1
|
Alseekh S, Klemmer A, Yan J, Guo T, Fernie AR. Embracing plant plasticity or robustness as a means of ensuring food security. Nat Commun 2025; 16:461. [PMID: 39774717 PMCID: PMC11706996 DOI: 10.1038/s41467-025-55872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
The dual challenges of global population explosion and environmental deterioration represent major hurdles for 21st Century agriculture culminating in an unprecedented demand for food security. In this Review, we revisit historical concepts of plasticity and canalization before integrating them with contemporary studies of genotype-environment interactions (G×E) that are currently being carried out at the genome-wide level. In doing so we address both fundamental questions regarding G×E and potential strategies to best secure yields in both current and future climate scenarios.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Centre of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Annabella Klemmer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingting Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Centre of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
2
|
Wijesingha Ahchige M, Fisher J, Sokolowska E, Lyall R, Illing N, Skirycz A, Zamir D, Alseekh S, Fernie AR. The variegated canalized-1 tomato mutant is linked to photosystem assembly. Comput Struct Biotechnol J 2024; 23:3967-3988. [PMID: 39582891 PMCID: PMC11584773 DOI: 10.1016/j.csbj.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
The recently described canal-1 tomato mutant, which has a variegated leaf phenotype, has been shown to affect canalization of yield. The corresponding protein is orthologous to AtSCO2 -SNOWY COTYLEDON 2, which has suggested roles in thylakoid biogenesis. Here we characterize the canal-1 mutant through a multi-omics approach, by comparing mutant to wild-type tissues. While white canal-1 leaves are devoid of chlorophyll, green leaves of the mutant appear wild-type-like, despite an impaired protein function. Transcriptomic data suggest that green mutant leaves compensate for this impaired protein function by upregulation of transcription of photosystem assembly and photosystem component genes, thereby allowing adequate photosystem establishment, which is reflected in their wild-type-like proteome. White canal-1 leaves, however, likely fail to reach a certain threshold enabling this overcompensation, and plastids get trapped in an undeveloped state, while additionally suffering from high light stress, indicated by the overexpression of ELIP homolog genes. The metabolic profile of white and to a lesser degree also green tissues revealed upregulation of amino acid levels, that was at least partially mediated by transcriptional and proteomic upregulation. These combined changes are indicative of a stress response and suggest that white tissues behave as carbon sinks. In summary, our work demonstrates the relevance of the SCO2 protein in both photosystem assembly and as a consequence in the canalization of yield.
Collapse
Affiliation(s)
- Micha Wijesingha Ahchige
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Josef Fisher
- Plant Sciences and Genetics in Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Herzl 229, 7610001 Rehovot, Israel
| | - Ewelina Sokolowska
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Rafe Lyall
- Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000 Plovdiv, Bulgaria
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701 South Africa
| | - Nicola Illing
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701 South Africa
| | - Aleksandra Skirycz
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dani Zamir
- Plant Sciences and Genetics in Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Herzl 229, 7610001 Rehovot, Israel
| | - Saleh Alseekh
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000 Plovdiv, Bulgaria
| | - Alisdair R. Fernie
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Billaud W, Hirsch J, Ribaut V, Tamisier L, Massire A, Szadkowski M, Lopez-Lauri F, Moury B, Lefebvre V. Unveiling pepper immunity's robustness to temperature shifts: insights for empowering future crops. HORTICULTURE RESEARCH 2024; 11:uhae239. [PMID: 39512781 PMCID: PMC11540760 DOI: 10.1093/hr/uhae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/12/2024] [Indexed: 11/15/2024]
Abstract
Boosting plant immunity is an effective alternative to pesticides. However, environmental variations, accentuated by climate change, can compromise immunity. The robustness of a trait corresponds to the absence (or low level) of variation in that trait in the face of an environmental change. Here, we examined two types of robustness, robustness of immunity mean and robustness of immunity variation, and proposed nine quantitative robustness estimators. We characterized the immunity of a set of accessions representative of the natural diversity of pepper (Capsicum annuum L.), to two major pathogens: the oomycete Phytophthora capsici Leon. and potato virus Y. For each pathogen, we measured the immunity of accessions in two contrasting environments in terms of temperature. For each type of robustness and each pathogen, the impact of temperature change on immunity varied between accessions. The robustness estimators proved to be complementary and differed in terms of heritability and ability to discriminate accessions. A positive and significant correlation was observed between immunity and robustness. There was no significant relationship between the robustness of immunity to the two pathogens, but some accessions showed high immunity and robustness against both pathogens. These results justify the need to consider both immunity and robustness to environmental variations in order to select varieties adapted to current and future climate conditions. Phenotypic robustness should also be considered when assessing the "value of sustainable cultivation and use" of future plant varieties, particularly during the application process for protection rights granted from the European Community Plant Variety Office.
Collapse
Affiliation(s)
- William Billaud
- INRAE, GAFL, F-84140 Montfavet, France
- INRAE, Pathologie Végétale, F-84140 Montfavet, France
- Qualisud, Univ Montpellier, Avignon Univ, CIRAD, Institut Agro, Univ de La Réunion, Montpellier, France
| | - Judith Hirsch
- INRAE, Pathologie Végétale, F-84140 Montfavet, France
| | - Valentin Ribaut
- INRAE, GAFL, F-84140 Montfavet, France
- INRAE, Pathologie Végétale, F-84140 Montfavet, France
| | - Lucie Tamisier
- INRAE, GAFL, F-84140 Montfavet, France
- INRAE, Pathologie Végétale, F-84140 Montfavet, France
| | | | | | - Félicie Lopez-Lauri
- Qualisud, Univ Montpellier, Avignon Univ, CIRAD, Institut Agro, Univ de La Réunion, Montpellier, France
- UPRI, ERIT Plant Science Interaction and Innovation, Avignon Université, Avignon, France
| | - Benoît Moury
- INRAE, Pathologie Végétale, F-84140 Montfavet, France
| | | |
Collapse
|
4
|
Zhu F, Ahchige MW, Wen W, Cheng Y, Alseekh S, Fernie AR. The natural variance of Arabidopsis secondary metabolism on extended darkness. Sci Data 2024; 11:841. [PMID: 39097666 PMCID: PMC11297995 DOI: 10.1038/s41597-024-03694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
In plants due to their sessile nature, secondary metabolites are important components against different abiotic and biotic stress, such as extended darkness. For this reason, the variation of secondary metabolite content of the Arabidopsis thaliana HapMap natural population following 0-and 6-d darkness treatment were detected and the raw data of different accessions at two timepoints were deposited in the Zenodo database. Moreover, the annotated secondary metabolites of these samples are presented in this data descriptor, which we believe will be a usefully re-usable resource for future integrative analysis with dark-treated transcripts, proteins or other phenotypic data in order to comprehensively illustrate the multiomic landscape of Arabidopsis in response to the stresses exerted by extended darkness.
Collapse
Affiliation(s)
- Feng Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Center for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
- Hubei Hongshan Laboratory, 430070, Wuhan, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Micha Wijesingha Ahchige
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Center for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
- Hubei Hongshan Laboratory, 430070, Wuhan, China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Center for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
- Hubei Hongshan Laboratory, 430070, Wuhan, China
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
5
|
Mathur S, Singh D, Ranjan R. Recent advances in plant translational genomics for crop improvement. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:335-382. [PMID: 38448140 DOI: 10.1016/bs.apcsb.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The growing population, climate change, and limited agricultural resources put enormous pressure on agricultural systems. A plateau in crop yields is occurring and extreme weather events and urbanization threaten the livelihood of farmers. It is imperative that immediate attention is paid to addressing the increasing food demand, ensuring resilience against emerging threats, and meeting the demand for more nutritious, safer food. Under uncertain conditions, it is essential to expand genetic diversity and discover novel crop varieties or variations to develop higher and more stable yields. Genomics plays a significant role in developing abundant and nutrient-dense food crops. An alternative to traditional breeding approach, translational genomics is able to improve breeding programs in a more efficient and precise manner by translating genomic concepts into practical tools. Crop breeding based on genomics offers potential solutions to overcome the limitations of conventional breeding methods, including improved crop varieties that provide more nutritional value and are protected from biotic and abiotic stresses. Genetic markers, such as SNPs and ESTs, contribute to the discovery of QTLs controlling agronomic traits and stress tolerance. In order to meet the growing demand for food, there is a need to incorporate QTLs into breeding programs using marker-assisted selection/breeding and transgenic technologies. This chapter primarily focuses on the recent advances that are made in translational genomics for crop improvement and various omics techniques including transcriptomics, metagenomics, pangenomics, single cell omics etc. Numerous genome editing techniques including CRISPR Cas technology and their applications in crop improvement had been discussed.
Collapse
Affiliation(s)
- Shivangi Mathur
- Plant Molecular Biology Laboratory, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Agra, India
| | - Deeksha Singh
- Plant Molecular Biology Laboratory, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Agra, India
| | - Rajiv Ranjan
- Plant Molecular Biology Laboratory, Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Agra, India.
| |
Collapse
|
6
|
Manickam S, Rajagopalan VR, Kambale R, Rajasekaran R, Kanagarajan S, Muthurajan R. Plant Metabolomics: Current Initiatives and Future Prospects. Curr Issues Mol Biol 2023; 45:8894-8906. [PMID: 37998735 PMCID: PMC10670879 DOI: 10.3390/cimb45110558] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Plant metabolomics is a rapidly advancing field of plant sciences and systems biology. It involves comprehensive analyses of small molecules (metabolites) in plant tissues and cells. These metabolites include a wide range of compounds, such as sugars, amino acids, organic acids, secondary metabolites (e.g., alkaloids and flavonoids), lipids, and more. Metabolomics allows an understanding of the functional roles of specific metabolites in plants' physiology, development, and responses to biotic and abiotic stresses. It can lead to the identification of metabolites linked with specific traits or functions. Plant metabolic networks and pathways can be better understood with the help of metabolomics. Researchers can determine how plants react to environmental cues or genetic modifications by examining how metabolite profiles change under various crop stages. Metabolomics plays a major role in crop improvement and biotechnology. Integrating metabolomics data with other omics data (genomics, transcriptomics, and proteomics) provides a more comprehensive perspective of plant biology. This systems biology approach enables researchers to understand the complex interactions within organisms.
