1
|
Wang X, Huo Z, Ma L, Ou S, Guo M. The salt and ABA inducible transcription factor gene, SlAITR3, negatively regulates tomato salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109735. [PMID: 40048942 DOI: 10.1016/j.plaphy.2025.109735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 05/07/2025]
Abstract
It was of great significance for genetic improvement of salt-tolerant crops and increasing the yield of saline-alkali land to excavate salt stress response genes and clarify their molecular mechanism of regulating salt tolerance. Plant-specific transcription factor (TF) ABA-induced transcription repressors (AITRs) played important roles in salt stress. Nevertheless, the underlying mechanisms of how tomato AITRs (SlAITRs) regulate salt stress remain to be elucidated. In this study, we systematically described the characteristics of tomato SlAITR3 and its function in regulating salt tolerance. SlAITR3 was a transcriptional repressor located in nucleus, and SlAITR3 gene was induced by salt stress and abscisic acid (ABA). Tomato SlAITR3 silencing and knockout improved the salt tolerance. Compared with wide-type (WT) plants, the Na+/K+ ratio, cell membrane permeability and reactive oxygen species (ROS) were lower in SlAITR3 silencing or knockout mutants under salt stress conditions, while the antioxidant enzyme activities were higher. Conversely, the SlAITR3-overexpressing tomato plants showed sensitivity to salt stress. RNA-seq analysis suggested that SlAITR3 might function by regulating stress response genes, especially key genes involved in ion homeostasis and ROS metabolism. In summary, the nuclear localization TF SlAITR3 protein negatively regulated tomato salt tolerance. Our results provided a potential target and a new theoretical reference for the genetic improvement of tomato salt tolerance by biotechnology.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Enology and Horticulture, Ningxia University, Yinchuan, 750021, China
| | - Zechun Huo
- College of Landscape Architecture, Shangqiu University, Shangqiu, 476000, China
| | - Li Ma
- School of Enology and Horticulture, Ningxia University, Yinchuan, 750021, China
| | - Siying Ou
- School of Enology and Horticulture, Ningxia University, Yinchuan, 750021, China
| | - Meng Guo
- School of Enology and Horticulture, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, 750021, China; Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, 750021, China; Ningxia Facility Horticulture (Ningxia University) Technology Innovation Center, Yinchuan, 750021, China.
| |
Collapse
|
2
|
García-Valencia LE, Garza-Aguilar SM, Ramos-Parra PA, Díaz de la Garza RI. Planting resilience: One-Carbon metabolism and stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109966. [PMID: 40319586 DOI: 10.1016/j.plaphy.2025.109966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
One-carbon (1C) metabolism is a central biochemical pathway that plays a crucial role in methylation reactions, amino acid synthesis, and nucleotide production, making it essential for plant growth. Recent advances in omics technologies, including transcriptomics, proteomics, and metabolomics, have provided comprehensive insights into the regulation of 1C metabolism in wheat, one of the world's main crops, and in the model plant Arabidopsis. Genetic manipulation through overexpression and loss-of-function studies has further revealed the roles of specific genes in modulating 1C fluxes and regulating key intermediates, such as methionine, S-adenosyl methionine, and folates. These studies have also demonstrated changes in methylation patterns as well as disruptions in growth and nutrient homeostasis. The integration of these analyses has highlighted complex feedback mechanisms within 1C metabolism that coordinate responses to environmental and developmental signals. Notably, enzymes such as serine hydroxymethyltransferase and S-adenosylmethionine synthetase have emerged as critical nodes, linking 1C metabolism with broader metabolic networks, including nitrogen and sulfur metabolism. This review synthesizes findings from recent omics and genetic studies to outline the dynamic regulation of 1C metabolism, offering a comprehensive framework for exploring its potential applications in crop improvement.
Collapse
Affiliation(s)
- Liliana E García-Valencia
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, NL, Mexico
| | - Sara M Garza-Aguilar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, NL, Mexico
| | - Perla A Ramos-Parra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, NL, Mexico
| | - Rocío I Díaz de la Garza
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, NL, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, 6 64849, NL, Mexico.
| |
Collapse
|
3
|
Tian P, Liu Y, Cheng Y, Yang B, Wang Y, Wu B. Exploration of folate and its derivatives in grains of wheat with different colors. Front Genet 2025; 16:1549122. [PMID: 40242474 PMCID: PMC12000047 DOI: 10.3389/fgene.2025.1549122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 04/18/2025] Open
Abstract
Folate plays essential role in sustaining cell activity, promoting cell growth, and participating in cell division and proliferation. The demand for colored wheat is increasing day by day due to its high content of anthocyanin, iron, zinc, selenium, and other beneficial elements. To investigate the folate content and its derivatives in colored grains wheat, in this study employed a total of 113 wheat varieties (lines) with varying grain colors. The content of four folate derivatives, tetrahydrofolate (THF), 5-methyltetrahydrofolate (5-CH3-THF), 5-formyltetrahydrofolate (5-CHO-THF), and 5,10-methylenetetrahydrofolate (5,10-CH+THF), in grains cultivated under three different growing conditions were quantified using high performance liquid chromatography (HPLC). The results revealed that the four folate derivatives were distributed among wheat varieties exhibiting varying grain colors, with a coefficient of variation (CV) ranging from 15.34% to 20.10%. Among them, Lin 4179 emerged as a high-folate variety with a total content of 76.00 μg · 100 g-1. The contents of 5-CH3-THF and 5-CHO-THF in the four folate derivatives accounted for approximately 70% of the total folate content and exhibited a significant correlation with total folate content. The mean total folate level in purple and blue grains was 61.84 and 60.95 μg · 100 g-1, respectively, which was significantly higher than that in white (41.93 μg · 100 g-1) and red grains (42.40 μg · 100 g-1). The genotypic effect is the main factor affecting total folate content, while environmental factors had less impact. Genome-wide association studies (GWAS) identified four major loci associated with folate content on the chromosomes 1B, 4D and 7A, of which QFac.4D and QFac.7A.1 were stated as novel. The results of this study provide valuable insight into the development and breeding of folate biofortified wheat varieties.
Collapse
Affiliation(s)
- Peng Tian
- Shanxi Vocational University of Engineering Science and Technology, Taiyuan, Shanxi, China
| | - Yangna Liu
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yingli Cheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China
| | - Bin Yang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China
| | - Yuzhi Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China
| | - Bangbang Wu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China
| |
Collapse
|
4
|
De Lepeleire J, Mishra RC, Verstraete J, Pedroza Garcia JA, Stove C, De Veylder L, Van Der Straeten D. Folate depletion impact on the cell cycle results in restricted primary root growth in Arabidopsis. PLANT MOLECULAR BIOLOGY 2025; 115:31. [PMID: 39946030 PMCID: PMC11825618 DOI: 10.1007/s11103-025-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/03/2025] [Indexed: 02/16/2025]
Abstract
Folates are vital one carbon donors and acceptors for a whole range of key biochemical reactions, including the biosynthesis of DNA building blocks. Plants use one carbon metabolism as a jack of all trades in their growth and development. Depletion of folates impedes root growth in Arabidopsis thaliana, but the mechanistic basis behind this function is still obscure. A global transcriptomic study hinted that folate depletion may cause misregulation of cell cycle progression. However, investigations on a direct connection thereof are scarce. We confirmed the effect of methotrexate (MTX), a folate biosynthesis inhibitor, on the expression of cell cycle genes. Subsequently, we determined the effect of MTX on root morphology and cell cycle progression through phase-specific cell cycle reporter analyses. Our study reveals that folate depletion affects the expression of cell cycle regulatory genes in roots, thereby suppressing cell cycle progression. We confirmed, through DNA labelling by EdU, that MTX treatment leads to arrest in the S phase of meristematic cells, likely due to the lack of DNA precursors. Further, we noted an accumulation of the A-type CYCA3;1 cyclin at the root tip, suggesting a possible link with the observed loss of apical dominance. Overall, our study shows that the restricted cell division and cell cycle progression is one of the reasons behind the loss of primary root growth upon folate depletion.
Collapse
Affiliation(s)
- Jolien De Lepeleire
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Ratnesh Chandra Mishra
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Jana Verstraete
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Jose Antonio Pedroza Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium.
| |
Collapse
|
5
|
Auverlot J, Dard A, Sáez-Vásquez J, Reichheld JP. Redox regulation of epigenetic and epitranscriptomic gene regulatory pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4459-4475. [PMID: 38642408 DOI: 10.1093/jxb/erae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Developmental and environmental constraints influence genome expression through complex networks of regulatory mechanisms. Epigenetic modifications and remodelling of chromatin are some of the major actors regulating the dynamic of gene expression. Unravelling the factors relaying environmental signals that induce gene expression reprogramming under stress conditions is an important and fundamental question. Indeed, many enzymes involved in epigenetic and chromatin modifications are regulated by redox pathways, through post-translational modifications of proteins or by modifications of the flux of metabolic intermediates. Such modifications are potential hubs to relay developmental and environmental changes for gene expression reprogramming. In this review, we provide an update on the interaction between major redox mediators, such as reactive oxygen and nitrogen species and antioxidants, and epigenetic changes in plants. We detail how redox status alters post-translational modifications of proteins, intracellular epigenetic and epitranscriptional modifications, and how redox regulation interplays with DNA methylation, histone acetylation and methylation, miRNA biogenesis, and chromatin structure and remodelling to reprogram genome expression under environmental constraints.
Collapse
Affiliation(s)
- Juline Auverlot
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
- Centre for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Julio Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
6
|
Fitzpatrick TB. B Vitamins: An Update on Their Importance for Plant Homeostasis. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:67-93. [PMID: 38424064 DOI: 10.1146/annurev-arplant-060223-025336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
B vitamins are a source of coenzymes for a vast array of enzyme reactions, particularly those of metabolism. As metabolism is the basis of decisions that drive maintenance, growth, and development, B vitamin-derived coenzymes are key components that facilitate these processes. For over a century, we have known about these essential compounds and have elucidated their pathways of biosynthesis, repair, salvage, and degradation in numerous organisms. Only now are we beginning to understand their importance for regulatory processes, which are becoming an important topic in plants. Here, I highlight and discuss emerging evidence on how B vitamins are integrated into vital processes, from energy generation and nutrition to gene expression, and thereby contribute to the coordination of growth and developmental programs, particularly those that concern maintenance of a stable state, which is the foundational tenet of plant homeostasis.
