1
|
Sincinelli F, Gaonkar SS, Tondepu SAG, Dueñas CJ, Pagano A. Hallmarks of DNA Damage Response in Germination Across Model and Crop Species. Genes (Basel) 2025; 16:95. [PMID: 39858642 PMCID: PMC11764568 DOI: 10.3390/genes16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
DNA damage response (DDR) contributes to seed quality by guarding genome integrity in the delicate phases of pre- and post-germination. As a key determinant of stress tolerance and resilience, DDR has notable implications on the wider scale of the agroecosystems challenged by harsh climatic events. The present review focuses on the existing and documented links that interconnect DDR efficiency with an array of molecular hallmarks with biochemical, molecular, and physiological valence within the seed metabolic networks. The expression of genes encoding DDR sensors, transducers, mediators, and effectors is interpreted as a source of conserved hallmarks, along with markers of oxidative damage reflecting the seed's ability to germinate. Similarly, the accumulation patterns of proteins and metabolites that contribute to DNA stability are predictive of seed quality traits. While a list of candidates is presented from multiple models and crop species, their interaction with chromatin dynamics, cell cycle progression, and hormonal regulation provides further levels of analysis to investigate the seed stress response holistically. The identification of novel hallmarks of DDR in seeds constitutes a framework to prompt validation with different experimental systems, to refine the current models of pre-germinative metabolism, and to promote targeted approaches for seed quality evaluation.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
2
|
Yoshimura M, Ishida T. Generation of viable hypomorphic and null mutant plants via CRISPR-Cas9 targeting mRNA splicing sites. JOURNAL OF PLANT RESEARCH 2025; 138:189-196. [PMID: 39549122 DOI: 10.1007/s10265-024-01597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Genetic analysis is important for modern plant molecular biology, and in this regard, the existence of specific mutants is crucial. While genome editing technologies, particularly CRISPR-Cas9, have revolutionized plant molecular biology by enabling precise gene disruption, knockout methods are ineffective for lethal genes, necessitating alternatives like gene knockdown. This study demonstrates the practical generation of a hypomorphic mutant allele, alongside severe null mutant alleles, via the targeting of mRNA splicing sites using CRISPR-Cas9. The Arabidopsis HIGH PLOIDY 2 (HPY2) encodes a yeast NSE2 ortholog, part of the conserved eukaryotic SMC5/6 complex, with SUMO E3 ligase activity essential for cell cycle progression and plant development. Loss-of-function HPY2 mutants exhibit severe dwarfism and seedling lethality, making functional analysis challenging. To overcome these limitations, we created HPY2 knockdown mutants as novel tools to investigate gene function. Of the three mutant alleles, the hpy2-cr1 and hpy2-cr2 mutants resembled the existing severe hpy2-1 allele, both harboring a single base pair insertion in one exon, causing significant root shortening and seedling lethality. In contrast, the hypomorphic mutant hpy2-cr3, which has a five bp deletion at an intron-exon junction, showed relatively longer root growth and survived until the reproductive stage. RT-PCR analysis of hpy2-cr3 revealed atypical mRNAs producing truncated polypeptides that retained some HPY2 function, explaining the milder phenotype. These results establish the successful generation of novel hypomorphic mutant alleles critical for studying the lethal gene HPY2, and demonstrate the usefulness of CRISPR-Cas9 for producing viable hypomorphic mutants for investigating complex genetic interactions.
Collapse
Affiliation(s)
- Mika Yoshimura
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan
| | - Takashi Ishida
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan.
| |
Collapse
|
3
|
Zhao Y, Zhang J, Fang Y, Zhang P, Chen H. The plant SMC5/6 complex: DNA repair, developmental regulation, and immune responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109267. [PMID: 39515004 DOI: 10.1016/j.plaphy.2024.109267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex plays a pivotal role in safeguarding the structural integrity and morphology of chromosomes, thereby contributing to genomic stability-a cornerstone for normal growth and development across organisms. Beyond its fundamental role in eukaryotic DNA damage repair, recent research has broadened our understanding of SMC5/6's multifaceted functions. It has emerged as a crucial regulator not only of the cell cycle but also in developmental processes, plant immunity, and meiotic DNA damage repair. In this review, we highlight its novel roles in modulating plant growth, development, and immunity, providing fresh perspectives on how this complex might help combat DNA damage stress and orchestrate growth strategies. Furthermore, we emphasize that SMC5/6 offers a unique window into the intricate mechanisms underlying genomic maintenance, development, and stress responses, with profound implications for crop improvement.
Collapse
Affiliation(s)
- Yan Zhao
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jian Zhang
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yiru Fang
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Pingxian Zhang
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China.
| | - Hanchen Chen
- College of Life Sciences & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Yazhouwan National Laboratory, Sanya, Hainan, 572000, China.
| |
Collapse
|
4
|
Kendek A, Sandron A, Lambooij JP, Colmenares S, Pociunaite S, Gooijers I, de Groot L, Karpen G, Janssen A. DNA double-strand break movement in heterochromatin depends on the histone acetyltransferase dGcn5. Nucleic Acids Res 2024; 52:11753-11767. [PMID: 39258543 PMCID: PMC11514474 DOI: 10.1093/nar/gkae775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Cells employ diverse strategies to repair double-strand breaks (DSBs), a dangerous form of DNA damage that threatens genome integrity. Eukaryotic nuclei consist of different chromatin environments, each displaying distinct molecular and biophysical properties that can significantly influence the DSB-repair process. DSBs arising in the compact and silenced heterochromatin domains have been found to move to the heterochromatin periphery in mouse and Drosophila to prevent aberrant recombination events. However, it is poorly understood how chromatin components, such as histone post-translational modifications, contribute to these DSB movements within heterochromatin. Using irradiation as well as locus-specific DSB induction in Drosophila tissues and cultured cells, we find enrichment of histone H3 lysine 9 acetylation (H3K9ac) at DSBs in heterochromatin but not euchromatin. We find this increase is mediated by the histone acetyltransferase dGcn5, which rapidly localizes to heterochromatic DSBs. Moreover, we demonstrate that in the absence of dGcn5, heterochromatic DSBs display impaired recruitment of the SUMO E3 ligase Nse2/Qjt and fail to relocate to the heterochromatin periphery to complete repair. In summary, our results reveal a previously unidentified role for dGcn5 and H3K9ac in heterochromatic DSB repair and underscore the importance of differential chromatin responses at heterochromatic and euchromatic DSBs to promote safe repair.
