1
|
Deegala S, Rathnapala HC, Rajendran S, Hettiarachchi C. Transgenic Innovation: Harnessing Cyclotides as Next Generation Pesticides. ACS OMEGA 2025; 10:6323-6336. [PMID: 40028067 PMCID: PMC11865984 DOI: 10.1021/acsomega.4c09668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
Cyclotides are unique cyclic mini proteins derived from plants which are recognized for the distinctive cyclic cystine knot (CCK) structure and the cyclized backbone. To date, more than 760 sequences of cyclotides have been identified across five major families, making them the largest known group of cyclic peptides. These cyclic peptides derived from plants have garnered significant attention due to their remarkable structural stability and diverse bioactivities, including potent insecticidal properties, which offer a promising alternative to conventional pesticides that are often associated with environmental toxicity and resistance development in pests. Advances in transgenic technology have opened new avenues for the sustainable and targeted deployment of cyclotides in pest management. By incorporating cyclotide genes into crops, plants can gain enhanced self-defense mechanisms against insect pests, reducing reliance on chemical pesticides and mitigating ecological impact. This review explores the molecular features essential in cyclotides' insecticidal activity, the latest breakthroughs in transgenic strategies for cyclotide expression in crops, and the potential challenges and future prospects of this innovative approach. By highlighting the synergy between natural bioactive compounds and genetic engineering, this work underscores the potential of cyclotides as next-generation, eco-friendly biopesticides to address global agricultural challenges.
Collapse
Affiliation(s)
- Sathira Deegala
- Department
of Chemistry, Faculty of Science, University
of Colombo, Thurstan Road, Colombo 00300, Sri Lanka
| | - Hiruni C. Rathnapala
- Department
of Chemistry, Faculty of Science, University
of Colombo, Thurstan Road, Colombo 00300, Sri Lanka
| | - Sanjeevan Rajendran
- Department
of Chemistry, BioDiscovery Institute, University
of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Chamari Hettiarachchi
- Department
of Chemistry, Faculty of Science, University
of Colombo, Thurstan Road, Colombo 00300, Sri Lanka
| |
Collapse
|
2
|
Santos NP, Soh WT, Demir F, Tenhaken R, Briza P, Huesgen PF, Brandstetter H, Dall E. Phytocystatin 6 is a context-dependent, tight-binding inhibitor of Arabidopsis thaliana legumain isoform β. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1681-1695. [PMID: 37688791 PMCID: PMC10952133 DOI: 10.1111/tpj.16458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
Plant legumains are crucial for processing seed storage proteins and are critical regulators of plant programmed cell death. Although research on legumains boosted recently, little is known about their activity regulation. In our study, we used pull-down experiments to identify AtCYT6 as a natural inhibitor of legumain isoform β (AtLEGβ) in Arabidopsis thaliana. Biochemical analysis revealed that AtCYT6 inhibits both AtLEGβ and papain-like cysteine proteases through two separate cystatin domains. The N-terminal domain inhibits papain-like proteases, while the C-terminal domain inhibits AtLEGβ. Furthermore, we showed that AtCYT6 interacts with legumain in a substrate-like manner, facilitated by a conserved asparagine residue in its reactive center loop. Complex formation was additionally stabilized by charged exosite interactions, contributing to pH-dependent inhibition. Processing of AtCYT6 by AtLEGβ suggests a context-specific regulatory mechanism with implications for plant physiology, development, and programmed cell death. These findings enhance our understanding of AtLEGβ regulation and its broader physiological significance.
Collapse
Affiliation(s)
- Naiá P. Santos
- Department of Biosciences and Medical BiologyUniversity of Salzburg5020SalzburgAustria
| | - Wai Tuck Soh
- Department of Biosciences and Medical BiologyUniversity of Salzburg5020SalzburgAustria
- Present address:
Max Planck Institute for Multidisciplinary SciencesD‐37077GöttingenGermany
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics52428JülichZEA‐3, Forschungszentrum JülichGermany
- Present address:
Department of BiomedicineAarhus University8000Aarhus CDenmark
| | - Raimund Tenhaken
- Department of Environment and BiodiversityUniversity of Salzburg5020SalzburgAustria
| | - Peter Briza
- Department of Biosciences and Medical BiologyUniversity of Salzburg5020SalzburgAustria
| | - Pitter F. Huesgen
- Central Institute for Engineering, Electronics and Analytics52428JülichZEA‐3, Forschungszentrum JülichGermany
- CECADMedical Faculty and University Hospital, University of Cologne50931CologneGermany
- Institute for Biochemistry, Faculty of Mathematics and Natural SciencesUniversity of Cologne50674CologneGermany
| | - Hans Brandstetter
- Department of Biosciences and Medical BiologyUniversity of Salzburg5020SalzburgAustria
| | - Elfriede Dall
- Department of Biosciences and Medical BiologyUniversity of Salzburg5020SalzburgAustria
| |
Collapse
|
3
|
Huai B, Liang M, Lin J, Tong P, Bai M, He H, Liang X, Chen J, Wu H. Involvement of Vacuolar Processing Enzyme CgVPE1 in Vacuole Rupture in the Programmed Cell Death during the Development of the Secretory Cavity in Citrus grandis 'Tomentosa' Fruits. Int J Mol Sci 2023; 24:11681. [PMID: 37511439 PMCID: PMC10380461 DOI: 10.3390/ijms241411681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Vacuolar processing enzymes (VPEs) with caspase-1-like activity are closely associated with vacuole rupture. The destruction of vacuoles is one of the characteristics of programmed cell death (PCD) in plants. However, whether VPE is involved in the vacuole destruction of cells during secretory cavity formation in Citrus plants remains unclear. This research identified a CgVPE1 gene that encoded the VPE and utilized cytology and molecular biology techniques to explore its temporal and spatial expression characteristics during the PCD process of secretory cavity cells in the Citrus grandis 'Tomentosa' fruit. The results showed that CgVPE1 is an enzyme with VPE and caspase-1-like activity that can self-cleave into a mature enzyme in an acidic environment. CgVPE1 is specifically expressed in the epithelial cells of secretory cavities. In addition, it mainly accumulates in vacuoles before it is ruptured in the secretory cavity cells. The spatial and temporal immunolocalization of CgVPE1 showed a strong relationship with the change in vacuole structure during PCD in secretory cavity cells. In addition, the change in the two types of VPE proteins from proenzymes to mature enzymes was closely related to the change in CgVPE1 localization. Our results indicate that CgVPE1 plays a vital role in PCD, causing vacuole rupture in cells during the development of the secretory cavity in C. grandis 'Tomentosa' fruits.
Collapse
Affiliation(s)
- Bin Huai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Minjian Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Junjun Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Panpan Tong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Mei Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hanjun He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiangxiu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiezhong Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Fernández-Fernández ÁD, Stael S, Van Breusegem F. Mechanisms controlling plant proteases and their substrates. Cell Death Differ 2023; 30:1047-1058. [PMID: 36755073 PMCID: PMC10070405 DOI: 10.1038/s41418-023-01120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/03/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
In plants, proteolysis is emerging as an important field of study due to a growing understanding of the critical involvement of proteases in plant cell death, disease and development. Because proteases irreversibly modify the structure and function of their target substrates, proteolytic activities are stringently regulated at multiple levels. Most proteases are produced as dormant isoforms and only activated in specific conditions such as altered ion fluxes or by post-translational modifications. Some of the regulatory mechanisms initiating and modulating proteolytic activities are restricted in time and space, thereby ensuring precision activity, and minimizing unwanted side effects. Currently, the activation mechanisms and the substrates of only a few plant proteases have been studied in detail. Most studies focus on the role of proteases in pathogen perception and subsequent modulation of the plant reactions, including the hypersensitive response (HR). Proteases are also required for the maturation of coexpressed peptide hormones that lead essential processes within the immune response and development. Here, we review the known mechanisms for the activation of plant proteases, including post-translational modifications, together with the effects of proteinaceous inhibitors.
Collapse
Affiliation(s)
- Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zürich, Switzerland
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| |
Collapse
|
5
|
Wleklik K, Borek S. Vacuolar Processing Enzymes in Plant Programmed Cell Death and Autophagy. Int J Mol Sci 2023; 24:ijms24021198. [PMID: 36674706 PMCID: PMC9862320 DOI: 10.3390/ijms24021198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Vacuolar processing enzymes (VPEs) are plant cysteine proteases that are subjected to autoactivation in an acidic pH. It is presumed that VPEs, by activating other vacuolar hydrolases, are in control of tonoplast rupture during programmed cell death (PCD). Involvement of VPEs has been indicated in various types of plant PCD related to development, senescence, and environmental stress responses. Another pathway induced during such processes is autophagy, which leads to the degradation of cellular components and metabolite salvage, and it is presumed that VPEs may be involved in the degradation of autophagic bodies during plant autophagy. As both PCD and autophagy occur under similar conditions, research on the relationship between them is needed, and VPEs, as key vacuolar proteases, seem to be an important factor to consider. They may even constitute a potential point of crosstalk between cell death and autophagy in plant cells. This review describes new insights into the role of VPEs in plant PCD, with an emphasis on evidence and hypotheses on the interconnections between autophagy and cell death, and indicates several new research opportunities.