Collapse
Affiliation(s)
- Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.M.); (V.R.R.); (R.K.); (R.R.)
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.M.); (V.R.R.); (R.K.); (R.R.)
| | - Rohit Kambale
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.M.); (V.R.R.); (R.K.); (R.R.)
| | - Raghu Rajasekaran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.M.); (V.R.R.); (R.K.); (R.R.)
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.M.); (V.R.R.); (R.K.); (R.R.)
| |
Collapse
|
7
|
Pons C, Casals J, Brower M, Sacco A, Riccini A, Hendrickx P, Figás MDR, Fisher J, Grandillo S, Mazzucato A, Soler S, Zamir D, Causse M, Díez MJ, Finkers R, Prohens J, Monforte AJ, Granell A. Diversity and genetic architecture of agro-morphological traits in a core collection of European traditional tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5896-5916. [PMID: 37527560 PMCID: PMC10540738 DOI: 10.1093/jxb/erad306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
European traditional tomato varieties have been selected by farmers given their consistent performance and adaptation to local growing conditions. Here we developed a multipurpose core collection, comprising 226 accessions representative of the genotypic, phenotypic, and geographical diversity present in European traditional tomatoes, to investigate the basis of their phenotypic variation, gene×environment interactions, and stability for 33 agro-morphological traits. Comparison of the traditional varieties with a modern reference panel revealed that some traditional varieties displayed excellent agronomic performance and high trait stability, as good as or better than that of their modern counterparts. We conducted genome-wide association and genome-wide environment interaction studies and detected 141 quantitative trait loci (QTLs). Out of those, 47 QTLs were associated with the phenotype mean (meanQTLs), 41 with stability (stbQTLs), and 53 QTL-by-environment interactions (QTIs). Most QTLs displayed additive gene actions, with the exception of stbQTLs, which were mostly recessive and overdominant QTLs. Both common and specific loci controlled the phenotype mean and stability variation in traditional tomato; however, a larger proportion of specific QTLs was observed, indicating that the stability gene regulatory model is the predominant one. Developmental genes tended to map close to meanQTLs, while genes involved in stress response, hormone metabolism, and signalling were found within regions affecting stability. A total of 137 marker-trait associations for phenotypic means and stability were novel, and therefore our study enhances the understanding of the genetic basis of valuable agronomic traits and opens up a new avenue for an exploitation of the allelic diversity available within European traditional tomato germplasm.
Collapse
Affiliation(s)
- Clara Pons
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Joan Casals
- Department of Agri-Food Engineering and Biotechnology/Miquel Agustí Foundation, Universitat Politècnica de Catalunya, Campus Baix Llobregat, Esteve Terrades 8, 08860 Castelldefels, Spain
| | - Matthijs Brower
- Wageningen University & Research, Plant Breeding, POB 386, NL-6700 AJ Wageningen, The Netherlands
| | - Adriana Sacco
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Alessandro Riccini
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Patrick Hendrickx
- Wageningen University & Research, Plant Breeding, POB 386, NL-6700 AJ Wageningen, The Netherlands
| | - Maria del Rosario Figás
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Josef Fisher
- Hebrew University of Jerusalem, Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Andrea Mazzucato
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Dani Zamir
- Hebrew University of Jerusalem, Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Mathilde Causse
- INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Maria José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Richard Finkers
- Wageningen University & Research, Plant Breeding, POB 386, NL-6700 AJ Wageningen, The Netherlands
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Antonio Jose Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| |
Collapse
|
8
|
Alseekh S, Karakas E, Zhu F, Wijesingha Ahchige M, Fernie AR. Plant biochemical genetics in the multiomics era. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4293-4307. [PMID: 37170864 PMCID: PMC10433942 DOI: 10.1093/jxb/erad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Our understanding of plant biology has been revolutionized by modern genetics and biochemistry. However, biochemical genetics can be traced back to the foundation of Mendelian genetics; indeed, one of Mendel's milestone discoveries of seven characteristics of pea plants later came to be ascribed to a mutation in a starch branching enzyme. Here, we review both current and historical strategies for the elucidation of plant metabolic pathways and the genes that encode their component enzymes and regulators. We use this historical review to discuss a range of classical genetic phenomena including epistasis, canalization, and heterosis as viewed through the lens of contemporary high-throughput data obtained via the array of approaches currently adopted in multiomics studies.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
9
|
Vallarino JG, Jun H, Wang S, Wang X, Sade N, Orf I, Zhang D, Shi J, Shen S, Cuadros-Inostroza Á, Xu Q, Luo J, Fernie AR, Brotman Y. Limitations and advantages of using metabolite-based genome-wide association studies: focus on fruit quality traits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111748. [PMID: 37230189 DOI: 10.1016/j.plantsci.2023.111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
In the last decades, linkage mapping has help in the location of metabolite quantitative trait loci (QTL) in many species; however, this approach shows some limitations. Recently, thanks to the most recent advanced in high-throughput genotyping technologies like next-generation sequencing, metabolite genome-wide association study (mGWAS) has been proposed a powerful tool to identify the genetic variants in polygenic agrinomic traits. Fruit flavor is a complex interaction of aroma volatiles and taste being sugar and acid ratio key parameter for flavor acceptance. Here, we review recent progress of mGWAS in pinpoint gene polymorphisms related to flavor-related metabolites in fruits. Despite clear successes in discovering novel genes or regions associated with metabolite accumulation affecting sensory attributes in fruits, GWAS incurs in several limitations summarized in this review. In addition, in our own work, we performed mGWAS on 194 Citrus grandis accessions to investigate the genetic control of individual primary and lipid metabolites in ripe fruit. We have identified a total of 667 associations for 14 primary metabolites including amino acids, sugars, and organic acids, and 768 associations corresponding to 47 lipids. Furthermore, candidate genes related to important metabolites related to fruit quality such as sugars, organic acids and lipids were discovered.
Collapse
Affiliation(s)
- José G Vallarino
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Campus de Teatinos, 29071 Málaga, Spain
| | - Hong Jun
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | | | - Xia Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Isabel Orf
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Dabing Zhang
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Jianxin Shi
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Alisdair R Fernie
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, 1 Am Mühlenberg, Golm, Potsdam 14476, Germany; Department of Plant Metabolomics, Center for Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv 4000, Bulgaria.
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.
| |
Collapse
|
10
|
Wijesingha Ahchige M, Fernie AR, Alseekh S. PANTOTHENATE KINASE4, LOSS OF GDU2, and TRANSPOSON PROTEIN1 affect the canalization of tomato fruit metabolism. PLANT PHYSIOLOGY 2023; 192:442-468. [PMID: 36794426 PMCID: PMC10152668 DOI: 10.1093/plphys/kiad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 05/03/2023]
Abstract
Most studies investigating quantitative traits focus on mean levels per genotype rather than the variation between different individuals of one genotype or the variation elicited by different environments. Consequently, the genes that govern this effect are not well understood. The concept, named canalization, which describes a lack of variation, is well known in the context of developmental processes but is poorly studied for quantitative traits such as metabolism. In this study, we selected 8 putative candidate genes from previously identified canalized metabolic quantitative trait loci and created genome-edited tomato (Solanum lycopersicum) mutants of these genes for experimental validation. Most lines showed wild-type morphology, except for an ARF-like protein mutant showing aberrant phenotypes in the form of scarred fruit cuticles. In greenhouse trials with different irrigation conditions, whole-plant traits showed a general increase of their level toward the more optimal irrigation conditions, whereas most metabolic traits showed an increase toward the other end of the gradient. Mutants of a PANTOTHENATE KINASE 4, the AIRP ubiquitin gene LOSS OF GDU2, and TRANSPOSON PROTEIN 1 grown under these conditions showed an overall improved plant performance. Additional effects, on both target and other metabolites in tomato fruits, regarding the mean level at specific conditions and, ergo, the cross-environment coefficient of variation, were observed. However, variation between individuals remained unaffected. In conclusion, this study supports the idea of distinct sets of genes regulating different types of variation.
Collapse
Affiliation(s)
- Micha Wijesingha Ahchige
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Alisdair R Fernie
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, Plovdiv 4000, Bulgaria
| | - Saleh Alseekh
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, Plovdiv 4000, Bulgaria
| |
Collapse
|
11
|
Çolak NG, Eken NT, Ülger M, Frary A, Doğanlar S. Mapping of quantitative trait loci for the nutritional value of fresh market tomato. Funct Integr Genomics 2023; 23:121. [PMID: 37039853 DOI: 10.1007/s10142-023-01045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
The incidence of many diseases, such as cancer, cardiovascular diseases, and diabetes, is associated with malnutrition and an unbalanced daily diet. Vegetables are an important source of vitamins and essential compounds for human health. As a result, such metabolites have increasingly become the focus of breeding programs. Tomato is one of the most popular components of our daily diet. Therefore, the improvement of tomato's nutritional quality is an important goal. In the present study, we performed targeted metabolic profiling of an interspecific Solanum pimpinellifolium × S. lycopersicum inbred backcross line (IBL) population and identified quantitative trait loci responsible for the nutritional value of tomato. Transgressive segregation was apparent for many of the nutritional compounds such that some IBLs had extremely high levels of various amino acids and vitamins compared to their parents. A total of 117 QTLs for nutritional traits including 62 QTLs for amino acids, 18 QTLs for fatty acids, 12 QTLs for water-soluble vitamins, and 25 QTLs for fat-soluble vitamins were identified. Moreover, almost 24% of identified QTLs were confirmed in previous studies, and 40 possible gene candidates were found for 18 identified QTLs. These findings can help breeders to improve the nutritional value of tomato.