Collapse
Affiliation(s)
- Apfrida Kendek
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Arianna Sandron
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Jan-Paul Lambooij
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Serafin U Colmenares
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720,Berkeley, California, USA
| | - Severina M Pociunaite
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Iris Gooijers
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Lars de Groot
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Gary H Karpen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720,Berkeley, California, USA
- Division of Biological Sciences and the Environment, Lawrence Berkeley National Laboratory, CA 94720, Berkeley, California, USA
| | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| |
Collapse
|
5
|
Guo P, Wang TJ, Wang S, Peng X, Kim DH, Liu Y. Arabidopsis Histone Variant H2A.X Functions in the DNA Damage-Coupling Abscisic Acid Signaling Pathway. Int J Mol Sci 2024; 25:8940. [PMID: 39201623 PMCID: PMC11354415 DOI: 10.3390/ijms25168940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Environmental variations initiate chromatin modifications, leading to the exchange of histone subunits or the repositioning of nucleosomes. The phosphorylated histone variant H2A.X (γH2A.X) is recognized for the formation of foci that serve as established markers of DNA double-strand breaks (DSBs). Nevertheless, the precise roles of H2A.X in the cellular response to genotoxic stress and the impact of the plant hormone abscisic acid (ABA) remain incompletely understood. In this investigation, we implemented CRISPR/Cas9 technology to produce loss-of-function mutants of AtHTA3 and AtHTA5 in Arabidopsis. The phenotypes of the athta3 and athta5 single mutants were nearly identical to those of the wild-type Col-0. Nevertheless, the athta3 athta5 double mutants exhibited aberrant embryonic development, increased sensitivity to DNA damage, and higher sensitivity to ABA. The RT-qPCR analysis indicates that AtHTA3 and AtHTA5 negatively regulate the expression of AtABI3, a fundamental regulator in the ABA signaling pathway. Subsequent investigation demonstrated that AtABI3 participates in the genotoxic stress response by influencing the expression of DNA damage response genes, such as AtBRCA1, AtRAD51, and AtWEE1. Our research offers new insights into the role of H2A.X in the genotoxic and ABA responses of Arabidopsis.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Shuang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Xiaoyuan Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Dae Heon Kim
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| |
Collapse
|
6
|
Liu P. From the archives: On DNA maintenance-SWI/SNF chromatin remodeling complexes, DNA damage repair, and transposon excision repair mechanisms. THE PLANT CELL 2024; 36:2449-2450. [PMID: 38652706 PMCID: PMC11218769 DOI: 10.1093/plcell/koae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Peng Liu
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Donald Danforth Plant Science Center, Saint Louis, MO 63146, USA
| |
Collapse
|
7
|
Odiba AS, Liao G, Ezechukwu CS, Zhang L, Hong Y, Fang W, Jin C, Gartner A, Wang B. Caenorhabditis elegans NSE3 homolog (MAGE-1) is involved in genome stability and acts in inter-sister recombination during meiosis. Genetics 2023; 225:iyad149. [PMID: 37579186 PMCID: PMC10691751 DOI: 10.1093/genetics/iyad149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Melanoma antigen (MAGE) genes encode for a family of proteins that share a common MAGE homology domain. These genes are conserved in eukaryotes and have been linked to a variety of cellular and developmental processes including ubiquitination and oncogenesis in cancer. Current knowledge on the MAGE family of proteins mainly comes from the analysis of yeast and human cell lines, and their functions have not been reported at an organismal level in animals. Caenorhabditis elegans only encodes 1 known MAGE gene member, mage-1 (NSE3 in yeast), forming part of the SMC-5/6 complex. Here, we characterize the role of mage-1/nse-3 in mitosis and meiosis in C. elegans. mage-1/nse-3 has a role in inter-sister recombination repair during meiotic recombination and for preserving chromosomal integrity upon treatment with a variety of DNA-damaging agents. MAGE-1 directly interacts with NSE-1 and NSE-4. In contrast to smc-5, smc-6, and nse-4 mutants which cause the loss of NSE-1 nuclear localization and strong cytoplasmic accumulation, mage-1/nse-3 mutants have a reduced level of NSE-1::GFP, remnant NSE-1::GFP being partially nuclear but largely cytoplasmic. Our data suggest that MAGE-1 is essential for NSE-1 stability and the proper functioning of the SMC-5/6 complex.
Collapse
Affiliation(s)
- Arome Solomon Odiba
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guiyan Liao
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Chiemekam Samuel Ezechukwu
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Lanlan Zhang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ye Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Wenxia Fang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Cheng Jin
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Anton Gartner
- IBS Center for Genomic Integrity, Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Bin Wang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
8
|
Lelkes E, Jemelková J, Holá M, Štefanovie B, Kolesár P, Vágnerová R, Dvořák Tomaštíková E, Pecinka A, Angelis KJ, Paleček JJ. Characterization of the conserved features of the NSE6 subunit of the Physcomitrium patens SMC5/6 complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1084-1099. [PMID: 37191775 DOI: 10.1111/tpj.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes are molecular machines ensuring chromatin organization at higher levels. They play direct roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of long-armed SMC, kleisin, and kleisin-associated subunits. Additional factors, like NSE6 within SMC5/6, bind to SMC core complexes and regulate their activities. In the human HsNSE6/SLF2, we recently identified a new CANIN domain. Here we tracked down its sequence homology to lower plants, selected the bryophyte Physcomitrium patens, and analyzed PpNSE6 protein-protein interactions to explore its conservation in detail. We identified a previously unrecognized core sequence motif conserved from yeasts to humans within the NSE6 CANIN domain. This motif mediates the interaction between NSE6 and its NSE5 partner in yeasts and plants. In addition, the CANIN domain and its preceding PpNSE6 sequences bind both PpSMC5 and PpSMC6 arms. Interestingly, we mapped the PpNSE6-binding site at the PpSMC5 arm right next to the PpNSE2-binding surface. The position of NSE6 at SMC arms suggests its role in the regulation of SMC5/6 dynamics. Consistent with the regulatory role of NSE6 subunits, Ppnse6 mutant lines were viable and sensitive to the DNA-damaging drug bleomycin and lost a large portion of rDNA copies. These moss mutants also exhibited reduced growth and developmental aberrations. Altogether, our data showed the conserved function of the NSE6 subunit and architecture of the SMC5/6 complex across species.
Collapse
Affiliation(s)
- Edit Lelkes
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jitka Jemelková
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Marcela Holá
- Institute of Experimental Botany, Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Barbora Štefanovie
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Peter Kolesár
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Radka Vágnerová
- Institute of Experimental Botany, Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Eva Dvořák Tomaštíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Karel J Angelis
- Institute of Experimental Botany, Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Jan J Paleček
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| |
Collapse
|
9
|
Xun Q, Song Y, Mei M, Ding Y, Ding C. The SMC5/6 complex subunit MMS21 regulates stem cell proliferation in rice. PLANT CELL REPORTS 2023:10.1007/s00299-023-03030-9. [PMID: 37178216 DOI: 10.1007/s00299-023-03030-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
KEY MESSAGE SMC5/6 complex subunit OsMMS21 is involved in cell cycle and hormone signaling and required for stem cell proliferation during shoot and root development in rice. The structural maintenance of chromosome (SMC)5/6 complex is required for nucleolar integrity and DNA metabolism. Moreover, METHYL METHANESULFONATE SENSITIVITY GENE 21 (MMS21), a SUMO E3 ligase that is part of the SMC5/6 complex, is essential for the root stem cell niche and cell cycle transition in Arabidopsis. However, its specific role in rice remains unclear. Here, OsSMC5 and OsSMC6 single heterozygous mutants were generated using CRISPR/Cas9 technology to elucidate the function of SMC5/6 subunits, including OsSMC5, OsSMC6, and OsMMS21, in cell proliferation in rice. ossmc5/ + and ossmc6/ + heterozygous single mutants did not yield homozygous mutants in their progeny, indicating that OsSMC5 and OsSMC6 both play necessary roles during embryo formation. Loss of OsMMS21 caused severe defects in both the shoot and roots in rice. Transcriptome analysis showed a significant decrease in the expression of genes involved in auxin signaling in the roots of osmms21 mutants. Moreover, the expression levels of the cycB2-1 and MCM genes, which are involved the cell cycle, were significantly lower in the shoots of the mutants, indicating that OsMMS21 was involved in both hormone signaling pathways and the cell cycle. Overall, these findings indicate that the SUMO E3 ligase OsMMS21 is required for both shoot and root stem cell niches, improving the understanding of the function of the SMC5/6 complex in rice.