Collapse
|
6
|
Hu S, El Sahili A, Kishore S, Wong YH, Hemu X, Goh BC, Zhipei S, Wang Z, Tam JP, Liu CF, Lescar J. Structural basis for proenzyme maturation, substrate recognition, and ligation by a hyperactive peptide asparaginyl ligase. THE PLANT CELL 2022; 34:4936-4949. [PMID: 36099055 PMCID: PMC9709980 DOI: 10.1093/plcell/koac281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Peptide ligases are versatile enzymes that can be utilized for precise protein conjugation for bioengineering applications. Hyperactive peptide asparaginyl ligases (PALs), such as butelase-1, belong to a small class of enzymes from cyclotide-producing plants that can perform site-specific, rapid ligation reactions after a target peptide asparagine/aspartic acid (Asx) residue binds to the active site of the ligase. How PALs specifically recognize their polypeptide substrates has remained elusive, especially at the prime binding side of the enzyme. Here we report crystal structures that capture VyPAL2, a catalytically efficient PAL from Viola yedoensis, in an activated state, with and without a bound substrate. The bound structure shows one ligase with the N-terminal polypeptide tail from another ligase molecule trapped at its active site, revealing how Asx inserts in the enzyme's S1 pocket and why a hydrophobic residue is required at the P2' position. Besides illustrating the anchoring role played by P1 and P2' residues, these results uncover a role for the Gatekeeper residue at the surface of the S2 pocket in shifting the nonprime portion of the substrate and, as a result, the activity toward ligation or hydrolysis. These results suggest a picture for proenzyme maturation in the vacuole and will inform the rational design of peptide ligases with tailored specificities.
Collapse
Affiliation(s)
- Side Hu
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, 636921, Singapore
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, 636921, Singapore
| | - Srujana Kishore
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, 636921, Singapore
| | - Yee Hwa Wong
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, 636921, Singapore
| | - Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
| | - Boon Chong Goh
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, 636921, Singapore
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore City, 138602, Singapore
| | - Sang Zhipei
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
| | - Zhen Wang
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, 636921, Singapore
| |
Collapse
|
7
|
Elamin T, Santos NP, Briza P, Brandstetter H, Dall E. Structural and functional studies of legumain-mycocypin complexes revealed a competitive, exosite-regulated mode of interaction. J Biol Chem 2022; 298:102502. [PMID: 36116553 PMCID: PMC9579014 DOI: 10.1016/j.jbc.2022.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
Under pathophysiologic conditions such as Alzheimer's disease and cancer, the endolysosomal cysteine protease legumain was found to translocate to the cytosol, the nucleus, and the extracellular space. These noncanonical localizations demand for a tight regulation of legumain activity, which is in part conferred by protein inhibitors. While there is a significant body of knowledge on the interaction of human legumain with endogenous cystatins, only little is known on its regulation by fungal mycocypins. Mycocypins are characterized by (i) versatile, plastic surface loops allowing them to inhibit different classes of enzymes and (ii) a high resistance toward extremes of pH and temperature. These properties make mycocypins attractive starting points for biotechnological and medical applications. In this study, we show that mycocypins utilize an adaptable reactive center loop to target the active site of legumain in a substrate-like manner. The interaction was further stabilized by variable, isoform-specific exosites, converting the substrate recognition into inhibition. Additionally, we found that selected mycocypins were capable of covalent complex formation with legumain by forming a disulfide bond to the active site cysteine. Furthermore, our inhibition studies with other clan CD proteases suggested that mycocypins may serve as broad-spectrum inhibitors of clan CD proteases. Our studies uncovered the potential of mycocypins as a new scaffold for drug development, providing the basis for the design of specific legumain inhibitors.
Collapse
Affiliation(s)
- Tasneem Elamin
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Naiá P Santos
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Peter Briza
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Hans Brandstetter
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Elfriede Dall
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
8
|
Huai B, Liang MJ, Bai M, He HJ, Chen JZ, Wu H. Localization of CgVPE1 in secondary cell wall formation during tracheary element differentiation in the pericarp of Citrus grandis 'Tomentosa' fruits. PLANTA 2022; 256:89. [PMID: 36169724 DOI: 10.1007/s00425-022-04001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
CgVPE1 is important in the differentiation of TE cells in C. grandis 'Tomentosa' fruits as it may directly affects secondary cell wall construction while participating in PCD. The vacuolar processing enzyme (VPE) plays an important role in both developmental and environmentally inducible programmed cell death (PCD); it was originally identified as a cysteine protease localized in the vacuole to activate and mature vacuolar proteins in plants. Interestingly, we found a VPE called CgVPE1 to be associated with deposition of the secondary cell wall in tracheary element (TE) cells in the pericarp of Citrus grandis 'Tomentosa' fruits. We then used ultrathin sections and the TUNEL assay to verify that PCD is involved in TE development. Furthermore, CgVPE1 was found to be mainly expressed in secretory cavities and TEs in the pericarp of Citrus grandis 'Tomentosa' fruits. Immunolocalization of CgVPE1 in the pericarp indicated that CgVPE1 is mainly distributed in the central large vacuole, endoplasmic reticulum, Golgi vesicles, cytosol, and secondary wall before TE maturation. CgVPE1 appeared earlier in the endoplasmic reticulum and Golgi vesicles of TEs cells. The vesicles containing CgVPE1 near the large central vacuole and secondary wall were observed, respectively. CgVPE1 proteins content in the cytoplasm decreased sharply, while the CgVPE1 content in the secondary cell wall did not change significantly after vacuole rupture. CgVPE1 protein contents in the secondary cell wall were significantly reduced until the TE cells developed into hollow thick-walled cells. Furthermore, labeling of VPE homologues in Arabidopsis thaliana using immunoelectron microscopy with anti-CgVPE1 antibody revealed that VPE homologues were specifically distributed in the secondary cell wall of stem TEs. Overall, these results suggested that CgVPE1 is not only involved PCD during TE cell development; furthermore, it may directly participate in the construction of plant secondary cell walls.
Collapse
Affiliation(s)
- B Huai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - M J Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - M Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - H J He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - J Z Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - H Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
The Asparaginyl Endopeptidase Legumain: An Emerging Therapeutic Target and Potential Biomarker for Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms231810223. [PMID: 36142134 PMCID: PMC9499314 DOI: 10.3390/ijms231810223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) is incurable dementia closely associated with aging. Most cases of AD are sporadic, and very few are inherited; the pathogenesis of sporadic AD is complex and remains to be elucidated. The asparaginyl endopeptidase (AEP) or legumain is the only recognized cysteine protease that specifically hydrolyzes peptide bonds after asparagine residues in mammals. The expression level of AEPs in healthy brains is far lower than that of peripheral organs. Recently, growing evidence has indicated that aging may upregulate and overactivate brain AEPs. The overactivation of AEPs drives the onset of AD through cleaving tau and amyloid precursor proteins (APP), and SET, an inhibitor of protein phosphatase 2A (PP2A). The AEP-mediated cleavage of these peptides enhances amyloidosis, promotes tau hyperphosphorylation, and ultimately induces neurodegeneration and cognitive impairment. Upregulated AEPs and related deleterious reactions constitute upstream events of amyloid/tau toxicity in the brain, and represent early pathological changes in AD. Thus, upregulated AEPs are an emerging drug target for disease modification and a potential biomarker for predicting preclinical AD. However, the presence of the blood–brain barrier greatly hinders establishing body-fluid-based methods to measure brain AEPs. Research on AEP-activity-based imaging probes and our recent work suggest that the live brain imaging of AEPs could be used to evaluate its predictive efficacy as an AD biomarker. To advance translational research in this area, AEP imaging probes applicable to human brain and AEP inhibitors with good druggability are urgently needed.
Collapse
|
10
|
Hafiz I, Li Z, Wang Z, He H, Tang X, Wang M. Improving the antitumor efficiency against hepatocellular carcinoma by harmine-loaded liposomes with mitochondria targeting and legumain response. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Basak S, Kundu P. Plant metacaspases: Decoding their dynamics in development and disease. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 180:50-63. [PMID: 35390704 DOI: 10.1016/j.plaphy.2022.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/02/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Plant metacaspases were evolved in parallel to well-characterized animal counterpart caspases and retained the similar histidine-cysteine catalytic dyad, leading to functional congruity between these endopeptidases. Although phylogenetic relatedness of the catalytic domain and functional commonality placed these proteases in the caspase family, credible counterarguments predominantly about their distinct substrate specificity raised doubts about the classification. Metacaspases are involved in regulating the PCD during development as well as in senescence. Balancing acts of metacaspase activity also dictate cell fate during defense upon the perception of adverse environmental cues. Accordingly, their activity is tightly regulated, while suppressing spurious activation, by a combination of genetic and post-translational modifications. Structural insights from recent studies provided vital clues on the functionality. This comprehensive review aims to explore the origin of plant metacaspases, and their regulatory and functional diversity in different plants while discussing their analogy to mammalian caspases. Besides, we have presented various modern methodologies for analyzing the proteolytic activity of these indispensable molecules in the healthy or stressed life of a plant. The review would serve as a repository of all the available pieces of evidence indicating metacaspases as the key regulator of PCD across the plant kingdom and highlight the prospect of studying metacaspases for their inclusion in a crop improvement program.
