1
|
Sun H, Schmidt N, Lawson T, Hagemann M, Timm S. Guard cell-specific glycine decarboxylase manipulation affects Arabidopsis photosynthesis, growth and stomatal behavior. THE NEW PHYTOLOGIST 2025. [PMID: 40219652 DOI: 10.1111/nph.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Photorespiration is a mandatory metabolic repair shunt of carbon fixation by the Calvin-Benson cycle in oxygenic phototrophs. Its extent depends mainly on the CO2 : O2 ratio in chloroplasts, which is regulated via stomatal movements. Despite a comprehensive understanding of the role of photorespiration in mesophyll cells, its role in guard cells (GC) is unknown. Therefore, a key enzyme of photorespiration, glycine decarboxylase (GDC), was specifically manipulated by varying glycine decarboxylase H-protein (GDC-H) expression in Arabidopsis GC. Multiple approaches were used to analyze the transgenic lines growth, their gas exchange and Chl fluorescence, alongside metabolomics and microscopic approaches. We observed a positive correlation of GC GDC-H expression with growth, photosynthesis and carbohydrate biosynthesis, suggesting photorespiration is involved in stomatal regulation. Gas exchange measurements support this view, as optimized GC photorespiration improved plant acclimation toward conditions requiring a high photorespiratory capacity. Microscopic analysis revealed that altered photorespiratory flux also affected GC starch accumulation patterns, eventually serving as an underlying mechanism for altered stomatal behavior. Collectively, our data suggest photorespiration is involved in the regulatory circuit that coordinates stomatal movements with CO2 availability. Thus, the manipulation of photorespiration in GC has the potential to engineer crops maintaining growth and photosynthesis under future climates.
Collapse
Affiliation(s)
- Hu Sun
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Nils Schmidt
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Tracy Lawson
- University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| |
Collapse
|
2
|
Okon K, Zubik-Duda M, Nosalewicz A. Light-driven modulation of plant response to water deficit. A review. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24295. [PMID: 40261980 DOI: 10.1071/fp24295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
The dependence of agriculture on water availability is an important premise justifying attempts to enhance water use efficiency for plant production. Photosynthetic efficiency, directly impacts biomass production, is dependent on both water availability and the quality and quantity of light. Understanding how these factors interact is crucial for improving crop yields. Many overlapping signalling pathways and functions of common bioactive molecules that shape plant responses to both water deficit and light have been identified and discussed in this review. Separate or combined action of these environmental factors include the generation of reactive oxygen species, biosynthesis of abscisic acid, stomatal functioning, chloroplast movement and alterations in the levels of photosynthetic pigments and bioactive molecules. Plant response to water deficit depends on light intensity and its characteristics, with differentiated impacts from UV, blue, and red light bands determining the strength and synergistic or antagonistic nature of interactions. Despite its significance, the combined effects of these environmental factors remain insufficiently explored. The findings highlight the potential for optimising horticultural production through controlled light conditions and regulated deficit irrigation. Future research should assess light and water manipulation strategies to enhance resource efficiency and crop nutritional value.
Collapse
Affiliation(s)
- K Okon
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - M Zubik-Duda
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | - A Nosalewicz
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
3
|
Liu M, Xu Y, Song Y, Fan D, Li J, Zhang Z, Wang L, He J, Chen C, Ma C. Hierarchical Regulatory Networks Reveal Conserved Drivers of Plant Drought Response at the Cell-Type Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415106. [PMID: 40091436 DOI: 10.1002/advs.202415106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/29/2025] [Indexed: 03/19/2025]
Abstract
Drought is a critical environmental challenge affecting plant growth and productivity. Understanding the regulatory networks governing drought response at the cellular level remains an open question. Here, a comprehensive multi-omics integration framework that combines transcriptomic, proteomic, epigenetic, and network-based analyses to delineate cell-type-specific regulatory networks involved in plant drought response is presented. By analyzing nearly 30 000 multi-omics data samples across species, unique insights are revealed into conserved drought responses and cell-type-specific regulatory dynamics, leveraging novel integrative analytical workflows. Notably, CIPK23 emerges as a conserved protein kinase mediating drought tolerance through interactions with CBL4, as validated by yeast two-hybrid and BiFC assays. Experimental validation in Arabidopsis thaliana and Vitis vinifera confirms the functional conservation of CIPK23, which enhances drought resistance in overexpression lines. In addition, the authors' causal network analysis pinpoints critical regulatory drivers such as NLP7 and CIPK23, providing insights into the molecular mechanisms of drought adaptation. These findings advance understanding of plant drought tolerance and offer potential targets for improving crop resilience across diverse species.
Collapse
Affiliation(s)
- Moyang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongying Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junpeng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhen Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lujia Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Li C, Ding Z, Li E, Xu R, Lv C, Zhang C, Huang L, Gilbert RG. The molecular structure of leaf starch from three cereal crops. Carbohydr Polym 2025; 351:123099. [PMID: 39779013 DOI: 10.1016/j.carbpol.2024.123099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025]
Abstract
Plants produce storage and transient starches in seeds and in leaves, respectively. Understanding molecular fine structure and synthesis of transient starch can help improve plant quality (e.g. by helping breeders produce slowly digested amylopectin, which is beneficial for human nutrition). In the present study, leaf starches from rice, wheat and barley were isolated with cesium chloride gradient centrifugation. Starch fine structure was measured using size-exclusion chromatography and flurophore-assisted carbohydrate electrophoresis. The chain-length distribution (CLD) of amylopectin leaf starch was trimodal in wheat and barley leaf starch. The global peak of leaf starch was at degree of polymerization (DP) 22, and leaf amylopectin containeds more long branches, which are generally considered to hinder starch digestion, suggesting that leaf-specific starch synthesis enzymes could be expressed in the endosperm by genetic modification to produce amylopectin with more long chains, which would be more slowly digested, with advantages to human health. HYPOTHESIS: The biosynthetic processes for leaf starch and storage starch in a given plant species will show significant differences.
Collapse
Affiliation(s)
- Changfeng Li
- Department of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhen Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics, Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Enpeng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics, Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Rugen Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics, Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chao Lv
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics, Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics, Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Lichun Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics, Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics, Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Center for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Franzisky BL, Zhang X, Burkhardt CJ, Majorovits E, Hummel E, Schertel A, Geilfus CM, Zörb C. Application of cryo-FIB-SEM for investigating ultrastructure in guard cells of higher plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109546. [PMID: 39908934 DOI: 10.1016/j.plaphy.2025.109546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/20/2024] [Accepted: 01/21/2025] [Indexed: 02/07/2025]
Abstract
Stomata are vital for CO2 and water vapor exchange, with guard cells' aperture and ultrastructure highly responsive to environmental cues. However, traditional methods for studying guard cell ultrastructure, which rely on chemical fixation and embedding, often distort cell morphology and compromise membrane integrity. In contrast, plunge-freezing in liquid ethane rapidly preserves cells in a near-native vitreous state for cryogenic electron microscopy. Using this approach, we applied Cryo-Focused Ion Beam-Scanning Electron Microscopy (cryo-FIB-SEM) to study the guard cell ultrastructure of Vicia faba, a higher plant model chosen for its sensitivity to external factors and ease of epidermis isolation, advancing beyond previous cryo-FIB-SEM applications in lower plant algae. The results firstly introduced cryo-FIB-SEM volume imaging, enabling subcellular ultrastructure visualization of higher plants like V. faba in a vitrified, unaltered state. 3D models of organelles such as stromules, chloroplast protrusions, chloroplasts, starch granules, mitochondria, and vacuoles were reconstructed from cryo-FIB-SEM volumetric data, with their surface area and volume initially determined using manual segmentation. Future studies using this near-native volume imaging technique hold promise for investigating how environmental factors like drought or salinity influence stomatal behavior and the morphology of guard cells and their organelles.
Collapse
Affiliation(s)
- Bastian Leander Franzisky
- Department Soil Science and Plant Nutrition, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| | - Xudong Zhang
- Institute of Crop Science, Quality of Plant Products (340e), University of Hohenheim, Emil-Wolff- Straße 25, 70599, Stuttgart, Germany.
| | - Claus Jakob Burkhardt
- NMI Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstraße 55, 72770, Reutlingen, Germany
| | - Endre Majorovits
- Carl Zeiss Microscopy GmbH, Carl-Zeiss Straße. 22, 73447, Oberkochen, Germany
| | - Eric Hummel
- Carl Zeiss Microscopy GmbH, Carl-Zeiss Straße. 22, 73447, Oberkochen, Germany
| | - Andreas Schertel
- Carl Zeiss Microscopy GmbH, Carl-Zeiss Straße. 22, 73447, Oberkochen, Germany
| | - Christoph-Martin Geilfus
- Department Soil Science and Plant Nutrition, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products (340e), University of Hohenheim, Emil-Wolff- Straße 25, 70599, Stuttgart, Germany
| |
Collapse
|
6
|
Mao C, Zheng J, Shen E, Sun B, Wu H, Xu Y, Huang W, Ding X, Lin Y, Chen T. Alternative transcriptional initiation of OsβCA1 produces three distinct subcellular localization isoforms involved in stomatal response regulation and photosynthesis in rice. THE NEW PHYTOLOGIST 2025. [PMID: 39888004 DOI: 10.1111/nph.20429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Plants adjust the size of their stomatal openings to balance CO2 intake and water loss. Carbonic anhydrases (CAs) facilitate the conversion between CO2 and HCO3 -, and the OsβCA1 mutant in rice (Oryza sativa) shows similar traits in carbon fixation and stomatal response to CO2 as the dual βCA mutants in Arabidopsis thaliana. However, the exact role of OsβCA1 in these processes was unclear. We used gene editing, molecular biology, and plant physiology to study how OsβCA1 contributes to carbon fixation, stomatal opening, and CO2 responses. OsβCA1 produces three isoforms (OsβCA1A, OsβCA1B, and OsβCA1C) through alternative transcriptional initiation, which localize to the chloroplast, cell membrane, and cytosol, respectively. Protein measurements revealed that OsβCA1A/C and OsβCA1B contribute 97 and 3% to OsβCA1, respectively. By creating specific mutants for each isoform, our results found that the chloroplast and cell membrane isoforms independently participate in carbon fixation and regulation of stomatal aperture. Furthermore, the complete knockout of OsβCA1 caused a delayed response to low CO2. Our findings provide new insights into the generation and function of different OsβCA1 isoforms, clarifying their roles in CO2 diffusion, CO2 fixation and stomatal regulation in rice.