Collapse
Affiliation(s)
- Qian Xun
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ye Song
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Mei
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, 210095, China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, China.
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, 210095, China.
| |
Collapse
|
10
|
Dvořák Tomaštíková E, Prochazkova K, Yang F, Jemelkova J, Finke A, Dorn A, Said M, Puchta H, Pecinka A. SMC5/6 complex-mediated SUMOylation stimulates DNA-protein cross-link repair in Arabidopsis. THE PLANT CELL 2023; 35:1532-1547. [PMID: 36705512 PMCID: PMC10118267 DOI: 10.1093/plcell/koad020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 05/10/2023]
Abstract
DNA-protein cross-links (DPCs) are highly toxic DNA lesions consisting of proteins covalently attached to chromosomal DNA. Unrepaired DPCs physically block DNA replication and transcription. Three DPC repair pathways have been identified in Arabidopsis (Arabidopsis thaliana) to date: the endonucleolytic cleavage of DNA by the structure-specific endonuclease MUS81; proteolytic degradation of the crosslinked protein by the metalloprotease WSS1A; and cleavage of the cross-link phosphodiester bonds by the tyrosyl phosphodiesterases TDP1 and TDP2. Here we describe the evolutionary conserved STRUCTURAL MAINTENANCE OF CHROMOSOMEs SMC5/6 complex as a crucial component involved in DPC repair. We identified multiple alleles of the SMC5/6 complex core subunit gene SMC6B via a forward-directed genetic screen designed to identify the factors involved in the repair of DPCs induced by the cytidine analog zebularine. We monitored plant growth and cell death in response to DPC-inducing chemicals, which revealed that the SMC5/6 complex is essential for the repair of several types of DPCs. Genetic interaction and sensitivity assays showed that the SMC5/6 complex works in parallel to the endonucleolytic and proteolytic pathways. The repair of zebularine-induced DPCs was associated with SMC5/6-dependent SUMOylation of the damage sites. Thus, we present the SMC5/6 complex as an important factor in plant DPC repair.
Collapse
Affiliation(s)
| | - Klara Prochazkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
| | - Fen Yang
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Jitka Jemelkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Functional Genomics and Proteomics, National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | | | - Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, 12619, Cairo, Egypt
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | | |
Collapse
|
11
|
Li C, Guo Y, Wang L, Yan S. The SMC5/6 complex recruits the PAF1 complex to facilitate DNA double-strand break repair in Arabidopsis. EMBO J 2023; 42:e112756. [PMID: 36815434 PMCID: PMC10068331 DOI: 10.15252/embj.2022112756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most toxic forms of DNA damage, which threatens genome stability. Homologous recombination is an error-free DSB repair pathway, in which the evolutionarily conserved SMC5/6 complex (SMC5/6) plays essential roles. The PAF1 complex (PAF1C) is well known to regulate transcription. Here we show that SMC5/6 recruits PAF1C to facilitate DSB repair in plants. In a genetic screen for DNA damage response mutants (DDRMs), we found that the Arabidopsis ddrm4 mutant is hypersensitive to DSB-inducing agents and is defective in homologous recombination. DDRM4 encodes PAF1, a core subunit of PAF1C. Further biochemical and genetic studies reveal that SMC5/6 recruits PAF1C to DSB sites, where PAF1C further recruits the E2 ubiquitin-conjugating enzymes UBC1/2, which interact with the E3 ubiquitin ligases HUB1/2 to mediate the monoubiquitination of histone H2B at DSBs. These results implicate SMC5/6-PAF1C-UBC1/2-HUB1/2 as a new axis for DSB repair through homologous recombination, revealing a new mechanism of SMC5/6 and uncovering a novel function of PAF1C.
Collapse
Affiliation(s)
- Cunliang Li
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yuyu Guo
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Lili Wang
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Shunping Yan
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
12
|
Odiba AS, Ezechukwu CS, Liao G, Li S, Chen Z, Liu X, Fang W, Jin C, Wang B. Loss of NSE-4 Perturbs Genome Stability and DNA Repair in Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23137202. [PMID: 35806213 PMCID: PMC9266361 DOI: 10.3390/ijms23137202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The Structural Maintenance of Chromosomes (SMC) complex plays an important role in maintaining chromosome integrity, in which the SMC5/6 complex occupies a central position by facilitating mitotic and meiotic processes as well as DNA repair. NSE-4 Kleisin is critical for both the organization and function of the SMC5/6 complex, bridging NSE1 and NSE3 (MAGE related) with the head domains of the SMC5 and SMC6 proteins. Despite the conservation in protein sequence, no functional relevance of the NSE-4 homologous protein (NSE-4) in Caenorhabditis elegans has been reported. Here, we demonstrated the essential role of C. elegans NSE-4 in genome maintenance and DNA repair. Our results showed that NSE-4 is essential for the maintenance of chromosomal structure and repair of a range of chemically induced DNA damage. Furthermore, NSE-4 is involved in inter-sister repair during meiosis. NSE-4 localizes on the chromosome and is indispensable for the localization of NSE-1. Collectively, our data from this study provide further insight into the evolutionary conservation and diversification of NSE-4 function in the SMC-5/6 complex.
Collapse
Affiliation(s)
- Arome Solomon Odiba
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Genetics and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria
| | - Chiemekam Samuel Ezechukwu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Guiyan Liao
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
- Correspondence: (G.L.); (B.W.)
| | - Siqiao Li
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
| | - Zhongliang Chen
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Z.C.); (X.L.)
| | - Xihui Liu
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Z.C.); (X.L.)
| | - Wenxia Fang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
| | - Cheng Jin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Z.C.); (X.L.)
- Correspondence: (G.L.); (B.W.)
| |
Collapse
|
13
|
Yang F, Pecinka A. Multiple Roles of SMC5/6 Complex during Plant Sexual Reproduction. Int J Mol Sci 2022; 23:ijms23094503. [PMID: 35562893 PMCID: PMC9099584 DOI: 10.3390/ijms23094503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 12/01/2022] Open
Abstract
Chromatin-based processes are essential for cellular functions. Structural maintenance of chromosomes (SMCs) are evolutionarily conserved molecular machines that organize chromosomes throughout the cell cycle, mediate chromosome compaction, promote DNA repair, or control sister chromatid attachment. The SMC5/6 complex is known for its pivotal role during the maintenance of genome stability. However, a dozen recent plant studies expanded the repertoire of SMC5/6 complex functions to the entire plant sexual reproductive phase. The SMC5/6 complex is essential in meiosis, where its activity must be precisely regulated to allow for normal meiocyte development. Initially, it is attenuated by the recombinase RAD51 to allow for efficient strand invasion by the meiosis-specific recombinase DMC1. At later stages, it is essential for the normal ratio of interfering and non-interfering crossovers, detoxifying aberrant joint molecules, preventing chromosome fragmentation, and ensuring normal chromosome/sister chromatid segregation. The latter meiotic defects lead to the production of diploid male gametes in Arabidopsis SMC5/6 complex mutants, increased seed abortion, and production of triploid offspring. The SMC5/6 complex is directly involved in controlling normal embryo and endosperm cell divisions, and pioneer studies show that the SMC5/6 complex is also important for seed development and normal plant growth in cereals.