Collapse
|
7
|
Hou X, Lu Z, Yu T, Zhang Y, Yao Q, Zhang C, Niu Y, Liang Q. Two maize homologs of mammalian proton-coupled folate transporter, ZmMFS_1-62 and ZmMFS_1-73, are essential to salt and drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108623. [PMID: 38626656 DOI: 10.1016/j.plaphy.2024.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Folates are essential to the maintenance of normal life activities in almost all organisms. Proton-coupled folate transporter (PCFT), belonging to the major facilitator superfamily, is one of the three major folate transporter types widely studied in mammals. However, information about plant PCFTs is limited. Here, a genome-wide identification of maize PCFTs was performed, and two PCFTs, ZmMFS_1-62 and ZmMFS_1-73, were functionally investigated. Both proteins contained the typical 12 transmembrane helixes with N- and C-termini located in the cytoplasm, and were localized in the plasma membrane. Molecular docking analysis indicated their binding activity with folates via hydrogen bonding. Interference with ZmMFS_1-62 and ZmMFS_1-73 in maize seedlings through virus-induced gene silencing disrupted folate homeostasis, mainly in the roots, and reduced tolerance to drought and salt stresses. Moreover, a molecular chaperone protein, ZmHSP20, was found to interact with ZmMFS_1-62 and ZmMFS_1-73, and interference with ZmHSP20 in maize seedlings also led to folate disruption and increased sensitivity to drought and salt stresses. Overall, this is the first report of functional identification of maize PCFTs, which play essential roles in salt and drought stress tolerance, thereby linking folate metabolism with abiotic stress responses in maize.
Collapse
Affiliation(s)
- Xiaowan Hou
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China; Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Zhiwei Lu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| | - Taifei Yu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| | - Yuanyuan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| | - Quansheng Yao
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China.
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China.
| |
Collapse
|
8
|
Slocum RD, Mejia Peña C, Liu Z. Transcriptional reprogramming of nucleotide metabolism in response to altered pyrimidine availability in Arabidopsis seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1273235. [PMID: 38023851 PMCID: PMC10652772 DOI: 10.3389/fpls.2023.1273235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
In Arabidopsis seedlings, inhibition of aspartate transcarbamoylase (ATC) and de novo pyrimidine synthesis resulted in pyrimidine starvation and developmental arrest a few days after germination. Synthesis of pyrimidine nucleotides by salvaging of exogenous uridine (Urd) restored normal seedling growth and development. We used this experimental system and transcriptional profiling to investigate genome-wide responses to changes in pyrimidine availability. Gene expression changes at different times after Urd supplementation of pyrimidine-starved seedlings were mapped to major pathways of nucleotide metabolism, in order to better understand potential coordination of pathway activities, at the level of transcription. Repression of de novo synthesis genes and induction of intracellular and extracellular salvaging genes were early and sustained responses to pyrimidine limitation. Since de novo synthesis is energetically more costly than salvaging, this may reflect a reduced energy status of the seedlings, as has been shown in recent studies for seedlings growing under pyrimidine limitation. The unexpected induction of pyrimidine catabolism genes under pyrimidine starvation may result from induction of nucleoside hydrolase NSH1 and repression of genes in the plastid salvaging pathway, diverting uracil (Ura) to catabolism. Identification of pyrimidine-responsive transcription factors with enriched binding sites in highly coexpressed genes of nucleotide metabolism and modeling of potential transcription regulatory networks provided new insights into possible transcriptional control of key enzymes and transporters that regulate nucleotide homeostasis in plants.
Collapse
Affiliation(s)
- Robert D. Slocum
- Department of Biological Sciences, Goucher College, Towson, MD, United States
| | - Carolina Mejia Peña
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
9
|
Caldana C, Carrari F, Fernie AR, Sampathkumar A. How metabolism and development are intertwined in space and time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:347-359. [PMID: 37433681 DOI: 10.1111/tpj.16391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Developmental transitions, occurring throughout the life cycle of plants, require precise regulation of metabolic processes to generate the energy and resources necessary for the committed growth processes. In parallel, the establishment of new cells, tissues, and even organs, alongside their differentiation provoke profound changes in metabolism. It is increasingly being recognized that there is a certain degree of feedback regulation between the components and products of metabolic pathways and developmental regulators. The generation of large-scale metabolomics datasets during developmental transitions, in combination with molecular genetic approaches has helped to further our knowledge on the functional importance of metabolic regulation of development. In this perspective article, we provide insights into studies that elucidate interactions between metabolism and development at the temporal and spatial scales. We additionally discuss how this influences cell growth-related processes. We also highlight how metabolic intermediates function as signaling molecules to direct plant development in response to changing internal and external conditions.
Collapse
Affiliation(s)
- Camila Caldana
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Fernando Carrari
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Arun Sampathkumar
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
10
|
Şahin ES, Talapov T, Ateş D, Can C, Tanyolaç MB. Genome wide association study of genes controlling resistance to Didymella rabiei Pathotype IV through genotyping by sequencing in chickpeas (Cicer arietinum). Genomics 2023; 115:110699. [PMID: 37597791 DOI: 10.1016/j.ygeno.2023.110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Ascochyta blight (AB) is a major disease in chickpeas (Cicer arietinum L.) that can cause a yield loss of up to 100%. Chickpea germplasm collections at the center of origin offer great potential to discover novel sources of resistance to pests and diseases. Herein, 189 Cicer arietinum samples were genotyped via genotyping by sequencing. This chickpea collection was phenotyped for resistance to an aggressive Turkish Didymella rabiei Pathotype IV isolate. Genome-wide association studies based on different models revealed 19 single nucleotide polymorphism (SNP) associations on chromosomes 1, 2, 3, 4, 7, and 8. Although eight of these SNPs have been previously reported, to the best of our knowledge, the remaining ten were associated with AB resistance for the first time. The regions identified in this study can be addressed in future studies to reveal the genetic mechanism underlying AB resistance and can also be utilized in chickpea breeding programs to improve AB resistance in new chickpea varieties.
Collapse
Affiliation(s)
- Erdem Sefa Şahin
- Republic of Turkey, Ministry of Agriculture and Forestry, Aegean Agricultural Research Institute, Izmir, Turkey; Department of Bioengineering, Molecular Genetic Laboratory, Ege University, Izmir, Turkey
| | - Talap Talapov
- Department of Biology, Gaziantep University, Gaziantep, Turkey
| | - Duygu Ateş
- Department of Bioengineering, Molecular Genetic Laboratory, Ege University, Izmir, Turkey
| | - Canan Can
- Department of Biology, Gaziantep University, Gaziantep, Turkey
| | | |
Collapse
|
11
|
Bittencourt CB, Carvalho da Silva TL, Rodrigues Neto JC, Leão AP, de Aquino Ribeiro JA, Maia ADHN, de Sousa CAF, Quirino BF, Souza Júnior MT. Molecular Interplay between Non-Host Resistance, Pathogens and Basal Immunity as a Background for Fatal Yellowing in Oil Palm ( Elaeis guineensis Jacq.) Plants. Int J Mol Sci 2023; 24:12918. [PMID: 37629099 PMCID: PMC10454536 DOI: 10.3390/ijms241612918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
An oil palm (Elaeis guineensis Jacq.) bud rod disorder of unknown etiology, named Fatal Yellowing (FY) disease, is regarded as one of the top constraints with respect to the growth of the palm oil industry in Brazil. FY etiology has been a challenge embraced by several research groups in plant pathology throughout the last 50 years in Brazil, with no success in completing Koch's postulates. Most recently, the hypothesis of having an abiotic stressor as the initial cause of FY has gained ground, and oxygen deficiency (hypoxia) damaging the root system has become a candidate for stress. Here, a comprehensive, large-scale, single- and multi-omics integration analysis of the metabolome and transcriptome profiles on the leaves of oil palm plants contrasting in terms of FY symptomatology-asymptomatic and symptomatic-and collected in two distinct seasons-dry and rainy-is reported. The changes observed in the physicochemical attributes of the soil and the chemical attributes and metabolome profiles of the leaves did not allow the discrimination of plants which were asymptomatic or symptomatic for this disease, not even in the rainy season, when the soil became waterlogged. However, the multi-omics integration analysis of enzymes and metabolites differentially expressed in asymptomatic and/or symptomatic plants in the rainy season compared to the dry season allowed the identification of the metabolic pathways most affected by the changes in the environment, opening an opportunity for additional characterization of the role of hypoxia in FY symptom intensification. Finally, the initial analysis of a set of 56 proteins/genes differentially expressed in symptomatic plants compared to the asymptomatic ones, independent of the season, has presented pieces of evidence suggesting that breaks in the non-host resistance to non-adapted pathogens and the basal immunity to adapted pathogens, caused by the anaerobic conditions experienced by the plants, might be linked to the onset of this disease. This set of genes might offer the opportunity to develop biomarkers for selecting oil palm plants resistant to this disease and to help pave the way to employing strategies to keep the safety barriers raised and strong.
Collapse
Affiliation(s)
- Cleiton Barroso Bittencourt
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37203-202, MG, Brazil; (C.B.B.); (T.L.C.d.S.)
| | | | - Jorge Cândido Rodrigues Neto
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil; (J.C.R.N.); (A.P.L.); (J.A.d.A.R.); (B.F.Q.)
| | - André Pereira Leão
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil; (J.C.R.N.); (A.P.L.); (J.A.d.A.R.); (B.F.Q.)
| | - José Antônio de Aquino Ribeiro
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil; (J.C.R.N.); (A.P.L.); (J.A.d.A.R.); (B.F.Q.)
| | | | | | - Betania Ferraz Quirino
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil; (J.C.R.N.); (A.P.L.); (J.A.d.A.R.); (B.F.Q.)
| | - Manoel Teixeira Souza Júnior
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37203-202, MG, Brazil; (C.B.B.); (T.L.C.d.S.)