Collapse
Affiliation(s)
- Cui Mao
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| | - Enlong Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baolong Sun
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| | - Yi Xu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| | - Weifeng Huang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| | - Xinghua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taiyu Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, China
| |
Collapse
|
7
|
Berndsen CE, Storm AR, Sardelli AM, Hossain SR, Clermont KR, McFather LM, Connor MA, Monroe JD. The Pseudoenzyme β-Amylase9 From Arabidopsis Activates α-Amylase3: A Possible Mechanism to Promote Stress-Induced Starch Degradation. Proteins 2025. [PMID: 39846389 DOI: 10.1002/prot.26803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Starch accumulation in plants provides carbon for nighttime use, for regrowth after periods of dormancy, and for times of stress. Both ɑ- and β-amylases (AMYs and BAMs, respectively) catalyze starch hydrolysis, but their functional roles are unclear. Moreover, the presence of catalytically inactive amylases that show starch excess phenotypes when deleted presents questions on how starch degradation is regulated. Plants lacking one of these catalytically inactive β-amylases, BAM9, have enhanced starch accumulation when combined with mutations in BAM1 and BAM3, the primary starch degrading BAMs in response to stress and at night, respectively. BAM9 has been reported to be transcriptionally induced by stress although the mechanism for BAM9 function is unclear. From yeast two-hybrid experiments, we identified the plastid-localized AMY3 as a potential interaction partner for BAM9. We found that BAM9 interacted with AMY3 in vitro and that BAM9 enhances AMY3 activity about three-fold. Modeling of the AMY3-BAM9 complex predicted a previously undescribed alpha-alpha hairpin in AMY3 that could serve as a potential interaction site. Additionally, AMY3 lacking the alpha-alpha hairpin is unaffected by BAM9. Structural analysis of AMY3 showed that it can form a homodimer in solution and that BAM9 appears to replace one of the AMY3 monomers to form a heterodimer. The presence of both BAM9 and AMY3 in many vascular plant lineages, along with model-based evidence that they heterodimerize, suggests that the interaction is conserved. Collectively these data suggest that BAM9 is a pseudoamylase that activates AMY3 in response to cellular stress, possibly facilitating stress recovery.
Collapse
Affiliation(s)
- Christopher E Berndsen
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Amanda R Storm
- Department of Biology, Western Carolina University, Cullowhee, North Carolina, USA
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - Angelina M Sardelli
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Sheikh R Hossain
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - Kristen R Clermont
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - Luke M McFather
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Mafe A Connor
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Jonathan D Monroe
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| |
Collapse
|
8
|
Sprent N, Cheung CYM, Shameer S, Ratcliffe RG, Sweetlove LJ, Töpfer N. Metabolic modeling reveals distinct roles of sugars and carboxylic acids in stomatal opening as well as unexpected carbon fluxes. THE PLANT CELL 2024; 37:koae252. [PMID: 39373603 DOI: 10.1093/plcell/koae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 10/08/2024]
Abstract
Guard cell metabolism is crucial for stomatal dynamics, but a full understanding of its role is hampered by experimental limitations and the flexible nature of the metabolic network. To tackle this challenge, we constructed a time-resolved stoichiometric model of guard cell metabolism that accounts for energy and osmolyte requirements and which is integrated with the mesophyll. The model resolved distinct roles for starch, sugars, and malate in guard cell metabolism and revealed several unexpected flux patterns in central metabolism. During blue light-mediated stomatal opening, starch breakdown was the most efficient way to generate osmolytes with downregulation of glycolysis allowing starch-derived glucose to accumulate as a cytosolic osmolyte. Maltose could also accumulate as a cytosolic osmoticum, although this made the metabolic system marginally less efficient. The metabolic energy for stomatal opening was predicted to be derived independently of starch, using nocturnally accumulated citrate which was metabolized in the tricarboxylic acid cycle to malate to provide mitochondrial reducing power for ATP synthesis. In white light-mediated stomatal opening, malate transferred reducing equivalents from guard cell photosynthesis to mitochondria for ATP production. Depending on the capacity for guard cell photosynthesis, glycolysis showed little flux during the day but was crucial for energy metabolism at night. In summary, our analyses have corroborated recent findings in Arabidopsis guard cell research, resolved conflicting observations by highlighting the flexibility of guard cell metabolism, and proposed new metabolic flux modes for further experimental testing.
Collapse
Affiliation(s)
- Noah Sprent
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - C Y Maurice Cheung
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Sanu Shameer
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - R George Ratcliffe
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Lee J Sweetlove
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Nadine Töpfer
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
9
|
He F, Niu MX, Wang T, Li JL, Shi YJ, Zhao JJ, Li H, Xiang X, Yang P, Wei SY, Lin TT, Huang X, Xia X, Wan XQ. The ubiquitin E3 ligase RZFP1 affects drought tolerance in poplar by mediating the degradation of the protein phosphatase PP2C-9. PLANT PHYSIOLOGY 2024; 196:2936-2955. [PMID: 39315969 DOI: 10.1093/plphys/kiae497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024]
Abstract
Abscisic acid (ABA) signaling has been implicated in plant responses to water deficit-induced osmotic stress. However, the underlying molecular mechanism remains unelucidated. This study identified the RING-type E3 ubiquitin ligase RING ZINC FINGER PROTEIN1 (PtrRZFP1) in poplar (Populus trichocarpa), a woody model plant. PtrRZFP1 encodes an ubiquitin E3 ligase that participates in protein ubiquitination. PtrRZFP1 mainly functions in the nucleus and endoplasmic reticulum and is activated by drought and ABA. PtrRZFP1-overexpressing transgenic poplars (35S:PtrRZFP1) showed greater tolerance to drought, whereas PtrRZFP1-knockdown lines (KD-PtrRZFP1) showed greater sensitivity to drought. Under treatment with polyethylene glycol and ABA, PtrRZFP1 promoted the production of nitric oxide and hydrogen peroxide in stomatal guard cells, ultimately enhancing stomatal closure and improving drought tolerance. Additionally, PtrRZFP1 physically interacted with the clade A Protein Phosphatase 2C protein PtrPP2C-9, a core regulator of ABA signaling, and mediated its ubiquitination and eventual degradation through the ubiquitination-26S proteasome system, indicating that PtrRZFP1 positively regulates the ABA signaling pathway. Furthermore, the PtrPP2C-9-overexpression line was insensitive to ABA and more sensitive to drought than the wild-type plants, whereas the opposite phenotype was observed in 35S:PtrRZFP1 plants. In general, PtrRZFP1 negatively regulates the stability of PtrPP2C-9 to mediate poplar drought tolerance. The results of this study provide a theoretical framework for the targeted breeding of drought-tolerant traits in perennial woody plants.
Collapse
Affiliation(s)
- Fang He
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng-Xue Niu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ting Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun-Lin Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu-Jie Shi
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiu-Jiu Zhao
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Xiang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu-Ying Wei
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Tian-Tian Lin
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiong Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinli Xia
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xue-Qin Wan
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Niu L, Wu X, Liu H, Hu X, Wang W. Leaf starch degradation by β-amylase ZmBAM8 influences drought tolerance in maize. Carbohydr Polym 2024; 345:122555. [PMID: 39227118 DOI: 10.1016/j.carbpol.2024.122555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
As a typical C4 plant and important crop worldwide, maize is susceptible to drought. In maize, transitory starch (TS) turnover occurs in the vascular bundle sheath of leaves, differing from that in Arabidopsis (a C3 plant). This process, particularly its role in drought tolerance and the key starch-hydrolyzing enzymes involved, is not fully understood. We discovered that the expression of the β-amylase (BAM) gene ZmBAM8 is highly upregulated in the drought-tolerant inbred line Chang7-2t. Inspired by this finding, we systematically investigated TS degradation in maize lines, including Chang7-2t, Chang7-2, B104, and ZmBAM8 overexpression (OE) and knockout (KO) lines. We found that ZmBAM8 was significantly induced in the vascular bundle sheath by drought, osmotic stress, and abscisic acid. The stress-induced gene expression and chloroplast localization of ZmBAM8 align with the tissue and subcellular sites where TS turnover occurs. The recombinant ZmBAM8 was capable of effectively hydrolyzing leaf starch. Under drought conditions, the leaf starch in ZmBAM8-OE plants substantially decreased under light, while that in ZmBAM8-KO plants did not decrease. Compared with ZmBAM8-KO plants, ZmBAM8-OE plants exhibited increased drought tolerance. Our study provides insights into the significance of leaf starch degradation in C4 crops and contributes to the development of drought-resistant maize.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
11
|
Lehr PP, Erban A, Hartwig RP, Wimmer MA, Kopka J, Zörb C. Grapevine and maize: Two guard cell shaped strategies to cope with repeated drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109262. [PMID: 39546948 DOI: 10.1016/j.plaphy.2024.109262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Adaptation of crops to recurrent drought stress is crucial for maintaining agricultural productivity and achieving food security under changing climate. Guard cells, pivotal regulators of plant water usage and assimilation, are central to this adaptation process. However, the metabolic dynamics of guard cells under drought stress remain poorly understood, particularly in grapevine, a prominent crop grown in arid regions, and maize, a staple crop with substantial water requirements. In this study, differences in guard cells metabolism during drought stress of grapevine and maize were investigated by performing physiological and metabolomic analyses. Metabolomic analysis highlighted differential responses in amino acids and sugars, with grapevine guard cells displaying greater stability in amino acid and sugar signatures, while maize showed marked increases in sugar levels. These findings suggest two distinct adaptive strategies, a vigorous acclimation of guard cells, as observed in maize, and an attenuated acclimation of guard cells, shown in grapevine. Understanding these metabolic adjustments is helpful for enhancing drought resilience in agricultural systems.
