and phenotypic complexity by characterizing novel gene functions. Quantitative trait locus (QTL) mapping has been used to identify several pleiotropic regions in many organisms. However, gene knockout studies are needed to eliminate the possibility of tightly linked, non-pleiotropic loci. Here, we use a panel of 296 recombinant inbred advanced intercross lines of Caenorhabditis elegans and a high-throughput fitness assay to identify a single large-effect QTL on the center of chromosome V associated with variation in responses to eight chemotherapeutics. We validate this QTL with near-isogenic lines and pair genome-wide gene expression data with drug response traits to perform mediation analysis, leading to the identification of a pleiotropic candidate gene, scb-1, for some of the eight chemotherapeutics. Using deletion strains created by genome editing, we show that scb-1, which was previously implicated in response to bleomycin, also underlies responses to other double-strand DNA break-inducing chemotherapeutics. This finding provides new evidence for the role of scb-1 in the nematode drug response and highlights the power of mediation analysis to identify causal genes.
Collapse
|
17
|
Basu D, Haswell ES. The Mechanosensitive Ion Channel MSL10 Potentiates Responses to Cell Swelling in Arabidopsis Seedlings. Curr Biol 2020; 30:2716-2728.e6. [PMID: 32531281 DOI: 10.1016/j.cub.2020.05.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 01/06/2023]
Abstract
The ability to respond to unanticipated increases in volume is a fundamental property of cells, essential for cellular integrity in the face of osmotic challenges. Plants must manage cell swelling during flooding, rehydration, and pathogen invasion-but little is known about the mechanisms by which this occurs. It has been proposed that plant cells could sense and respond to cell swelling through the action of mechanosensitive ion channels. Here, we characterize a new assay to study the effects of cell swelling on Arabidopsis thaliana seedlings and to test the contributions of the mechanosensitive ion channel MscS-like10 (MSL10). The assay incorporates both cell wall softening and hypo-osmotic treatment to induce cell swelling. We show that MSL10 is required for several previously demonstrated responses to hypo-osmotic shock, including a cytoplasmic calcium transient within the first few seconds, accumulation of ROS within the first 30 min, and increased transcript levels of mechano-inducible genes within 60 min. We also show that cell swelling induces programmed cell death within 3 h in a MSL10-dependent manner. Finally, we show that MSL10 is unable to potentiate cell swelling-induced death when phosphomimetic residues are introduced into its soluble N terminus. Thus, MSL10 functions as a phospho-regulated membrane-based sensor that connects the perception of cell swelling to a downstream signaling cascade and programmed cell death.
Collapse
Affiliation(s)
- Debarati Basu
- NSF Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Elizabeth S Haswell
- NSF Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
18
|
Harfouche AL, Jacobson DA, Kainer D, Romero JC, Harfouche AH, Scarascia Mugnozza G, Moshelion M, Tuskan GA, Keurentjes JJ, Altman A. Accelerating Climate Resilient Plant Breeding by Applying Next-Generation Artificial Intelligence. Trends Biotechnol 2019; 37:1217-1235. [DOI: 10.1016/j.tibtech.2019.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
|
19
|
Decker D, Kleczkowski LA. UDP-Sugar Producing Pyrophosphorylases: Distinct and Essential Enzymes With Overlapping Substrate Specificities, Providing de novo Precursors for Glycosylation Reactions. FRONTIERS IN PLANT SCIENCE 2019; 9:1822. [PMID: 30662444 PMCID: PMC6329318 DOI: 10.3389/fpls.2018.01822] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/23/2018] [Indexed: 05/02/2023]
Abstract
Nucleotide sugars are the key precursors for all glycosylation reactions and are required both for oligo- and polysaccharides synthesis and protein and lipid glycosylation. Among all nucleotide sugars, UDP-sugars are the most important precursors for biomass production in nature (e.g., synthesis of cellulose, hemicellulose, and pectins for cell wall production). Several recent studies have already suggested a potential role for UDP-Glc in plant growth and development, and UDP-Glc has also been suggested as a signaling molecule, in addition to its precursor function. In this review, we will cover primary mechanisms of formation of UDP-sugars, by focusing on UDP-sugar metabolizing pyrophosphorylases. The pyrophosphorylases can be divided into three families: UDP-Glc pyrophosphorylase (UGPase), UDP-sugar pyrophosphorylase (USPase), and UDP-N-acetyl glucosamine pyrophosphorylase (UAGPase), which can be distinguished both by their amino acid sequences and by differences in substrate specificity. Substrate specificities of these enzymes are discussed, along with structure-function relationships, based on their crystal structures and homology modeling. Earlier studies with transgenic plants have revealed that each of the pyrophosphorylases is essential for plant survival, and their loss or a decrease in activity results in reproductive impairment. This constitutes a problem when studying exact in vivo roles of the enzymes using classical reverse genetics approaches. Thus, strategies involving the use of specific inhibitors (reverse chemical genetics) are also discussed. Further characterization of the properties/roles of pyrophosphorylases should address fundamental questions dealing with mechanisms and control of carbohydrate synthesis and may allow to identify targets for manipulation of biomass production in plants.