Collapse
Affiliation(s)
- Fen Yang
- Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany (IEB), Czech Academy of Sciences, 77900 Olomouc, Czech Republic;
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 77900 Olomouc, Czech Republic
| | - Ales Pecinka
- Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany (IEB), Czech Academy of Sciences, 77900 Olomouc, Czech Republic;
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 77900 Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
14
|
Prochazkova K, Finke A, Tomaštíková ED, Filo J, Bente H, Dvořák P, Ovečka M, Šamaj J, Pecinka A. Zebularine induces enzymatic DNA-protein crosslinks in 45S rDNA heterochromatin of Arabidopsis nuclei. Nucleic Acids Res 2021; 50:244-258. [PMID: 34904670 PMCID: PMC8754632 DOI: 10.1093/nar/gkab1218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 11/14/2022] Open
Abstract
Loss of genome stability leads to reduced fitness, fertility and a high mutation rate. Therefore, the genome is guarded by the pathways monitoring its integrity and neutralizing DNA lesions. To analyze the mechanism of DNA damage induction by cytidine analog zebularine, we performed a forward-directed suppressor genetic screen in the background of Arabidopsis thaliana zebularine-hypersensitive structural maintenance of chromosomes 6b (smc6b) mutant. We show that smc6b hypersensitivity was suppressed by the mutations in EQUILIBRATIVE NUCLEOSIDE TRANSPORTER 3 (ENT3), DNA METHYLTRANSFERASE 1 (MET1) and DECREASE IN DNA METHYLATION 1 (DDM1). Superior resistance of ent3 plants to zebularine indicated that ENT3 is likely necessary for the import of the drug to the cells. Identification of MET1 and DDM1 suggested that zebularine induces DNA damage by interference with the maintenance of CG DNA methylation. The same holds for structurally similar compounds 5-azacytidine and 2-deoxy-5-azacytidine. Based on our genetic and biochemical data, we propose that zebularine induces enzymatic DNA–protein crosslinks (DPCs) of MET1 and zebularine-containing DNA in Arabidopsis, which was confirmed by native chromatin immunoprecipitation experiments. Moreover, zebularine-induced DPCs accumulate preferentially in 45S rDNA chromocenters in a DDM1-dependent manner. These findings open a new avenue for studying genome stability and DPC repair in plants.
Collapse
Affiliation(s)
| | | | - Eva Dvořák Tomaštíková
- Institute of Experimental Botany, The Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900 Olomouc, Czech Republic
| | - Jaroslav Filo
- Institute of Experimental Botany, The Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900 Olomouc, Czech Republic
| | - Heinrich Bente
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Petr Dvořák
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Ales Pecinka
- To whom correspondence should be addressed. Tel: +420 585 238 709;
| |
Collapse
|
15
|
Holá M, Vágnerová R, Angelis KJ. Kleisin NSE4 of the SMC5/6 complex is necessary for DNA double strand break repair, but not for recovery from DNA damage in Physcomitrella (Physcomitrium patens). PLANT MOLECULAR BIOLOGY 2021; 107:355-364. [PMID: 33550456 DOI: 10.1007/s11103-020-01115-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Kleisin NSE4 and circular form of SMC5/6 is indispensable for DSB repair and necessary for gene targeting but is not enough for recovery of cells from DNA damage in Physcomitrella. Structural maintenance of chromosomes (SMC) complexes are involved in cohesion, condensation and maintenance of genome stability. Based on the sensitivity of mutants to genotoxic stress the SMC5/6 complex is thought to play a prominent role in DNA stabilization during repair by tethering DNA at the site of lesion by a heteroduplex of SMC5 and SMC6 encircled with non-SMC components NSE1, NSE3 and kleisin NSE4. In this study, we tested how formation of the SMC5/6 circular structure affects mutant sensitivity to DNA damage, kinetics of DSB repair and gene targeting. In the moss Physcomitrella (Physcomitrium patens), SMC6 and NSE4 are essential single copy genes and this is why we used blocking of transcription to reveal their mutated phenotype. Even slight reduction of transcript levels by dCas9 binding was enough to obtain stable lines with severe DSB repair defects and specific bleomycin sensitivity. We show that survival after bleomycin or MMS treatment fully depends on active SMC6, whereas attenuation of NSE4 has little or negligible effect. We conclude that circularization of SMC5/6 provided by the kleisin NSE4 is indispensable for the DSB repair, nevertheless there are other functions associated with the SMC5/6 complex, which are critical to survive DNA damage.
Collapse
Affiliation(s)
- Marcela Holá
- Institute of Experimental Botany, The Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Radka Vágnerová
- Institute of Experimental Botany, The Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Karel J Angelis
- Institute of Experimental Botany, The Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic.
| |
Collapse
|
16
|
The SUMO ligase MMS21 profoundly influences maize development through its impact on genome activity and stability. PLoS Genet 2021; 17:e1009830. [PMID: 34695110 PMCID: PMC8568144 DOI: 10.1371/journal.pgen.1009830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/04/2021] [Accepted: 09/20/2021] [Indexed: 12/04/2022] Open
Abstract
The post-translational addition of SUMO plays essential roles in numerous eukaryotic processes including cell division, transcription, chromatin organization, DNA repair, and stress defense through its selective conjugation to numerous targets. One prominent plant SUMO ligase is METHYL METHANESULFONATE-SENSITIVE (MMS)-21/HIGH-PLOIDY (HPY)-2/NON-SMC-ELEMENT (NSE)-2, which has been connected genetically to development and endoreduplication. Here, we describe the potential functions of MMS21 through a collection of UniformMu and CRISPR/Cas9 mutants in maize (Zea mays) that display either seed lethality or substantially compromised pollen germination and seed/vegetative development. RNA-seq analyses of leaves, embryos, and endosperm from mms21 plants revealed a substantial dysregulation of the maize transcriptome, including the ectopic expression of seed storage protein mRNAs in leaves and altered accumulation of mRNAs associated with DNA repair and chromatin dynamics. Interaction studies demonstrated that MMS21 associates in the nucleus with the NSE4 and STRUCTURAL MAINTENANCE OF CHROMOSOMES (SMC)-5 components of the chromatin organizer SMC5/6 complex, with in vitro assays confirming that MMS21 will SUMOylate SMC5. Comet assays measuring genome integrity, sensitivity to DNA-damaging agents, and protein versus mRNA abundance comparisons implicated MMS21 in chromatin stability and transcriptional controls on proteome balance. Taken together, we propose that MMS21-directed SUMOylation of the SMC5/6 complex and other targets enables proper gene expression by influencing chromatin structure. The post-translational addition of SUMO to other proteins by the MMS21 SUMO ligase has been implicated in a plethora of biological processes in plants but the identit(ies) of its targets and the biological consequences of their modification remain poorly resolved. Here, we address this issue by characterizing a collection of maize mms21 mutants using genetic, biochemical, transcriptomic and proteomic approaches. Our results revealed that mms21 mutations substantially compromise pollen germination and seed/vegetative development, dysregulate the maize transcriptome, including the ectopic expression of seed storage protein mRNAs in leaves, increase DNA damage, and alter the proteome/transcriptome balance. Interaction studies showed that MMS21 associates in the nucleus with the NON-SMC-ELEMENT (NSE)-4 and STRUCTURAL MAINTENANCE OF CHROMOSOMES (SMC)-5 components of the chromatin organizer SMC5/6 complex responsible for DNA-damage repair and chromatin accessibility. Our data demonstrate that MMS21 is crucial for plant development likely through its maintenance of DNA repair, balanced transcription, and genome stability.