Collapse
Affiliation(s)
- Patrick Pascal Lehr
- Department Quality of Plant Products, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany.
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Roman Paul Hartwig
- Department Quality of Plant Products, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany.
| | - Monika Andrea Wimmer
- Department Quality of Plant Products, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany.
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Christian Zörb
- Department Quality of Plant Products, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
12
|
Dang T, Piro L, Pasini C, Santelia D. Starch metabolism in guard cells: At the intersection of environmental stimuli and stomatal movement. PLANT PHYSIOLOGY 2024; 196:1758-1777. [PMID: 39115378 PMCID: PMC11531838 DOI: 10.1093/plphys/kiae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024]
Abstract
Starch metabolism in guard cells plays a central role in regulating stomatal movement in response to light, elevated ambient CO2 and potentially other abiotic and biotic factors. Here, we discuss how various guard cell signal transduction pathways converge to promote rearrangements in guard cell starch metabolism for efficient stomatal responses, an essential physiological process that sustains plant productivity and stress tolerance. We suggest manipulation of guard cell starch dynamics as a previously overlooked strategy to improve stomatal behavior under changing environmental conditions.
Collapse
Affiliation(s)
- Trang Dang
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lucia Piro
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Carlo Pasini
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Diana Santelia
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
13
|
Berndsen CE, Storm AR, Sardelli AM, Hossain SR, Clermont KR, McFather LM, Connor MA, Monroe JD. The pseudoenzyme β-amylase9 from Arabidopsis binds to and enhances the activity of α-amylase3: A possible mechanism to promote stress-induced starch degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607052. [PMID: 39149391 PMCID: PMC11326238 DOI: 10.1101/2024.08.07.607052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Starch accumulation in plant tissues provides an important carbon source at night and for regrowth after periods of dormancy and in times of stress. Both ɑ- and β-amylases (AMYs and BAMs, respectively) catalyze starch hydrolysis, but their functional roles are unclear. Moreover, the presence of catalytically inactive amylases that show starch excess phenotypes when deleted presents an interesting series of questions on how starch degradation is regulated. Plants lacking one of these catalytically inactive β-amylases, BAM9, were shown to have enhanced starch accumulation when combined with mutations in BAM1 and BAM3, the primary starch degrading BAMs in response to stress and at night, respectively. Importantly, BAM9 has been reported to be transcriptionally induced by stress through activation of SnRK1. Using yeast two-hybrid experiments, we identified the plastid-localized AMY3 as a potential interaction partner for BAM9. We found that BAM9 interacted with AMY3 in vitro and that BAM9 enhances AMY3 activity 3-fold. Modeling of the AMY3-BAM9 complex revealed a previously undescribed N-terminal structural feature in AMY3 that we call the alpha-alpha hairpin that could serve as a potential interaction site. Additionally, AMY3 lacking the alpha-alpha hairpin is unaffected by BAM9. Structural analysis of AMY3 showed that it can form a homodimer in solution and that BAM9 appears to replace one of the AMY3 monomers to form a heterodimer. Collectively these data suggest that BAM9 is a pseudoamylase that activates AMY3 in response to cellular stress, possibly facilitating starch degradation to provide an additional energy source for stress recovery.
Collapse
Affiliation(s)
| | - Amanda R. Storm
- Department of Biology, Western Carolina University, Cullowhee, NC 28723
| | - Angelina M. Sardelli
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807
| | - Sheikh R. Hossain
- Department of Biology, James Madison University, Harrisonburg, VA 22807
| | | | - Luke M. McFather
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807
| | - Mafe A. Connor
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807
| | - Jonathan D. Monroe
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807
- Department of Biology, James Madison University, Harrisonburg, VA 22807
| |
Collapse
|
14
|
Pantaleno R, Schiel P, García-Mata C, Scuffi D. Analysis of Guard Cell Readouts Using Arabidopsis thaliana Isolated Epidermal Peels. Bio Protoc 2024; 14:e5033. [PMID: 39100596 PMCID: PMC11292165 DOI: 10.21769/bioprotoc.5033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
Stomata are pores surrounded by a pair of specialized cells, called guard cells, that play a central role in plant physiology through the regulation of gas exchange between plants and the environment. Guard cells have features like cell-autonomous responses and easily measurable readouts that have turned them into a model system to study signal transduction mechanisms in plants. Here, we provide a detailed protocol to analyze different physiological responses specifically in guard cells. We describe, in detail, the steps and conditions to isolate epidermal peels with tweezers and to analyze i) stomatal aperture in response to different stimuli, ii) cytosolic parameters such as hydrogen peroxide (H2O2), glutathione redox potential (E GSH), and MgATP-2 in vivo dynamics using fluorescent biosensors, and iii) gene expression in guard cell-enriched samples. The importance of this protocol lies in the fact that most living cells on epidermal peels are guard cells, enabling the preparation of guard cell-enriched samples. Key features • Isolation of epidermal peels as a monolayer enriched in guard cells • Measurement of cytosolic guard cell signaling component dynamics in isolated epidermal peels through fluorescent biosensor analysis • Gene expression analysis of guard cell-enriched isolated tissue.
Collapse
Affiliation(s)
- Rosario Pantaleno
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-UNMdP-CONICET), Mar del Plata, Argentina
| | - Paula Schiel
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-UNMdP-CONICET), Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-UNMdP-CONICET), Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-UNMdP-CONICET), Mar del Plata, Argentina
| |
Collapse
|
15
|
Sun W, Xia L, Deng J, Sun S, Yue D, You J, Wang M, Jin S, Zhu L, Lindsey K, Zhang X, Yang X. Evolution and subfunctionalization of CIPK6 homologous genes in regulating cotton drought resistance. Nat Commun 2024; 15:5733. [PMID: 38977687 PMCID: PMC11231324 DOI: 10.1038/s41467-024-50097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
The occurrence of whole-genome duplication or polyploidy may promote plant adaptability to harsh environments. Here, we clarify the evolutionary relationship of eight GhCIPK6 homologous genes in upland cotton (Gossypium hirsutum). Gene expression and interaction analyses indicate that GhCIPK6 homologous genes show significant functional changes after polyploidy. Among these, GhCIPK6D1 and GhCIPK6D3 are significantly up-regulated by drought stress. Functional studies reveal that high GhCIPK6D1 expression promotes cotton drought sensitivity, while GhCIPK6D3 expression promotes drought tolerance, indicating clear functional differentiation. Genetic and biochemical analyses confirm the synergistic negative and positive regulation of cotton drought resistance through GhCBL1A1-GhCIPK6D1 and GhCBL2A1-GhCIPK6D3, respectively, to regulate stomatal movement by controlling the directional flow of K+ in guard cells. These results reveal differentiated roles of GhCIPK6 homologous genes in response to drought stress in upland cotton following polyploidy. The work provides a different perspective for exploring the functionalization and subfunctionalization of duplicated genes in response to polyploidization.
Collapse
Affiliation(s)
- Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Linjie Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Jinwu Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Simin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
16
|
Wu YN, Lu JY, Li S, Zhang Y. Are vacuolar dynamics crucial factors for plant cell division and differentiation? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112090. [PMID: 38636812 DOI: 10.1016/j.plantsci.2024.112090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Vacuoles are the largest membrane-bound organelles in plant cells, critical for development and environmental responses. Vacuolar dynamics indicate reversible changes of vacuoles in morphology, size, or numbers. In this review, we summarize current understandings of vacuolar dynamics in different types of plant cells, biological processes associated with vacuolar dynamics, and regulators controlling vacuolar dynamics. Specifically, we point out the possibility that vacuolar dynamics play key roles in cell division and differentiation, which are controlled by the nucleus. Finally, we propose three routes through which vacuolar dynamics actively participate in nucleus-controlled cellular activities.
Collapse
Affiliation(s)
- Ya-Nan Wu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jin-Yu Lu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
17
|
Shi W, Liu Y, Zhao N, Yao L, Li J, Fan M, Zhong B, Bai MY, Han C. Hydrogen peroxide is required for light-induced stomatal opening across different plant species. Nat Commun 2024; 15:5081. [PMID: 38876991 PMCID: PMC11178795 DOI: 10.1038/s41467-024-49377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
Stomatal movement is vital for plants to exchange gases and adaption to terrestrial habitats, which is regulated by environmental and phytohormonal signals. Here, we demonstrate that hydrogen peroxide (H2O2) is required for light-induced stomatal opening. H2O2 accumulates specifically in guard cells even when plants are under unstressed conditions. Reducing H2O2 content through chemical treatments or genetic manipulations results in impaired stomatal opening in response to light. This phenomenon is observed across different plant species, including lycopodium, fern, and monocotyledonous wheat. Additionally, we show that H2O2 induces the nuclear localization of KIN10 protein, the catalytic subunit of plant energy sensor SnRK1. The nuclear-localized KIN10 interacts with and phosphorylates the bZIP transcription factor bZIP30, leading to the formation of a heterodimer between bZIP30 and BRASSINAZOLE-RESISTANT1 (BZR1), the master regulator of brassinosteroid signaling. This heterodimer complex activates the expression of amylase, which enables guard cell starch degradation and promotes stomatal opening. Overall, these findings suggest that H2O2 plays a critical role in light-induced stomatal opening across different plant species.