Collapse
Affiliation(s)
- Shrabani Basak
- Division of Plant Biology, Bose Institute, EN-80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal, India.
| | - Pallob Kundu
- Division of Plant Biology, Bose Institute, EN-80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
12
|
Study on activation mechanism and cleavage sites of recombinant butelase-1 zymogen derived from Clitoria ternatea. Biochimie 2022; 199:12-22. [DOI: 10.1016/j.biochi.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/15/2022]
|
13
|
Zhang D, Wang Z, Hu S, Chan NY, Liew HT, Lescar J, Tam JP, Liu CF. Asparaginyl Endopeptidase-Mediated Protein C-Terminal Hydrazinolysis for the Synthesis of Bioconjugates. Bioconjug Chem 2022; 33:238-247. [PMID: 34985285 DOI: 10.1021/acs.bioconjchem.1c00551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asparaginyl endopeptidases (AEPs) are cysteinyl enzymes naturally catalyzing the hydrolysis and transpeptidation reactions at Asx-Xaa bonds. These reactions go by a common acyl-enzyme thioester intermediate, which is either attacked by water (for a protease-AEP) or by a peptidic amine nucleophile (for a ligase-AEP) to form the respective hydrolysis or aminolysis product. Herein, we show that hydrazine and hydroxylamine, two α-effect nucleophiles, are capable of resolving the thioester intermediate to yield peptide and protein products containing a C-terminal hydrazide and hydroxamic acid functionality, respectively. The hydrazinolysis reaction exhibits very high efficiency and can be completed in minutes at a low enzyme-to-substrate ratio. We further show the utility of the so-formed asparaginyl hydrazide in native chemical ligation and hydrazone conjugation. Using an EGFR-targeting affibody as a model protein, we have showcased our methodology in the preparation of a number of protein ligation or conjugation products, which are decorated with various functional moieties. The ZEGFR affibody-doxorubicin conjugate shows high selective binding and cytotoxicity toward the EGFR-positive A431 cells. Our results demonstrate the advantages of AEP-mediated protein hydrazinolysis as a simple and straightforward strategy for the precision manufacturing of protein bioconjugates.
Collapse
Affiliation(s)
- Dingpeng Zhang
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Zhen Wang
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Side Hu
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Ning-Yu Chan
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Heng Tai Liew
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Julien Lescar
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - James P Tam
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Chuan-Fa Liu
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
14
|
Wang Z, Zhang D, Hu S, Bi X, Lescar J, Tam JP, Liu CF. PAL-Mediated Ligation for Protein and Cell-Surface Modification. Methods Mol Biol 2022; 2530:177-193. [PMID: 35761050 DOI: 10.1007/978-1-0716-2489-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Peptidyl Asx-specific ligases (PALs) effect peptide ligation by catalyzing transpeptidation reactions at Asn/Asp-peptide bonds. Owing to their high efficiency and mild aqueous reaction conditions, these ligases have emerged as powerful biotechnological tools for protein manipulation in recent years. PALs are enzymes of the asparaginyl endopeptidase (AEP) superfamily but have predominant transpeptidase activity as opposed to typical AEPs which are predominantly hydrolases. Butelase-1 and VyPAL2, two PALs discovered by our teams, have been used successfully in a wide range of applications, including macrocyclization of synthetic peptides and recombinant proteins, protein N- or C-terminal modification, and cell-surface labeling. As shown in numerous reports, PAL-mediated ligation is highly efficient at Asn junctions. Although considerably less efficient, Asp-specific ligation has also been shown to be practically useful under suitable conditions. Herein, we describe the methods of using VyPAL2 for protein macrocyclization and labeling at an Asp residue as well as for protein dual labeling through orthogonal Asp- and Asn-directed ligations. We also describe a method for cell-surface protein modification using butelase-1, demonstrating its advantageous features over previous methods.
Collapse
Affiliation(s)
- Zhen Wang
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
| | - Dingpeng Zhang
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
| | - Side Hu
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
| | - Xiaobao Bi
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Zhejiang, China
| | - Julien Lescar
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
| | - James P Tam
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
| | - Chuan-Fa Liu
- School of Biological Science, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
15
|
Dall E, Licht A, Brandstetter H. Production of Functional Plant Legumain Proteases Using the Leishmania tarentolae Expression System. Methods Mol Biol 2022; 2447:35-51. [PMID: 35583771 DOI: 10.1007/978-1-0716-2079-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant proteases of the legumain-type are key players in many processes along the plant life cycle. In particular, legumains are especially important in plant programmed cell death and the processing and maturation of seed storage proteins within the vacuole. Plant legumains are therefore synonymously called vacuolar processing enzymes (VPEs). Because of their dual protease and cyclase activities, plant legumains are of great interest to biotechnological applications, e.g., for the development of cyclic peptides for drug design. Despite this high interest by the scientific community, the recombinant expression of plant legumains proved challenging due to several posttranslational modifications, including (1) the formation of structurally critical disulfide bonds, (2) activation via pH-dependent proteolytic processing, and (3) stabilization by varying degrees of glycosylation. Recently we could show that LEXSY is a robust expression system for the production of plant legumains. Here we provide a general protocol for the recombinant expression of plant legumains in Leishmania cells. We further included detailed procedures for legumain purification, activation and subsequent activity assays and additionally note specific considerations with regard to isoform specific activation intermediates. This protocol serves as a universal strategy for different legumain isoforms from different source organisms.
Collapse
Affiliation(s)
- Elfriede Dall
- Department of Biosciences, University of Salzburg, Salzburg, Austria.
| | | | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
16
|
Zhang D, Wang Z, Hu S, Lescar J, Tam JP, Liu CF. Vypal2: A Versatile Peptide Ligase for Precision Tailoring of Proteins. Int J Mol Sci 2021; 23:ijms23010458. [PMID: 35008882 PMCID: PMC8745061 DOI: 10.3390/ijms23010458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
The last two decades have seen an increasing demand for new protein-modification methods from the biotech industry and biomedical research communities. Owing to their mild aqueous reaction conditions, enzymatic methods based on the use of peptide ligases are particularly desirable. In this regard, the recently discovered peptidyl Asx-specific ligases (PALs) have emerged as powerful biotechnological tools in recent years. However, as a new class of peptide ligases, their scope and application remain underexplored. Herein, we report the use of a new PAL, VyPAL2, for a diverse range of protein modifications. We successfully showed that VyPAL2 was an efficient biocatalyst for protein labelling, inter-protein ligation, and protein cyclization. The labelled or cyclized protein ligands remained functionally active in binding to their target receptors. We also demonstrated on-cell labelling of protein ligands pre-bound to cellular receptors and cell-surface engineering via modifying a covalently anchored peptide substrate pre-installed on cell-surface glycans. Together, these examples firmly establish Asx-specific ligases, such as VyPAL2, as the biocatalysts of the future for site-specific protein modification, with a myriad of applications in basic research and drug discovery.
Collapse
|
17
|
Singh AA, Pillay P, Kwezi L, Tsekoa TL. A plant-biotechnology approach for producing highly potent anti-HIV antibodies for antiretroviral therapy consideration. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2021; 19:180. [PMID: 34878628 PMCID: PMC8655037 DOI: 10.1186/s43141-021-00279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022]
Abstract
Despite a reduction in global HIV prevalence the development of a pipeline of new therapeutics or pre-exposure prophylaxis to control the HIV/AIDS epidemic are of high priority. Antibody-based therapies offer several advantages and have been shown to prevent HIV-infection. Plant-based production is efficient for several biologics, including antibodies. We provide a short review on the work by Singh et al., 2020 who demonstrated the transient production of potent CAP256-VRC26 broadly neutralizing antibodies. These antibodies have engineered posttranslational modifications, namely N-glycosylation in the fragment crystallizable region and O-sulfation of tyrosine residues in the complementary-determining region H3 loop. The glycoengineered Nicotiana benthamiana mutant (ΔXTFT) was used, with glycosylating structures lacking β1,2-xylose and/or α1,3-fucose residues, which is critical for enhanced effector activity. The CAP256-VRC26 antibody lineage targets the first and second variable region of the HIV-1 gp120 envelope glycoprotein. The high potency of this lineage is mediated by a protruding O-sulfated tyrosine in the CDR H3 loop. Nicotiana benthamiana lacks human tyrosyl protein sulfotransferase 1, the enzyme responsible for tyrosine O-sulfation. The transient coexpression of the CAP256-VRC26 antibodies with tyrosyl protein sulfotransferase 1 in planta had restored the efficacy of these antibodies through the incorporation of the O-sulfation modification. This approach demonstrates the strategic incorporation of posttranslational modifications in production systems, which may have not been previously considered. These plant-produced CAP256-VRC26 antibodies have therapeutic as well as topical and systemic pre-exposure prophylaxis potential in enabling the empowerment of young girls and women given that gender inequalities remain a major driver of the epidemic.