Collapse
|
17
|
Yang F, Fernández-Jiménez N, Tučková M, Vrána J, Cápal P, Díaz M, Pradillo M, Pecinka A. Defects in meiotic chromosome segregation lead to unreduced male gametes in Arabidopsis SMC5/6 complex mutants. THE PLANT CELL 2021; 33:3104-3119. [PMID: 34240187 PMCID: PMC8462810 DOI: 10.1093/plcell/koab178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/27/2021] [Indexed: 05/21/2023]
Abstract
Structural maintenance of chromosome 5/6 (SMC5/6) complex is a crucial factor for preserving genome stability. Here, we show that mutants for several Arabidopsis (Arabidopsis thaliana) SMC5/6 complex subunits produce triploid offspring. This phenotype is caused by a meiotic defect leading to the production of unreduced male gametes. The SMC5/6 complex mutants show an absence of chromosome segregation during the first and/or the second meiotic division, as well as a partially disorganized microtubule network. Importantly, although the SMC5/6 complex is partly required for the repair of SPO11-induced DNA double-strand breaks, the nonreduction described here is SPO11-independent. The measured high rate of ovule abortion suggests that, if produced, such defects are maternally lethal. Upon fertilization with an unreduced pollen, the unbalanced maternal and paternal genome dosage in the endosperm most likely causes seed abortion observed in several SMC5/6 complex mutants. In conclusion, we describe the function of the SMC5/6 complex in the maintenance of gametophytic ploidy in Arabidopsis.
Collapse
Affiliation(s)
- Fen Yang
- Institute of Experimental Botany, Czech Academy of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Nadia Fernández-Jiménez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Martina Tučková
- Institute of Experimental Botany, Czech Academy of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Czech Academy of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany, Czech Academy of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Mariana Díaz
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Ales Pecinka
- Institute of Experimental Botany, Czech Academy of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Author for correspondence:
| |
Collapse
|
18
|
Chen H, He C, Wang C, Wang X, Ruan F, Yan J, Yin P, Wang Y, Yan S. RAD51 supports DMC1 by inhibiting the SMC5/6 complex during meiosis. THE PLANT CELL 2021; 33:2869-2882. [PMID: 34009315 PMCID: PMC8408460 DOI: 10.1093/plcell/koab136] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/12/2021] [Indexed: 05/21/2023]
Abstract
Meiosis is a fundamental process for sexual reproduction in most eukaryotes and the evolutionarily conserved recombinases RADiation sensitive51 (RAD51) and Disrupted Meiotic cDNA1 (DMC1) are essential for meiosis and thus fertility. The mitotic function of RAD51 is clear, but the meiotic function of RAD51 remains largely unknown. Here we show that RAD51 functions as an interacting protein to restrain the Structural Maintenance of Chromosomes5/6 (SMC5/6) complex from inhibiting DMC1. We unexpectedly found that loss of the SMC5/6 partially suppresses the rad51 knockout mutant in terms of sterility, pollen inviability, and meiotic chromosome fragmentation in a DMC1-dependent manner in Arabidopsis thaliana. Biochemical and cytological studies revealed that the DMC1 localization in meiotic chromosomes is inhibited by the SMC5/6 complex, which is attenuated by RAD51 through physical interactions. This study not only identified the long-sought-after function of RAD51 in meiosis but also discovered the inhibition of SMC5/6 on DMC1 as a control mechanism during meiotic recombination.
Collapse
Affiliation(s)
- Hanchen Chen
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengpeng He
- State Key Laboratory of Genetic Engineering and Ministry of Education, Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chongyang Wang
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuanpeng Wang
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengyin Ruan
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education, Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Author for correspondence: (S.Y.), (Y.W.)
| | - Shunping Yan
- College of Life Science and Technology, Center of Integrative Biology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, Wuhan 430070, China
- Author for correspondence: (S.Y.), (Y.W.)
| |
Collapse
|
19
|
Natural variation identifies SNI1, the SMC5/6 component, as a modifier of meiotic crossover in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2021970118. [PMID: 34385313 PMCID: PMC8379953 DOI: 10.1073/pnas.2021970118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination plays a fundamental role in shaping genetic diversity in eukaryotes. Extensive variation in crossover rate exists between populations and species. The identity of modifier loci and their roles in genome evolution remain incompletely understood. We explored natural variation in Arabidopsis crossover and identified SNI1 as the causal gene underlying a major modifier locus. To date, SNI1 had no known role in crossover. SNI1 is a component of the SMC5/6 complex that is closely related to cohesin and condensin. Arabidopsis sni1 and other SMC5/6 mutants show similar effects on the interference-independent crossover pathway. Hence, our findings demonstrate that the SMC5/6 complex, which is known for its role in DNA damage repair, is also important for control of meiotic crossover. The frequency and distribution of meiotic crossovers are tightly controlled; however, variation in this process can be observed both within and between species. Using crosses of two natural Arabidopsis thaliana accessions, Col and Ler, we mapped a crossover modifier locus to semidominant polymorphisms in SUPPRESSOR OF NPR1-1 INDUCIBLE 1 (SNI1), which encodes a component of the SMC5/6 complex. The sni1 mutant exhibits a modified pattern of recombination across the genome with crossovers elevated in chromosome distal regions but reduced in pericentromeres. Mutations in SNI1 result in reduced crossover interference and can partially restore the fertility of a Class I crossover pathway mutant, which suggests that the protein affects noninterfering crossover repair. Therefore, we tested genetic interactions between SNI1 and both RECQ4 and FANCM DNA helicases, which showed that additional Class II crossovers observed in the sni1 mutant are FANCM independent. Furthermore, genetic analysis of other SMC5/6 mutants confirms the observations of crossover redistribution made for SNI1. The study reveals the importance of the SMC5/6 complex in ensuring the proper progress of meiotic recombination in plants.