Collapse
Affiliation(s)
| | - Leszek A. Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
20
|
Augustijn D, van Tol N, van der Zaal BJ, de Groot HJM, Alia A. High-resolution magic angle spinning NMR studies for metabolic characterization of Arabidopsis thaliana mutants with enhanced growth characteristics. PLoS One 2018; 13:e0209695. [PMID: 30596736 PMCID: PMC6312362 DOI: 10.1371/journal.pone.0209695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023] Open
Abstract
Developing smart crops which yield more biomass to meet the increasing demand for plant biomass has been an active area of research in last few decades. We investigated metabolic alterations in two Arabidopsis thaliana mutants with enhanced growth characteristics that were previously obtained from a collection of plant lines expressing artificial transcription factors. The metabolic profiles were obtained directly from intact Arabidopsis leaves using high-resolution magic angle spinning (HR-MAS) NMR. Multivariate analysis showed significant alteration of metabolite levels between the mutants and the wild-type Col-0. Interestingly, most of the metabolites that were reduced in the faster-growing mutants are generally involved in the defence against stress. These results suggest a growth-defence trade-off in the phenotypically engineered mutants. Our results further corroborate the idea that plant growth can be enhanced by suppressing defence pathways.
Collapse
Affiliation(s)
| | - Niels van Tol
- Institute of Biology Leiden, Leiden University, BE, Leiden, The Netherlands
| | | | - Huub J. M. de Groot
- Leiden Institute of Chemistry, Leiden University, RA Leiden, The Netherlands
| | - A. Alia
- Leiden Institute of Chemistry, Leiden University, RA Leiden, The Netherlands
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
21
|
Zhu W, Zaidem M, Van de Weyer AL, Gutaker RM, Chae E, Kim ST, Bemm F, Li L, Todesco M, Schwab R, Unger F, Beha MJ, Demar M, Weigel D. Modulation of ACD6 dependent hyperimmunity by natural alleles of an Arabidopsis thaliana NLR resistance gene. PLoS Genet 2018; 14:e1007628. [PMID: 30235212 PMCID: PMC6168153 DOI: 10.1371/journal.pgen.1007628] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/02/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023] Open
Abstract
Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, which strongly reduces growth under specific laboratory conditions, is found in over 10% of wild strains. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that ACD6 activity can be modulated in diverse ways, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system. Plants defend themselves against pathogens by activating immune responses. Unfortunately, these can cause unintended collateral damage to the plant itself. Nevertheless, some wild plants have genetic variants that confer a low threshold for the activation of immunity. While these enable a plant to respond particularly quickly to pathogen attack, such variants might be potentially dangerous. We are investigating one such variant of the immune gene ACCELERATED CELL DEATH 6 (ACD6) in the plant Arabidopsis thaliana. We discovered that there are variants at other genetic loci that can mask the effects of an overly active ACD6 gene. One of these genes, SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), codes for a known immune receptor. The SNC1 variant that attenuates ACD6 activity is rather common in A. thaliana populations, suggesting that new combinations of the hyperactive ACD6 variant and this antagonistic SNC1 variant will often arise by natural crosses. Similarly, because the two genes are unlinked, outcrossing will often lead to the hyperactive ACD6 variants being unmasked again. We propose that allelic diversity at SNC1 contributes to the maintenance of the hyperactive ACD6 variant in natural A. thaliana populations.
Collapse
Affiliation(s)
- Wangsheng Zhu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rafal M. Gutaker
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marco Todesco
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Frederik Unger
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcel Janis Beha
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Monika Demar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| |
Collapse
|
22
|
Schreier TB, Cléry A, Schläfli M, Galbier F, Stadler M, Demarsy E, Albertini D, Maier BA, Kessler F, Hörtensteiner S, Zeeman SC, Kötting O. Plastidial NAD-Dependent Malate Dehydrogenase: A Moonlighting Protein Involved in Early Chloroplast Development through Its Interaction with an FtsH12-FtsHi Protease Complex. THE PLANT CELL 2018; 30:1745-1769. [PMID: 29934433 PMCID: PMC6139691 DOI: 10.1105/tpc.18.00121] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/21/2018] [Accepted: 06/19/2018] [Indexed: 05/18/2023]
Abstract
Malate dehydrogenases (MDHs) convert malate to oxaloacetate using NAD(H) or NADP(H) as a cofactor. Arabidopsis thaliana mutants lacking plastidial NAD-dependent MDH (pdnad-mdh) are embryo-lethal, and constitutive silencing (miR-mdh-1) causes a pale, dwarfed phenotype. The reason for these severe phenotypes is unknown. Here, we rescued the embryo lethality of pdnad-mdh via embryo-specific expression of pdNAD-MDH. Rescued seedlings developed white leaves with aberrant chloroplasts and failed to reproduce. Inducible silencing of pdNAD-MDH at the rosette stage also resulted in white newly emerging leaves. These data suggest that pdNAD-MDH is important for early plastid development, which is consistent with the reductions in major plastidial galactolipid, carotenoid, and protochlorophyllide levels in miR-mdh-1 seedlings. Surprisingly, the targeting of other NAD-dependent MDH isoforms to the plastid did not complement the embryo lethality of pdnad-mdh, while expression of enzymatically inactive pdNAD-MDH did. These complemented plants grew indistinguishably from the wild type. Both active and inactive forms of pdNAD-MDH interact with a heteromeric AAA-ATPase complex at the inner membrane of the chloroplast envelope. Silencing the expression of FtsH12, a key member of this complex, resulted in a phenotype that strongly resembles miR-mdh-1. We propose that pdNAD-MDH is essential for chloroplast development due to its moonlighting role in stabilizing FtsH12, distinct from its enzymatic function.
Collapse
Affiliation(s)
- Tina B Schreier
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Antoine Cléry
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Michael Schläfli
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Florian Galbier
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Martha Stadler
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Emilie Demarsy
- Laboratory of Plant Physiology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
- Department of Botany and Plant Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Daniele Albertini
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Benjamin A Maier
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Felix Kessler
- Laboratory of Plant Physiology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | | | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Oliver Kötting
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|