Collapse
Affiliation(s)
- Advaita Acarya Singh
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa
| | - Priyen Pillay
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa
| | - Lusisizwe Kwezi
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa
| | - Tsepo Lebiletsa Tsekoa
- Council for Scientific and Industrial Research, Future Production: Chemicals Cluster, P.O. Box 395, Pretoria, 0001, South Africa.
| |
Collapse
|
18
|
Cao Y, Bi X. Butelase-1 as the Prototypical Peptide Asparaginyl Ligase and Its Applications: A Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Liew HT, To J, Zhang X, Hemu X, Chan NY, Serra A, Sze SK, Liu CF, Tam JP. The legumain McPAL1 from Momordica cochinchinensis is a highly stable Asx-specific splicing enzyme. J Biol Chem 2021; 297:101325. [PMID: 34710371 PMCID: PMC8600085 DOI: 10.1016/j.jbc.2021.101325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
Legumains, also known as asparaginyl endopeptidases (AEPs), cleave peptide bonds after Asn/Asp (Asx) residues. In plants, certain legumains also have ligase activity that catalyzes biosynthesis of Asx-containing cyclic peptides. An example is the biosynthesis of MCoTI-I/II, a squash family-derived cyclic trypsin inhibitor, which involves splicing to remove the N-terminal prodomain and then N-to-C-terminal cyclization of the mature domain. To identify plant legumains responsible for the maturation of these cyclic peptides, we have isolated and characterized a legumain involved in splicing, McPAL1, from Momordica cochinchinensis (Cucurbitaceae) seeds. Functional studies show that recombinantly expressed McPAL1 displays a pH-dependent, trimodal enzymatic profile. At pH 4 to 6, McPAL1 selectively catalyzed Asp-ligation and Asn-cleavage, but at pH 6.5 to 8, Asn-ligation predominated. With peptide substrates containing N-terminal Asn and C-terminal Asp, such as is found in precursors of MCoTI-I/II, McPAL1 mediates proteolysis at the Asn site and then ligation at the Asp site at pH 5 to 6. Also, McPAL1 is an unusually stable legumain that is tolerant of heat and high pH. Together, our results support that McPAL1 is a splicing legumain at acidic pH that can mediate biosynthesis of MCoTI-I/II. We purport that the high thermal and pH stability of McPAL1 could have applications for protein engineering.
Collapse
Affiliation(s)
- Heng Tai Liew
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Janet To
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ning-Yu Chan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Aida Serra
- IMDEA Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, Cantoblanco, Madrid, Spain; Proteored - Instituto de Salud Carlos III (ISCIII), Campus UAM, Cantoblanco, Madrid, Spain
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
20
|
Singh AA, Pillay P, Tsekoa TL. Engineering Approaches in Plant Molecular Farming for Global Health. Vaccines (Basel) 2021; 9:vaccines9111270. [PMID: 34835201 PMCID: PMC8623924 DOI: 10.3390/vaccines9111270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Since the demonstration of the first plant-produced proteins of medical interest, there has been significant growth and interest in the field of plant molecular farming, with plants now being considered a viable production platform for vaccines. Despite this interest and development by a few biopharmaceutical companies, plant molecular farming is yet to be embraced by ‘big pharma’. The plant system offers a faster alternative, which is a potentially more cost-effective and scalable platform for the mass production of highly complex protein vaccines, owing to the high degree of similarity between the plant and mammalian secretory pathway. Here, we identify and address bottlenecks in the use of plants for vaccine manufacturing and discuss engineering approaches that demonstrate both the utility and versatility of the plant production system as a viable biomanufacturing platform for global health. Strategies for improving the yields and quality of plant-produced vaccines, as well as the incorporation of authentic posttranslational modifications that are essential to the functionality of these highly complex protein vaccines, will also be discussed. Case-by-case examples are considered for improving the production of functional protein-based vaccines. The combination of all these strategies provides a basis for the use of cutting-edge genome editing technology to create a general plant chassis with reduced host cell proteins, which is optimised for high-level protein production of vaccines with the correct posttranslational modifications.
Collapse
|
21
|
Xia Y, To J, Chan N, Hu S, Liew HT, Balamkundu S, Zhang X, Lescar J, Bhattacharjya S, Tam JP, Liu C. N
γ
‐Hydroxyasparagine: A Multifunctional Unnatural Amino Acid That is a Good P1 Substrate of Asparaginyl Peptide Ligases. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yiyin Xia
- School of Biological Sciences Nanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Janet To
- School of Biological Sciences Nanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Ning‐Yu Chan
- School of Biological Sciences Nanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Side Hu
- School of Biological Sciences Nanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Heng Tai Liew
- School of Biological Sciences Nanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Seetharamsing Balamkundu
- School of Biological Sciences Nanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
- Singapore-MIT Alliance for Research and Technology Singapore 138602 Singapore
| | - Xiaohong Zhang
- School of Biological Sciences Nanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Julien Lescar
- School of Biological Sciences Nanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences Nanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - James P. Tam
- School of Biological Sciences Nanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Chuan‐Fa Liu
- School of Biological Sciences Nanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| |
Collapse
|
22
|
Xia Y, To J, Chan NY, Hu S, Liew HT, Balamkundu S, Zhang X, Lescar J, Bhattacharjya S, Tam JP, Liu CF. N γ -Hydroxyasparagine: A Multifunctional Unnatural Amino Acid That is a Good P1 Substrate of Asparaginyl Peptide Ligases. Angew Chem Int Ed Engl 2021; 60:22207-22211. [PMID: 34396662 DOI: 10.1002/anie.202108125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 11/10/2022]
Abstract
Peptidyl asparaginyl ligases (PALs) are powerful tools for peptide macrocyclization. Herein, we report that a derivative of Asn, namely Nγ -hydroxyasparagine or Asn(OH), is an unnatural P1 substrate of PALs. By Asn(OH)-mediated cyclization, we prepared cyclic peptides as new matrix metalloproteinase 2 (MMP2) inhibitors displaying the hydroxamic acid moiety of Asn(OH) as the key pharmacophore. The most potent cyclic peptide (Ki =2.8±0.5 nM) was built on the hyperstable tetracyclic scaffold of rhesus theta defensin-1. The Asn(OH) residue in the cyclized peptides can also be readily oxidized to Asp. By this approach, we synthesized several bioactive Asp-containing cyclic peptides (MCoTI-II, kB2, SFTI, and integrin-targeting RGD peptides) that are otherwise difficult targets for PAL-catalyzed cyclization owing to unfavorable kinetics of the P1-Asp substrates. This study demonstrates that substrate engineering is a useful strategy to expand the application of PAL ligation in the synthesis of therapeutic cyclic peptides.
Collapse
Affiliation(s)
- Yiyin Xia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Janet To
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Ning-Yu Chan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Side Hu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Heng Tai Liew
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Seetharamsing Balamkundu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
23
|
Nonis SG, Haywood J, Schmidberger JW, Mackie ERR, Soares da Costa TP, Bond CS, Mylne JS. Structural and biochemical analyses of concanavalin A circular permutation by jack bean asparaginyl endopeptidase. THE PLANT CELL 2021; 33:2794-2811. [PMID: 34235541 PMCID: PMC8408470 DOI: 10.1093/plcell/koab130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/05/2021] [Indexed: 06/01/2023]
Abstract
Over 30 years ago, an intriguing posttranslational modification was found responsible for creating concanavalin A (conA), a carbohydrate-binding protein from jack bean (Canavalia ensiformis) seeds and a common carbohydrate chromatography reagent. ConA biosynthesis involves what was then an unprecedented rearrangement in amino-acid sequence, whereby the N-terminal half of the gene-encoded conA precursor (pro-conA) is swapped to become the C-terminal half of conA. Asparaginyl endopeptidase (AEP) was shown to be involved, but its mechanism was not fully elucidated. To understand the structural basis and consequences of circular permutation, we generated recombinant jack bean pro-conA plus jack bean AEP (CeAEP1) and solved crystal structures for each to 2.1 and 2.7 Å, respectively. By reconstituting conA biosynthesis in vitro, we prove CeAEP1 alone can perform both cleavage and cleavage-coupled transpeptidation to form conA. CeAEP1 structural analysis reveals how it is capable of carrying out both reactions. Biophysical assays illustrated that pro-conA is less stable than conA. This observation was explained by fewer intermolecular interactions between subunits in the pro-conA crystal structure and consistent with a difference in the prevalence for tetramerization in solution. These findings elucidate the consequences of circular permutation in the only posttranslation example known to occur in nature.
Collapse
Affiliation(s)
- Samuel G. Nonis
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia
| | - Joel Haywood
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia
| | - Jason W. Schmidberger
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia
| | - Emily R. R. Mackie
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - Tatiana P. Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - Charles S. Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia
| | - Joshua S. Mylne
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia
| |
Collapse
|
24
|
Tang TMS, Luk LYP. Asparaginyl endopeptidases: enzymology, applications and limitations. Org Biomol Chem 2021; 19:5048-5062. [PMID: 34037066 PMCID: PMC8209628 DOI: 10.1039/d1ob00608h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Asparaginyl endopeptidases (AEP) are cysteine proteases found in mammalian and plant cells. Several AEP isoforms from plant species were found to exhibit transpeptidase activity which is integral for the key head-to-tail cyclisation reaction during the biosynthesis of cyclotides. Since many plant AEPs exhibit excellent enzyme kinetics for peptide ligation via a relatively short substrate recognition sequence, they have become appealing tools for peptide and protein modification. In this review, research focused on the enzymology of AEPs and their applications in polypeptide cyclisation and labelling will be presented. Importantly, the limitations of using AEPs and opportunities for future research and innovation will also be discussed.