Collapse
Affiliation(s)
- Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yue Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Na Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jinge Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250358, Shandong, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
18
|
Lemonnier P, Lawson T. Calvin cycle and guard cell metabolism impact stomatal function. Semin Cell Dev Biol 2024; 155:59-70. [PMID: 36894379 DOI: 10.1016/j.semcdb.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
Stomatal conductance (gs) determines CO2 uptake for photosynthesis (A) and water loss through transpiration, which is essential for evaporative cooling and maintenance of optimal leaf temperature as well as nutrient uptake. Stomata adjust their aperture to maintain an appropriate balance between CO2 uptake and water loss and are therefore critical to overall plant water status and productivity. Although there is considerable knowledge regarding guard cell (GC) osmoregulation (which drives differences in GC volume and therefore stomatal opening and closing), as well as the various signal transduction pathways that enable GCs to sense and respond to different environmental stimuli, little is known about the signals that coordinate mesophyll demands for CO2. Furthermore, chloroplasts are a key feature in GCs of many species, however, their role in stomatal function is unclear and a subject of debate. In this review we explore the current evidence regarding the role of these organelles in stomatal behaviour, including GC electron transport and Calvin-Benson-Bassham (CBB) cycle activity as well as their possible involvement correlating gs and A along with other potential mesophyll signals. We also examine the roles of other GC metabolic processes in stomatal function.
Collapse
Affiliation(s)
- P Lemonnier
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - T Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| |
Collapse
|
19
|
Piro L, Flütsch S, Santelia D. Arabidopsis Sucrose Synthase 3 (SUS3) regulates starch accumulation in guard cells at the end of day. PLANT SIGNALING & BEHAVIOR 2023; 18:2171614. [PMID: 36774587 PMCID: PMC9928453 DOI: 10.1080/15592324.2023.2171614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Starch in the stomatal guard cells is largely synthesized using carbon precursors originating from sugars imported from the leaf mesophyll. Such heterotrophic nature of guard cell starch synthesis prompted us to investigate the role of cytosolic sucrose synthases (SUS) in this pathway. Out of the six members of the Arabidopsis SUS gene family, SUS3 was the most highly expressed isoform in guard cells. The Arabidopsis sus3 mutant displayed changes in guard cell starch contents comparable to the Wild Type (WT) up until 6 h into the day. After this time point, sus3 guard cells surprisingly started to accumulate starch at very high rates, reaching the end of the day with significantly more starch than WT. Based on the phenotype of the sus3 mutant, we suggest that in guard cells, SUS3 is involved in the regulation of carbon fluxes towards starch synthesis during the second half of the day. SUS3 may be part of a previously predicted guard cell futile cycle of metabolic reactions, in which sucrose is re-synthesized from UDP-glucose to avoid excessive starch synthesis toward the end of the day. This is in contrast to typical storage organs, in which cytosolic SUS is required to produce ADP-glucose for starch synthesis.
Collapse
Affiliation(s)
- Lucia Piro
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Sabrina Flütsch
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Biological Analyses and References, Swiss Federal Institute of Metrology METAS, Bern, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
20
|
Liu J, Wang X, Guan Z, Wu M, Wang X, Fan R, Zhang F, Yan J, Liu Y, Zhang D, Yin P, Yan J. The LIKE SEX FOUR 1-malate dehydrogenase complex functions as a scaffold to recruit β-amylase to promote starch degradation. THE PLANT CELL 2023; 36:194-212. [PMID: 37804098 PMCID: PMC10734626 DOI: 10.1093/plcell/koad259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
In plant leaves, starch is composed of glucan polymers that accumulate in chloroplasts as the products of photosynthesis during the day; starch is mobilized at night to continuously provide sugars to sustain plant growth and development. Efficient starch degradation requires the involvement of several enzymes, including β-amylase and glucan phosphatase. However, how these enzymes cooperate remains largely unclear. Here, we show that the glucan phosphatase LIKE SEX FOUR 1 (LSF1) interacts with plastid NAD-dependent malate dehydrogenase (MDH) to recruit β-amylase (BAM1), thus reconstituting the BAM1-LSF1-MDH complex. The starch hydrolysis activity of BAM1 drastically increased in the presence of LSF1-MDH in vitro. We determined the structure of the BAM1-LSF1-MDH complex by a combination of cryo-electron microscopy, crosslinking mass spectrometry, and molecular docking. The starch-binding domain of the dual-specificity phosphatase and carbohydrate-binding module of LSF1 was docked in proximity to BAM1, thus facilitating BAM1 access to and hydrolysis of the polyglucans of starch, thus revealing the molecular mechanism by which the LSF1-MDH complex improves the starch degradation activity of BAM1. Moreover, LSF1 is phosphatase inactive, and the enzymatic activity of MDH was dispensable for starch degradation, suggesting nonenzymatic scaffold functions for LSF1-MDH in starch degradation. These findings provide important insights into the precise regulation of starch degradation.
Collapse
Affiliation(s)
- Jian Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecui Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Menglong Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyue Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Fan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjun Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanjun Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Yan Y, Ryu Y, Dechant B, Li B, Kim J. Dark respiration explains nocturnal stomatal conductance in rice regardless of drought and nutrient stress. PLANT, CELL & ENVIRONMENT 2023; 46:3748-3759. [PMID: 37651619 DOI: 10.1111/pce.14710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
The ecological mechanism underlying nocturnal stomatal conductance (gsn ) in C3 and C4 plants remains elusive. In this study, we proposed a 'coordinated leaf trait' hypothesis to explain gsn in rice plants. We conducted an open-field experiment by applying drought, nutrient stress and the combined drought-nutrient stress. We found that gsn was neither strongly reduced by drought nor consistently increased by nutrient stress. With the aforementioned multiple abiotic stressors considered as random effects, gsn exhibited a strong positive correlation with dark respiration (Rn ). Notably, gsn primed early morning (5:00-7:00) photosynthesis through faster stomatal response time. This photosynthesis priming effect diminished after mid-morning (9:00). Leaves were cooled by gsn -derived transpiration. However, our results clearly suggest that evaporative cooling did not reduce dark respiration cost. Our results indicate that gsn is more closely related to carbon respiration and assimilation than water and nutrient availability, and that dark respiration can explain considerable variation of gsn .
Collapse
Affiliation(s)
- Yulin Yan
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
| | - Youngryel Ryu
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
- Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul, South Korea
| | - Benjamin Dechant
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- German Centre for Integrative Biodiversity Research, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Bolun Li
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jongmin Kim
- Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul, South Korea
| |
Collapse
|
22
|
Zhang H, Luo B, Liu J, Jin X, Zhang H, Zhong H, Li B, Hu H, Wang Y, Ali A, Riaz A, Sahito JH, Iqbal MZ, Zhang X, Liu D, Wu L, Gao D, Gao S, Su S, Gao S. Functional analysis of ZmG6PE reveals its role in responses to low-phosphorus stress and regulation of grain yield in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1286699. [PMID: 38023907 PMCID: PMC10666784 DOI: 10.3389/fpls.2023.1286699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
A previous metabolomic and genome-wide association analysis of maize screened a glucose-6-phosphate 1-epimerase (ZmG6PE) gene, which responds to low-phosphorus (LP) stress and regulates yield in maize's recombinant inbred lines (RILs). However, the relationship of ZmG6PE with phosphorus and yield remained elusive. This study aimed to elucidate the underlying response mechanism of the ZmG6PE gene to LP stress and its consequential impact on maize yield. The analysis indicated that ZmG6PE required the Aldose_epim conserved domain to maintain enzyme activity and localized in the nucleus and cell membrane. The zmg6pe mutants showed decreased biomass and sugar contents but had increased starch content in leaves under LP stress conditions. Combined transcriptome and metabolome analysis showed that LP stress activated plant immune regulation in response to the LP stress through carbon metabolism, amino acid metabolism, and fatty acid metabolism. Notably, LP stress significantly reduced the synthesis of glucose-1-phosphate, mannose-6-phosphate, and β-alanine-related metabolites and changed the expression of related genes. ZmG6PE regulates LP stress by mediating the expression of ZmSPX6 and ZmPHT1.13. Overall, this study revealed that ZmG6PE affected the number of grains per ear, ear thickness, and ear weight under LP stress, indicating that ZmG6PE participates in the phosphate signaling pathway and affects maize yield-related traits through balancing carbohydrates homeostasis.