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil; (J.C.R.N.); (A.P.L.); (J.A.d.A.R.); (B.F.Q.)
| |
Collapse
|
12
|
Valencia-Lozano E, Herrera-Isidrón L, Flores-López JA, Recoder-Meléndez OS, Uribe-López B, Barraza A, Cabrera-Ponce JL. Exploring the Potential Role of Ribosomal Proteins to Enhance Potato Resilience in the Face of Changing Climatic Conditions. Genes (Basel) 2023; 14:1463. [PMID: 37510367 PMCID: PMC10379993 DOI: 10.3390/genes14071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Potatoes have emerged as a key non-grain crop for food security worldwide. However, the looming threat of climate change poses significant risks to this vital food source, particularly through the projected reduction in crop yields under warmer temperatures. To mitigate potential crises, the development of potato varieties through genome editing holds great promise. In this study, we performed a comprehensive transcriptomic analysis to investigate microtuber development and identified several differentially expressed genes, with a particular focus on ribosomal proteins-RPL11, RPL29, RPL40 and RPL17. Our results reveal, by protein-protein interaction (PPI) network analyses, performed with the highest confidence in the STRING database platform (v11.5), the critical involvement of these ribosomal proteins in microtuber development, and highlighted their interaction with PEBP family members as potential microtuber activators. The elucidation of the molecular biological mechanisms governing ribosomal proteins will help improve the resilience of potato crops in the face of today's changing climatic conditions.
Collapse
Affiliation(s)
- Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Lisset Herrera-Isidrón
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Jorge Abraham Flores-López
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Osiel Salvador Recoder-Meléndez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Braulio Uribe-López
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Aarón Barraza
- CONACYT-Centro de Investigaciones Biológicas del Noreste, SC., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz CP 23096, Baja California Sur, Mexico
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
13
|
Soleimani B, Lehnert H, Trebing S, Habekuß A, Ordon F, Stahl A, Will T. Identification of Markers Associated with Wheat Dwarf Virus (WDV) Tolerance/Resistance in Barley ( Hordeum vulgare ssp. vulgare) Using Genome-Wide Association Studies. Viruses 2023; 15:1568. [PMID: 37515254 PMCID: PMC10385604 DOI: 10.3390/v15071568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Wheat dwarf virus (WDV) causes an important vector transmitted virus disease, which leads to significant yield losses in barley production. Due to the fact that, at the moment, no plant protection products are approved to combat the vector Psammotettix alienus, and this disease cannot be controlled by chemical means, the use of WDV-resistant or -tolerant genotypes is the most efficient method to control and reduce the negative effects of WDV on barley growth and production. In this study, a set of 480 barley genotypes were screened to identify genotypic differences in response to WDV, and five traits were assessed under infected and noninfected conditions. In total, 32 genotypes showed resistance or tolerance to WDV. Subsequently, phenotypic data of 191 out of 480 genotypes combined with 34,408 single-nucleotide polymorphisms (SNPs) were used for a genome-wide association study to identify quantitative trait loci (QTLs) and markers linked to resistance/tolerance to WDV. Genomic regions significantly associated with WDV resistance/tolerance in barley were identified on chromosomes 3H, 4H, 5H, and 7H for traits such as relative virus titer, relative performance of total grain weight, plant height, number of ears per plant, and thousand grain weight.
Collapse
Affiliation(s)
- Behnaz Soleimani
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Heike Lehnert
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Sarah Trebing
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Antje Habekuß
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Torsten Will
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| |
Collapse
|
14
|
Hasanpour K, Aalami A, Seraj RGM, Hosseini R, Naeimi S, Esmaeilzadeh-Salestani K. Identification of drought-tolerant hub genes in Iranian KC-2226 genotype of Aegilops tauschii using transcriptomic analysis. Sci Rep 2023; 13:9499. [PMID: 37308505 DOI: 10.1038/s41598-023-36133-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Aegilops tauschii, as a donor of D genome to the bread wheat with a valuable source of resistance to different biotic and abiotic stresses, is used to improve the quality of wheat cultivars. Every genotype has a specific genetic content, the investigation of which can lead to the identification of useful genes such as stress tolerance genes, including drought. Therefore, 23 genotypes of Ae. tauschii were selected to evaluate their morphological and physiological traits under greenhouse conditions. Among them, a superior tolerant genotype (KC-2226) was chosen for transcriptomic analysis. Our result showed that 5007 and 3489 genes were deferentially up- and downregulated, respectively. Upregulated genes were involved in photosynthesis, glycolysis/gluconeogenesis, and amino acid biosynthesis whereas downregulated genes were often engaged in DNA synthesis, replication, repair and topological changes. The result of protein-protein interaction network analysis showed that AT1G76550 (1.46), AT1G20950 (1.42), IAR4 (1.19), and PYD2 (1.16) among upregulated genes and THY-1 (44), PCNA1 (41) and TOPII (22) among down-regulated genes had the highest interactions with other genes. In conclusion, Ae. tauschii employs elevated transcription of specific genes involved in photosynthesis, glycolysis and gluconeogenesis and amino acid biosynthesis pathways rather than genes active in DNA synthesis and repair to provide the energy needed for the plant to survive under stress conditions.
Collapse
Affiliation(s)
- Keyvan Hasanpour
- Department of Agricultural Biotechnology, University of Guilan, University Campus 2, Rasht, Iran
| | - Ali Aalami
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | - Rahele Ghanbari Moheb Seraj
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ramin Hosseini
- Department of Biotechnology, Faculty of Agriculture and Natural Resource, Imam Khomeini International University, Qazvin, Iran
| | - Shahram Naeimi
- Department of Biological Control Research, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, 19858-13111, Iran
| | - Keyvan Esmaeilzadeh-Salestani
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| |
Collapse
|
15
|
Li Y, Luo J, Chen R, Zhou Y, Yu H, Chu Z, Lu Y, Gu X, Wu S, Wang P, Kuang H, Ouyang B. Folate shapes plant root architecture by affecting auxin distribution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:969-985. [PMID: 36587293 DOI: 10.1111/tpj.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/26/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Folate (vitamin B9) is important for plant root development, but the mechanism is largely unknown. Here we characterized a root defective mutant, folb2, in Arabidopsis, which has severe developmental defects in the primary root. The root apical meristem of the folb2 mutant is impaired, and adventitious roots are frequently found at the root-hypocotyl junction. Positional cloning revealed that a 61-bp deletion is present in the predicted junction region of the promoter and the 5' untranslated region of AtFolB2, a gene encoding a dihydroneopterin aldolase that functions in folate biosynthesis. This mutation leads to a significant reduction in the transcript level of AtFolB2. Liquid chromatography-mass spectrometry analysis showed that the contents of the selected folate compounds were decreased in folb2. Arabidopsis AtFolB2 knockdown lines phenocopy the folb2 mutant. On the other hand, the application of exogenous 5-formyltetrahydrofolic acid could rescue the root phenotype of folb2, indicating that the root phenotype is indeed related to the folate level. Further analysis revealed that folate could promote rootward auxin transport through auxin transporters and that folate may affect particular auxin/indole-3-acetic acid proteins and auxin response factors. Our findings provide new insights into the important role of folic acid in shaping root structure.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Jinying Luo
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rong Chen
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yuhong Zhou
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhuannan Chu
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuang Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
16
|
Tyagi K, Sunkum A, Gupta P, Kilambi HV, Sreelakshmi Y, Sharma R. Reduced γ-glutamyl hydrolase activity likely contributes to high folate levels in Periyakulam-1 tomato. HORTICULTURE RESEARCH 2022; 10:uhac235. [PMID: 36643736 PMCID: PMC9832877 DOI: 10.1093/hr/uhac235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Tomato cultivars show wide variation in nutraceutical folate in ripe fruits, yet the loci regulating folate levels in fruits remain unexplored. To decipher regulatory points, we compared two contrasting tomato cultivars: Periyakulam-1 (PKM-1) with high folate and Arka Vikas (AV) with low folate. The progression of ripening in PKM-1 was nearly similar to AV but had substantially lower ethylene emission. In parallel, the levels of phytohormones salicylic acid, ABA, and jasmonic acid were substantially lower than AV. The fruits of PKM-1 were metabolically distinct from AV, with upregulation of several amino acids. Consistent with higher °Brix, the red ripe fruits also showed upregulation of sugars and sugar-derived metabolites. In parallel with higher folate, PKM-1 fruits also had higher carotenoid levels, especially lycopene and β-carotene. The proteome analysis showed upregulation of carotenoid sequestration and folate metabolism-related proteins in PKM-1. The deglutamylation pathway mediated by γ-glutamyl hydrolase (GGH) was substantially reduced in PKM-1 at the red-ripe stage. The red-ripe fruits had reduced transcript levels of GGHs and lower GGH activity than AV. Conversely, the percent polyglutamylation of folate was much higher in PKM-1. Our analysis indicates the regulation of GGH activity as a potential target to elevate folate levels in tomato fruits.