Collapse
|
20
|
Zou W, Li G, Jian L, Qian J, Liu Y, Zhao J. Arabidopsis SMC6A and SMC6B have redundant function in seed and gametophyte development. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4871-4887. [PMID: 33909904 DOI: 10.1093/jxb/erab181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/25/2021] [Indexed: 05/21/2023]
Abstract
Reproductive development is a crucial process during plant growth. The structural maintenance of chromosome (SMC) 5/6 complex has been studied in various species. However, there are few studies on the biological function of SMC6 in plant development, especially during reproduction. In this study, knocking out of both AtSMC6A and AtSMC6B led to severe defects in Arabidopsis seed development, and expression of AtSMC6A or AtSMC6B could completely restore seed abortion in the smc6a-/-smc6b-/-double mutant. Knocking down AtSMC6A in the smc6b-/- mutant led to defects in female and male development and decreased fertility. The double mutation also resulted in loss of cell viability, and caused embryo and endosperm cell death through vacuolar cell death and necrosis. Furthermore, the expression of genes involved in embryo patterning, endosperm cellularisation, DNA damage repair, cell cycle regulation, and DNA replication were significantly changed in the albino seeds of the double mutant. Moreover, we found that the SMC5/6 complex may participate in the SOG1 (SUPPRESSOR OF GAMMA RESPONSE1)-dependent DNA damage repair pathway. These findings suggest that both AtSMC6A and AtSMC6B are functionally redundant and play important roles in seed and gametophyte development through maintaining chromosome stability in Arabidopsis.
Collapse
Affiliation(s)
- Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liufang Jian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yantong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Bolaños-Villegas P. The Role of Structural Maintenance of Chromosomes Complexes in Meiosis and Genome Maintenance: Translating Biomedical and Model Plant Research Into Crop Breeding Opportunities. FRONTIERS IN PLANT SCIENCE 2021; 12:659558. [PMID: 33868354 PMCID: PMC8044525 DOI: 10.3389/fpls.2021.659558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Cohesin is a multi-unit protein complex from the structural maintenance of chromosomes (SMC) family, required for holding sister chromatids together during mitosis and meiosis. In yeast, the cohesin complex entraps sister DNAs within tripartite rings created by pairwise interactions between the central ring units SMC1 and SMC3 and subunits such as the α-kleisin SCC1 (REC8/SYN1 in meiosis). The complex is an indispensable regulator of meiotic recombination in eukaryotes. In Arabidopsis and maize, the SMC1/SMC3 heterodimer is a key determinant of meiosis. In Arabidopsis, several kleisin proteins are also essential: SYN1/REC8 is meiosis-specific and is essential for double-strand break repair, whereas AtSCC2 is a subunit of the cohesin SCC2/SCC4 loading complex that is important for synapsis and segregation. Other important meiotic subunits are the cohesin EXTRA SPINDLE POLES (AESP1) separase, the acetylase ESTABLISHMENT OF COHESION 1/CHROMOSOME TRANSMISSION FIDELITY 7 (ECO1/CTF7), the cohesion release factor WINGS APART-LIKE PROTEIN 1 (WAPL) in Arabidopsis (AtWAPL1/AtWAPL2), and the WAPL antagonist AtSWITCH1/DYAD (AtSWI1). Other important complexes are the SMC5/SMC6 complex, which is required for homologous DNA recombination during the S-phase and for proper meiotic synapsis, and the condensin complexes, featuring SMC2/SMC4 that regulate proper clustering of rDNA arrays during interphase. Meiotic recombination is the key to enrich desirable traits in commercial plant breeding. In this review, I highlight critical advances in understanding plant chromatid cohesion in the model plant Arabidopsis and crop plants and suggest how manipulation of crossover formation during meiosis, somatic DNA repair and chromosome folding may facilitate transmission of desirable alleles, tolerance to radiation, and enhanced transcription of alleles that regulate sexual development. I hope that these findings highlight opportunities for crop breeding.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Fabio Baudrit Agricultural Research Station, University of Costa Rica, Alajuela, Costa Rica
- Lankester Botanical Garden, University of Costa Rica, Cartago, Costa Rica
| |
Collapse
|
22
|
Identification of novel biomarkers involved in pulmonary arterial hypertension based on multiple-microarray analysis. Biosci Rep 2021; 40:226338. [PMID: 32886110 PMCID: PMC7494994 DOI: 10.1042/bsr20202346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening chronic cardiopulmonary disorder. However, studies providing PAH-related gene expression profiles are scarce. To identify hub genes involved in PAH, we investigate two microarray data sets from gene expression omnibus (GEO). A total of 150 differentially expressed genes (DEGs) were identified by limma package. Enriched Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of DEGs mostly included mitotic nuclear division, ATPase activity, and Herpes simplex virus one infection. Ten hub genes from three significant modules were ascertained by Cytoscape (CytoHubba). Gene set enrichment analysis (GSEA) plots showed that transcription elongation factor complex was the most significantly enriched gene set positively correlated with the PAH group. At the same time, solute proton symporter activity was the most significantly enriched gene set positively correlated with the control group. Correlation analysis between hub genes suggested that SMC4, TOP2A, SMC2, KIF11, KIF23, ANLN, ARHGAP11A, SMC3, SMC6 and RAD50 may involve in the pathogenesis of PAH. Then, the miRNA-target genes regulation network was performed to unveil the underlying complex association among them. Finally, RNA extracted from monocrotaline (MCT)-induced Rat-PAH model lung artery tissues were to conduct quantitative real-time PCR (qRT-PCR) to validate these hub genes. In conclusion, our study offers new evidence for the underlying molecular mechanisms of PAH as well as attractive targets for diagnosis and treatment of PAH.
Collapse
|
23
|
Yang F, Fernández Jiménez N, Majka J, Pradillo M, Pecinka A. Structural Maintenance of Chromosomes 5/6 Complex Is Necessary for Tetraploid Genome Stability in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:748252. [PMID: 34675953 PMCID: PMC8525318 DOI: 10.3389/fpls.2021.748252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/06/2021] [Indexed: 05/04/2023]
Abstract
Polyploidization is a common phenomenon in the evolution of flowering plants. However, only a few genes controlling polyploid genome stability, fitness, and reproductive success are known. Here, we studied the effects of loss-of-function mutations in NSE2 and NSE4A subunits of the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex in autotetraploid Arabidopsis thaliana plants. The diploid nse2 and nse4a plants show partially reduced fertility and produce about 10% triploid offspring with two paternal and one maternal genome copies. In contrast, the autotetraploid nse2 and nse4a plants were almost sterile and produced hexaploid and aneuploid progeny with the extra genome copies or chromosomes coming from both parents. In addition, tetraploid mutants had more severe meiotic defects, possibly due to the presence of four homologous chromosomes instead of two. Overall, our study suggests that the SMC5/6 complex is an important player in the maintenance of tetraploid genome stability and that autotetraploid Arabidopsis plants have a generally higher frequency of but also higher tolerance for aneuploidy compared to diploids.