Collapse
Affiliation(s)
- T M Simon Tang
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK. and Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
25
|
Zhang D, Wang Z, Hu S, Balamkundu S, To J, Zhang X, Lescar J, Tam JP, Liu CF. pH-Controlled Protein Orthogonal Ligation Using Asparaginyl Peptide Ligases. J Am Chem Soc 2021; 143:8704-8712. [PMID: 34096285 DOI: 10.1021/jacs.1c02638] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptide asparaginyl ligases (PALs) catalyze transpeptidation at the Asn residue of a short Asn-Xaa1-Xaa2 tripeptide motif. Due to their high catalytic activity toward the P1-Asn substrates at around neutral pH, PALs have been used extensively for peptide ligation at asparaginyl junctions. PALs also bind to aspartyl substrates, but only when the γCOOH of P1-Asp remains in its neutral, protonated form, which usually requires an acidic pH. However, this limits the availability of the amine nucleophile and, consequently, the ligation efficiency at aspartyl junctions. Because of this perceived inefficiency, the use of PALs for Asp-specific ligation remains largely unexplored. We found that PAL enzymes, such as VyPAL2, display appreciable catalytic activities toward P1-Asp substrates at pH 4-5, which are at least 2 orders of magnitude higher than that of sortase A, making them practically useful for both intra- and intermolecular ligations. This also allows sequential ligations, first at Asp and then at Asn junctions, because the newly formed aspartyl peptide bond is resistant to the ligase at the pH used for asparaginyl ligation in the second step. Using this pH-controlled orthogonal ligation method, we dually labeled truncated sfGFP with a cancer-targeting peptide and a doxorubicin derivative at the respective N- and C-terminal ends in the N-to-C direction. In addition, a fluorescein tag and doxorubicin derivative were tagged to an EGFR-targeting affibody in the C-to-N direction. This study shows that the pH-dependent catalytic activity of PAL enzymes can be exploited to prepare multifunction protein biologics for pharmacological applications.
Collapse
Affiliation(s)
- Dingpeng Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Zhen Wang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Side Hu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | - Janet To
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
26
|
Zhao J, Fan R, Jia F, Huang Y, Huang Z, Hou Y, Hu SQ. Enzymatic Properties of Recombinant Ligase Butelase-1 and Its Application in Cyclizing Food-Derived Angiotensin I-Converting Enzyme Inhibitory Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5976-5985. [PMID: 34003638 DOI: 10.1021/acs.jafc.1c01755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Butelase-1 is an efficient ligase from Clitoria ternatea with wide applications in the food and biopharmaceutical fields. This research aimed to achieve high-efficiency expression of butelase-1 and explore its application in food-derived angiotensin I-converting enzyme (ACE) inhibitory peptides. The recombinant butelase-1 zymogen was prepared at a yield of 100 mg/L in Escherichia coli and successfully activated at pH 4.5, resulting in a 6973.8 U/L yield of activated butelase-1 with a specific activity of 348.69 U/mg and a catalytic efficiency of 9956 M-1 s-1. Activated butelase-1 exhibited considerable resistance to Tween-20, Triton X-100, and methanol. The "traceless" cyclization of ACE inhibitory peptides was realized using activated butelase-1, which resulted in higher stability and ACE inhibitory activity than those of the linear peptides. Our work proposed an efficient method for the preparation of butelase-1 and provided a promising model for its application in food fields.
Collapse
Affiliation(s)
- Jinsong Zhao
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Renshui Fan
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Jia
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanbo Huang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Zhiqiang Huang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
27
|
Nonis SG, Haywood J, Mylne JS. Plant asparaginyl endopeptidases and their structural determinants of function. Biochem Soc Trans 2021; 49:965-976. [PMID: 33666219 PMCID: PMC8106488 DOI: 10.1042/bst20200908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Asparaginyl endopeptidases (AEPs) are versatile enzymes that in biological systems are involved in producing three different catalytic outcomes for proteins, namely (i) routine cleavage by bond hydrolysis, (ii) peptide maturation, including macrocyclisation by a cleavage-coupled intramolecular transpeptidation and (iii) circular permutation involving separate cleavage and transpeptidation reactions resulting in a major reshuffling of protein sequence. AEPs differ in their preference for cleavage or transpeptidation reactions, catalytic efficiency, and preference for asparagine or aspartate target residues. We look at structural analyses of various AEPs that have laid the groundwork for identifying important determinants of AEP function in recent years, with much of the research impetus arising from the potential biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Samuel G. Nonis
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Joel Haywood
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Joshua S. Mylne
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
28
|
Wang Z, Zhang D, Hemu X, Hu S, To J, Zhang X, Lescar J, Tam JP, Liu CF. Engineering protein theranostics using bio-orthogonal asparaginyl peptide ligases. Theranostics 2021; 11:5863-5875. [PMID: 33897886 PMCID: PMC8058723 DOI: 10.7150/thno.53615] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Protein theranostics integrate both diagnostic and treatment functions on a single disease-targeting protein. However, the preparation of these multimodal agents remains a major challenge. Ideally, conventional recombinant proteins should be used as starting materials for modification with the desired detection and therapeutic functionalities, but simple chemical strategies that allow the introduction of two different modifications into a protein in a site-specific manner are not currently available. We recently discovered two highly efficient peptide ligases, namely butelase-1 and VyPAL2. Although both ligate at asparaginyl peptide bonds, these two enzymes are bio-orthogonal with distinguishable substrate specificities, which can be exploited to introduce distinct modifications onto a protein. Methods: We quantified substrate specificity differences between butelase-1 and VyPAL2, which provide orthogonality for a tandem ligation method for protein dual modifications. Recombinant proteins or synthetic peptides engineered with the preferred recognition motifs of butelase-1 and VyPAL2 at their respective C- and N-terminal ends could be modified consecutively by the action of the two ligases. Results: Using this method, we modified an EGFR-targeting affibody with a fluorescein tag and a mitochondrion-lytic peptide at its respective N- and C-terminal ends. The dual-labeled protein was found to be a selective bioimaging and cytotoxic agent for EGFR-positive A431 cancer cells. In addition, the method was used to prepare a cyclic form of the affibody conjugated with doxorubicin. Both modified affibodies showed increased cytotoxicity to A431 cells by 10- and 100-fold compared to unconjugated doxorubicin and the free peptide, respectively. Conclusion: Bio-orthogonal tandem ligation using two asparaginyl peptide ligases with differential substrate specificities is a straightforward approach for the preparation of multifunctional protein biologics as potential theranostics.
Collapse
|
29
|
Radchuk V, Tran V, Hilo A, Muszynska A, Gündel A, Wagner S, Fuchs J, Hensel G, Ortleb S, Munz E, Rolletschek H, Borisjuk L. Grain filling in barley relies on developmentally controlled programmed cell death. Commun Biol 2021; 4:428. [PMID: 33785858 PMCID: PMC8009944 DOI: 10.1038/s42003-021-01953-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Abstract
Cereal grains contribute substantially to the human diet. The maternal plant provides the carbohydrate and nitrogen sources deposited in the endosperm, but the basis for their spatial allocation during the grain filling process is obscure. Here, vacuolar processing enzymes have been shown to both mediate programmed cell death (PCD) in the maternal tissues of a barley grain and influence the delivery of assimilate to the endosperm. The proposed centrality of PCD has implications for cereal crop improvement. Radchuk et al. report on the role of vacuolar processing enzymes (VPEs) in mediating programmed cell death (PCD) in the maternal tissues of a barley grain and influencing the delivery of assimilate to the endosperm. This study presents a means of increasing the efficiency of the grain filling process in the major cereal crop species by manipulating the timing of PCD.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
| | - Van Tran
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Aleksandra Muszynska
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andre Gündel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Steffen Wagner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Goetz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Eberhard Munz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
| |
Collapse
|
30
|
Abstract
Historically, ligase activity by proteases was theoretically derived due to their catalyst nature, and it was experimentally observed as early as around 1900. Initially, the digestive proteases, such as pepsin, chymotrypsin, and trypsin were employed to perform in vitro syntheses of small peptides. Protease-catalyzed ligation is more efficient than peptide bond hydrolysis in organic solvents, representing control of the thermodynamic equilibrium. Peptide esters readily form acyl intermediates with serine and cysteine proteases, followed by peptide bond synthesis at the N-terminus of another residue. This type of reaction is under kinetic control, favoring aminolysis over hydrolysis. Although only a few natural peptide ligases are known, such as ubiquitin ligases, sortases, and legumains, the principle of proteases as general catalysts could be adapted to engineer some proteases accordingly. In particular, the serine proteases subtilisin and trypsin were converted to efficient ligases, which are known as subtiligase and trypsiligase. Together with sortases and legumains, they turned out to be very useful in linking peptides and proteins with a great variety of molecules, including biomarkers, sugars or building blocks with non-natural amino acids. Thus, these engineered enzymes are a promising branch for academic research and for pharmaceutical progress.