Collapse
Affiliation(s)
| | - Anusha Sunkum
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
| | - Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
| | - Himabindu Vasuki Kilambi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
| | | | | |
Collapse
|
17
|
Tyagi K, Sunkum A, Rai M, Yadav A, Sircar S, Sreelakshmi Y, Sharma R. Seeing the unseen: a trifoliate (MYB117) mutant allele fortifies folate and carotenoids in tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:38-54. [PMID: 35899408 DOI: 10.1111/tpj.15925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In tomato (Solanum lycopersicum), mutations in the gene encoding the R2R3-MYB117 transcription factor elicit trifoliate leaves and initiate the formation of axillary meristems; however, their effects on fruit ripening remain unexplored. The fruits of a new trifoliate (tf) mutant (tf-5) were firmer and had higher °Brix values and higher folate and carotenoid contents. The transcriptome, proteome, and metabolome profiling of tf-5 reflected a broad-spectrum change in cellular homeostasis. The tf-5 allele enhanced the fruit firmness by suppressing cell wall softening-related proteins. tf-5 fruit displayed a substantial increase in amino acids, particularly γ-aminobutyric acid, with a parallel reduction in aminoacyl-tRNA synthases. The increased lipoxygenase protein and transcript levels seemingly elevated jasmonic acid levels. In addition, increased abscisic acid hydrolase transcript levels coupled with reduced precursor supply lowered abscisic acid levels. The upregulation of carotenoids was mediated by modulation of methylerythreitol and plastoquinone pathways and increased the levels of carotenoid isomerization proteins. The upregulation of folate in tf-5 was connoted by the increase in the precursor p-aminobenzoic acid and transcript levels of several folate biosynthesis genes. The reduction in pterin-6-carboxylate levels and γ-glutamyl hydrolase activity indicated that reduced folate degradation in tf-5 increased folate levels. Our study delineates that in addition to leaf development, MYB117 also influences fruit metabolism. The tf-5 allele can be used to increase γ-aminobutyric acid, carotenoid, and folate levels in tomato.
Collapse
Affiliation(s)
- Kamal Tyagi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Anusha Sunkum
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Meenakshi Rai
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Amita Yadav
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sanchari Sircar
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
18
|
Niehaus M, Straube H, Specht A, Baccolini C, Witte CP, Herde M. The nucleotide metabolome of germinating Arabidopsis thaliana seeds reveals a central role for thymidine phosphorylation in chloroplast development. THE PLANT CELL 2022; 34:3790-3813. [PMID: 35861422 PMCID: PMC9516053 DOI: 10.1093/plcell/koac207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/13/2022] [Indexed: 05/29/2023]
Abstract
Thymidylates are generated by several partially overlapping metabolic pathways in different subcellular locations. This interconnectedness complicates an understanding of how thymidylates are formed in vivo. Analyzing a comprehensive collection of mutants and double mutants on the phenotypic and metabolic level, we report the effect of de novo thymidylate synthesis, salvage of thymidine, and conversion of cytidylates to thymidylates on thymidylate homeostasis during seed germination and seedling establishment in Arabidopsis (Arabidopsis thaliana). During germination, the salvage of thymidine in organelles contributes predominantly to the thymidylate pools and a mutant lacking organellar (mitochondrial and plastidic) thymidine kinase has severely altered deoxyribonucleotide levels, less chloroplast DNA, and chlorotic cotyledons. This phenotype is aggravated when mitochondrial thymidylate de novo synthesis is additionally compromised. We also discovered an organellar deoxyuridine-triphosphate pyrophosphatase and show that its main function is not thymidylate synthesis but probably the removal of noncanonical nucleotide triphosphates. Interestingly, cytosolic thymidylate synthesis can only compensate defective organellar thymidine salvage in seedlings but not during germination. This study provides a comprehensive insight into the nucleotide metabolome of germinating seeds and demonstrates the unique role of enzymes that seem redundant at first glance.
Collapse
Affiliation(s)
- Markus Niehaus
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Henryk Straube
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - André Specht
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Chiara Baccolini
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| |
Collapse
|
19
|
Liu Z, Farkas P, Wang K, Kohli M, Fitzpatrick TB. B vitamin supply in plants and humans: the importance of vitamer homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:662-682. [PMID: 35673947 PMCID: PMC9544542 DOI: 10.1111/tpj.15859] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 05/26/2023]
Abstract
B vitamins are a group of water-soluble micronutrients that are required in all life forms. With the lack of biosynthetic pathways, humans depend on dietary uptake of these compounds, either directly or indirectly, from plant sources. B vitamins are frequently given little consideration beyond their role as enzyme accessory factors and are assumed not to limit metabolism. However, it should be recognized that each individual B vitamin is a family of compounds (vitamers), the regulation of which has dedicated pathways. Moreover, it is becoming increasingly evident that individual family members have physiological relevance and should not be sidelined. Here, we elaborate on the known forms of vitamins B1 , B6 and B9 , their distinct functions and importance to metabolism, in both human and plant health, and highlight the relevance of vitamer homeostasis. Research on B vitamin metabolism over the past several years indicates that not only the total level of vitamins but also the oft-neglected homeostasis of the various vitamers of each B vitamin is essential to human and plant health. We briefly discuss the potential of plant biology studies in supporting human health regarding these B vitamins as essential micronutrients. Based on the findings of the past few years we conclude that research should focus on the significance of vitamer homeostasis - at the organ, tissue and subcellular levels - which could improve the health of not only humans but also plants, benefiting from cross-disciplinary approaches and novel technologies.
Collapse
Affiliation(s)
- Zeguang Liu
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Peter Farkas
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Kai Wang
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Morgan‐Océane Kohli
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Teresa B. Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| |
Collapse
|
20
|
Hirohata A, Yamatsuta Y, Ogawa K, Kubota A, Suzuki T, Shimizu H, Kanesaka Y, Takahashi N, Endo M. Sulfanilamide Regulates Flowering Time through Expression of the Circadian Clock Gene LUX. PLANT & CELL PHYSIOLOGY 2022; 63:649-657. [PMID: 35238923 DOI: 10.1093/pcp/pcac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Flowering time is an agriculturally important trait that can be manipulated by various approaches such as breeding, growth control and genetic modifications. Despite its potential advantages, including fine-tuning the regulation of flowering time, few reports have explored the use of chemical compounds to manipulate flowering. Here, we report that sulfanilamide, an inhibitor of folate biosynthesis, delays flowering by repressing the expression of florigen FLOWERING LOCUS T (FT) in Arabidopsis thaliana. Transcriptome deep sequencing and quantitative polymerase chain reaction analyses showed that the expression of the circadian clock gene LUX ARRYTHMO/PHYTOCLOCK1 (LUX/PCL1) is altered by sulfanilamide treatment. Furthermore, in the lux nox mutant harboring loss of function in both LUX and its homolog BROTHER OF LUX ARRHYTHMO (BOA, also named NOX), the inhibitory effect of sulfanilamide treatment on FT expression was weak and the flowering time was similar to that of the wild type, suggesting that the circadian clock may contribute to the FT-mediated regulation of flowering by sulfanilamide. Sulfanilamide also delayed flowering time in arugula (Eruca sativa), suggesting that it is involved in the regulation of flowering across Brassicaceae. We propose that sulfanilamide is a novel modulator of flowering.
Collapse
Affiliation(s)
- Atsuhiro Hirohata
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-Cho 8916-5, Ikoma, Nara, 630-0192 Japan
| | - Yuta Yamatsuta
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-Cho 8916-5, Ikoma, Nara, 630-0192 Japan
| | - Kaori Ogawa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8501 Japan
| | - Akane Kubota
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-Cho 8916-5, Ikoma, Nara, 630-0192 Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| | - Hanako Shimizu
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga, 520-2113 Japan
| | - Yuki Kanesaka
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8501 Japan
| | - Nozomu Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-Cho 8916-5, Ikoma, Nara, 630-0192 Japan
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-Cho 8916-5, Ikoma, Nara, 630-0192 Japan
| |
Collapse
|
21
|
Ramakrishnan M, Papolu PK, Satish L, Vinod KK, Wei Q, Sharma A, Emamverdian A, Zou LH, Zhou M. Redox status of the plant cell determines epigenetic modifications under abiotic stress conditions and during developmental processes. J Adv Res 2022; 42:99-116. [PMID: 35690579 PMCID: PMC9788946 DOI: 10.1016/j.jare.2022.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The oxidation-reduction (redox) status of the cell influences or regulates transcription factors and enzymes involved in epigenetic changes, such as DNA methylation, histone protein modifications, and chromatin structure and remodeling. These changes are crucial regulators of chromatin architecture, leading to differential gene expression in eukaryotes. But the cell's redox homeostasis is difficult to sustain since the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is not equal in plants at different developmental stages and under abiotic stress conditions. Exceeding optimum ROS and RNS levels leads to oxidative stress and thus alters the redox status of the cell. Consequently, this alteration modulates intracellular epigenetic modifications that either mitigate or mediate the plant growth and stress response. AIM OF REVIEW Recent studies suggest that the altered redox status of the cell reform the cellular functions and epigenetic changes. Recent high-throughput techniques have also greatly advanced redox-mediated gene expression discovery, but the integrated view of the redox status, and its associations with epigenetic changes and subsequent gene expression in plants are still scarce. In this review, we accordingly focus on how the redox status of the cell affects epigenetic modifications in plants under abiotic stress conditions and during developmental processes. This is a first comprehensive review on the redox status of the cell covering the redox components and signaling, redox status alters the post-translational modification of proteins, intracellular epigenetic modifications, redox interplay during DNA methylation, redox regulation of histone acetylation and methylation, redox regulation of miRNA biogenesis, redox regulation of chromatin structure and remodeling and conclusion, future perspectives and biotechnological opportunities for the future development of the plants. KEY SCIENTIFIC CONCEPTS OF REVIEW The interaction of redox mediators such as ROS, RNS and antioxidants regulates redox homeostasis and redox-mediated epigenetic changes. We discuss how redox mediators modulate epigenetic changes and show the opportunities for smart use of the redox status of the cell in plant development and abiotic stress adaptation. However, how a redox mediator triggers epigenetic modification without activating other redox mediators remains yet unknown.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Lakkakula Satish
- Department of Biotechnology Engineering, & The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva - 84105, Israel; Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR - Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India
| | | | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
22
|
Lian T, Wang X, Li S, Jiang H, Zhang C, Wang H, Jiang L. Comparative Transcriptome Analysis Reveals Mechanisms of Folate Accumulation in Maize Grains. Int J Mol Sci 2022; 23:ijms23031708. [PMID: 35163628 PMCID: PMC8836222 DOI: 10.3390/ijms23031708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Previously, the complexity of folate accumulation in the early stages of maize kernel development has been reported, but the mechanisms of folate accumulation are unclear. Two maize inbred lines, DAN3130 and JI63, with different patterns of folate accumulation and different total folate contents in mature kernels were used to investigate the transcriptional regulation of folate metabolism during late stages of kernel formation by comparative transcriptome analysis. The folate accumulation during DAP 24 to mature kernels could be controlled by circumjacent pathways of folate biosynthesis, such as pyruvate metabolism, glutamate metabolism, and serine/glycine metabolism. In addition, the folate variation between these two inbred lines was related to those genes among folate metabolism, such as genes in the pteridine branch, para-aminobenzoate branch, serine/tetrahydrofolate (THF)/5-methyltetrahydrofolate cycle, and the conversion of THF monoglutamate to THF polyglutamate. The findings provided insight into folate accumulation mechanisms during maize kernel formation to promote folate biofortification.