Collapse
Affiliation(s)
- Fen Yang
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Natural Sciences, Palacký University, Olomouc, Czechia
| | - Nadia Fernández Jiménez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Joanna Majka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Ales Pecinka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- *Correspondence: Ales Pecinka,
| |
Collapse
|
24
|
Pecinka A, Chevalier C, Colas I, Kalantidis K, Varotto S, Krugman T, Michailidis C, Vallés MP, Muñoz A, Pradillo M. Chromatin dynamics during interphase and cell division: similarities and differences between model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5205-5222. [PMID: 31626285 DOI: 10.1093/jxb/erz457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Genetic information in the cell nucleus controls organismal development and responses to the environment, and finally ensures its own transmission to the next generations. To achieve so many different tasks, the genetic information is associated with structural and regulatory proteins, which orchestrate nuclear functions in time and space. Furthermore, plant life strategies require chromatin plasticity to allow a rapid adaptation to abiotic and biotic stresses. Here, we summarize current knowledge on the organization of plant chromatin and dynamics of chromosomes during interphase and mitotic and meiotic cell divisions for model and crop plants differing as to genome size, ploidy, and amount of genomic resources available. The existing data indicate that chromatin changes accompany most (if not all) cellular processes and that there are both shared and unique themes in the chromatin structure and global chromosome dynamics among species. Ongoing efforts to understand the molecular mechanisms involved in chromatin organization and remodeling have, together with the latest genome editing tools, potential to unlock crop genomes for innovative breeding strategies and improvements of various traits.
Collapse
Affiliation(s)
- Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Agricultural and Biotechnological Research, Olomouc, Czech Republic
| | | | - Isabelle Colas
- James Hutton Institute, Cell and Molecular Science, Pr Waugh's Lab, Invergowrie, Dundee, UK
| | - Kriton Kalantidis
- Department of Biology, University of Crete, and Institute of Molecular Biology Biotechnology, FoRTH, Heraklion, Greece
| | - Serena Varotto
- Department of Agronomy Animal Food Natural Resources and Environment (DAFNAE) University of Padova, Agripolis viale dell'Università, Legnaro (PD), Italy
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Christos Michailidis
- Institute of Experimental Botany, Czech Acad Sci, Praha 6 - Lysolaje, Czech Republic
| | - María-Pilar Vallés
- Department of Genetics and Plant Breeding, Estación Experimental Aula Dei (EEAD), Spanish National Research Council (CSIC), Zaragoza, Spain
| | - Aitor Muñoz
- Department of Plant Molecular Genetics, National Center of Biotechnology/Superior Council of Scientific Research, Autónoma University of Madrid, Madrid, Spain
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
25
|
Vondrova L, Kolesar P, Adamus M, Nociar M, Oliver AW, Palecek JJ. A role of the Nse4 kleisin and Nse1/Nse3 KITE subunits in the ATPase cycle of SMC5/6. Sci Rep 2020; 10:9694. [PMID: 32546830 PMCID: PMC7297730 DOI: 10.1038/s41598-020-66647-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/20/2020] [Indexed: 12/03/2022] Open
Abstract
The SMC (Structural Maintenance of Chromosomes) complexes are composed of SMC dimers, kleisin and kleisin-interacting (HAWK or KITE) subunits. Mutual interactions of these subunits constitute the basal architecture of the SMC complexes. In addition, binding of ATP molecules to the SMC subunits and their hydrolysis drive dynamics of these complexes. Here, we developed new systems to follow the interactions between SMC5/6 subunits and the relative stability of the complex. First, we show that the N-terminal domain of the Nse4 kleisin molecule binds to the SMC6 neck and bridges it to the SMC5 head. Second, binding of the Nse1 and Nse3 KITE proteins to the Nse4 linker increased stability of the ATP-free SMC5/6 complex. In contrast, binding of ATP to SMC5/6 containing KITE subunits significantly decreased its stability. Elongation of the Nse4 linker partially suppressed instability of the ATP-bound complex, suggesting that the binding of the KITE proteins to the Nse4 linker constrains its limited size. Our data suggest that the KITE proteins may shape the Nse4 linker to fit the ATP-free complex optimally and to facilitate opening of the complex upon ATP binding. This mechanism suggests an important role of the KITE subunits in the dynamics of the SMC5/6 complexes.
Collapse
Affiliation(s)
- Lucie Vondrova
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Peter Kolesar
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Marek Adamus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Matej Nociar
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Antony W Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Jan J Palecek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic. .,Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
26
|
de Luxán-Hernández C, Lohmann J, Hellmeyer W, Seanpong S, Wöltje K, Magyar Z, Pettkó-Szandtner A, Pélissier T, De Jaeger G, Hoth S, Mathieu O, Weingartner M. PP7L is essential for MAIL1-mediated transposable element silencing and primary root growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:703-717. [PMID: 31849124 DOI: 10.1111/tpj.14655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 05/16/2023]
Abstract
The two paralogous Arabidopsis genes MAINTENANCE OF MERISTEMS (MAIN) and MAINTENANCE OF MERISTEMS LIKE1 (MAIL1) encode a conserved retrotransposon-related plant mobile domain and are known to be required for silencing of transposable elements (TE) and for primary root development. Loss of function of either MAIN or MAIL1 leads to release of heterochromatic TEs, reduced condensation of pericentromeric heterochromatin, cell death of meristem cells and growth arrest of the primary root soon after germination. Here, we show that they act in one protein complex that also contains the inactive isoform of PROTEIN PHOSPHATASE 7 (PP7), which is named PROTEIN PHOSPHATASE 7-LIKE (PP7L). PP7L was previously shown to be important for chloroplast biogenesis and efficient chloroplast protein synthesis. We show that loss of PP7L function leads to the same root growth phenotype as loss of MAIL1 or MAIN. In addition, pp7l mutants show similar silencing defects. Double mutant analyses confirmed that the three proteins act in the same molecular pathway. The primary root growth arrest, which is associated with cell death of stem cells and their daughter cells, is a consequence of genome instability. Our data demonstrate so far unrecognized functions of an inactive phosphatase isoform in a protein complex that is essential for silencing of heterochromatic elements and for maintenance of genome stability in dividing cells.
Collapse
Affiliation(s)
- Cloe de Luxán-Hernández
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
| | - Julia Lohmann
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
| | - Wiebke Hellmeyer
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
| | - Senoch Seanpong
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
| | - Kerstin Wöltje
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
| | - Zoltan Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, 6726, Hungary
| | - Aladár Pettkó-Szandtner
- Institute of Plant Biology, Biological Research Centre, Szeged, 6726, Hungary
- Laboratory of Proteomics Research, Biological Research Centre, Temesvári krt. 62, 6726, Szeged, Hungary
| | - Thierry Pélissier
- GReD - CNRS UMR6293 - Inserm U1103, Université Clermont Auvergne, UFR de Médecine, Clermont-Ferrand Cedex, France
| | - Geert De Jaeger
- VIB Center for Plant Systems Biology, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Gent, Belgium
| | - Stefan Hoth
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
| | - Olivier Mathieu
- GReD - CNRS UMR6293 - Inserm U1103, Université Clermont Auvergne, UFR de Médecine, Clermont-Ferrand Cedex, France
| | - Magdalena Weingartner
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, 22609, Germany
| |
Collapse
|
27
|
Nowicka A, Tokarz B, Zwyrtková J, Dvořák Tomaštíková E, Procházková K, Ercan U, Finke A, Rozhon W, Poppenberger B, Otmar M, Niezgodzki I, Krečmerová M, Schubert I, Pecinka A. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:68-84. [PMID: 31733119 DOI: 10.1111/tpj.14612] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Repetitive DNA sequences and some genes are epigenetically repressed by transcriptional gene silencing (TGS). When genetic mutants are not available or problematic to use, TGS can be suppressed by chemical inhibitors. However, informed use of epigenetic inhibitors is partially hampered by the absence of any systematic comparison. In addition, there is emerging evidence that epigenetic inhibitors cause genomic instability, but the nature of this damage and its repair remain unclear. To bridge these gaps, we compared the effects of 5-azacytidine (AC), 2'-deoxy-5-azacytidine (DAC), zebularine and 3-deazaneplanocin A (DZNep) on TGS and DNA damage repair. The most effective inhibitor of TGS was DAC, followed by DZNep, zebularine and AC. We confirmed that all inhibitors induce DNA damage and suggest that this damage is repaired by multiple pathways with a critical role of homologous recombination and of the SMC5/6 complex. A strong positive link between the degree of cytidine analog-induced DNA demethylation and the amount of DNA damage suggests that DNA damage is an integral part of cytidine analog-induced DNA demethylation. This helps us to understand the function of DNA methylation in plants and opens the possibility of using epigenetic inhibitors in biotechnology.