Collapse
|
31
|
Chen Y, Zhang H, Zhang C, Kong X, Hua Y. Characterization of endogenous endopeptidases and exopeptidases and application for the limited hydrolysis of peanut proteins. Food Chem 2020; 345:128764. [PMID: 33310254 DOI: 10.1016/j.foodchem.2020.128764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/03/2020] [Accepted: 11/28/2020] [Indexed: 01/05/2023]
Abstract
Research concerning the utilization of oilseed endogenous proteases is scarce. Herein, we investigated the peanut proteases and their effects on peanut proteins. Liquid chromatography tandem mass spectrometry analysis showed that peanut contained several endopeptidases and exopeptidases. Protease inhibitor assay and analysis of cleavage sites showed that the obvious proteolytic activity at pH 2-5 and 20-60 °C was from aspartic endopeptidases (optimal at pH 3) and one legumain (pH 4). The above endopeptidases destroyed five and six IgE-binding epitopes of Ara h 1 at pH 3 and 4, respectively. Ara h 1 (>95%) and arachin (50-60%) could be hydrolyzed to generate 10-20 kDa and <4 kDa peptides at pH 3, which was enhanced by the pH 3 → 4 incubation. Further, the limited hydrolysis improved the gel-forming ability and in vitro digestibility (approximately 15%) of peanut proteins. Free amino acid analysis showed that the activity of exopeptidases was low at pH 2-5.
Collapse
Affiliation(s)
- Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hongsheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
32
|
Jackson MA, Nguyen LT, Gilding EK, Durek T, Craik DJ. Make it or break it: Plant AEPs on stage in biotechnology. Biotechnol Adv 2020; 45:107651. [DOI: 10.1016/j.biotechadv.2020.107651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
|
33
|
Dall E, Zauner FB, Soh WT, Demir F, Dahms SO, Cabrele C, Huesgen PF, Brandstetter H. Structural and functional studies of Arabidopsis thaliana legumain beta reveal isoform specific mechanisms of activation and substrate recognition. J Biol Chem 2020; 295:13047-13064. [PMID: 32719006 PMCID: PMC7489914 DOI: 10.1074/jbc.ra120.014478] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/14/2020] [Indexed: 01/19/2023] Open
Abstract
The vacuolar cysteine protease legumain plays important functions in seed maturation and plant programmed cell death. Because of their dual protease and ligase activity, plant legumains have become of particular biotechnological interest, e.g. for the synthesis of cyclic peptides for drug design or for protein engineering. However, the molecular mechanisms behind their dual protease and ligase activities are still poorly understood, limiting their applications. Here, we present the crystal structure of Arabidopsis thaliana legumain isoform β (AtLEGβ) in its zymogen state. Combining structural and biochemical experiments, we show for the first time that plant legumains encode distinct, isoform-specific activation mechanisms. Whereas the autocatalytic activation of isoform γ (AtLEGγ) is controlled by the latency-conferring dimer state, the activation of the monomeric AtLEGβ is concentration independent. Additionally, in AtLEGβ the plant-characteristic two-chain intermediate state is stabilized by hydrophobic rather than ionic interactions, as in AtLEGγ, resulting in significantly different pH stability profiles. The crystal structure of AtLEGβ revealed unrestricted nonprime substrate binding pockets, consistent with the broad substrate specificity, as determined by degradomic assays. Further to its protease activity, we show that AtLEGβ exhibits a true peptide ligase activity. Whereas cleavage-dependent transpeptidase activity has been reported for other plant legumains, AtLEGβ is the first example of a plant legumain capable of linking free termini. The discovery of these isoform-specific differences will allow us to identify and rationally design efficient ligases with application in biotechnology and drug development.
Collapse
Affiliation(s)
- Elfriede Dall
- Department of Biosciences, University of Salzburg, Salzburg, Austria.
| | - Florian B Zauner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Wai Tuck Soh
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Sven O Dahms
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Chiara Cabrele
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany; CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany; Institute for Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
34
|
Hemu X, El Sahili A, Hu S, Zhang X, Serra A, Goh BC, Darwis DA, Chen MW, Sze SK, Liu CF, Lescar J, Tam JP. Turning an Asparaginyl Endopeptidase into a Peptide Ligase. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02078] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xinya Hemu
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Abbas El Sahili
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Side Hu
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Xiaohong Zhang
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Aida Serra
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- IMDEA Food Research Institute, Carr. de Canto Blanco, 8, Madrid 28049, Spain
| | - Boon Chong Goh
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
- Antimicrobial Resistance Interdisciplinary Research Group, SMART, 1 CREATE Way, Singapore 138602
| | - Dina A. Darwis
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Ming Wei Chen
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Siu Kwan Sze
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Chuan-fa Liu
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Julien Lescar
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- NTU Institute of Structural Biology, Nanyang Technological University, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - James P. Tam
- Synzymes and Natural Products Center (SYNC), School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
35
|
Tang TMS, Cardella D, Lander AJ, Li X, Escudero JS, Tsai YH, Luk LYP. Use of an asparaginyl endopeptidase for chemo-enzymatic peptide and protein labeling. Chem Sci 2020; 11:5881-5888. [PMID: 32874509 PMCID: PMC7441500 DOI: 10.1039/d0sc02023k] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Asparaginyl endopeptidases (AEPs) are ideal for peptide and protein labeling. However, because of the reaction reversibility, a large excess of labels or backbone modified substrates are needed. In turn, simple and cheap reagents can be used to label N-terminal cysteine, but its availability inherently limits the potential applications. Aiming to address these issues, we have created a chemo-enzymatic labeling system that exploits the substrate promiscuity of AEP with the facile chemical reaction between N-terminal cysteine and 2-formyl phenylboronic acid (FPBA). In this approach, AEP is used to ligate polypeptides with a Asn-Cys-Leu recognition sequence with counterparts possessing an N-terminal Gly-Leu. Instead of being a labeling reagent, the commercially available FPBA serves as a scavenger converting the byproduct Cys-Leu into an inert thiazolidine derivative. This consequently drives the AEP labeling reaction forward to product formation with a lower ratio of label to protein substrate. By carefully screening the reaction conditions for optimal compatibility and minimal hydrolysis, conversion to the ligated product in the model reaction resulted in excellent yields. The versatility of this AEP-ligation/FPBA-coupling system was further demonstrated by site-specifically labeling the N- or C-termini of various proteins.
Collapse
Affiliation(s)
- T M Simon Tang
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Davide Cardella
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Alexander J Lander
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Xuefei Li
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Jorge S Escudero
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Yu-Hsuan Tsai
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| | - Louis Y P Luk
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff , CF10 3AT , UK .
| |
Collapse
|
36
|
Poreba M. Recent advances in the development of legumain-selective chemical probes and peptide prodrugs. Biol Chem 2020; 400:1529-1550. [PMID: 31021817 DOI: 10.1515/hsz-2019-0135] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Legumain, which is also known as vacuolar processing enzyme (VPE) or asparaginyl endopeptidase (AEP), is a cysteine protease that was first discovered and characterized in the leguminous seeds of the moth bean in the early 1990s. Later, this enzyme was also detected in higher organisms, including eukaryotes. This pH-dependent protease displays the highest activity in acidic endolysosomal compartments; however, legumain also displays nuclear, cytosolic and extracellular activity when stabilized by other proteins or intramolecular complexes. Based on the results from over 25 years of research, this protease is involved in multiple cellular events, including protein degradation and antigen presentation. Moreover, when dysregulated, this protease contributes to the progression of several diseases, with cancer being the well-studied example. Research on legumain biology was undoubtedly facilitated by the use of small molecule chemical tools. Therefore, in this review, I present the historical perspectives and most current strategies for the development of small molecule substrates, inhibitors and activity-based probes for legumain. These tools are of paramount importance in elucidating the roles of legumain in multiple biological processes. Finally, as this enzyme appears to be a promising molecular target for anticancer therapies, the development of legumain-activated prodrugs is also described.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Bioorganic Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
37
|
Yamada K, Basak AK, Goto-Yamada S, Tarnawska-Glatt K, Hara-Nishimura I. Vacuolar processing enzymes in the plant life cycle. THE NEW PHYTOLOGIST 2020; 226:21-31. [PMID: 31679161 DOI: 10.1111/nph.16306] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/14/2019] [Indexed: 05/23/2023]
Abstract
Vacuolar processing enzyme (VPE) is a cysteine-type endopeptidase that has a substrate-specificity for asparagine or aspartic acid residues and cleaves peptide bonds at their carboxyl-terminal side. Various vacuolar proteins are synthesized as larger proprotein precursors, and VPE is an important initiator of maturation and activation of these proteins. It mediates programmed cell death (PCD) by provoking vacuolar rupture and initiating the proteolytic cascade leading to PCD. Vacuolar processing enzyme also possesses a peptide ligation activity, which is responsible for producing cyclic peptides in several plant species. These unique functions of VPE support developmental and environmental responses in plants. The number of VPE homologues is higher in angiosperm species, indicating that there has been differentiation and specialization of VPE function over the course of evolution. Angiosperm VPEs are separated into two major types: the γ-type VPEs, which are expressed mainly in vegetative organs, and the β-type VPEs, whose expression occurs mainly in storage organs; in eudicots, the δ-type VPEs are further separated within γ-type VPEs. This review also considers the importance of processing and peptide ligation by VPE in vacuolar protein maturation.