Collapse
Affiliation(s)
- Nergiz Gürbüz Çolak
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
- Plant Science and Technology Application and Research Center, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Neslihan Tek Eken
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Mehmet Ülger
- MULTI Tarım Seed Company, Antalya, 07112, Turkey
| | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir, 35430, Turkey.
- Plant Science and Technology Application and Research Center, Izmir Institute of Technology, İzmir, 35430, Turkey.
| |
Collapse
|
12
|
Bulut M, Alseekh S, Fernie AR. Natural variation of respiration-related traits in plants. PLANT PHYSIOLOGY 2023; 191:2120-2132. [PMID: 36546766 PMCID: PMC10069898 DOI: 10.1093/plphys/kiac593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Plant respiration is one of the greatest global metabolic fluxes, but rates of respiration vary massively both within different cell types as well as between different individuals and different species. Whilst this is well known, few studies have detailed population-level variation of respiration until recently. The last 20 years have seen a renaissance in studies of natural variance. In this review, we describe how experimental breeding populations and collections of large populations of accessions can be used to determine the genetic architecture of plant traits. We further detail how these approaches have been used to study the rate of respiration per se as well as traits that are intimately associated with respiration. The review highlights specific breakthroughs in these areas but also concludes that the approach should be more widely adopted in the study of respiration per se as opposed to the more frequently studied respiration-related traits.
Collapse
Affiliation(s)
- Mustafa Bulut
- Department of Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Department of Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | | |
Collapse
|
13
|
Liu W, Liu K, Chen D, Zhang Z, Li B, El-Mogy MM, Tian S, Chen T. Solanum lycopersicum, a Model Plant for the Studies in Developmental Biology, Stress Biology and Food Science. Foods 2022; 11:2402. [PMID: 36010400 PMCID: PMC9407197 DOI: 10.3390/foods11162402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
Fruits, vegetables and other plant-derived foods contribute important ingredients for human diets, and are thus favored by consumers worldwide. Among these horticultural crops, tomato belongs to the Solanaceae family, ranks only secondary to potato (S. tuberosum L.) in yields and is widely cultivated for fresh fruit and processed foods owing to its abundant nutritional constituents (including vitamins, dietary fibers, antioxidants and pigments). Aside from its important economic and nutritional values, tomato is also well received as a model species for the studies on many fundamental biological events, including regulations on flowering, shoot apical meristem maintenance, fruit ripening, as well as responses to abiotic and biotic stresses (such as light, salinity, temperature and various pathogens). Moreover, tomato also provides abundant health-promoting secondary metabolites (flavonoids, phenolics, alkaloids, etc.), making it an excellent source and experimental system for investigating nutrient biosynthesis and availability in food science. Here, we summarize some latest results on these aspects, which may provide some references for further investigations on developmental biology, stress signaling and food science.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoguo Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Mashabela MD, Masamba P, Kappo AP. Metabolomics and Chemoinformatics in Agricultural Biotechnology Research: Complementary Probes in Unravelling New Metabolites for Crop Improvement. BIOLOGY 2022; 11:1156. [PMID: 36009783 PMCID: PMC9405339 DOI: 10.3390/biology11081156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022]
Abstract
The United Nations (UN) estimate that the global population will reach 10 billion people by 2050. These projections have placed the agroeconomic industry under immense pressure to meet the growing demand for food and maintain global food security. However, factors associated with climate variability and the emergence of virulent plant pathogens and pests pose a considerable threat to meeting these demands. Advanced crop improvement strategies are required to circumvent the deleterious effects of biotic and abiotic stress and improve yields. Metabolomics is an emerging field in the omics pipeline and systems biology concerned with the quantitative and qualitative analysis of metabolites from a biological specimen under specified conditions. In the past few decades, metabolomics techniques have been extensively used to decipher and describe the metabolic networks associated with plant growth and development and the response and adaptation to biotic and abiotic stress. In recent years, metabolomics technologies, particularly plant metabolomics, have expanded to screening metabolic biomarkers for enhanced performance in yield and stress tolerance for metabolomics-assisted breeding. This review explores the recent advances in the application of metabolomics in agricultural biotechnology for biomarker discovery and the identification of new metabolites for crop improvement. We describe the basic plant metabolomics workflow, the essential analytical techniques, and the power of these combined analytical techniques with chemometrics and chemoinformatics tools. Furthermore, there are mentions of integrated omics systems for metabolomics-assisted breeding and of current applications.
Collapse
Affiliation(s)
| | | | - Abidemi Paul Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O. Box 524, Johannesburg 2006, South Africa; (M.D.M.); (P.M.)
| |
Collapse
|
15
|
Advances in Metabolomics-Driven Diagnostic Breeding and Crop Improvement. Metabolites 2022; 12:metabo12060511. [PMID: 35736444 PMCID: PMC9228725 DOI: 10.3390/metabo12060511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Climate change continues to threaten global crop output by reducing annual productivity. As a result, global food security is now considered as one of the most important challenges facing humanity. To address this challenge, modern crop breeding approaches are required to create plants that can cope with increased abiotic/biotic stress. Metabolomics is rapidly gaining traction in plant breeding by predicting the metabolic marker for plant performance under a stressful environment and has emerged as a powerful tool for guiding crop improvement. The advent of more sensitive, automated, and high-throughput analytical tools combined with advanced bioinformatics and other omics techniques has laid the foundation to broadly characterize the genetic traits for crop improvement. Progress in metabolomics allows scientists to rapidly map specific metabolites to the genes that encode their metabolic pathways and offer plant scientists an excellent opportunity to fully explore and rationally harness the wealth of metabolites that plants biosynthesize. Here, we outline the current application of advanced metabolomics tools integrated with other OMICS techniques that can be used to: dissect the details of plant genotype–metabolite–phenotype interactions facilitating metabolomics-assisted plant breeding for probing the stress-responsive metabolic markers, explore the hidden metabolic networks associated with abiotic/biotic stress resistance, facilitate screening and selection of climate-smart crops at the metabolite level, and enable accurate risk-assessment and characterization of gene edited/transgenic plants to assist the regulatory process. The basic concept behind metabolic editing is to identify specific genes that govern the crucial metabolic pathways followed by the editing of one or more genes associated with those pathways. Thus, metabolomics provides a superb platform for not only rapid assessment and commercialization of future genome-edited crops, but also for accelerated metabolomics-assisted plant breeding. Furthermore, metabolomics can be a useful tool to expedite the crop research if integrated with speed breeding in future.
Collapse
|
16
|
Wang S, Li Y, He L, Yang J, Fernie AR, Luo J. Natural variance at the interface of plant primary and specialized metabolism. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102201. [PMID: 35349968 DOI: 10.1016/j.pbi.2022.102201] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Plants produce a large number of diverse metabolites when they grow and develop as well as when they respond to the changing external environment. These are an important source of human nutrition and medicine. In this review we emphasized the major issues of the primary-specialized metabolic interface in plant metabolism, described the metabolic flow from primary to specialized metabolism, and the conservation and diversity of primary and specialized metabolites. At the same time, we summarized the regulatory mechanisms underpinning the dynamic balance primary and specialized metabolism based on multi-omics integration analysis, as well as the natural variation of primary and specialized metabolic pathways and genes during the plant evolution. Moreover, the discovery and optimization of the synthesis and regulation elements of various primary to specialized metabolic flows provide the possibility for precise modification and personalized customization of metabolic pathways, which will greatly promote the development of synthetic biology.
Collapse
Affiliation(s)
| | - Yan Li
- College of Tropical Crops, Hainan University, Haikou, China
| | - Liqiang He
- College of Tropical Crops, Hainan University, Haikou, China
| | - Jun Yang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China.