Collapse
Affiliation(s)
- Hongkai Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Jin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Xinwu Jin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Haiying Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Haixu Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Binyang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Hongmei Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Yikai Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Asad Riaz
- Centre of Excellence for Plant Success in Nature and Agriculture, The Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Javed Hussain Sahito
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Muhammad Zafar Iqbal
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Dan Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Ling Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shunzong Su
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Kudo SN, Bello CCM, Artins A, Caldana C, Satake A. Assessing the impacts of genetic defects on starch metabolism in Arabidopsis plants using the carbon homeostasis model. J R Soc Interface 2023; 20:20230426. [PMID: 38016639 PMCID: PMC10684347 DOI: 10.1098/rsif.2023.0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Starch serves as an important carbon storage mechanism for many plant species, facilitating their adaptation to the cyclic variations in the light environment, including day-night cycles as well as seasonal changes in photoperiod. By dynamically adjusting starch accumulation and degradation rates, plants maintain carbon homeostasis, enabling continuous growth under fluctuating environmental conditions. To understand dynamic nature of starch metabolism at the molecular level, it is necessary to integrate empirical knowledge from genetic defects in specific regulatory pathways into the dynamical system of starch metabolism. To achieve this, we evaluated the impact of genetic defects in the circadian clock, sugar sensing and starch degradation pathways using the carbon homeostasis model that encompasses the interplay between these pathways. Through the collection of starch metabolism data from 10 Arabidopsis mutants, we effectively fitted the experimental data to the model. The system-level assessment revealed that genetic defects in both circadian clock components and sugar sensing pathway hindered the appropriate adjustment of the starch degradation rate, particularly under long-day conditions. These findings not only confirmed the previous empirical findings but also provide the novel insights into the role of each gene within the gene regulatory network on the emergence of carbon homeostasis.
Collapse
Affiliation(s)
- Shuichi N. Kudo
- Graduate School of Systems Life Science, Kyushu University, Fukuoka 819-0395, Japan
| | | | - Anthony Artins
- Max Planck Institute of Molecular Plant Physiology, Golm/Postdam 14476, Germany
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Golm/Postdam 14476, Germany
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
24
|
Westgeest AJ, Dauzat M, Simonneau T, Pantin F. Leaf starch metabolism sets the phase of stomatal rhythm. THE PLANT CELL 2023; 35:3444-3469. [PMID: 37260348 PMCID: PMC10473205 DOI: 10.1093/plcell/koad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
In leaves of C3 and C4 plants, stomata open during the day to favor CO2 entry for photosynthesis and close at night to prevent inefficient transpiration of water vapor. The circadian clock paces rhythmic stomatal movements throughout the diel (24-h) cycle. Leaf transitory starch is also thought to regulate the diel stomatal movements, yet the underlying mechanisms across time (key moments) and space (relevant leaf tissues) remain elusive. Here, we developed PhenoLeaks, a pipeline to analyze the diel dynamics of transpiration, and used it to screen a series of Arabidopsis (Arabidopsis thaliana) mutants impaired in starch metabolism. We detected a sinusoidal, endogenous rhythm of transpiration that overarches days and nights. We determined that a number of severe mutations in starch metabolism affect the endogenous rhythm through a phase shift, resulting in delayed stomatal movements throughout the daytime and diminished stomatal preopening during the night. Nevertheless, analysis of tissue-specific mutations revealed that neither guard-cell nor mesophyll-cell starch metabolisms are strictly required for normal diel patterns of transpiration. We propose that leaf starch influences the timing of transpiration rhythm through an interplay between the circadian clock and sugars across tissues, while the energetic effect of starch-derived sugars is usually nonlimiting for endogenous stomatal movements.
Collapse
Affiliation(s)
| | - Myriam Dauzat
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | | | - Florent Pantin
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers F-49000, France
| |
Collapse
|
25
|
Wang H, Wang Y, Sang T, Lin Z, Li R, Ren W, Shen X, Zhao B, Wang X, Zhang X, Zhou S, Dai S, Hu H, Song CP, Wang P. Cell type-specific proteomics uncovers a RAF15-SnRK2.6/OST1 kinase cascade in guard cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2122-2137. [PMID: 37226855 DOI: 10.1111/jipb.13536] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023]
Abstract
Multicellular organisms such as plants contain various cell types with specialized functions. Analyzing the characteristics of each cell type reveals specific cell functions and enhances our understanding of organization and function at the organismal level. Guard cells (GCs) are specialized epidermal cells that regulate the movement of the stomata and gaseous exchange, and provide a model genetic system for analyzing cell fate, signaling, and function. Several proteomics analyses of GC are available, but these are limited in depth. Here we used enzymatic isolation and flow cytometry to enrich GC and mesophyll cell protoplasts and perform in-depth proteomics in these two major cell types in Arabidopsis leaves. We identified approximately 3,000 proteins not previously found in the GC proteome and more than 600 proteins that may be specific to GC. The depth of our proteomics enabled us to uncover a guard cell-specific kinase cascade whereby Raf15 and Snf1-related kinase2.6 (SnRK2.6)/OST1(open stomata 1) mediate abscisic acid (ABA)-induced stomatal closure. RAF15 directly phosphorylated SnRK2.6/OST1 at the conserved Ser175 residue in its activation loop and was sufficient to reactivate the inactive form of SnRK2.6/OST1. ABA-triggered SnRK2.6/OST1 activation and stomatal closure was impaired in raf15 mutants. We also showed enrichment of enzymes and flavone metabolism in GC, and consistent, dramatic accumulation of flavone metabolites. Our study answers the long-standing question of how ABA activates SnRK2.6/OST1 in GCs and represents a resource potentially providing further insights into the molecular basis of GC and mesophyll cell development, metabolism, structure, and function.
Collapse
Affiliation(s)
- Hongliang Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yubei Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Sang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen Lin
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rongxia Li
- Shanghai Bioprofile Technology Company Ltd, Shanghai, 200241, China
| | - Weiwei Ren
- Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xin Shen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shaojun Dai
- Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
26
|
Lima VF, Freire FBS, Cândido-Sobrinho SA, Porto NP, Medeiros DB, Erban A, Kopka J, Schwarzländer M, Fernie AR, Daloso DM. Unveiling the dark side of guard cell metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107862. [PMID: 37413941 DOI: 10.1016/j.plaphy.2023.107862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Evidence suggests that guard cells have higher rate of phosphoenolpyruvate carboxylase (PEPc)-mediated dark CO2 assimilation than mesophyll cells. However, it is unknown which metabolic pathways are activated following dark CO2 assimilation in guard cells. Furthermore, it remains unclear how the metabolic fluxes throughout the tricarboxylic acid (TCA) cycle and associated pathways are regulated in illuminated guard cells. Here we carried out a13C-HCO3 labelling experiment in tobacco guard cells harvested under continuous dark or during the dark-to-light transition to elucidate principles of metabolic dynamics downstream of CO2 assimilation. Most metabolic changes were similar between dark-exposed and illuminated guard cells. However, illumination altered the metabolic network structure of guard cells and increased the 13C-enrichment in sugars and metabolites associated to the TCA cycle. Sucrose was labelled in the dark, but light exposure increased the 13C-labelling and leads to more drastic reductions in the content of this metabolite. Fumarate was strongly labelled under both dark and light conditions, while illumination increased the 13C-enrichment in pyruvate, succinate and glutamate. Only one 13C was incorporated into malate and citrate in either dark or light conditions. Our results indicate that several metabolic pathways are redirected following PEPc-mediated CO2 assimilation in the dark, including gluconeogenesis and the TCA cycle. We further showed that the PEPc-mediated CO2 assimilation provides carbons for gluconeogenesis, the TCA cycle and glutamate synthesis and that previously stored malate and citrate are used to underpin the specific metabolic requirements of illuminated guard cells.
Collapse
Affiliation(s)
- Valéria F Lima
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Francisco Bruno S Freire
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Nicole P Porto
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische-Wilhelms-Universität Münster, D-48143, Münster, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
27
|
Wang L, Jing M, Gu S, Li D, Dai X, Chen Z, Chen J. Genome-Wide Investigation of BAM Gene Family in Annona atemoya: Evolution and Expression Network Profiles during Fruit Ripening. Int J Mol Sci 2023; 24:10516. [PMID: 37445694 DOI: 10.3390/ijms241310516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
β-amylase proteins (BAM) are important to many aspects of physiological process such as starch degradation. However, little information was available about the BAM genes in Annona atemoya, an important tropical fruit. Seven BAM genes containing the conservative domain of glycoside hydrolase family 14 (PF01373) were identified with Annona atemoya genome, and these BAM genes can be divided into four groups. Subcellular localization analysis revealed that AaBAM3 and AaBAM9 were located in the chloroplast, and AaBAM1.2 was located in the cell membrane and the chloroplast. The AaBAMs belonging to Subfamily I contribute to starch degradation have the higher expression than those belonging to Subfamily II. The analysis of the expression showed that AaBAM3 may function in the whole fruit ripening process, and AaBAM1.2 may be important to starch degradation in other organs. Temperature and ethylene affect the expression of major AaBAM genes in Subfamily I during fruit ripening. These expressions and subcellular localization results indicating β-amylase play an important role in starch degradation.
Collapse
Affiliation(s)
- Luli Wang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Minmin Jing
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Shuailei Gu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Dongliang Li
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Xiaohong Dai
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Zhihui Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Jingjing Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| |
Collapse
|
28
|
Daloso DDM, Morais EG, Oliveira E Silva KF, Williams TCR. Cell-type-specific metabolism in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1093-1114. [PMID: 36987968 DOI: 10.1111/tpj.16214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/31/2023]
Abstract
Every plant organ contains tens of different cell types, each with a specialized function. These functions are intrinsically associated with specific metabolic flux distributions that permit the synthesis of the ATP, reducing equivalents and biosynthetic precursors demanded by the cell. Investigating such cell-type-specific metabolism is complicated by the mosaic of different cells within each tissue combined with the relative scarcity of certain types. However, techniques for the isolation of specific cells, their analysis in situ by microscopy, or modeling of their function in silico have permitted insight into cell-type-specific metabolism. In this review we present some of the methods used in the analysis of cell-type-specific metabolism before describing what we know about metabolism in several cell types that have been studied in depth; (i) leaf source and sink cells; (ii) glandular trichomes that are capable of rapid synthesis of specialized metabolites; (iii) guard cells that must accumulate large quantities of the osmolytes needed for stomatal opening; (iv) cells of seeds involved in storage of reserves; and (v) the mesophyll and bundle sheath cells of C4 plants that participate in a CO2 concentrating cycle. Metabolism is discussed in terms of its principal features, connection to cell function and what factors affect the flux distribution. Demand for precursors and energy, availability of substrates and suppression of deleterious processes are identified as key factors in shaping cell-type-specific metabolism.