Collapse
Affiliation(s)
- Kenji Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Arpan Kumar Basak
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Shino Goto-Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | | | | |
Collapse
|
38
|
Du J, Yap K, Chan LY, Rehm FBH, Looi FY, Poth AG, Gilding EK, Kaas Q, Durek T, Craik DJ. A bifunctional asparaginyl endopeptidase efficiently catalyzes both cleavage and cyclization of cyclic trypsin inhibitors. Nat Commun 2020; 11:1575. [PMID: 32221295 PMCID: PMC7101308 DOI: 10.1038/s41467-020-15418-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/06/2020] [Indexed: 01/08/2023] Open
Abstract
Asparaginyl endopeptidases (AEPs) catalyze the key backbone cyclization step during the biosynthesis of plant-derived cyclic peptides. Here, we report the identification of two AEPs from Momordica cochinchinensis and biochemically characterize MCoAEP2 that catalyzes the maturation of trypsin inhibitor cyclotides. Recombinantly produced MCoAEP2 catalyzes the backbone cyclization of a linear cyclotide precursor (MCoTI-II-NAL) with a kcat/Km of 620 mM−1 s−1, making it one of the fastest cyclases reported to date. We show that MCoAEP2 can mediate both the N-terminal excision and C-terminal cyclization of cyclotide precursors in vitro. The rate of cyclization/hydrolysis is primarily influenced by varying pH, which could potentially control the succession of AEP-mediated processing events in vivo. Furthermore, MCoAEP2 efficiently catalyzes the backbone cyclization of an engineered MCoTI-II analog with anti-angiogenic activity. MCoAEP2 provides enhanced synthetic access to structures previously inaccessible by direct chemistry approaches and enables the wider application of trypsin inhibitor cyclotides in biotechnology applications. Asparaginyl endopeptidases (AEPs) catalyze the cyclization step during the biosynthesis of cyclic peptides in plants. Here, the authors report a recombinantly produced AEP that catalyzes the backbone cyclization of a linear cyclotide precursor and an engineered analog with high efficiency and in a pH-dependent manner.
Collapse
Affiliation(s)
- Junqiao Du
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Lai Yue Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Fabian B H Rehm
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Fong Yang Looi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Aaron G Poth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
39
|
Tam JP, Chan NY, Liew HT, Tan SJ, Chen Y. Peptide asparaginyl ligases—renegade peptide bond makers. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9648-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Jutras PV, Dodds I, van der Hoorn RA. Proteases of Nicotiana benthamiana: an emerging battle for molecular farming. Curr Opin Biotechnol 2020; 61:60-65. [PMID: 31765962 DOI: 10.1016/j.copbio.2019.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022]
Abstract
Molecular farming increasingly uses the tobacco relative Nicotiana benthamiana for production of recombinant proteins through transient expression. Several proteins are produced efficiently with this expression platform, but yields for other proteins are often very low. These low yields are frequently due to endogenous proteases. The latest genome annotations indicate that N. benthamiana encodes for at least 1243 putative proteases that probably act redundantly and consecutively on substrates in different subcellular compartments. Here, we discuss the N. benthamiana protease repertoire that may affect recombinant protein production and recent advances in protease depletion strategies to increase recombinant protein production in N. benthamiana.
Collapse
Affiliation(s)
- Philippe V Jutras
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK
| | - Isobel Dodds
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK
| | - Renier Al van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK.
| |
Collapse
|
41
|
Progress toward sourcing plants for new bioconjugation tools: a screening evaluation of a model peptide ligase using a synthetic precursor. 3 Biotech 2019; 9:442. [PMID: 31763120 DOI: 10.1007/s13205-019-1983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022] Open
Abstract
In the present study, leaves from 39 phylogenetically distant plant species were sampled and screened for asparaginyl endopeptidase ligase activity using mass spectrometry to test the generality of peptide ligases in plants. A modified version of the sunflower trypsin inhibitor-1 precursor was used as the substrate for reactions with leaf crude extracts and protein fractions. Masses consistent with products of asparaginyl endopeptidase activities that cleave and ligate the substrate into cyclic peptide following the reactions were detected in 8 plants: Nerium oleander and Thevetia peruviana of the family Apocynaceae; Bauhinia variegata, Dermatophyllum secundiflorum, Pithecellobium flexicaule, and Prosopis chilensis of the family Fabaceae; Morus alba of the family Moraceae; and Citrus aurantium of the family Rutaceae. This screening result represents a 20% hit rate for finding asparaginyl endopeptidase ligase activity from the arbitrary plants sampled. Analysis following a 2-h reaction of the substrate with the crude extract of D. secundiflorum leaves showed that the yield of cyclic peptide remained stable around 0.5 ± 0.1% of the substrate over the course of the reaction.
Collapse
|
42
|
Weng SSH, Demir F, Ergin EK, Dirnberger S, Uzozie A, Tuscher D, Nierves L, Tsui J, Huesgen PF, Lange PF. Sensitive Determination of Proteolytic Proteoforms in Limited Microscale Proteome Samples. Mol Cell Proteomics 2019; 18:2335-2347. [PMID: 31471496 PMCID: PMC6823850 DOI: 10.1074/mcp.tir119.001560] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
Protein N termini unambiguously identify truncated, alternatively translated or modified proteoforms with distinct functions and reveal perturbations in disease. Selective enrichment of N-terminal peptides is necessary to achieve proteome-wide coverage for unbiased identification of site-specific regulatory proteolytic processing and protease substrates. However, many proteolytic processes are strictly confined in time and space and therefore can only be analyzed in minute samples that provide insufficient starting material for current enrichment protocols. Here we present High-efficiency Undecanal-based N Termini EnRichment (HUNTER), a robust, sensitive and scalable method for the analysis of previously inaccessible microscale samples. HUNTER achieved identification of >1000 N termini from as little as 2 μg raw HeLa cell lysate. Broad applicability is demonstrated by the first N-terminome analysis of sorted human primary immune cells and enriched mitochondrial fractions from pediatric cancer patients, as well as protease substrate identification from individual Arabidopsis thaliana wild type and Vacuolar Processing Enzyme-deficient mutant seedlings. We further implemented the workflow on a liquid handling system and demonstrate the feasibility of clinical degradomics by automated processing of liquid biopsies from pediatric cancer patients.
Collapse
Affiliation(s)
- Samuel S H Weng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany
| | - Enes K Ergin
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada
| | - Sabrina Dirnberger
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany
| | - Anuli Uzozie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada
| | - Domenic Tuscher
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany
| | - Lorenz Nierves
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada
| | - Janice Tsui
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.
| | - Philipp F Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada.
| |
Collapse
|
43
|
Cheng Z, Zhang J, Yin B, Liu Y, Wang B, Li H, Lu H. γVPE plays an important role in programmed cell death for xylem fiber cells by activating protease CEP1 maturation in Arabidopsis thaliana. Int J Biol Macromol 2019; 137:703-711. [PMID: 31279878 DOI: 10.1016/j.ijbiomac.2019.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/28/2022]
Abstract
The vacuolar processing enzyme (VPE) plays an important role in PCD and was originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants. We found that γVPE is involved in PCD of xylem fiber cells through the activation of CEP1 proproteases into mature protease in Arabidopsis. The γVPE protein was expressed specifically in cambium cells cambium, the primary phloem and the primary xylem during stem development. The recombinant γVPE appearing as a proenzyme at pH 7.0, and then transforming into a 40-kD mature enzyme at pH 5.5 in vitro by self-cleaving. The mature γVPE protein activated CEP1 maturation in vitro, whereas this activity was inhibited in the γvpe mutant. Transmission electron microscopy showed delayed PCD in fiber cells and thickening of secondary fiber cell walls in the γvpe mutant. Transcriptome analysis showed that the expression of 2001 genes was significantly altered expression in the γvpe mutants, and most of them are important for secondary cell wall formation and PCD. Our results demonstrate that γVPE is a crucial processing enzyme for xylem fiber cells PCD during stem development.