| |
Collapse
|
17
|
Zhu F, Alseekh S, Koper K, Tong H, Nikoloski Z, Naake T, Liu H, Yan J, Brotman Y, Wen W, Maeda H, Cheng Y, Fernie AR. Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. THE PLANT CELL 2022; 34:557-578. [PMID: 34623442 PMCID: PMC8774053 DOI: 10.1093/plcell/koab251] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/05/2021] [Indexed: 05/31/2023]
Abstract
Dark-induced senescence provokes profound metabolic shifts to recycle nutrients and to guarantee plant survival. To date, research on these processes has largely focused on characterizing mutants deficient in individual pathways. Here, we adopted a time-resolved genome-wide association-based approach to characterize dark-induced senescence by evaluating the photochemical efficiency and content of primary and lipid metabolites at the beginning, or after 3 or 6 days in darkness. We discovered six patterns of metabolic shifts and identified 215 associations with 81 candidate genes being involved in this process. Among these associations, we validated the roles of four genes associated with glycine, galactinol, threonine, and ornithine levels. We also demonstrated the function of threonine and galactinol catabolism during dark-induced senescence. Intriguingly, we determined that the association between tyrosine contents and TYROSINE AMINOTRANSFERASE 1 influences enzyme activity of the encoded protein and transcriptional activity of the gene under normal and dark conditions, respectively. Moreover, the single-nucleotide polymorphisms affecting the expression of THREONINE ALDOLASE 1 and the amino acid transporter gene AVT1B, respectively, only underlie the variation in threonine and glycine levels in the dark. Taken together, these results allow us to present a very detailed model of the metabolic aspects of dark-induced senescence, as well as the process itself.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Kaan Koper
- Department of Botany, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Hao Tong
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Zoran Nikoloski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Thomas Naake
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna 1030, Austria
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yariv Brotman
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hiroshi Maeda
- Department of Botany, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
18
|
Bellucci E, Mario Aguilar O, Alseekh S, Bett K, Brezeanu C, Cook D, De la Rosa L, Delledonne M, Dostatny DF, Ferreira JJ, Geffroy V, Ghitarrini S, Kroc M, Kumar Agrawal S, Logozzo G, Marino M, Mary‐Huard T, McClean P, Meglič V, Messer T, Muel F, Nanni L, Neumann K, Servalli F, Străjeru S, Varshney RK, Vasconcelos MW, Zaccardelli M, Zavarzin A, Bitocchi E, Frontoni E, Fernie AR, Gioia T, Graner A, Guasch L, Prochnow L, Oppermann M, Susek K, Tenaillon M, Papa R. The INCREASE project: Intelligent Collections of food-legume genetic resources for European agrofood systems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:646-660. [PMID: 34427014 PMCID: PMC9293105 DOI: 10.1111/tpj.15472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 05/14/2023]
Abstract
Food legumes are crucial for all agriculture-related societal challenges, including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating significant co-benefits for human health. The characterization, maintenance and exploitation of food-legume genetic resources, to date largely unexploited, form the core development of both sustainable agriculture and a healthy food system. INCREASE will implement, on chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), lentil (Lens culinaris) and lupin (Lupinus albus and L. mutabilis), a new approach to conserve, manage and characterize genetic resources. Intelligent Collections, consisting of nested core collections composed of single-seed descent-purified accessions (i.e., inbred lines), will be developed, exploiting germplasm available both from genebanks and on-farm and subjected to different levels of genotypic and phenotypic characterization. Phenotyping and gene discovery activities will meet, via a participatory approach, the needs of various actors, including breeders, scientists, farmers and agri-food and non-food industries, exploiting also the power of massive metabolomics and transcriptomics and of artificial intelligence and smart tools. Moreover, INCREASE will test, with a citizen science experiment, an innovative system of conservation and use of genetic resources based on a decentralized approach for data management and dynamic conservation. By promoting the use of food legumes, improving their quality, adaptation and yield and boosting the competitiveness of the agriculture and food sector, the INCREASE strategy will have a major impact on economy and society and represents a case study of integrative and participatory approaches towards conservation and exploitation of crop genetic resources.
Collapse
Affiliation(s)
- Elisa Bellucci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marchevia Brecce BiancheAncona60131Italy
| | - Orlando Mario Aguilar
- Instituto de Biotecnología y Biología MolecularUNLP‐CONICETCCT La PlataLa PlataArgentina
| | - Saleh Alseekh
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm MüePotsdam‐Golm14476Germany
- Centre of Plant Systems Biology and BiotechnologyPlovdiv4000Bulgaria
| | - Kirstin Bett
- Department of Plant SciencesUniversity of Saskatchewan51 Campus DriveSaskatoonSKS7N 5A8Canada
| | - Creola Brezeanu
- Staţiunea de Cercetare Dezvoltare Pentru LegumiculturăBacău600388Romania
| | - Douglas Cook
- Department of Plant PathologyUniversity of California DavisDavisCA95616‐8680USA
| | - Lucía De la Rosa
- Spanish Plant Genetic Resources National Center (INIA, CRF)National Institute for Agricultural and Food Research and TechnologyAlcalá de HenaresMadrid28800Spain
| | - Massimo Delledonne
- Department of BiotechnologyUniversity of VeronaStrada Le Grazie 15Verona37134Italy
| | - Denise F. Dostatny
- National Centre for Plant Genetic Resources, Plant Breeding and Acclimatization Institute‐NRIRadzikówBłonie05‐870Poland
| | - Juan J. Ferreira
- Regional Service for Agrofood Research and Development (SERIDA)Ctra AS‐267, PK 19VillaviciosaAsturias33300Spain
| | - Valérie Geffroy
- CNRSINRAEInstitute of Plant Sciences Paris‐Saclay (IPS2)Univ EvryUniversité Paris‐SaclayOrsay91405France
- CNRSINRAEInstitute of Plant Sciences Paris Saclay (IPS2)Université de ParisOrsay91405France
| | | | - Magdalena Kroc
- Legume Genomics TeamInstitute of Plant GeneticsPolish Academy of SciencesStrzeszynska 34Poznan60‐479Poland
| | - Shiv Kumar Agrawal
- Genetic Resources SectionInternational Center for Agricultural Research in the Dry AreasICARDAAgdal RabatMorocco
| | - Giuseppina Logozzo
- School of Agricultural, Forestry, Food and Environmental SciencesUniversity of BasilicataPotenza85100Italy
| | - Mario Marino
- International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA)Food and Agriculture Organization of the United Nations (FAO)Viale delle Terme di CaracallaRome00153Italy
| | - Tristan Mary‐Huard
- INRAECNRSAgroParisTechGénétique Quantitative et Evolution ‐ Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Phil McClean
- Department of Plant Sciences, Genomics and Bioinformatics ProgramNorth Dakota State UniversityFargoND58108USA
| | - Vladimir Meglič
- Crop Science DepartmentAgricultural Institute of SloveniaHacquetova ulica 17Ljubljana1000Slovenia
| | - Tamara Messer
- EURICE ‐ European Research and Project Office GmbHHeinrich‐Hertz‐Allee 1St. Ingbert66386Germany
| | - Frédéric Muel
- Terres InoviaInstitut Technique des oléagineux, des protéagineux eu du chanvren1 Av L. BrétignièresThiverval-Grignon78850France
| | - Laura Nanni
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marchevia Brecce BiancheAncona60131Italy
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland06466Germany
| | - Filippo Servalli
- Comunità del Mais Spinato di Gandino (MASP)Via XX Settembre, 5GandinoBergamo24024Italy
| | - Silvia Străjeru
- Suceava Genebank (BRGV)Bdul 1 Mai, nr. 17Suceava720224Romania
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB)International Crops Research Institute for the Semi- Arid Tropics (ICRISAT)PatancheruIndia
- State Agricultural Biotechnology CentreCentre for Crop and Food InnovationFood Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Marta W. Vasconcelos
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório AssociadoEscola Superior de BiotecnologiaUniversidade Católica PortuguesaRua Diogo Botelho 1327Porto4169-005Portugal
| | - Massimo Zaccardelli
- Council for Agricultural Research and EconomicsResearch Centre for Vegetable and Ornamental CropsVia Cavalleggeri 25Pontecagnano‐FaianoSA84098Italy
| | - Aleksei Zavarzin
- Federal Research CenterThe N.I. Vavilov All‐Russian Institute of Plant Genetic ResourcesSt. Petersburg190031Russia
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marchevia Brecce BiancheAncona60131Italy
| | - Emanuele Frontoni
- Department of Information EngineeringPolytechnic University of Marchevia Brecce BiancheAncona60131Italy
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm MüePotsdam‐Golm14476Germany
- Centre of Plant Systems Biology and BiotechnologyPlovdiv4000Bulgaria
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental SciencesUniversity of BasilicataPotenza85100Italy
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland06466Germany
| | - Luis Guasch
- Spanish Plant Genetic Resources National Center (INIA, CRF)National Institute for Agricultural and Food Research and TechnologyAlcalá de HenaresMadrid28800Spain
| | - Lena Prochnow
- EURICE ‐ European Research and Project Office GmbHHeinrich‐Hertz‐Allee 1St. Ingbert66386Germany
| | - Markus Oppermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland06466Germany
| | - Karolina Susek
- Legume Genomics TeamInstitute of Plant GeneticsPolish Academy of SciencesStrzeszynska 34Poznan60‐479Poland
| | - Maud Tenaillon
- INRAECNRSAgroParisTechGénétique Quantitative et Evolution ‐ Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Roberto Papa
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marchevia Brecce BiancheAncona60131Italy
| |
Collapse
|
19
|
Duarte GT, Pandey PK, Vaid N, Alseekh S, Fernie AR, Nikoloski Z, Laitinen RAE. Plasticity of rosette size in response to nitrogen availability is controlled by an RCC1-family protein. PLANT, CELL & ENVIRONMENT 2021; 44:3398-3411. [PMID: 34228823 DOI: 10.1111/pce.14146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 05/12/2023]
Abstract
Nitrogen (N) is fundamental to plant growth, development and yield. Genes underlying N utilization and assimilation are well-characterized, but mechanisms underpinning plasticity of different phenotypes in response to N remain elusive. Here, using Arabidopsis thaliana accessions, we dissected the genetic architecture of plasticity in early and late rosette diameter, flowering time and yield, in response to three levels of N in the soil. Furthermore, we found that the plasticity in levels of primary metabolites were related with the plasticities of the studied traits. Genome-wide association analysis identified three significant associations for phenotypic plasticity, one for early rosette diameter and two for flowering time. We confirmed that the gene At1g19880, hereafter named as PLASTICITY OF ROSETTE TO NITROGEN 1 (PROTON1), encoding for a regulator of chromatin condensation 1 (RCC1) family protein, conferred plasticity of rosette diameter in response to N. Treatment of PROTON1 T-DNA line with salt implied that the reduced plasticity of early rosette diameter was not a general growth response to stress. We further showed that plasticities of growth and flowering-related traits differed between environmental cues, indicating decoupled genetic programs regulating these traits. Our findings provide a prospective to identify genes that stabilize performance under fluctuating environments.