Collapse
Affiliation(s)
- Danilo de Menezes Daloso
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Eva Gomes Morais
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Karen Fernanda Oliveira E Silva
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília-DF, 70910-900, Brazil
| | | |
Collapse
|
29
|
Yang M, Zhou M, Shu M, Han Z, Ma R, Chen Y, Zheng T, Chen H. The Blinin Accumulation Promoted by CbMYB32 Involved in Conyza blinii Resistance to Nocturnal Low Temperature. Int J Mol Sci 2023; 24:ijms24087143. [PMID: 37108302 PMCID: PMC10139108 DOI: 10.3390/ijms24087143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Blinin, a unique terpenoid from Conyza blinii (C. blinii), benefits our health even though this is not its primary function. Physiological and ecological studies have found that the great secondary metabolites participate in important biological processes and relate to species evolution, environmental adaptation, and so on. Moreover, our previous studies have shown that the metabolism and accumulation of blinin has a close correspondence with nocturnal low temperature (NLT). To find out the transcriptional regulation linker in the crosstalk between blinin and NLT, RNA-seq, comparative analysis, and co-expression network were performed. The results indicated that CbMYB32 is located in a nucleus without independent transcriptional activation activity and is probably involved in the metabolism of blinin. Furthermore, we compared the silence and overexpression of CbMYB32 with wild C. blinii. Compared with the overexpression and the wildtype, the CbMYB32 silence line lost more than half of the blinin and detected more peroxide under NLT. Finally, as a characteristic secret of C. blinii, it is reasonable to infer that blinin participates in the NLT adaptation mechanism and has contributed to the systematic evolution of C. blinii.
Collapse
Affiliation(s)
- Ming Yang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Min Zhou
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Mengdan Shu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhengqi Han
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ruiqi Ma
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuting Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Tianrun Zheng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
- Traditional Chinese Medicine Planting Institute, Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
30
|
Korte P, Unzner A, Damm T, Berger S, Krischke M, Mueller MJ. High triacylglycerol turnover is required for efficient opening of stomata during heat stress in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36976526 DOI: 10.1111/tpj.16210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/04/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Heat stress triggers the accumulation of triacylglycerols in Arabidopsis leaves, which increases basal thermotolerance. However, how triacylglycerol synthesis is linked to thermotolerance remains unclear and the mechanisms involved remain to be elucidated. It has been shown that triacylglycerol and starch degradation are required to provide energy for stomatal opening induced by blue light at dawn. To investigate whether triacylglycerol turnover is involved in heat-induced stomatal opening during the day, we performed feeding experiments with labeled fatty acids. Heat stress strongly induced both triacylglycerol synthesis and degradation to channel fatty acids destined for peroxisomal ß-oxidation through the triacylglycerol pool. Analysis of mutants defective in triacylglycerol synthesis or peroxisomal fatty acid uptake revealed that triacylglycerol turnover and fatty acid catabolism are required for heat-induced stomatal opening in illuminated leaves. We show that triacylglycerol turnover is continuous (1.2 mol% per min) in illuminated leaves even at 22°C. The ß-oxidation of triacylglycerol-derived fatty acids generates C2 carbon units that are channeled into the tricarboxylic acid pathway in the light. In addition, carbohydrate catabolism is required to provide oxaloacetate as an acceptor for peroxisomal acetyl-CoA and maintain the tricarboxylic acid pathway for energy and amino acid production during the day.
Collapse
Affiliation(s)
- Pamela Korte
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Amelie Unzner
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Theresa Damm
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Susanne Berger
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Martin J Mueller
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| |
Collapse
|
31
|
Chang Y, Shi M, Sun Y, Cheng H, Ou X, Zhao Y, Zhang X, Day B, Miao C, Jiang K. Light-induced stomatal opening in Arabidopsis is negatively regulated by chloroplast-originated OPDA signaling. Curr Biol 2023; 33:1071-1081.e5. [PMID: 36841238 DOI: 10.1016/j.cub.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/02/2022] [Accepted: 02/02/2023] [Indexed: 02/27/2023]
Abstract
Stomatal movement is orchestrated by diverse signaling cascades and metabolic activities in guard cells. Light triggers the opening of the pores through the phototropin-mediated pathway, which leads to the activation of plasma membrane H+-ATPase and thereby facilitates potassium accumulation through Kin+ channels. However, it remains poorly understood how phototropin signaling is fine-tuned to prevent excessive stomatal opening and consequent water loss. Here, we show that the stomatal response to light is negatively regulated by 12-oxo-phytodienoic acid (OPDA), an oxylipin metabolite produced through enzymatic oxygenation of polyunsaturated fatty acids (PUFAs). We identify a set of phospholipase-encoding genes, phospholipase (PLIP)1/2/3, which are transactivated rapidly in guard cells upon illumination in a phototropin-dependent manner. These phospholipases release PUFAs from the chloroplast membrane, which is oxidized by guard-cell lipoxygenases and further metabolized to OPDA. The OPDA-deficient mutants had wider stomatal pores, whereas mutants containing elevated levels of OPDA showed the opposite effect on stomatal aperture. Transmembrane solute fluxes that drive stomatal aperture were enhanced in lox6-1 guard cells, indicating that OPDA signaling ultimately impacts on activities of proton pumps and Kin+ channels. Interestingly, the accelerated stomatal kinetics in lox6-1 leads to increased plant growth without cost in water or macronutrient use. Together, our results reveal a new role for chloroplast membrane oxylipin metabolism in stomatal regulation. Moreover, the accelerated stomatal opening kinetics in OPDA-deficient mutants benefits plant growth and water use efficiency.
Collapse
Affiliation(s)
- Yuankai Chang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Mianmian Shi
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yanfeng Sun
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Hui Cheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Xiaobin Ou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Chen Miao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China.
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
32
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
33
|
Kalogeropoulou E, Aliferis KA, Tjamos SE, Vloutoglou I, Paplomatas EJ. Combined Transcriptomic and Metabolomic Analysis Reveals Insights into Resistance of Arabidopsis bam3 Mutant against the Phytopathogenic Fungus Fusarium oxysporum. PLANTS (BASEL, SWITZERLAND) 2022; 11:3457. [PMID: 36559570 PMCID: PMC9785915 DOI: 10.3390/plants11243457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The wilt-inducing strains of Fusarium oxysporum are responsible for severe damage to many economically important plant species. The most cost-effective and environmentally safe method for the management of Fusarium wilt is the use of resistant cultivars when they are available. In the present study, the Arabidopsis genotype with disruptions in the β-amylase 3 (BAM3) gene, which encodes the major hydrolytic enzyme that degrades starch to maltose, had significantly lower susceptibility to Fusarium oxysporum f. sp. raphani (For) compared to wild-type (wt) plants. It showed the lowest disease severity and contained reduced quantities of fungal DNA in the plant vascular tissues when analyzed with real-time PCR. Through metabolomic analysis using gas chromatography (GC)-mass spectrometry (MS) and gene-expression analysis by reverse-transcription quantitative PCR (RT-qPCR), we observed that defense responses of Arabidopsis bam3 mutants are associated with starch-degradation enzymes, the corresponding modification of the carbohydrate balance, and alterations in sugar (glucose, sucrose, trehalose, and myo-inositol) and auxin metabolism.
Collapse
Affiliation(s)
- Eleni Kalogeropoulou
- Laboratory of Mycology, Scientific Department of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 145 61 Athens, Greece
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athens, Greece
| | - Sotirios E. Tjamos
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athens, Greece
| | - Irene Vloutoglou
- Laboratory of Mycology, Scientific Department of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 145 61 Athens, Greece
| | - Epaminondas J. Paplomatas
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athens, Greece
| |
Collapse
|
34
|
Ando E, Kollist H, Fukatsu K, Kinoshita T, Terashima I. Elevated CO 2 induces rapid dephosphorylation of plasma membrane H + -ATPase in guard cells. THE NEW PHYTOLOGIST 2022; 236:2061-2074. [PMID: 36089821 PMCID: PMC9828774 DOI: 10.1111/nph.18472] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Light induces stomatal opening, which is driven by plasma membrane (PM) H+ -ATPase in guard cells. The activation of guard-cell PM H+ -ATPase is mediated by phosphorylation of the penultimate C-terminal residue, threonine. The phosphorylation is induced by photosynthesis as well as blue light photoreceptor phototropin. Here, we investigated the effects of cessation of photosynthesis on the phosphorylation level of guard-cell PM H+ -ATPase in Arabidopsis thaliana. Immunodetection of guard-cell PM H+ -ATPase, time-resolved leaf gas-exchange analyses and stomatal aperture measurements were carried out. We found that light-dark transition of leaves induced dephosphorylation of the penultimate residue at 1 min post-transition. Gas-exchange analyses confirmed that the dephosphorylation is accompanied by an increase in the intercellular CO2 concentration, caused by the cessation of photosynthetic CO2 fixation. We discovered that CO2 induces guard-cell PM H+ -ATPase dephosphorylation as well as stomatal closure. Interestingly, reverse-genetic analyses using guard-cell CO2 signal transduction mutants suggested that the dephosphorylation is mediated by a mechanism distinct from the established CO2 signalling pathway. Moreover, type 2C protein phosphatases D6 and D9 were required for the dephosphorylation and promoted stomatal closure upon the light-dark transition. Our results indicate that CO2 -mediated dephosphorylation of guard-cell PM H+ -ATPase underlies stomatal closure.