Collapse
Affiliation(s)
- Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Plant Genetics, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Xuxia Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
| | - Sha Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
| | - Haiyang Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
- National Agricultural Science and Technology Center, Chengdu 610213, China
- Correspondence: (H.W.); (L.J.)
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Correspondence: (H.W.); (L.J.)
| |
Collapse
|
23
|
Relative flux trade-offs and optimization of metabolic network functionalities. Comput Struct Biotechnol J 2022; 20:3963-3971. [PMID: 35950188 PMCID: PMC9340536 DOI: 10.1016/j.csbj.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
Trade-offs between traits are present across different levels of biological systems and ultimately reflect constraints imposed by physicochemical laws and the structure of underlying biochemical networks. Yet, mechanistic explanation of how trade-offs between molecular traits arise and how they relate to optimization of fitness-related traits remains elusive. Here, we introduce the concept of relative flux trade-offs and propose a constraint-based approach, termed FluTOr, to identify metabolic reactions whose fluxes are in relative trade-off with respect to an optimized fitness-related cellular task, like growth. We then employed FluTOr to identify relative flux trade-offs in the genome-scale metabolic networks of Escherichia coli, Saccharomyces cerevisiae, and Arabidopsis thaliana. For the metabolic models of E. coli and S. cerevisiae we showed that: (i) the identified relative flux trade-offs depend on the carbon source used and that (ii) reactions that participated in relative trade-offs in both species were implicated in cofactor biosynthesis. In contrast to the two microorganisms, the relative flux trade-offs for the metabolic model of A. thaliana did not depend on the available nitrogen sources, reflecting the differences in the underlying metabolic network as well as the considered environments. Lastly, the established connection between relative flux trade-offs allowed us to identify overexpression targets that can be used to optimize fitness-related traits. Altogether, our computational approach and findings demonstrate how relative flux trade-offs can shape optimization of metabolic tasks, important in biotechnological applications.
Collapse
|
24
|
Liu T, Zhang X. Comparative transcriptome and metabolome analysis reveal glutathione metabolic network and functional genes underlying blue and red-light mediation in maize seedling leaf. BMC PLANT BIOLOGY 2021; 21:593. [PMID: 34906076 PMCID: PMC8670197 DOI: 10.1186/s12870-021-03376-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Light quality severely affects biosynthesis and metabolism-associated process of glutathione. However, the role of specific light is still unclear on the glutathione metabolism. In this article, comparatively transcriptome and metabolome methods are used to fully understand the blue and red-light conditions working on the glutathione metabolism in maize seedling leaf. RESULTS There are 20 differently expressed genes and 4 differently expressed metabolites in KEGG pathway of glutathione metabolism. Among them, 12 genes belong to the glutathione S-transferase family, 3 genes belong to the ascorbate peroxidase gene family and 2 genes belong to the ribonucleoside-diphosphate reductase gene family. Three genes, G6PD, SPDS1, and GPX1 belong to the gene family of glucose 6-phosphate dehydrogenase, spermidine synthase, and glutathione peroxidase, respectively. Four differently expressed metabolites are identified. Three of them, Glutathione disulfide, Glutathione, and l-γ-Glutamyl-L-amino acid are decreased while L-Glutamate is increased. In addition, Through PPI analysis, two annotated genes gst16 and DAAT, and 3 unidentified genes 100381533, pco105094 and umc2770, identified as RPP13-like3, BCAT-like1and GMPS, were obtained. By the analysis of protein sequence and PPI network, we predict that pco105094 and umc2770 were involved in the GSSG-GSH and AsA-GSH cycle in the network of glutathione metabolism. CONCLUSIONS Compared to red light, blue light remarkably changed the transcription signal transduction and metabolism of glutathione metabolism. Differently expressed genes and metabolic mapped to the glutathione metabolism signaling pathways. In total, we obtained three unidentified genes, and two of them were predicted in current glutathione metabolism network. This result will contribute to the research of glutathione metabolism of maize.
Collapse
Affiliation(s)
- Tiedong Liu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xiwen Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|
25
|
Li Z, Li W, Zhou D, Zhao J, Ma Y, Huang L, Dong C, Wilson JX, Huang G. Alleviating Oxidative Damage-Induced Telomere Attrition: a Potential Mechanism for Inhibition by Folic Acid of Apoptosis in Neural Stem Cells. Mol Neurobiol 2021; 59:590-602. [PMID: 34741234 DOI: 10.1007/s12035-021-02623-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 10/26/2021] [Indexed: 01/07/2023]
Abstract
DNA oxidative damage can cause telomere attrition or dysfunction that triggers cell senescence and apoptosis. The hypothesis of this study is that folic acid decreases apoptosis in neural stem cells (NSCs) by preventing oxidative stress-induced telomere attrition. Primary cultures of NSCs were incubated for 9 days with various concentrations of folic acid (0-40 µM) and then incubated for 24 h with a combination of folic acid and an oxidant (100-µM hydrogen peroxide, H2O2), antioxidant (10-mM N-acetyl-L-cysteine, NAC), or vehicle. Intracellular folate concentration, apoptosis rate, cell proliferative capacity, telomere length, telomeric DNA oxidative damage, telomerase activity, intracellular reactive oxygen species (ROS) levels, cellular oxidative damage, and intracellular antioxidant enzyme activities were determined. The results showed that folic acid deficiency in NSCs decreased intracellular folate concentration, cell proliferation, telomere length, and telomerase activity but increased apoptosis, telomeric DNA oxidative damage, and intracellular ROS levels. In contrast, folic acid supplementation dose-dependently increased intracellular folate concentration, cell proliferative capacity, telomere length, and telomerase activity but decreased apoptosis, telomeric DNA oxidative damage, and intracellular ROS levels. Exposure to H2O2 aggravated telomere attrition and oxidative damage, whereas NAC alleviated the latter. High doses of folic acid prevented telomere attrition and telomeric DNA oxidative damage by H2O2. In conclusion, inhibition of telomeric DNA oxidative damage and telomere attrition in NSCs may be potential mechanisms of inhibiting NSC apoptosis by folic acid.
Collapse
Affiliation(s)
- Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
- Center for International Collaborative Research On Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Jing Zhao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Yue Ma
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Ling Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Cuixia Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214-8028, USA
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China.
- Center for International Collaborative Research On Environment, Nutrition and Public Health, Tianjin, 300070, China.
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
26
|
Li W, Liang Q, Mishra RC, Sanchez-Mu�oz R, Wang H, Chen X, Van Der Straeten D, Zhang C, Xiao Y. The 5-formyl-tetrahydrofolate proteome links folates with C/N metabolism and reveals feedback regulation of folate biosynthesis. THE PLANT CELL 2021; 33:3367-3385. [PMID: 34352110 PMCID: PMC8505879 DOI: 10.1093/plcell/koab198] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/23/2021] [Indexed: 05/31/2023]
Abstract
Folates are indispensable for plant development, but their molecular mode of action remains elusive. We synthesized a probe, "5-F-THF-Dayne," comprising 5-formyl-tetrahydrofolate (THF) coupled to a photoaffinity tag. Exploiting this probe in an affinity proteomics study in Arabidopsis thaliana, we retrieved 51 hits. Thirty interactions were independently validated with in vitro expressed proteins to bind 5-F-THF with high or low affinity. Interestingly, the interactors reveal associations beyond one-carbon metabolism, covering also connections to nitrogen (N) metabolism, carbohydrate metabolism/photosynthesis, and proteostasis. Two of the interactions, one with the folate biosynthetic enzyme DIHYDROFOLATE REDUCTASE-THYMIDYLATE SYNTHASE 1 (AtDHFR-TS1) and another with N metabolism-associated glutamine synthetase 1;4 (AtGLN1;4), were further characterized. In silico and experimental analyses revealed G35/K36 and E330 as key residues for the binding of 5-F-THF in AtDHFR-TS1 and AtGLN1;4, respectively. Site-directed mutagenesis of AtGLN1;4 E330, which co-localizes with the ATP-binding pocket, abolished 5-F-THF binding as well as AtGLN1;4 activity. Furthermore, 5-F-THF was noted to competitively inhibit the activities of AtDHFR-TS1 and AtGLN1;4. In summary, we demonstrated a regulatory role for 5-F-THF in N metabolism, revealed 5-F-THF-mediated feedback regulation of folate biosynthesis, and identified a total of 14 previously unknown high-affinity binding cellular targets of 5-F-THF. Together, this sets a landmark toward understanding the role of folates in plant development.