Collapse
Affiliation(s)
- Gustavo Turqueto Duarte
- Molecular Mechanisms of Plant Adaptation - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Prashant K Pandey
- Molecular Mechanisms of Plant Adaptation - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- National Research Council Canada (NRC-CNRC), Aquatic and Crop Resource Development (ACRD), Saskatoon, Saskatchewan, Canada
| | - Neha Vaid
- Molecular Mechanisms of Plant Adaptation - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Saleh Alseekh
- Central Metabolism - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Plant Metabolomics, Center of Plant Systems Biology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Central Metabolism - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Plant Metabolomics, Center of Plant Systems Biology, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Bioinformatics and Mathematical Modeling, Center of Plant Systems Biology, Plovdiv, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Roosa A E Laitinen
- Molecular Mechanisms of Plant Adaptation - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat Methods 2021; 18:733-746. [PMID: 33972782 DOI: 10.1038/s41592-021-01116-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/12/2021] [Indexed: 02/03/2023]
Abstract
Ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) variants currently represent the best tools to tackle the challenges of complexity and lack of comprehensive coverage of the metabolome. UHPLC offers flexible and efficient separation coupled with high-sensitivity detection via HRMS, allowing for the detection and identification of a broad range of metabolites. Here we discuss current common strategies for UHPLC-HRMS-based metabolomics, with a focus on expanding metabolome coverage.
Collapse
|
21
|
Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK, Naik GR, Thomas S, Kumar A. Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front Genet 2021; 12:637141. [PMID: 33889179 PMCID: PMC8055929 DOI: 10.3389/fgene.2021.637141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the current era, one of biggest challenges is to shorten the breeding cycle for rapid generation of a new crop variety having high yield capacity, disease resistance, high nutrient content, etc. Advances in the "-omics" technology have revolutionized the discovery of genes and bio-molecules with remarkable precision, resulting in significant development of plant-focused metabolic databases and resources. Metabolomics has been widely used in several model plants and crop species to examine metabolic drift and changes in metabolic composition during various developmental stages and in response to stimuli. Over the last few decades, these efforts have resulted in a significantly improved understanding of the metabolic pathways of plants through identification of several unknown intermediates. This has assisted in developing several new metabolically engineered important crops with desirable agronomic traits, and has facilitated the de novo domestication of new crops for sustainable agriculture and food security. In this review, we discuss how "omics" technologies, particularly metabolomics, has enhanced our understanding of important traits and allowed speedy domestication of novel crop plants.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Srinivas Suresh
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Akash Veershetty
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Sharan Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Kagolla Priscilla
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Rahul Narasanna
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Manish Kumar Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Sherinmol Thomas
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
22
|
Metabolomics Intervention Towards Better Understanding of Plant Traits. Cells 2021; 10:cells10020346. [PMID: 33562333 PMCID: PMC7915772 DOI: 10.3390/cells10020346] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
The majority of the most economically important plant and crop species are enriched with the availability of high-quality reference genome sequences forming the basis of gene discovery which control the important biochemical pathways. The transcriptomics and proteomics resources have also been made available for many of these plant species that intensify the understanding at expression levels. However, still we lack integrated studies spanning genomics–transcriptomics–proteomics, connected to metabolomics, the most complicated phase in phenotype expression. Nevertheless, for the past few decades, emphasis has been more on metabolome which plays a crucial role in defining the phenotype (trait) during crop improvement. The emergence of modern high throughput metabolome analyzing platforms have accelerated the discovery of a wide variety of biochemical types of metabolites and new pathways, also helped in improving the understanding of known existing pathways. Pinpointing the causal gene(s) and elucidation of metabolic pathways are very important for development of improved lines with high precision in crop breeding. Along with other-omics sciences, metabolomics studies have helped in characterization and annotation of a new gene(s) function. Hereby, we summarize several areas in the field of crop development where metabolomics studies have made its remarkable impact. We also assess the recent research on metabolomics, together with other omics, contributing toward genetic engineering to target traits and key pathway(s).
Collapse
|
23
|
Dar MS, Dholakia BB, Kulkarni AP, Oak PS, Shanmugam D, Gupta VS, Giri AP. Influence of domestication on specialized metabolic pathways in fruit crops. PLANTA 2021; 253:61. [PMID: 33538903 DOI: 10.1007/s00425-020-03554-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 12/23/2020] [Indexed: 05/08/2023]
Abstract
During the process of plant domestication, the selection and traditional breeding for desired characters such as flavor, juiciness and nutritional value of fruits, probably have resulted in gain or loss of specialized metabolites contributing to these traits. Their appearance in fruits is likely due to the acquisition of novel and specialized metabolic pathways and their regulation, driven by systematic molecular evolutionary events facilitated by traditional breeding. Plants change their armory of specialized metabolism to adapt and survive in diverse ecosystems. This may occur through molecular evolutionary events, such as single nucleotide polymorphism, gene duplication and transposition, leading to convergent or divergent evolution of biosynthetic pathways producing such specialized metabolites. Breeding and selection for improved specific and desired traits (fruit size, color, taste, flavor, etc.) in fruit crops through conventional breeding approaches may further alter content and profile of specialized metabolites. Biosynthetic routes of these metabolites have been studied in various plants. Here, we explore the influence of plant domestication and breeding processes on the selection of biosynthetic pathways of favorable specialized metabolites in fruit crops. An orderly clustered arrangement of genes associated with their production is observed in many fruit crops. We further analyzed selection-based acquisition of specialized metabolic pathways comparing first the metabolic profiles and genes involved in their biosynthesis, followed by the genomic organization of such genes between wild and domesticated horticultural crops. Domestication of crop plants favored the acquisition and retention of metabolic pathways that enhanced the fruit value while eliminated those which produced toxic or unfavorable metabolites. Interestingly, unintentional reorganization of complex metabolic pathways by selection and traditional breeding processes has endowed us with flavorful, juicy and nutritionally rich fruits.
Collapse
Affiliation(s)
- M Saleem Dar
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Bhushan B Dholakia
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
| | - Abhijeet P Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, MS, 411007, India
| | - Pranjali S Oak
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Dhanasekaran Shanmugam
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| |
Collapse
|
24
|
Analysis of wild tomato introgression lines elucidates the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen response. Nat Genet 2020; 52:1111-1121. [PMID: 32989321 DOI: 10.1038/s41588-020-0690-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Wild tomato species represent a rich gene pool for numerous desirable traits lost during domestication. Here, we exploited an introgression population representing wild desert-adapted species and a domesticated cultivar to establish the genetic basis of gene expression and chemical variation accompanying the transfer of wild-species-associated fruit traits. Transcriptome and metabolome analysis of 580 lines coupled to pathogen sensitivity assays resulted in the identification of genomic loci associated with levels of hundreds of transcripts and metabolites. These associations occurred in hotspots representing coordinated perturbation of metabolic pathways and ripening-related processes. Here, we identify components of the Solanum alkaloid pathway, as well as genes and metabolites involved in pathogen defense and linking fungal resistance with changes in the fruit ripening regulatory network. Our results outline a framework for understanding metabolism and pathogen resistance during tomato fruit ripening and provide insights into key fruit quality traits.
Collapse
|
25
|
Alseekh S, Ofner I, Liu Z, Osorio S, Vallarino J, Last RL, Zamir D, Tohge T, Fernie AR. Quantitative trait loci analysis of seed-specialized metabolites reveals seed-specific flavonols and differential regulation of glycoalkaloid content in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2007-2024. [PMID: 32538521 DOI: 10.1111/tpj.14879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 05/07/2023]
Abstract
Given the potential health benefits (and adverse effects), of polyphenolic and steroidal glycoalkaloids in the diet there is a growing interest in fully elucidating the genetic control of their levels in foodstuffs. Here we carried out profiling of the specialized metabolites in the seeds of the Solanum pennellii introgression lines identifying 338 putative metabolite quantitative trait loci (mQTL) for flavonoids, steroidal glycoalkaloids and further specialized metabolites. Two putative mQTL for flavonols and one for steroidal glycoalkaloids were cross-validated by evaluation of the metabolite content of recombinants harboring smaller introgression in the corresponding QTL interval or by analysis of lines from an independently derived backcross inbred line population. The steroidal glycoalkaloid mQTL was localized to a chromosomal region spanning 14 genes, including a previously defined steroidal glycoalkaloid gene cluster. The flavonoid mQTL was further validated via the use of transient and stable overexpression of the Solyc12g098600 and Solyc12g096870 genes, which encode seed-specific uridine 5'-diphosphate-glycosyltransferases. The results are discussed in the context of our understanding of the accumulation of polyphenols and steroidal glycoalkaloids, and how this knowledge may be incorporated into breeding strategies aimed at improving nutritional aspects of plants as well as in fortifying them against abiotic stress.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Itai Ofner
- Faculty of Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Zhongyuan Liu
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, 32611, USA
| | - Sonia Osorio
- Department of Molecular Biology and Biochemistry, Instituto de Hortofruiticultura Subtropical y Mediterranea "La Major" - University of Malaga - Consejo Superior de Investigaciones Cientificas (IHSM-UMA-CSIC), Campus de Teatinos, Malaga, 29071, Spain
| | - Jose Vallarino
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Dani Zamir
- Faculty of Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| |
Collapse
|
26
|
Li Y, Chen Y, Zhou L, You S, Deng H, Chen Y, Alseekh S, Yuan Y, Fu R, Zhang Z, Su D, Fernie AR, Bouzayen M, Ma T, Liu M, Zhang Y. MicroTom Metabolic Network: Rewiring Tomato Metabolic Regulatory Network throughout the Growth Cycle. MOLECULAR PLANT 2020; 13:1203-1218. [PMID: 32561360 DOI: 10.1016/j.molp.2020.06.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/07/2020] [Accepted: 06/10/2020] [Indexed: 05/21/2023]
Abstract
Tomato (Solanum lycopersicum) is a major horticultural crop worldwide and has emerged as a preeminent model for metabolic research. Although many research efforts have focused on the analysis of metabolite differences between varieties and species, the dynamics of metabolic changes during the tomato growth cycle and the regulatory networks that underlie these changes are poorly understood. In this study, we integrated high-resolution spatio-temporal metabolome and transcriptome data to systematically explore the metabolic landscape across 20 major tomato tissues and growth stages. In the resulting MicroTom Metabolic Network, the 540 detected metabolites and their co-expressed genes could be divided into 10 distinct clusters based on their biological functions. Using this dataset, we constructed a global map of the major metabolic changes that occur throughout the tomato growth cycle and dissected the underlying regulatory network. In addition to verifying previously well-established regulatory networks for important metabolites, we identified novel transcription factors that regulate the biosynthesis of important secondary metabolites such as steroidal glycoalkaloids and flavonoids. Our findings provide insights into spatio-temporal changes in tomato metabolism and generate a valuable resource for the study of metabolic regulatory processes in model plants.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Yang Chen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Lu Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Shengjie You
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Heng Deng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Ya Chen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Plant Biotechnology, 4000 Plovdiv, Bulgaria
| | - Yong Yuan
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Rao Fu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Zixin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Dan Su
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Plant Biotechnology, 4000 Plovdiv, Bulgaria
| | - Mondher Bouzayen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China; GBF, University of Toulouse, INRA, Castanet-Tolosan, France
| | - Tao Ma
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Mingchun Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China.