Collapse
Affiliation(s)
- Eigo Ando
- Department of Biological Sciences, School of ScienceThe University of TokyoHongo 7‐3‐1, BunkyoTokyo113‐0033Japan
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
| | - Hannes Kollist
- Institute of TechnologyUniversity of TartuTartu50411Estonia
| | - Kohei Fukatsu
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityFuro‐cho, ChikusaNagoyaAichi464‐8602Japan
| | - Ichiro Terashima
- Department of Biological Sciences, School of ScienceThe University of TokyoHongo 7‐3‐1, BunkyoTokyo113‐0033Japan
| |
Collapse
|
35
|
Inoue S, Hayashi M, Huang S, Yokosho K, Gotoh E, Ikematsu S, Okumura M, Suzuki T, Kamura T, Kinoshita T, Ma JF. A tonoplast-localized magnesium transporter is crucial for stomatal opening in Arabidopsis under high Mg 2+ conditions. THE NEW PHYTOLOGIST 2022; 236:864-877. [PMID: 35976788 PMCID: PMC9804957 DOI: 10.1111/nph.18410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Plant stomata play an important role in CO2 uptake for photosynthesis and transpiration, but the mechanisms underlying stomatal opening and closing under changing environmental conditions are still not completely understood. Through large-scale genetic screening, we isolated an Arabidopsis mutant (closed stomata2 (cst2)) that is defective in stomatal opening. We cloned the causal gene (MGR1/CST2) and functionally characterized this gene. The mutant phenotype was caused by a mutation in a gene encoding an unknown protein with similarities to the human magnesium (Mg2+ ) efflux transporter ACDP/CNNM. MGR1/CST2 was localized to the tonoplast and showed transport activity for Mg2+ . This protein was constitutively and highly expressed in guard cells. Knockout of this gene resulted in stomatal closing, decreased photosynthesis and growth retardation, especially under high Mg2+ conditions, while overexpression of this gene increased stomatal opening and tolerance to high Mg2+ concentrations. Furthermore, guard cell-specific expression of MGR1/CST2 in the mutant partially restored its stomatal opening. Our results indicate that MGR1/CST2 expression in the leaf guard cells plays an important role in maintaining cytosolic Mg2+ concentrations through sequestering Mg2+ into vacuoles, which is required for stomatal opening, especially under high Mg2+ conditions.
Collapse
Affiliation(s)
- Shin‐ichiro Inoue
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoyaAichi464‐8602Japan
| | - Maki Hayashi
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoyaAichi464‐8602Japan
| | - Sheng Huang
- Institute of Plant Science and ResourcesOkayama UniversityChuo 2‐20‐1Kurashiki710‐0046Japan
| | - Kengo Yokosho
- Institute of Plant Science and ResourcesOkayama UniversityChuo 2‐20‐1Kurashiki710‐0046Japan
| | - Eiji Gotoh
- Department of Forest Environmental Sciences, Faculty of AgricultureKyushu University744 MotookaFukuoka819‐0395Japan
| | - Shuka Ikematsu
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityFuro‐cho, ChikusaNagoya464‐8602Japan
| | - Masaki Okumura
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoyaAichi464‐8602Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and BiotechnologyChubu UniversityKasugai‐shiAichi487‐8501Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoyaAichi464‐8602Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoyaAichi464‐8602Japan
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityFuro‐cho, ChikusaNagoya464‐8602Japan
| | - Jian Feng Ma
- Institute of Plant Science and ResourcesOkayama UniversityChuo 2‐20‐1Kurashiki710‐0046Japan
| |
Collapse
|
36
|
Bernal L, Luján‐Soto E, Fajardo‐Hernández CA, Coello P, Figueroa M, Martínez‐Barajas E. Starch degradation in the bean fruit pericarp is characterized by an increase in maltose metabolism. PHYSIOLOGIA PLANTARUM 2022; 174:e13836. [PMID: 36453084 PMCID: PMC10107891 DOI: 10.1111/ppl.13836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The bean fruit pericarp accumulates a significant amount of starch, which starts to be degraded 20 days after anthesis (DAA) when seed growth becomes exponential. This period is also characterized by the progressive senescence of the fruit pericarp. However, the chloroplasts maintained their integrity, indicating that starch degradation is a compartmentalized process. The process coincided with a transient increase in maltose and sucrose levels, suggesting that β-amylase is responsible for starch degradation. Starch degradation in the bean fruit pericarp is also characterized by a large increase in starch phosphorylation, as well as in the activities of cytosolic disproportionating enzyme 2 (DPE2, EC 2.4.1.25) and glucan phosphorylase (PHO2, EC 2.4.1.1). This suggests that the rate of starch degradation in the bean fruit pericarp 20 DAA is dependent on the transformation of starch to a better substrate for β-amylase and the increase in the rate of cytosolic metabolism of maltose.
Collapse
Affiliation(s)
- Lilia Bernal
- Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Eduardo Luján‐Soto
- Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | | | - Patricia Coello
- Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Mario Figueroa
- Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Eleazar Martínez‐Barajas
- Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
37
|
Rui M, Jing Y, Jiang H, Wang Y. Quantitative System Modeling Bridges the Gap between Macro- and Microscopic Stomatal Model. Adv Biol (Weinh) 2022; 6:e2200131. [PMID: 35957522 DOI: 10.1002/adbi.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/21/2022] [Indexed: 01/28/2023]
Abstract
An understanding of stomatal function is vital for the carbon and water cycle in nature. In the past decades, various stomatal models with different functions have been established to investigate and predict stomatal behavior and its association with plants' responses to the changing climate, but with limited biological information provided. On the other hand, many stomatal models at the molecular level focus on simulating and predicting molecular practices and ignore the dynamic quantitative information. As a result, stomatal models are often divided between the microscopic and macroscopic scales. Quantitative systems analysis offers an effective in silico approach to explore the link between microscopic gene function and macroscopic physiological traits. As a first step, a systems model, OnGuard, is developed for the investigation of guard cell ion homeostasis and its relevance to the dynamic stomatal movements. The system model has already yielded a series of important predictions to guide molecular physiological studies in stomata. It also exhibits great potential in breeding practice, which represents a key step toward "Breeding by design" of improving plant carbon-water use efficiency. Here, the development of stomatal models is reviewed, and the future perspectives on stomatal modeling for agricultural and ecological applications are discussed.
Collapse
Affiliation(s)
- Mengmeng Rui
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yi Jing
- BGI-Sanya, Sanya, 572025, P. R. China
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P. R. China.,Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, P. R. China.,Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
38
|
Zeeman SC, Solhaug EM. Plant growth: An active or passive role for starch reserves? Curr Biol 2022; 32:R894-R896. [PMID: 35998602 DOI: 10.1016/j.cub.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Starch metabolism is linked to plant growth, yet blocking its biosynthesis has species-specific consequences. In a new study, plastidial phosphoglucomutase is knocked out in aspen trees using CRISPR-Cas9, limiting starch production and altering photosynthesis, but growth, bud break and wood production proceed unaffected.
Collapse
Affiliation(s)
- Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, Universitätsstrasse 2, CH-8092 Zurich, Switzerland.
| | - Erik M Solhaug
- Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 16, CH-8092 Zurich, Switzerland
| |
Collapse
|
39
|
Pei D, Hua D, Deng J, Wang Z, Song C, Wang Y, Wang Y, Qi J, Kollist H, Yang S, Guo Y, Gong Z. Phosphorylation of the plasma membrane H+-ATPase AHA2 by BAK1 is required for ABA-induced stomatal closure in Arabidopsis. THE PLANT CELL 2022; 34:2708-2729. [PMID: 35404404 PMCID: PMC9252505 DOI: 10.1093/plcell/koac106] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/04/2022] [Indexed: 05/13/2023]
Abstract
Stomatal opening is largely promoted by light-activated plasma membrane-localized proton ATPases (PM H+-ATPases), while their closure is mainly modulated by abscisic acid (ABA) signaling during drought stress. It is unknown whether PM H+-ATPases participate in ABA-induced stomatal closure. We established that BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) interacts with, phosphorylates and activates the major PM Arabidopsis H+-ATPase isoform 2 (AHA2). Detached leaves from aha2-6 single mutant Arabidopsis thaliana plants lost as much water as bak1-4 single and aha2-6 bak1-4 double mutants, with all three mutants losing more water than the wild-type (Columbia-0 [Col-0]). In agreement with these observations, aha2-6, bak1-4, and aha2-6 bak1-4 mutants were less sensitive to ABA-induced stomatal closure than Col-0, whereas the aha2-6 mutation did not affect ABA-inhibited stomatal opening under light conditions. ABA-activated BAK1 phosphorylated AHA2 at Ser-944 in its C-terminus and activated AHA2, leading to rapid H+ efflux, cytoplasmic alkalinization, and reactive oxygen species (ROS) accumulation, to initiate ABA signal transduction and stomatal closure. The phosphorylation-mimicking mutation AHA2S944D driven by its own promoter could largely compensate for the defective phenotypes of water loss, cytoplasmic alkalinization, and ROS accumulation in both aha2-6 and bak1-4 mutants. Our results uncover a crucial role of AHA2 in cytoplasmic alkalinization and ABA-induced stomatal closure during the plant's response to drought stress.