Collapse
Affiliation(s)
- Weichao Li
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ratnesh Chandra Mishra
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Gent B-9000, Belgium
| | - Raul Sanchez-Mu�oz
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Gent B-9000, Belgium
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Chen
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Gent B-9000, Belgium
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Barzegar T, Najafi R, Razavi F, Ghahremani Z. Hydrogen sulfide and phenylalanine alleviate chilling injury in eggplant fruits during cold storage by enhancing antioxidant activities and membrane stability. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Taher Barzegar
- Department of Horticulture, Faculty of Agriculture University of Zanjan Zanjan Iran
| | - Reza Najafi
- Department of Horticulture, Faculty of Agriculture University of Zanjan Zanjan Iran
| | - Farhang Razavi
- Department of Horticulture, Faculty of Agriculture University of Zanjan Zanjan Iran
| | - Zahra Ghahremani
- Department of Horticulture, Faculty of Agriculture University of Zanjan Zanjan Iran
| |
Collapse
|
28
|
Kambakam S, Ngaki MN, Sahu BB, Kandel DR, Singh P, Sumit R, Swaminathan S, Muliyar-Krishna R, Bhattacharyya MK. Arabidopsis non-host resistance PSS30 gene enhances broad-spectrum disease resistance in the soybean cultivar Williams 82. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1432-1446. [PMID: 34171147 DOI: 10.1111/tpj.15392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/03/2021] [Accepted: 06/19/2021] [Indexed: 05/27/2023]
Abstract
Non-host resistance (NHR), which protects all members of a plant species from non-adapted or non-host plant pathogens, is the most common form of plant immunity. NHR provides the most durable and robust form of broad-spectrum immunity against non-adaptive pathogens pathogenic to other crop species. In a mutant screen for loss of Arabidopsis (Arabidopsis thaliana) NHR against the soybean (Glycine max (L.) Merr.) pathogen Phytophthora sojae, the Phytophthora sojae-susceptible 30 (pss30) mutant was identified. The pss30 mutant is also susceptible to the soybean pathogen Fusarium virguliforme. PSS30 encodes a folate transporter, AtFOLT1, which was previously localized to chloroplasts and implicated in the transport of folate from the cytosol to plastids. We show that two Arabidopsis folate biosynthesis mutants with reduced folate levels exhibit a loss of non-host immunity against P. sojae. As compared to the wild-type Col-0 ecotype, the steady-state folate levels are reduced in the pss1, atfolt1 and two folate biosynthesis mutants, suggesting that folate is required for non-host immunity. Overexpression of AtFOLT1 enhances immunity of transgenic soybean lines against two serious soybean pathogens, the fungal pathogen F. virguliforme and the soybean cyst nematode (SCN) Heterodera glycines. Transgenic lines showing enhanced SCN resistance also showed increased levels of folate accumulation. This study thus suggests that folate contributes to non-host plant immunity and that overexpression of a non-host resistance gene could be a suitable strategy for generating broad-spectrum disease resistance in crop plants.
Collapse
Affiliation(s)
- Sekhar Kambakam
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | | | - Binod B Sahu
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | - Devi R Kandel
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | - Prashant Singh
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | - Rishi Sumit
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | | | | | | |
Collapse
|
29
|
Regulation of the one carbon folate cycle as a shared metabolic signature of longevity. Nat Commun 2021; 12:3486. [PMID: 34108489 PMCID: PMC8190293 DOI: 10.1038/s41467-021-23856-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
The metabolome represents a complex network of biological events that reflects the physiologic state of the organism in health and disease. Additionally, specific metabolites and metabolic signaling pathways have been shown to modulate animal ageing, but whether there are convergent mechanisms uniting these processes remains elusive. Here, we used high resolution mass spectrometry to obtain the metabolomic profiles of canonical longevity pathways in C. elegans to identify metabolites regulating life span. By leveraging the metabolomic profiles across pathways, we found that one carbon metabolism and the folate cycle are pervasively regulated in common. We observed similar changes in long-lived mouse models of reduced insulin/IGF signaling. Genetic manipulation of pathway enzymes and supplementation with one carbon metabolites in C. elegans reveal that regulation of the folate cycle represents a shared causal mechanism of longevity and proteoprotection. Such interventions impact the methionine cycle, and reveal methionine restriction as an underlying mechanism. This comparative approach reveals key metabolic nodes to enhance healthy ageing.
Collapse
|
30
|
Samo N, Ebert A, Kopka J, Mozgová I. Plant chromatin, metabolism and development - an intricate crosstalk. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102002. [PMID: 33497897 DOI: 10.1016/j.pbi.2021.102002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Chromatin structure influences DNA accessibility and underlying gene expression. Disturbances of chromatin structure often result in pleiotropic developmental phenotypes. Interactions between chromatin modifications and development have been the main focus of epigenetic studies. Recent years brought major advance in uncovering and understanding connections between chromatin organisation in the nucleus and metabolic processes that take place in the cytoplasm or other cellular compartments. Products of primary metabolism and cell redox states influence chromatin-modifying complexes, and chromatin modifiers in turn affect expression of metabolic genes. Current evidence indicates that complex interaction loops between these biological system layers exist. Applying interdisciplinary and holistic approaches will decipher causality and molecular mechanisms of the dynamic crosstalk between chromatin structure, metabolism and plant growth and development.
Collapse
Affiliation(s)
- Naseem Samo
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Alina Ebert
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Iva Mozgová
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic.
| |
Collapse
|
31
|
Combined Transcriptome Analysis Reveals the Ovule Abortion Regulatory Mechanisms in the Female Sterile Line of Pinus tabuliformis Carr. Int J Mol Sci 2021; 22:ijms22063138. [PMID: 33808669 PMCID: PMC8003466 DOI: 10.3390/ijms22063138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Ovule abortion is a common phenomenon in plants that has an impact on seed production. Previous studies of ovule and female gametophyte (FG) development have mainly focused on angiosperms, especially in Arabidopsis thaliana. However, because it is difficult to acquire information about ovule development in gymnosperms, this remains unclear. Here, we investigated the transcriptomic data of natural ovule abortion mutants (female sterile line, STE) and the wild type (female fertile line, FER) of Pinus tabuliformis Carr. to evaluate the mechanism of ovule abortion during the process of free nuclear mitosis (FNM). Using single-molecule real-time (SMRT) sequencing and next-generation sequencing (NGS), 18 cDNA libraries via Illumina and two normalized libraries via PacBio, with a total of almost 400,000 reads, were obtained. Our analysis showed that the numbers of isoforms and alternative splicing (AS) patterns were significantly variable between FER and STE. The functional annotation results demonstrate that genes involved in the auxin response, energy metabolism, signal transduction, cell division, and stress response were differentially expressed in different lines. In particular, AUX/IAA, ARF2, SUS, and CYCB had significantly lower expression in STE, showing that auxin might be insufficient in STE, thus hindering nuclear division and influencing metabolism. Apoptosis in STE might also have affected the expression levels of these genes. To confirm the transcriptomic analysis results, nine pairs were confirmed by quantitative real-time PCR. Taken together, these results provide new insights into ovule abortion in gymnosperms and further reveal the regulatory mechanisms of ovule development.
Collapse
|
32
|
Jiang L, Strobbe S, Van Der Straeten D, Zhang C. Regulation of plant vitamin metabolism: backbone of biofortification for the alleviation of hidden hunger. MOLECULAR PLANT 2021; 14:40-60. [PMID: 33545049 DOI: 10.1016/j.molp.2020.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
|
33
|
High Hydrostatic Pressure Modulates the Folate and Ascorbic Acid Accumulation in Papaya (Carica papaya cv. Maradol) Fruit. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-020-09268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Li Y, Wang LF, Bhutto SH, He XR, Yang XM, Zhou XH, Lin XY, Rajput AA, Li GB, Zhao JH, Zhou SX, Ji YP, Pu M, Wang H, Zhao ZX, Huang YY, Zhang JW, Qin P, Fan J, Wang WM. Blocking miR530 Improves Rice Resistance, Yield, and Maturity. FRONTIERS IN PLANT SCIENCE 2021; 12:729560. [PMID: 34527014 PMCID: PMC8435866 DOI: 10.3389/fpls.2021.729560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/27/2021] [Indexed: 05/04/2023]
Abstract
MicroRNAs fine-tune plant growth and resistance against multiple biotic and abiotic stresses. The trade-off between biomass and resistance can penalize crop yield. In this study, we have shown that rice miR530 regulates blast disease resistance, yield, and growth period. While the overexpression of miR530 results in compromised blast disease resistance, reduced grain yield, and late maturity, blocking miR530 using a target mimic (MIM530) leads to enhanced resistance, increased grain yield, and early maturity. Further study revealed that the accumulation of miR530 was decreased in both leaves and panicles along with the increase of age. Such expression patterns were accordant with the enhanced resistance from seedlings to adult plants, and the grain development from panicle formation to fully-filled seeds. Divergence analysis of miR530 precursor with upstream 1,000-bp promoter sequence in 11 rice species revealed that miR530 was diverse in Oryza sativa japonica and O. sativa indica group, which was consistent with the different accumulation of miR530 in japonica accessions and indica accessions. Altogether, our results indicate that miR530 coordinates rice resistance, yield, and maturity, thus providing a potential regulatory module for breeding programs aiming to improve yield and disease resistance.
Collapse
|
35
|
Schmitz J, Hüdig M, Meier D, Linka N, Maurino VG. The genome of Ricinus communis encodes a single glycolate oxidase with different functions in photosynthetic and heterotrophic organs. PLANTA 2020; 252:100. [PMID: 33170407 PMCID: PMC7655567 DOI: 10.1007/s00425-020-03504-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
The biochemical characterization of glycolate oxidase in Ricinus communis hints to different physiological functions of the enzyme depending on the organ in which it is active. Enzymatic activities of the photorespiratory pathway are not restricted to green tissues but are present also in heterotrophic organs. High glycolate oxidase (GOX) activity was detected in the endosperm of Ricinus communis. Phylogenetic analysis of the Ricinus L-2-hydroxy acid oxidase (Rc(L)-2-HAOX) family indicated that Rc(L)-2-HAOX1 to Rc(L)-2-HAOX3 cluster with the group containing streptophyte long-chain 2-hydroxy acid oxidases, whereas Rc(L)-2-HAOX4 clusters with the group containing streptophyte GOX. Rc(L)-2-HAOX4 is the closest relative to the photorespiratory GOX genes of Arabidopsis. We obtained Rc(L)-2-HAOX4 as a recombinant protein and analyze its kinetic properties in comparison to the Arabidopsis photorespiratory GOX. We also analyzed the expression of all Rc(L)-2-HAOXs and conducted metabolite profiling of different Ricinus organs. Phylogenetic analysis indicates that Rc(L)-2-HAOX4 is the only GOX encoded in the Ricinus genome (RcGOX). RcGOX has properties resembling those of the photorespiratory GOX of Arabidopsis. We found that glycolate, the substrate of GOX, is highly abundant in non-green tissues, such as roots, embryo of germinating seeds and dry seeds. We propose that RcGOX fulfills different physiological functions depending on the organ in which it is active. In autotrophic organs it oxidizes glycolate into glyoxylate as part of the photorespiratory pathway. In fast growing heterotrophic organs, it is most probably involved in the production of serine to feed the folate pathway for special demands of those tissues.