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China.
| |
Collapse
|
27
|
Borghi M, Fernie AR. Outstanding questions in flower metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1275-1288. [PMID: 32410253 DOI: 10.1111/tpj.14814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The great diversity of flowers, their color, odor, taste, and shape, is mostly a result of the metabolic processes that occur in this reproductive organ when the flower and its tissues develop, grow, and finally die. Some of these metabolites serve to advertise flowers to animal pollinators, other confer protection towards abiotic stresses, and a large proportion of the molecules of the central metabolic pathways have bioenergetic and signaling functions that support growth and the transition to fruits and seeds. Although recent studies have advanced our general understanding of flower metabolism, several questions still await an answer. Here, we have compiled a list of open questions on flower metabolism encompassing molecular aspects, as well as topics of relevance for agriculture and the ecosystem. These questions include the study of flower metabolism through development, the biochemistry of nectar and its relevance to promoting plant-pollinator interaction, recycling of metabolic resources after flowers whiter and die, as well as the manipulation of flower metabolism by pathogens. We hope with this review to stimulate discussion on the topic of flower metabolism and set a reference point to return to in the future when assessing progress in the field.
Collapse
Affiliation(s)
- Monica Borghi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| |
Collapse
|
28
|
Tohge T, Scossa F, Wendenburg R, Frasse P, Balbo I, Watanabe M, Alseekh S, Jadhav SS, Delfin JC, Lohse M, Giavalisco P, Usadel B, Zhang Y, Luo J, Bouzayen M, Fernie AR. Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex. MOLECULAR PLANT 2020; 13:1027-1046. [PMID: 32305499 DOI: 10.1016/j.molp.2020.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 02/01/2020] [Accepted: 04/11/2020] [Indexed: 05/10/2023]
Abstract
While the structures of plant primary metabolic pathways are generally well defined and highly conserved across species, those defining specialized metabolism are less well characterized and more highly variable across species. In this study, we investigated polyphenolic metabolism in the lycopersicum complex by characterizing the underlying biosynthetic and decorative reactions that constitute the metabolic network of polyphenols across eight different species of tomato. For this purpose, GC-MS- and LC-MS-based metabolomics of different tissues of Solanum lycopersicum and wild tomato species were carried out, in concert with the evaluation of cross-hybridized microarray data for MapMan-based transcriptomic analysis, and publicly available RNA-sequencing data for annotation of biosynthetic genes. The combined data were used to compile species-specific metabolic networks of polyphenolic metabolism, allowing the establishment of an entire pan-species biosynthetic framework as well as annotation of the functions of decoration enzymes involved in the formation of metabolic diversity of the flavonoid pathway. The combined results are discussed in the context of the current understanding of tomato flavonol biosynthesis as well as a global view of metabolic shifts during fruit ripening. Our results provide an example as to how large-scale biology approaches can be used for the definition and refinement of large specialized metabolism pathways.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192 Japan
| | - Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, via Ardeatina 546 00178 Rome, Italy
| | - Regina Wendenburg
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Pierre Frasse
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan 31326, France
| | - Ilse Balbo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192 Japan
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Plant Systems Biology, 4000 Plovdiv, Bulgaria
| | - Sagar Sudam Jadhav
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jay C Delfin
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192 Japan
| | - Marc Lohse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany
| | - Bjoern Usadel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52056 Aachen, Germany
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Plant Systems Biology, 4000 Plovdiv, Bulgaria
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Mondher Bouzayen
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan 31326, France
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Plant Systems Biology, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
29
|
Corso M, Perreau F, Mouille G, Lepiniec L. Specialized phenolic compounds in seeds: structures, functions, and regulations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110471. [PMID: 32540001 DOI: 10.1016/j.plantsci.2020.110471] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 05/24/2023]
Abstract
Plants produce a huge diversity of specialized metabolites (SM) throughout their life cycle that play important physiological and ecological functions. SM can protect plants and seeds against diseases, predators, and abiotic stresses, or support their interactions with beneficial or symbiotic organisms. They also have strong impacts on human nutrition and health. Despite this importance, the biosynthesis and biological functions of most of the SM remain elusive and their diversity and/or quantity have been reduced in most crops during domestication. Seeds present a large number of SM that are important for their physiological, agronomic, nutritional or industrial qualities and hence, provide interesting models for both studying biosynthesis and producing large amounts of specialized metabolites. For instance, phenolics are abundant and widely distributed in seeds. More specifically, flavonoid pathway has been instrumental for understanding environmental or developmental regulations of specialized metabolic pathways, at the molecular and cellular levels. Here, we summarize current knowledge on seed phenolics as model, and discuss how recent progresses in omics approaches could help to further characterize their diversity, regulations, and the underlying molecular mechanisms involved.
Collapse
Affiliation(s)
- Massimiliano Corso
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - François Perreau
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| |
Collapse
|
30
|
Shi T, Zhu A, Jia J, Hu X, Chen J, Liu W, Ren X, Sun D, Fernie AR, Cui F, Chen W. Metabolomics analysis and metabolite-agronomic trait associations using kernels of wheat (Triticum aestivum) recombinant inbred lines. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:279-292. [PMID: 32073701 PMCID: PMC7383920 DOI: 10.1111/tpj.14727] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/17/2020] [Accepted: 02/07/2020] [Indexed: 05/21/2023]
Abstract
Plants produce numerous metabolites that are important for their development and growth. However, the genetic architecture of the wheat metabolome has not been well studied. Here, utilizing a high-density genetic map, we conducted a comprehensive metabolome study via widely targeted LC-MS/MS to analyze the wheat kernel metabolism. We further combined agronomic traits and dissected the genetic relationship between metabolites and agronomic traits. In total, 1260 metabolic features were detected. Using linkage analysis, 1005 metabolic quantitative trait loci (mQTLs) were found distributed unevenly across the genome. Twenty-four candidate genes were found to modulate the levels of different metabolites, of which two were functionally annotated by in vitro analysis to be involved in the synthesis and modification of flavonoids. Combining the correlation analysis of metabolite-agronomic traits with the co-localization of methylation quantitative trait locus (mQTL) and phenotypic QTL (pQTL), genetic relationships between the metabolites and agronomic traits were uncovered. For example, a candidate was identified using correlation and co-localization analysis that may manage auxin accumulation, thereby affecting number of grains per spike (NGPS). Furthermore, metabolomics data were used to predict the performance of wheat agronomic traits, with metabolites being found that provide strong predictive power for NGPS and plant height. This study used metabolomics and association analysis to better understand the genetic basis of the wheat metabolism which will ultimately assist in wheat breeding.