Collapse
Affiliation(s)
- Ziyi Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jiaxue Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bin Yin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yadi Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bing Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
44
|
A suite of kinetically superior AEP ligases can cyclise an intrinsically disordered protein. Sci Rep 2019; 9:10820. [PMID: 31346249 PMCID: PMC6658665 DOI: 10.1038/s41598-019-47273-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/11/2019] [Indexed: 11/29/2022] Open
Abstract
Asparaginyl endopeptidases (AEPs) are a class of enzymes commonly associated with proteolysis in the maturation of seed storage proteins. However, a subset of AEPs work preferentially as peptide ligases, coupling release of a leaving group to formation of a new peptide bond. These “ligase-type” AEPs require only short recognition motifs to ligate a range of targets, making them useful tools in peptide and protein engineering for cyclisation of peptides or ligation of separate peptides into larger products. Here we report the recombinant expression, ligase activity and cyclisation kinetics of three new AEPs from the cyclotide producing plant Oldenlandia affinis with superior kinetics to the prototypical recombinant AEP ligase OaAEP1b. These AEPs work preferentially as ligases at both acidic and neutral pH and we term them “canonical AEP ligases” to distinguish them from other AEPs where activity preferences shift according to pH. We show that these ligases intrinsically favour ligation over hydrolysis, are highly efficient at cyclising two unrelated peptides and are compatible with organic co-solvents. Finally, we demonstrate the broad scope of recombinant AEPs in biotechnology by the backbone cyclisation of an intrinsically disordered protein, the 25 kDa malarial vaccine candidate Plasmodium falciparum merozoite surface protein 2 (MSP2).
Collapse
|
45
|
James AM, Haywood J, Leroux J, Ignasiak K, Elliott AG, Schmidberger JW, Fisher MF, Nonis SG, Fenske R, Bond CS, Mylne JS. The macrocyclizing protease butelase 1 remains autocatalytic and reveals the structural basis for ligase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:988-999. [PMID: 30790358 DOI: 10.1111/tpj.14293] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/03/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Plant asparaginyl endopeptidases (AEPs) are expressed as inactive zymogens that perform maturation of seed storage protein upon cleavage-dependent autoactivation in the low-pH environment of storage vacuoles. The AEPs have attracted attention for their macrocyclization reactions, and have been classified as cleavage or ligation specialists. However, we have recently shown that the ability of AEPs to produce either cyclic or acyclic products can be altered by mutations to the active site region, and that several AEPs are capable of macrocyclization given favorable pH conditions. One AEP extracted from Clitoria ternatea seeds (butelase 1) is classified as a ligase rather than a protease, presenting an opportunity to test for loss of cleavage activity. Here, making recombinant butelase 1 and rescuing an Arabidopsis thaliana mutant lacking AEP, we show that butelase 1 retains cleavage functions in vitro and in vivo. The in vivo rescue was incomplete, consistent with some trade-off for butelase 1 specialization toward macrocyclization. Its crystal structure showed an active site with only subtle differences from cleaving AEPs, suggesting the many differences in its peptide-binding region are the source of its efficient macrocyclization. All considered, it seems that either butelase 1 has not fully specialized or a requirement for autocatalytic cleavage is an evolutionary constraint upon macrocyclizing AEPs.
Collapse
Affiliation(s)
- Amy M James
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joel Haywood
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Julie Leroux
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Katarzyna Ignasiak
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Alysha G Elliott
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | - Jason W Schmidberger
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Mark F Fisher
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Samuel G Nonis
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Ricarda Fenske
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| |
Collapse
|
46
|
Structural determinants for peptide-bond formation by asparaginyl ligases. Proc Natl Acad Sci U S A 2019; 116:11737-11746. [PMID: 31123145 DOI: 10.1073/pnas.1818568116] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Asparaginyl endopeptidases (AEPs) are cysteine proteases which break Asx (Asn/Asp)-Xaa bonds in acidic conditions. Despite sharing a conserved overall structure with AEPs, certain plant enzymes such as butelase 1 act as a peptide asparaginyl ligase (PAL) and catalyze Asx-Xaa bond formation in near-neutral conditions. PALs also serve as macrocyclases in the biosynthesis of cyclic peptides. Here, we address the question of how a PAL can function as a ligase rather than a protease. Based on sequence homology of butelase 1, we identified AEPs and PALs from the cyclic peptide-producing plants Viola yedoensis (Vy) and Viola canadensis (Vc) of the Violaceae family. Using a crystal structure of a PAL obtained at 2.4-Å resolution coupled to mutagenesis studies, we discovered ligase-activity determinants flanking the S1 site, namely LAD1 and LAD2 located around the S2 and S1' sites, respectively, which modulate ligase activity by controlling the accessibility of water or amine nucleophile to the S-ester intermediate. Recombinantly expressed VyPAL1-3, predicted to be PALs, were confirmed to be ligases by functional studies. In addition, mutagenesis studies on VyPAL1-3, VyAEP1, and VcAEP supported our prediction that LAD1 and LAD2 are important for ligase activity. In particular, mutagenesis targeting LAD2 selectively enhanced the ligase activity of VyPAL3 and converted the protease VcAEP into a ligase. The definition of structural determinants required for ligation activity of the asparaginyl ligases presented here will facilitate genomic identification of PALs and engineering of AEPs into PALs.
Collapse
|
47
|
Paulus JK, Van der Hoorn RAL. Do proteolytic cascades exist in plants? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1997-2002. [PMID: 30668744 PMCID: PMC6460957 DOI: 10.1093/jxb/erz016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/15/2018] [Accepted: 01/08/2019] [Indexed: 05/10/2023]
Affiliation(s)
- Judith K Paulus
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
48
|
Vorster BJ, Cullis CA, Kunert KJ. Plant Vacuolar Processing Enzymes. FRONTIERS IN PLANT SCIENCE 2019; 10:479. [PMID: 31031794 PMCID: PMC6473326 DOI: 10.3389/fpls.2019.00479] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 05/29/2023]
Abstract
Plant proteomes contain hundreds of proteases divided into different families based on evolutionary and functional relationship. In particular, plant cysteine proteases of the C1 (papain-like) and C13 (legumain-like) families play key roles in many physiological processes. The legumain-like proteases, also called vacuolar processing enzymes (VPEs), perform a multifunctional role in different plant organs and during different stages of plant development and death. VPEs are similar to animal caspases, and although caspase activity was identified in plants almost 40 years ago, there still remains much research to be done to gain a complete understanding of their various roles and functions in plants. Here we not only summarize the current existing knowledge of plant VPEs, including recent developments in the field, but also highlight the future prospective areas to be investigated to obtain a more detailed understanding of the role of VPEs in plants.
Collapse
Affiliation(s)
- Barend Juan Vorster
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Christopher A. Cullis
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Karl J. Kunert
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
49
|
Balakireva AV, Zamyatnin AA. Cutting Out the Gaps Between Proteases and Programmed Cell Death. FRONTIERS IN PLANT SCIENCE 2019; 10:704. [PMID: 31214222 PMCID: PMC6558192 DOI: 10.3389/fpls.2019.00704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/13/2019] [Indexed: 05/07/2023]
Abstract
To date, many animal models for programmed cell death (PCD) have been extensively characterized and classified while such efforts in plant types of PCD still remain poorly understood. However, despite a wide range of functional differences between PCD types in animals and plants, it is certain that all of them are regulated through the recruitment of proteases. Most importantly, proteases are able to perform proteolysis that results in a gain or loss of protein function. This principle relies on the presence of proteolytic cascades where proteases are activated upon various upstream stimuli and which lead to repetitive cell death. While protease activation, proteolytic cascades and targeted substrates are described in detail mainly for nematode, human, and mice models of apoptosis, for plants, only fragmentary knowledge of protease involvement in PCD exists. However, recently, data on the regulation of general plant PCD and protease involvement have emerged which deepens our understanding of the molecular mechanisms responsible for PCD in plants. With this in mind, this article highlights major aspects of protease involvement in the execution of PCD in both animals and plants, addresses obstacles and advances in the field and proposes recommendations for further research of plant PCD.
Collapse
Affiliation(s)
- Anastasia V. Balakireva
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Andrey A. Zamyatnin Jr.,
| |
Collapse
|
50
|
Molecular basis for the production of cyclic peptides by plant asparaginyl endopeptidases. Nat Commun 2018; 9:2411. [PMID: 29925835 PMCID: PMC6010433 DOI: 10.1038/s41467-018-04669-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/09/2018] [Indexed: 11/08/2022] Open
Abstract
Asparaginyl endopeptidases (AEPs) are proteases that have crucial roles in plant defense and seed storage protein maturation. Select plant AEPs, however, do not function as proteases but as transpeptidases (ligases) catalyzing the intra-molecular ligation of peptide termini, which leads to peptide cyclization. These ligase-type AEPs have potential biotechnological applications ranging from in vitro peptide engineering to plant molecular farming, but the structural features enabling these enzymes to catalyze peptide ligation/cyclization rather than proteolysis are currently unknown. Here, we compare the sequences, structures, and functions of diverse plant AEPs by combining molecular modeling, sequence space analysis, and functional testing in planta. We find that changes within the substrate-binding pocket and an adjacent loop, here named the “marker of ligase activity”, together play a key role for AEP ligase efficiency. Identification of these structural determinants may facilitate the discovery of more ligase-type AEPs and the engineering of AEPs with tailored catalytic properties. Asparaginyl endopeptidases (AEPs) are plant proteases that can also function as ligases, catalyzing the production of cyclic plant peptides. Here, the authors identify structural features that govern AEP ligase activity, providing insights to aid the discovery and engineering of ligase-type AEPs.
Collapse
|