Collapse
Affiliation(s)
- Jessica Schmitz
- Plant Molecular Physiology and Biotechnology Division, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Meike Hüdig
- Plant Molecular Physiology and Biotechnology Division, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Molecular Plant Physiology Division, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Dieter Meier
- Plant Molecular Physiology and Biotechnology Division, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Nicole Linka
- Institute for Plant Biochemistry, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Veronica G Maurino
- Plant Molecular Physiology and Biotechnology Division, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany.
- Molecular Plant Physiology Division, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
36
|
Formyl tetrahydrofolate deformylase affects hydrogen peroxide accumulation and leaf senescence by regulating the folate status and redox homeostasis in rice. SCIENCE CHINA-LIFE SCIENCES 2020; 64:720-738. [DOI: 10.1007/s11427-020-1773-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
|
37
|
Aghdam MS, Palma JM, Corpas FJ. NADPH as a quality footprinting in horticultural crops marketability. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Aghdam MS, Alikhani-Koupaei M. Exogenous phytosulfokine α (PSKα) applying delays senescence and relief decay in strawberry fruits during cold storage by sufficient intracellular ATP and NADPH availability. Food Chem 2020; 336:127685. [PMID: 32758803 DOI: 10.1016/j.foodchem.2020.127685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022]
Abstract
Herein, we employed exogenous phytosulfokine α (PSKα) for delaying senescence and lessening decay in strawberry fruits during storage at 4 °C for 18 days. Our results showed that the strawberry fruits treated with 150 nM PSKα exhibited lower expression of poly-ADP-ribose polymerase 1 (PARP1) gene, leading to a higher intracellular NAD+ availability, beneficial for a sufficient provision of intracellular NADP+ with the activity of NAD kinase (NADK). Moreover, higher activities of glucose 6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and methylenetetrahydrofolate dehydrogenase (MTHFD) may be the reason for the sufficient intracellular availability of NADPH in strawberry fruits treated with 150 nM PSKα. In addition, strawberry fruits treated with 150 nM PSKα exhibited a sufficient availability of ATP resulted from higher activities of succinate dehydrogenase (SDH) and cytochrome c oxidase (CCO). Therefore, our results indicate that exogenous PSKα could be beneficial for delaying senescence and reducing decay in strawberry fruits during cold storage.
Collapse
Affiliation(s)
- Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran.
| | - Majid Alikhani-Koupaei
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Higher Educational Complex of Saravan, Saravan, Iran.
| |
Collapse
|
39
|
Krupinska K, Blanco NE, Oetke S, Zottini M. Genome communication in plants mediated by organelle-n-ucleus-located proteins. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190397. [PMID: 32362260 PMCID: PMC7209962 DOI: 10.1098/rstb.2019.0397] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An increasing number of eukaryotic proteins have been shown to have a dual localization in the DNA-containing organelles, mitochondria and plastids, and/or the nucleus. Regulation of dual targeting and relocation of proteins from organelles to the nucleus offer the most direct means for communication between organelles as well as organelles and nucleus. Most of the mitochondrial proteins of animals have functions in DNA repair and gene expression by modelling of nucleoid architecture and/or chromatin. In plants, such proteins can affect replication and early development. Most plastid proteins with a confirmed or predicted second location in the nucleus are associated with the prokaryotic core RNA polymerase and are required for chloroplast development and light responses. Few plastid–nucleus-located proteins are involved in pathogen defence and cell cycle control. For three proteins, it has been clearly shown that they are first targeted to the organelle and then relocated to the nucleus, i.e. the nucleoid-associated proteins HEMERA and Whirly1 and the stroma-located defence protein NRIP1. Relocation to the nucleus can be experimentally demonstrated by plastid transformation leading to the synthesis of proteins with a tag that enables their detection in the nucleus or by fusions with fluoroproteins in different experimental set-ups. This article is part of the theme issue ‘Retrograde signalling from endosymbiotic organelles’.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Nicolás E Blanco
- Centre of Photosynthetic and Biochemical Studies, Faculty of Biochemical Science and Pharmacy, National University of Rosario (CEFOBI/UNR-CONICET), Rosario, Argentina
| | - Svenja Oetke
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Michela Zottini
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy
| |
Collapse
|
40
|
Xiang N, Hu J, Wen T, Brennan MA, Brennan CS, Guo X. Effects of temperature stress on the accumulation of ascorbic acid and folates in sweet corn (Zea mays L.) seedlings. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1694-1701. [PMID: 31803938 DOI: 10.1002/jsfa.10184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Extreme temperatures are among the primary abiotic stresses that affect plant growth and development. Ascorbic acid (AsA) is an efficient antioxidant for scavenging relative oxygen species accumulated under stress. Folates play a significant role in DNA synthesis and protect plants against oxidative stress. Sweet corn (Zea mays L.), a crop grown worldwide, is sensitive to extreme temperatures at seedling stage, which may cause yield loss. This study was conducted to explore the biosynthetic regulative mechanism of AsA and folates in sweet corn seedlings under temperature stress. RESULTS The AsA and folate composition and relative gene expression in sweet corn seedlings grown under different temperature stresses (10, 25, and 40 °C) were evaluated. The imposition of temperature stress altered the AsA content mainly by modulating the expression of Zm DHAR, whose encoded enzyme dehydroascorbic reductase (DHAR) is essential in the AsA recycle pathway. Low temperature stress raised the expressions of relative genes, leading to folate accumulation. High temperature stress modulated the folate content by influencing the expression of the correspondence gene for aminodeoxychorismate synthase, Zm ADCS, as well as downstream genes that connected with DNA methylation. CONCLUSION These results provided a theoretical basis, at a genetic level, for understanding the stress responses mechanism in sweet corn seedlings, offering guidance for sweet corn cultivation. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Jianguang Hu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tianxiang Wen
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Margaret Anne Brennan
- Department of Wine, Food Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
- Department of Wine, Food Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
41
|
Møller IM, Igamberdiev AU, Bykova NV, Finkemeier I, Rasmusson AG, Schwarzländer M. Matrix Redox Physiology Governs the Regulation of Plant Mitochondrial Metabolism through Posttranslational Protein Modifications. THE PLANT CELL 2020; 32:573-594. [PMID: 31911454 PMCID: PMC7054041 DOI: 10.1105/tpc.19.00535] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/28/2019] [Accepted: 01/06/2020] [Indexed: 05/18/2023]
Abstract
Mitochondria function as hubs of plant metabolism. Oxidative phosphorylation produces ATP, but it is also a central high-capacity electron sink required by many metabolic pathways that must be flexibly coordinated and integrated. Here, we review the crucial roles of redox-associated posttranslational protein modifications (PTMs) in mitochondrial metabolic regulation. We discuss several major concepts. First, the major redox couples in the mitochondrial matrix (NAD, NADP, thioredoxin, glutathione, and ascorbate) are in kinetic steady state rather than thermodynamic equilibrium. Second, targeted proteomics have produced long lists of proteins potentially regulated by Cys oxidation/thioredoxin, Met-SO formation, phosphorylation, or Lys acetylation, but we currently only understand the functional importance of a few of these PTMs. Some site modifications may represent molecular noise caused by spurious reactions. Third, different PTMs on the same protein or on different proteins in the same metabolic pathway can interact to fine-tune metabolic regulation. Fourth, PTMs take part in the repair of stress-induced damage (e.g., by reducing Met and Cys oxidation products) as well as adjusting metabolic functions in response to environmental variation, such as changes in light irradiance or oxygen availability. Finally, PTMs form a multidimensional regulatory system that provides the speed and flexibility needed for mitochondrial coordination far beyond that provided by changes in nuclear gene expression alone.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, DK-4200 Slagelse, Denmark
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Natalia V Bykova
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba R6M 1Y5, Canada
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, DE-48149 Münster, Germany
| | | | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, DE-48143 Münster, Germany
| |
Collapse
|
42
|
R. M. SK, Wang Y, Zhang X, Cheng H, Sun L, He S, Hao F. Redox Components: Key Regulators of Epigenetic Modifications in Plants. Int J Mol Sci 2020; 21:ijms21041419. [PMID: 32093110 PMCID: PMC7073030 DOI: 10.3390/ijms21041419] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 01/08/2023] Open
Abstract
Epigenetic modifications including DNA methylation, histone modifications, and chromatin remodeling are crucial regulators of chromatin architecture and gene expression in plants. Their dynamics are significantly influenced by oxidants, such as reactive oxygen species (ROS) and nitric oxide (NO), and antioxidants, like pyridine nucleotides and glutathione in plants. These redox intermediates regulate the activities and expression of many enzymes involved in DNA methylation, histone methylation and acetylation, and chromatin remodeling, consequently controlling plant growth and development, and responses to diverse environmental stresses. In recent years, much progress has been made in understanding the functional mechanisms of epigenetic modifications and the roles of redox mediators in controlling gene expression in plants. However, the integrated view of the mechanisms for redox regulation of the epigenetic marks is limited. In this review, we summarize recent advances on the roles and mechanisms of redox components in regulating multiple epigenetic modifications, with a focus of the functions of ROS, NO, and multiple antioxidants in plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Shibin He
- Correspondence: (S.H.); (F.H.); Tel.: +86-371-23881387 (F.H.)
| | - Fushun Hao
- Correspondence: (S.H.); (F.H.); Tel.: +86-371-23881387 (F.H.)