Collapse
Affiliation(s)
- Taotao Shi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan430070China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Anting Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan430070China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Jingqi Jia
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan430070China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan430070China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan430070China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Wei Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan430070China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Xifeng Ren
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Dongfa Sun
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐Golm14476Germany
| | - Fa Cui
- Wheat Molecular Breeding Innovation Research GroupKey Laboratory of Molecular Module‐Based Breeding of High Yield and Abiotic Resistant Plants in Universities of ShandongSchool of AgricultureLudong UniversityYantaiChina
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan430070China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
31
|
Alseekh S, Perez de Souza L, Benina M, Fernie AR. The style and substance of plant flavonoid decoration; towards defining both structure and function. PHYTOCHEMISTRY 2020; 174:112347. [PMID: 32203741 DOI: 10.1016/j.phytochem.2020.112347] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 05/19/2023]
Abstract
Over 8000 different flavonoids have been described and a considerable number of new flavonoid structures are being elucidated every year. The advent of metabolomics alongside the development of phytochemical genetics - wherein the genetic basis underlying the regulation of the levels of plant metabolites is determined - has provided a massive boost to such efforts. That said our understanding of the individual function(s) of the vast majority of the metabolites that constitute this important class of phytochemicals remains unknown. Here we review what is known concerning the major decorative modifications of flavonoids in plants, namely hydroxylation, glycosylation, methylation and acylation. Our major focus is with regard to the in planta function of these modified compounds, however, we also highlight the demonstrated bioactive roles which they possess. We additionally performed a comprehensive survey of the flavonoids listed in the KNApSAcK database in order to assess the frequency of occurrence of each type of flavonoid modification. We conclude that whilst considerable research has been carried out regarding the biological roles of flavonoids most studies to date have merely provided information on the compound class or sub-classes thereof as a whole with too little currently known on the specific role of individual metabolites. We, therefore, finally suggest a framework based on currently available tools by which the relative importance of the individual compounds can be assessed under various biological conditions in order to fill this knowledge-gap.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Maria Benina
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
32
|
Calumpang CLF, Saigo T, Watanabe M, Tohge T. Cross-Species Comparison of Fruit-Metabolomics to Elucidate Metabolic Regulation of Fruit Polyphenolics Among Solanaceous Crops. Metabolites 2020; 10:E209. [PMID: 32438728 PMCID: PMC7281770 DOI: 10.3390/metabo10050209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/03/2020] [Accepted: 05/14/2020] [Indexed: 11/24/2022] Open
Abstract
Many solanaceous crops are an important part of the human daily diet. Fruit polyphenolics are plant specialized metabolites that are recognized for their human health benefits and their defensive role against plant abiotic and biotic stressors. Flavonoids and chlorogenates are the major polyphenolic compounds found in solanaceous fruits that vary in quantity, physiological function, and structural diversity among and within plant species. Despite their biological significance, the elucidation of metabolic shifts of polyphenols during fruit ripening in different fruit tissues, has not yet been well-characterized in solanaceous crops, especially at a cross-species and cross-cultivar level. Here, we performed a cross-species comparison of fruit-metabolomics to elucidate the metabolic regulation of fruit polyphenolics from three representative crops of Solanaceae (tomato, eggplant, and pepper), and a cross-cultivar comparison among different pepper cultivars (Capsicum annuum cv.) using liquid chromatography-mass spectrometry (LC-MS). We observed a metabolic trade-off between hydroxycinnamates and flavonoids in pungent pepper and anthocyanin-type pepper cultivars and identified metabolic signatures of fruit polyphenolics in each species from each different tissue-type and fruit ripening stage. Our results provide additional information for metabolomics-assisted crop improvement of solanaceous fruits towards their improved nutritive properties and enhanced stress tolerance.
Collapse
Affiliation(s)
| | | | | | - Takayuki Tohge
- Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan; (C.L.F.C.); (T.S.); (M.W.)
| |
Collapse
|
33
|
Gürbüz Çolak N, Eken NT, Ülger M, Frary A, Doğanlar S. Mapping of quantitative trait loci for antioxidant molecules in tomato fruit: Carotenoids, vitamins C and E, glutathione and phenolic acids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110393. [PMID: 32005398 DOI: 10.1016/j.plantsci.2019.110393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/06/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
The nutritional value of a crop lies not only in its protein, lipid, and sugar content but also involves compounds such as the antioxidants lycopene, β-carotene and vitamin C. In the present study, wild tomato Solanum pimpinellifolium LA 1589 was assessed for its potential to improve antioxidant content. This wild species was found to be a good source of alleles for increasing β-carotene, lycopene, vitamin C and vitamin E contents in cultivated tomato. Characterization of an LA 1589 interspecific inbred backcross line (IBL) mapping population revealed many individuals with transgressive segregation for the antioxidants confirming the usefulness of this wild species for breeding of these traits. Molecular markers were used to identify QTLs for the metabolites in the IBL population. In total, 64 QTLs were identified for the antioxidants and their locations were compared to the map positions of previously identified QTLs for confirmation. Four (57 %) of the carotenoid QTLs, four (36 %) of the vitamin QTLs, and 11 (25 %) of the phenolic acid QTLs were supported by previous studies. Furthermore, several potential candidate genes were identified for vitamins C and E and phenolic acids loci. These candidate genes might be used as markers in breeding programs to increase tomato's antioxidant content.
Collapse
Affiliation(s)
- Nergiz Gürbüz Çolak
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Neslihan Tek Eken
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey
| | | | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir 35430, Turkey.
| |
Collapse
|
34
|
Corso M, García de la Torre VS. Biomolecular approaches to understanding metal tolerance and hyperaccumulation in plants. Metallomics 2020; 12:840-859. [DOI: 10.1039/d0mt00043d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Trace metal elements are essential for plant growth but become toxic at high concentrations, while some non-essential elements, such as Cd and As, show toxicity even in traces.
Collapse
Affiliation(s)
- Massimiliano Corso
- Institut Jean-Pierre Bourgin
- Université Paris-Saclay
- INRAE
- AgroParisTech
- 78000 Versailles
| | - Vanesa S. García de la Torre
- Molecular Genetics and Physiology of Plants
- Faculty of Biology and Biotechnology
- Ruhr University Bochum
- 44801 Bochum
- Germany
| |
Collapse
|
35
|
Razzaq A, Sadia B, Raza A, Khalid Hameed M, Saleem F. Metabolomics: A Way Forward for Crop Improvement. Metabolites 2019; 9:E303. [PMID: 31847393 PMCID: PMC6969922 DOI: 10.3390/metabo9120303] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is an emerging branch of "omics" and it involves identification and quantification of metabolites and chemical footprints of cellular regulatory processes in different biological species. The metabolome is the total metabolite pool in an organism, which can be measured to characterize genetic or environmental variations. Metabolomics plays a significant role in exploring environment-gene interactions, mutant characterization, phenotyping, identification of biomarkers, and drug discovery. Metabolomics is a promising approach to decipher various metabolic networks that are linked with biotic and abiotic stress tolerance in plants. In this context, metabolomics-assisted breeding enables efficient screening for yield and stress tolerance of crops at the metabolic level. Advanced metabolomics analytical tools, like non-destructive nuclear magnetic resonance spectroscopy (NMR), liquid chromatography mass-spectroscopy (LC-MS), gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), and direct flow injection (DFI) mass spectrometry, have sped up metabolic profiling. Presently, integrating metabolomics with post-genomics tools has enabled efficient dissection of genetic and phenotypic association in crop plants. This review provides insight into the state-of-the-art plant metabolomics tools for crop improvement. Here, we describe the workflow of plant metabolomics research focusing on the elucidation of biotic and abiotic stress tolerance mechanisms in plants. Furthermore, the potential of metabolomics-assisted breeding for crop improvement and its future applications in speed breeding are also discussed. Mention has also been made of possible bottlenecks and future prospects of plant metabolomics.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| | - Ali Raza
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China;
| | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| |
Collapse
|
36
|
Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez JP, Lutts S. Tomato Fruit Development and Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:1554. [PMID: 31850035 PMCID: PMC6895250 DOI: 10.3389/fpls.2019.01554] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 05/20/2023]
Abstract
Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family and is the second most important fruit or vegetable crop next to potato (Solanum tuberosum L.). It is cultivated for fresh fruit and processed products. Tomatoes contain many health-promoting compounds including vitamins, carotenoids, and phenolic compounds. In addition to its economic and nutritional importance, tomatoes have become the model for the study of fleshy fruit development. Tomato is a climacteric fruit and dramatic metabolic changes occur during its fruit development. In this review, we provide an overview of our current understanding of tomato fruit metabolism. We begin by detailing the genetic and hormonal control of fruit development and ripening, after which we document the primary metabolism of tomato fruits, with a special focus on sugar, organic acid, and amino acid metabolism. Links between primary and secondary metabolic pathways are further highlighted by the importance of pigments, flavonoids, and volatiles for tomato fruit quality. Finally, as tomato plants are sensitive to several abiotic stresses, we briefly summarize the effects of adverse environmental conditions on tomato fruit metabolism and quality.
Collapse
Affiliation(s)
- Muriel Quinet
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Rémi Blanchard-Gros
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Servane Bigot
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
37
|
Nunes-Nesi A, Alseekh S, de Oliveira Silva FM, Omranian N, Lichtenstein G, Mirnezhad M, González RRR, Sabio Y Garcia J, Conte M, Leiss KA, Klinkhamer PGL, Nikoloski Z, Carrari F, Fernie AR. Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds. Metabolomics 2019; 15:46. [PMID: 30874962 PMCID: PMC6420416 DOI: 10.1007/s11306-019-1503-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 01/12/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION To date, most studies of natural variation and metabolite quantitative trait loci (mQTL) in tomato have focused on fruit metabolism, leaving aside the identification of genomic regions involved in the regulation of leaf metabolism. OBJECTIVE This study was conducted to identify leaf mQTL in tomato and to assess the association of leaf metabolites and physiological traits with the metabolite levels from other tissues. METHODS The analysis of components of leaf metabolism was performed by phenotypying 76 tomato ILs with chromosome segments of the wild species Solanum pennellii in the genetic background of a cultivated tomato (S. lycopersicum) variety M82. The plants were cultivated in two different environments in independent years and samples were harvested from mature leaves of non-flowering plants at the middle of the light period. The non-targeted metabolite profiling was obtained by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). With the data set obtained in this study and already published metabolomics data from seed and fruit, we performed QTL mapping, heritability and correlation analyses. RESULTS Changes in metabolite contents were evident in the ILs that are potentially important with respect to stress responses and plant physiology. By analyzing the obtained data, we identified 42 positive and 76 negative mQTL involved in carbon and nitrogen metabolism. CONCLUSIONS Overall, these findings allowed the identification of S. lycopersicum genome regions involved in the regulation of leaf primary carbon and nitrogen metabolism, as well as the association of leaf metabolites with metabolites from seeds and fruits.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany.