Collapse
Affiliation(s)
- Anna Nowicka
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
- The Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, PL-30 239, Krakow, Poland
| | - Barbara Tokarz
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, PL-31 425, Krakow, Poland
| | - Jana Zwyrtková
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
| | - Eva Dvořák Tomaštíková
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
| | - Klára Procházková
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
| | - Ugur Ercan
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
| | - Andreas Finke
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, DE-85354, Freising, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, DE-85354, Freising, Germany
| | - Miroslav Otmar
- Institute of Organic Chemistry and Biochemistry, CZ-166 10, Praha 6, Czech Republic
| | - Igor Niezgodzki
- Biogeosystem Modelling Group, ING PAN - Institute of Geological Sciences Polish Academy of Sciences, Research Center in Krakow, Senacka 1, PL-31 002, Krakow, Poland
| | - Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, CZ-166 10, Praha 6, Czech Republic
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Stadt Seeland, DE-06466, Gatersleben, OT, Germany
| | - Ales Pecinka
- Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), CZ-779 00, Olomouc, Czech Republic
- Max Planck Institute for Plant Breeding Research (MPIPZ), DE-50829, Cologne, Germany
| |
Collapse
|
28
|
Kim JH. Chromatin Remodeling and Epigenetic Regulation in Plant DNA Damage Repair. Int J Mol Sci 2019; 20:ijms20174093. [PMID: 31443358 PMCID: PMC6747262 DOI: 10.3390/ijms20174093] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
DNA damage response (DDR) in eukaryotic cells is initiated in the chromatin context. DNA damage and repair depend on or have influence on the chromatin dynamics associated with genome stability. Epigenetic modifiers, such as chromatin remodelers, histone modifiers, DNA (de-)methylation enzymes, and noncoding RNAs regulate DDR signaling and DNA repair by affecting chromatin dynamics. In recent years, significant progress has been made in the understanding of plant DDR and DNA repair. SUPPRESSOR OF GAMMA RESPONSE1, RETINOBLASTOMA RELATED1 (RBR1)/E2FA, and NAC103 have been proven to be key players in the mediation of DDR signaling in plants, while plant-specific chromatin remodelers, such as DECREASED DNA METHYLATION1, contribute to chromatin dynamics for DNA repair. There is accumulating evidence that plant epigenetic modifiers are involved in DDR and DNA repair. In this review, I examine how DDR and DNA repair machineries are concertedly regulated in Arabidopsis thaliana by a variety of epigenetic modifiers directing chromatin remodeling and epigenetic modification. This review will aid in updating our knowledge on DDR and DNA repair in plants.
Collapse
Affiliation(s)
- Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212, Korea.
| |
Collapse
|
29
|
Jin Y, Liu L, Hao X, Harry DE, Zheng Y, Huang T, Huang J. Unravelling the MicroRNA-Mediated Gene Regulation in Developing Pongamia Seeds by High-Throughput Small RNA Profiling. Int J Mol Sci 2019; 20:ijms20143509. [PMID: 31319494 PMCID: PMC6678122 DOI: 10.3390/ijms20143509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
Abstract
Pongamia (Millettia pinnata syn. Pongamia pinnata) is a multipurpose biofuel tree which can withstand a variety of abiotic stresses. Commercial applications of Pongamia trees may substantially benefit from improvements in their oil-seed productivity, which is governed by complex regulatory mechanisms underlying seed development. MicroRNAs (miRNAs) are important molecular regulators of plant development, while relatively little is known about their roles in seed development, especially for woody plants. In this study, we identified 236 conserved miRNAs within 49 families and 143 novel miRNAs via deep sequencing of Pongamia seeds sampled at three developmental phases. For these miRNAs, 1327 target genes were computationally predicted. Furthermore, 115 differentially expressed miRNAs (DEmiRs) between successive developmental phases were sorted out. The DEmiR-targeted genes were preferentially enriched in the functional categories associated with DNA damage repair and photosynthesis. The combined analyses of expression profiles for DEmiRs and functional annotations for their target genes revealed the involvements of both conserved and novel miRNA-target modules in Pongamia seed development. Quantitative Real-Time PCR validated the expression changes of 15 DEmiRs as well as the opposite expression changes of six targets. These results provide valuable miRNA candidates for further functional characterization and breeding practice in Pongamia and other oilseed plants.
Collapse
Affiliation(s)
- Ye Jin
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Lin Liu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuehong Hao
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | | | - Yizhi Zheng
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Tengbo Huang
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jianzi Huang
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
30
|
Zelkowski M, Zelkowska K, Conrad U, Hesse S, Lermontova I, Marzec M, Meister A, Houben A, Schubert V. Arabidopsis NSE4 Proteins Act in Somatic Nuclei and Meiosis to Ensure Plant Viability and Fertility. FRONTIERS IN PLANT SCIENCE 2019; 10:774. [PMID: 31281325 PMCID: PMC6596448 DOI: 10.3389/fpls.2019.00774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 05/02/2023]
Abstract
The SMC 5/6 complex together with cohesin and condensin is a member of the structural maintenance of chromosome (SMC) protein family. In non-plant organisms SMC5/6 is engaged in DNA repair, meiotic synapsis, genome organization and stability. In plants, the function of SMC5/6 is still enigmatic. Therefore, we analyzed the crucial δ-kleisin component NSE4 of the SMC5/6 complex in the model plant Arabidopsis thaliana. Two functional conserved Nse4 paralogs (Nse4A and Nse4B) are present in A. thaliana, which may have evolved via gene subfunctionalization. Due to its high expression level, Nse4A seems to be the more essential gene, whereas Nse4B appears to be involved mainly in seed development. The morphological characterization of A. thaliana T-DNA mutants suggests that the NSE4 proteins are essential for plant growth and fertility. Detailed investigations in wild-type and the mutants based on live cell imaging of transgenic GFP lines, fluorescence in situ hybridization (FISH), immunolabeling and super-resolution microscopy suggest that NSE4A acts in several processes during plant development, such as mitosis, meiosis and chromatin organization of differentiated nuclei, and that NSE4A operates in a cell cycle-dependent manner. Differential response of NSE4A and NSE4B mutants after induced DNA double strand breaks (DSBs) suggests their involvement in DNA repair processes.
Collapse
Affiliation(s)
- Mateusz Zelkowski
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Katarzyna Zelkowska
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Susann Hesse
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Plant Cytogenomics Research Group, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Marek Marzec
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|