| |
Collapse
|
43
|
Witte CP, Herde M. Nucleotide Metabolism in Plants. PLANT PHYSIOLOGY 2020; 182:63-78. [PMID: 31641078 PMCID: PMC6945853 DOI: 10.1104/pp.19.00955] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 05/14/2023]
Abstract
Nucleotide metabolism is an essential function in plants.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Marco Herde
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
44
|
Expression Levels of the γ-Glutamyl Hydrolase I Gene Predict Vitamin B9 Content in Potato Tubers. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biofortification of folates in staple crops is an important strategy to help eradicate human folate deficiencies. Folate biofortification using genetic engineering has shown great success in rice grain, tomato fruit, lettuce, and potato tuber. However, consumers’ skepticism, juridical hurdles, and lack of economic model have prevented the widespread adoption of nutritionally-enhanced genetically-engineered (GE) food crops. Meanwhile, little effort has been made to biofortify food crops with folate by breeding. Previously we reported >10-fold variation in folate content in potato genotypes. To facilitate breeding for enhanced folate content, we attempted to identify genes that control folate content in potato tuber. For this, we analyzed the expression of folate biosynthesis and salvage genes in low- and high-folate potato genotypes. First, RNA-Seq analysis showed that, amongst all folate biosynthesis and salvage genes analyzed, only one gene, which encodes γ-glutamyl hydrolase 1 (GGH1), was consistently expressed at higher levels in high- compared to low-folate segregants of a Solanum boliviense Dunal accession. Second, quantitative PCR showed that GGH1 transcript levels were higher in high- compared to low-folate segregants for seven out of eight pairs of folate segregants analyzed. These results suggest that GGH1 gene expression is an indicator of folate content in potato tubers.
Collapse
|
45
|
Limitations of Deuterium-Labelled Substrates for Quantifying NADPH Metabolism in Heterotrophic Arabidopsis Cell Cultures. Metabolites 2019; 9:metabo9100205. [PMID: 31569392 PMCID: PMC6835633 DOI: 10.3390/metabo9100205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 01/21/2023] Open
Abstract
NADPH is the primary source of cellular reductant for biosynthesis, and strategies for increasing productivity via metabolic engineering need to take account of the requirement for reducing power. In plants, while the oxidative pentose phosphate pathway is the most direct route for NADPH production in heterotrophic tissues, there is increasing evidence that other pathways make significant contributions to redox balance. Deuterium-based isotopic labelling strategies have recently been developed to quantify the relative production of NADPH from different pathways in mammalian cells, but the application of these methods to plants has not been critically evaluated. In this study, LC-MS was used to measure deuterium incorporation into metabolites extracted from heterotrophic Arabidopsis cell cultures grown on [1-2H]glucose or D2O. The results show that a high rate of flavin-enzyme-catalysed water exchange obscures labelling of NADPH from deuterated substrates and that this exchange cannot be accurately accounted for due to exchange between triose- and hexose-phosphates. In addition, the duplication of NADPH generating reactions between subcellular compartments can confound analysis based on whole cell extracts. Understanding how the structure of the metabolic network affects the applicability of deuterium labelling methods is a prerequisite for development of more effective flux determination strategies, ensuring data are both quantitative and representative of endogenous biological processes.
Collapse
|
46
|
Aghdam MS, Luo Z, Li L, Jannatizadeh A, Fard JR, Pirzad F. Melatonin treatment maintains nutraceutical properties of pomegranate fruits during cold storage. Food Chem 2019; 303:125385. [PMID: 31442899 DOI: 10.1016/j.foodchem.2019.125385] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 01/05/2023]
Abstract
In this study, the mechanism activated by melatonin treatment at 100 µM for maintaining nutraceutical properties in pomegranate fruits during storage at 4 °C for 120 days was investigated. Our results showed that the higher G6PDH and 6PGDH activities in pomegranate fruits treated with melatonin may be responsible for sufficient supply of intracellular NADPH. Also, higher AA and GSH accumulation in pomegranate fruits treated with melatonin may ascribe to higher APX and GR activities coincided with lower AAO activity. In addition, pomegranate fruits treated with melatonin exhibited significantly higher PAL activity resulting in higher phenols and anthocyanins accumulation as well as higher DPPH scavenging capacity. Additionally, higher AOX gene expression in pomegranate fruits treated with melatonin may be beneficial for ROS scavenging molecules accumulation. Therefore, maintaining nutraceutical properties of pomegranate fruits treated with melatonin may ascribe to sufficient intracellular NADPH supply by promoting G6PDH and 6PGDH activities during cold storage.
Collapse
Affiliation(s)
| | - Zisheng Luo
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Li Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Abbasali Jannatizadeh
- Department of Horticultural Science, Imam Khomeini International University, Qazvin, Iran.
| | - Javad Rezapour Fard
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, Urmia University, Urmia, Iran.
| | - Farhad Pirzad
- Department of Horticultural Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
47
|
Goyer A, Picard M, Hellmann HA, Mooney SL. Effect of low-temperature storage on the content of folate, vitamin B 6 , ascorbic acid, chlorogenic acid, tyrosine, and phenylalanine in potatoes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4842-4848. [PMID: 30980531 DOI: 10.1002/jsfa.9750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Changes in the metabolite composition of potato tubers during low-temperature storage can affect their nutritional value, susceptibility to bruising, and processing qualities. Here, we measured changes in the amounts of folate, vitamin B6 , and vitamin C, and the blackspot pigment precursors chlorogenic acid and tyrosine, as well as phenylalanine, in five potato varieties stored at 7.8 °C for 8 months in 2015 and 2016. RESULTS Folate content increased in all varieties in both years during low-temperature storage, with statistically significant changes occurring in six out of eight conditions. Increase rates ranged from 11% to 141%. Vitamin B6 content increased in all varieties during the storage period, but changes were statistically significant in only two out of eight conditions. Increase rates ranged from 5% to 24%. Ascorbic acid content decreased in all varieties in both years during the storage period. Decrease rates ranged from 16% to 78%, and were statistically significant in seven out of eight conditions. For chlorogenic acid, no consistent trend was observed. Changes varied between -14% and +14%, but none was statistically significant. Tyrosine content increased in all varieties in both years, except in Sage Russet in 2015. Increase rates ranged from 19% to 238% and were statistically significant in three out of seven conditions. Changes in phenylalanine content were very similar to those observed for tyrosine, with increases up to 272% in Teton Russet. CONCLUSIONS These results show that storage at low temperature substantially affects tuber nutritional quality and biochemical bruising potential. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aymeric Goyer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, USA
| | - Maël Picard
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, USA
| | - Hanjo A Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Sutton L Mooney
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
48
|
Guo W, Lian T, Wang B, Guan J, Yuan D, Wang H, Safiul Azam FM, Wan X, Wang W, Liang Q, Wang H, Tu J, Zhang C, Jiang L. Genetic mapping of folate QTLs using a segregated population in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:675-690. [PMID: 30938052 DOI: 10.1111/jipb.12811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 05/06/2023]
Abstract
As essential B vitamin for humans, folates accumulation in edible parts of crops, such as maize kernels, is of great importance for human health. But its breeding is always limited by the prohibitive cost of folate profiling. The molecular breeding is a more executable and efficient way for folate fortification, but is limited by the molecular knowledge of folate regulation. Here we report the genetic mapping of folate quantitative trait loci (QTLs) using a segregated population crossed by two maize lines, one high in folate (GEMS31) and the other low in folate (DAN3130). Two folate QTLs on chromosome 5 were obtained by the combination of F2 whole-exome sequencing and F3 kernel-folate profiling. These two QTLs had been confirmed by bulk segregant analysis using F6 pooled DNA and F7 kernel-folate profiling, and were overlapped with QTLs identified by another segregated population. These two QTLs contributed 41.6% of phenotypic variation of 5-formyltetrahydrofolate, the most abundant storage form among folate derivatives in dry maize grains, in the GEMS31×DAN3130 population. Their fine mapping and functional analysis will reveal details of folate metabolism, and provide a basis for marker-assisted breeding aimed at the enrichment of folates in maize kernels.
Collapse
Affiliation(s)
- Wenzhu Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tong Lian
- Plant Genetics, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiantao Guan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dong Yuan
- Department of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Xing Wan
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinxing Tu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
49
|
Gorelova V, Bastien O, De Clerck O, Lespinats S, Rébeillé F, Van Der Straeten D. Evolution of folate biosynthesis and metabolism across algae and land plant lineages. Sci Rep 2019; 9:5731. [PMID: 30952916 PMCID: PMC6451014 DOI: 10.1038/s41598-019-42146-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/25/2019] [Indexed: 11/09/2022] Open
Abstract
Tetrahydrofolate and its derivatives, commonly known as folates, are essential for almost all living organisms. Besides acting as one-carbon donors and acceptors in reactions producing various important biomolecules such as nucleic and amino acids, as well as pantothenate, they also supply one-carbon units for methylation reactions. Plants along with bacteria, yeast and fungi synthesize folates de novo and therefore constitute a very important dietary source of folates for animals. All the major steps of folate biosynthesis and metabolism have been identified but only few have been genetically characterized in a handful of model plant species. The possible differences in the folate pathway between various plant and algal species have never been explored. In this study we present a comprehensive comparative study of folate biosynthesis and metabolism of all major land plant lineages as well as green and red algae. The study identifies new features of plant folate metabolism that might open new directions to folate research in plants.
Collapse
Affiliation(s)
- V Gorelova
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, K.L Ledeganckstraat 35, 9000, Ghent, Belgium.,Department of Botany and Plant Biology, Laboratory of Plant Biochemistry and Physiology, University of Geneva, Quai E. Ansermet 30, 1211, Geneva, Switzerland
| | - O Bastien
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble, Cedex 9, France
| | - O De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000, Gent, Belgium
| | - S Lespinats
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble, Cedex 9, France
| | - F Rébeillé
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 17 rue des Martyrs, 38054, Grenoble, Cedex 9, France
| | - D Van Der Straeten
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, K.L Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
50
|
Purification of dual-functioning chitinases with hydrolytic and antifreeze activities from Hippophae rhamnoides seedlings. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42485-019-00007-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|