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Center of Plant System Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | | | - Nooshin Omranian
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Center of Plant System Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | - Gabriel Lichtenstein
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Mohammad Mirnezhad
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Roman R Romero González
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Julia Sabio Y Garcia
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Mariana Conte
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Kirsten A Leiss
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Business Unit Horticulture, Wageningen University & Research, Postbus 20, 2665 ZG, Bleiswijk, The Netherlands
| | - Peter G L Klinkhamer
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Zoran Nikoloski
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Center of Plant System Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| |
Collapse
|
38
|
Laitinen RAE, Nikoloski Z. Genetic basis of plasticity in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:739-745. [PMID: 30445526 DOI: 10.1093/jxb/ery404] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/06/2018] [Indexed: 05/20/2023]
Abstract
The ability of an organism to change its phenotype in response to different environments, termed plasticity, is a particularly important characteristic to enable sessile plants to adapt to rapid changes in their surroundings. Plasticity is a quantitative trait that can provide a fitness advantage and mitigate negative effects due to environmental perturbations. Yet, its genetic basis is not fully understood. Alongside technological limitations, the main challenge in studying plasticity has been the selection of suitable approaches for quantification of phenotypic plasticity. Here, we propose a categorization of the existing quantitative measures of phenotypic plasticity into nominal and relative approaches. Moreover, we highlight the recent advances in the understanding of the genetic architecture underlying phenotypic plasticity in plants. We identify four pillars for future research to uncover the genetic basis of phenotypic plasticity, with emphasis on development of computational approaches and theories. These developments will allow us to perform specific experiments to validate the causal genes for plasticity and to discover their role in plant fitness and evolution.
Collapse
Affiliation(s)
- Roosa A E Laitinen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
- Bioinformatics group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
39
|
Brog YM, Osorio S, Yichie Y, Alseekh S, Bensal E, Kochevenko A, Zamir D, Fernie AR. A Solanum neorickii introgression population providing a powerful complement to the extensively characterized Solanum pennellii population. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:391-403. [PMID: 30230636 PMCID: PMC7379295 DOI: 10.1111/tpj.14095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 05/31/2023]
Abstract
We present a complementary resource for trait fine-mapping in tomato to those based on the intra-specific cross between cultivated tomato and the wild tomato species Solanum pennellii, which have been extensively used for quantitative genetics in tomato over the last 20 years. The current population of backcross inbred lines (BILs) is composed of 107 lines derived after three backcrosses of progeny of the wild species Solanum neorickii (LA2133) and cultivated tomato (cultivar TA209) and is freely available to the scientific community. These S. neorickii BILs were genotyped using the 10K SolCAP single nucleotide polymorphism chip, and 3111 polymorphic markers were used to map recombination break points relative to the physical map of Solanum lycopersicum. The BILs harbor on average 4.3 introgressions per line, with a mean introgression length of 34.7 Mbp, allowing partitioning of the genome into 340 bins and thereby facilitating rapid trait mapping. We demonstrate the power of using this resource in comparison with archival data from the S. pennellii resources by carrying out metabolic quantitative trait locus analysis following gas chromatography-mass spectrometry on fruits harvested from the S. neorickii BILs. The metabolic candidate genes phenylalanine ammonia-lyase and cystathionine gamma-lyase were then tested and validated in F2 populations and via agroinfiltration-based overexpression in order to exemplify the fidelity of this method in identifying the genes that drive tomato metabolic phenotypes.
Collapse
Affiliation(s)
- Yaacov Micha Brog
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Sonia Osorio
- Department of Molecular Biology and BiochemistryInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ – University of Malaga – Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Campus de Teatinos29071MálagaSpain
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Yoav Yichie
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Saleh Alseekh
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
- Center of Plant Systems Biology and Biotechnology4000PlovdivBulgaria
| | - Elad Bensal
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Andriy Kochevenko
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Dani Zamir
- Faculty of AgricultureThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of JerusalemRehovot76100Israel
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
- Center of Plant Systems Biology and Biotechnology4000PlovdivBulgaria
| |
Collapse
|
40
|
Rothan C, Diouf I, Causse M. Trait discovery and editing in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:73-90. [PMID: 30417464 DOI: 10.1111/tpj.14152] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Tomato (Solanum lycopersicum), which is used for both processing and fresh markets, is a major crop species that is the top ranked vegetable produced over the world. Tomato is also a model species for research in genetics, fruit development and disease resistance. Genetic resources available in public repositories comprise the 12 wild related species and thousands of landraces, modern cultivars and mutants. In addition, high quality genome sequences are available for cultivated tomato and for several wild relatives, hundreds of accessions have been sequenced, and databases gathering sequence data together with genetic and phenotypic data are accessible to the tomato community. Major breeding goals are productivity, resistance to biotic and abiotic stresses, and fruit sensorial and nutritional quality. New traits, including resistance to various biotic and abiotic stresses and root architecture, are increasingly being studied. Several major mutations and quantitative trait loci (QTLs) underlying traits of interest in tomato have been uncovered to date and, thanks to new populations and advances in sequencing technologies, the pace of trait discovery has considerably accelerated. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing (GE) already proved its remarkable efficiency in tomato for engineering favorable alleles and for creating new genetic diversity by gene disruption, gene replacement, and precise base editing. Here, we provide insight into the major tomato traits and underlying causal genetic variations discovered so far and review the existing genetic resources and most recent strategies for trait discovery in tomato. Furthermore, we explore the opportunities offered by CRISPR/Cas9 and their exploitation for trait editing in tomato.
Collapse
Affiliation(s)
- Christophe Rothan
- INRA and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France
| | - Isidore Diouf
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, F-84143, Montfavet, France
| | - Mathilde Causse
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, F-84143, Montfavet, France
| |
Collapse
|
41
|
Garbowicz K, Liu Z, Alseekh S, Tieman D, Taylor M, Kuhalskaya A, Ofner I, Zamir D, Klee HJ, Fernie AR, Brotman Y. Quantitative Trait Loci Analysis Identifies a Prominent Gene Involved in the Production of Fatty Acid-Derived Flavor Volatiles in Tomato. MOLECULAR PLANT 2018; 11:1147-1165. [PMID: 29960108 DOI: 10.1016/j.molp.2018.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
To gain insight into the genetic regulation of lipid metabolism in tomato, we conducted metabolic trait loci (mQTL) analysis following the lipidomic profiling of fruit pericarp and leaf tissue of the Solanum pennellii introgression lines (IL). To enhance mapping resolution for selected fruit-specific mQTL, we profiled the lipids in a subset of independently derived S. pennellii backcross inbred lines, as well as in a near-isogenic sub-IL population. We identified a putative lecithin:cholesterol acyltransferase that controls the levels of several lipids, and two members of the class III lipase family, LIP1 and LIP2, that were associated with decreased levels of diacylglycerols (DAGs) and triacylglycerols (TAGs). Lipases of this class cleave fatty acids from the glycerol backbone of acylglycerols. The released fatty acids serve as precursors of flavor volatiles. We show that LIP1 expression correlates with fatty acid-derived volatile levels. We further confirm the function of LIP1 in TAG and DAG breakdown and volatile synthesis using transgenic plants. Taken together, our study extensively characterized the genetic architecture of lipophilic compounds in tomato and demonstrated at molecular level that release of free fatty acids from the glycerol backbone can have a major impact on downstream volatile synthesis.
Collapse
Affiliation(s)
- Karolina Garbowicz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Zhongyuan Liu
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Denise Tieman
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | - Mark Taylor
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | | | - Itai Ofner
- Robert H. Smith Institute of Plant Sciences and Genetics, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Dani Zamir
- Robert H. Smith Institute of Plant Sciences and Genetics, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Harry J Klee
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.
| |
Collapse
|
42
|
Li Y, Lu Y, Li L, Chu Z, Zhang H, Li H, Fernie AR, Ouyang B. Impairment of hormone pathways results in a general disturbance of fruit primary metabolism in tomato. Food Chem 2018; 274:170-179. [PMID: 30372923 DOI: 10.1016/j.foodchem.2018.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/13/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
Fruit metabolites are regulated by different phytohormones; however, this needs to be investigated. Dynamic metabolite profiling, based on gas chromatography-mass spectrometry, has been conducted on the fruit of tomato cultivar Micro-Tom and its five hormone mutants: dpy, not, dgt, epi and pro. In total, 48 metabolites were quantified, including sugars, organic acids and amino acids. The results demonstrated that ABA had a greater effect on the regulation of primary metabolism in tomato fruit, while ethylene can play an important role in the transition of primary to secondary metabolism. Besides, results from enzyme activities and transcript abundance involved in primary metabolism suggested that AIV and HXK4 could play key roles in the accumulation of the main sugars. To the best of our knowledge, this is the first comprehensive analysis of the link between hormone and metabolite change during fruit development in a collection of mutants with diverse hormone pathways.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan 430070, China.
| | - Lili Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuannan Chu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan 430070, China.
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan 430070, China.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 144776, Germany.
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
43
|
Alseekh S, Fernie AR. Metabolomics 20 years on: what have we learned and what hurdles remain? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:933-942. [PMID: 29734513 DOI: 10.1111/tpj.13950] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 05/11/2023]
Abstract
The term metabolome was coined in 1998, by analogy to genome, transcriptome and proteome. The first research papers using the terms metabolomics, metabonomics, metabolic profiling or metabolite profiling were published shortly thereafter. In this short review we reflect on the major achievements brought about by the use of these approaches, and document the knowledge and technology gaps that are currently constraining its further development. Finally, we detail why we think that the time is ripe to refocus our efforts on the understanding of metabolic function.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Centre of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Centre of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| |
Collapse
|