Collapse
Affiliation(s)
- Dan Pei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Deping Hua
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jinping Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhifang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunpeng Song
- Collaborative Innovation Center of Crop Stress Biology, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hannes Kollist
- Plant Signal Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
40
|
Flütsch S, Horrer D, Santelia D. Starch biosynthesis in guard cells has features of both autotrophic and heterotrophic tissues. PLANT PHYSIOLOGY 2022; 189:541-556. [PMID: 35238373 PMCID: PMC9157084 DOI: 10.1093/plphys/kiac087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 06/01/2023]
Abstract
The pathway of starch synthesis in guard cells (GCs), despite the crucial role starch plays in stomatal movements, is not well understood. Here, we characterized starch dynamics in GCs of Arabidopsis (Arabidopsis thaliana) mutants lacking enzymes of the phosphoglucose isomerase-phosphoglucose mutase-ADP-glucose pyrophosphorylase starch synthesis pathway in leaf mesophyll chloroplasts or sugar transporters at the plastid membrane, such as glucose-6-phosphate/phosphate translocators, which are active in heterotrophic tissues. We demonstrate that GCs have metabolic features of both photoautotrophic and heterotrophic cells. GCs make starch using different carbon precursors depending on the time of day, which can originate both from GC photosynthesis and/or sugars imported from the leaf mesophyll. Furthermore, we unravel the major enzymes involved in GC starch synthesis and demonstrate that they act in a temporal manner according to the fluctuations of stomatal aperture, which is unique for GCs. Our work substantially enhances our knowledge on GC starch metabolism and uncovers targets for manipulating GC starch dynamics to improve stomatal behavior, directly affecting plant productivity.
Collapse
Affiliation(s)
- Sabrina Flütsch
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Daniel Horrer
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| |
Collapse
|
41
|
Long SP, Taylor SH, Burgess SJ, Carmo-Silva E, Lawson T, De Souza AP, Leonelli L, Wang Y. Into the Shadows and Back into Sunlight: Photosynthesis in Fluctuating Light. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:617-648. [PMID: 35595290 DOI: 10.1146/annurev-arplant-070221-024745] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthesis is an important remaining opportunity for further improvement in the genetic yield potential of our major crops. Measurement, analysis, and improvement of leaf CO2 assimilation (A) have focused largely on photosynthetic rates under light-saturated steady-state conditions. However, in modern crop canopies of several leaf layers, light is rarely constant, and the majority of leaves experience marked light fluctuations throughout the day. It takes several minutes for photosynthesis to regain efficiency in both sun-shade and shade-sun transitions, costing a calculated 10-40% of potential crop CO2 assimilation. Transgenic manipulations to accelerate the adjustment in sun-shade transitions have already shown a substantial productivity increase in field trials. Here, we explore means to further accelerate these adjustments and minimize these losses through transgenic manipulation, gene editing, and exploitation of natural variation. Measurement andanalysis of photosynthesis in sun-shade and shade-sun transitions are explained. Factors limiting speeds of adjustment and how they could be modified to effect improved efficiency are reviewed, specifically nonphotochemical quenching (NPQ), Rubisco activation, and stomatal responses.
Collapse
Affiliation(s)
- Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Steven J Burgess
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Amanda P De Souza
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Lauriebeth Leonelli
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
42
|
Drincovich MF, Maurino VG. Adjustments of carbon allocation and stomatal dynamics by target localized strategies to increase crop productivity under changing climates. JOURNAL OF PLANT PHYSIOLOGY 2022; 272:153685. [PMID: 35364488 DOI: 10.1016/j.jplph.2022.153685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Increasing crop productivity to ensure food security for future generations is one of the greatest challenges in current plant research. This challenge is even greater due to global climate changes, as enhancing crop yields must occur against the backdrop of increasingly changing environments, particularly rising temperatures and water constraints. Global crop yield growth depends on an improved dynamic balance between carbon and water usage. Here we discuss different approaches that highlight the role of vascular tissue and guard cells in attempting to mitigate the carbon-water trade-off. We argue that crop engineering in the future will require the incorporation of a combination of improved traits. Since targeted gene modifications generally produce fewer undesirable pleiotropic effects than constitutive modifications, we envision that modifications of specific cell types, such as phloem companion cells and guard cells, represent an effective approach for adding beneficial gene modifications in the same plant. This approach will enable trait stacking to design future crops with both high yield and resilience to various climate change stresses.
Collapse
Affiliation(s)
- Maria F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, University of Rosario, Rosario, Argentina.
| | - Veronica G Maurino
- Molekulare Pflanzenphysiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| |
Collapse
|
43
|
Han C, Hua W, Li J, Qiao Y, Yao L, Hao W, Li R, Fan M, De Jaeger G, Yang W, Bai MY. TOR promotes guard cell starch degradation by regulating the activity of β-AMYLASE1 in Arabidopsis. THE PLANT CELL 2022; 34:1038-1053. [PMID: 34919720 PMCID: PMC8894947 DOI: 10.1093/plcell/koab307] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/13/2021] [Indexed: 05/10/2023]
Abstract
Starch is the main energy storage carbohydrate in plants and serves as an essential carbon storage molecule for plant metabolism and growth under changing environmental conditions. The TARGET of RAPAMYCIN (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrient, hormone, and stress signaling to regulate growth in all eukaryotes. Here, we demonstrate that TOR promotes guard cell starch degradation and induces stomatal opening in Arabidopsis thaliana. Starvation caused by plants growing under short photoperiod or low light photon irradiance, as well as inactivation of TOR, impaired guard cell starch degradation and stomatal opening. Sugar and TOR induce the accumulation of β-AMYLASE1 (BAM1), which is responsible for starch degradation in guard cells. The plant steroid hormone brassinosteroid and transcription factor BRASSINAZOLE-RESISTANT1 play crucial roles in sugar-promoted expression of BAM1. Furthermore, sugar supply induced BAM1 accumulation, but TOR inactivation led to BAM1 degradation, and the effects of TOR inactivation on BAM1 degradation were abolished by the inhibition of autophagy and proteasome pathways or by phospho-mimicking mutation of BAM1 at serine-31. Such regulation of BAM1 activity by sugar-TOR signaling allows carbon availability to regulate guard cell starch metabolism and stomatal movement, ensuring optimal photosynthesis efficiency of plants.
Collapse
Affiliation(s)
- Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Wenbo Hua
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jinge Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yan Qiao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Wei Hao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Ruizi Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wenqiang Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
44
|
O’Leary BM. Guarding the gates: TOR mediates guard cell starch degradation to control stomatal opening. THE PLANT CELL 2022; 34:953-954. [PMID: 35243511 PMCID: PMC8894928 DOI: 10.1093/plcell/koab313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
|
45
|
Lin PA, Chen Y, Ponce G, Acevedo FE, Lynch JP, Anderson CT, Ali JG, Felton GW. Stomata-mediated interactions between plants, herbivores, and the environment. TRENDS IN PLANT SCIENCE 2022; 27:287-300. [PMID: 34580024 DOI: 10.1016/j.tplants.2021.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Stomata play a central role in plant responses to abiotic and biotic stresses. Existing knowledge regarding the roles of stomata in plant stress is centered on abiotic stresses and plant-pathogen interactions, but how stomata influence plant-herbivore interactions remains largely unclear. Here, we summarize the functions of stomata in plant-insect interactions and highlight recent discoveries of how herbivores manipulate plant stomata. Because stomata are linked to interrelated physiological processes in plants, herbivory-induced changes in stomatal dynamics might have cellular, organismic, and/or even community-level impacts. We summarize our current understanding of how stomata mediate plant responses to herbivory and environmental stimuli, propose how herbivores may influence these responses, and identify key knowledge gaps in plant-herbivore interactions.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, Pennsylvania State University, State College, PA, USA.
| | - Yintong Chen
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Gabriela Ponce
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| | - Flor E Acevedo
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| | - Jonathan P Lynch
- Department of Plant Science, Pennsylvania State University, State College, PA, USA
| | - Charles T Anderson
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Jared G Ali
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
46
|
Lim SL, Flütsch S, Liu J, Distefano L, Santelia D, Lim BL. Arabidopsis guard cell chloroplasts import cytosolic ATP for starch turnover and stomatal opening. Nat Commun 2022; 13:652. [PMID: 35115512 PMCID: PMC8814037 DOI: 10.1038/s41467-022-28263-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 01/12/2022] [Indexed: 01/28/2023] Open
Abstract
Stomatal opening requires the provision of energy in the form of ATP for proton pumping across the guard cell (GC) plasma membrane and for associated metabolic rearrangements. The source of ATP for GCs is a matter of ongoing debate that is mainly fuelled by controversies around the ability of GC chloroplasts (GCCs) to perform photosynthesis. By imaging compartment-specific fluorescent ATP and NADPH sensor proteins in Arabidopsis, we show that GC photosynthesis is limited and mitochondria are the main source of ATP. Unlike mature mesophyll cell (MC) chloroplasts, which are impermeable to cytosolic ATP, GCCs import cytosolic ATP through NUCLEOTIDE TRANSPORTER (NTT) proteins. GCs from ntt mutants exhibit impaired abilities for starch biosynthesis and stomatal opening. Our work shows that GCs obtain ATP and carbohydrates via different routes from MCs, likely to compensate for the lower chlorophyll contents and limited photosynthesis of GCCs. Stomatal guard cells require ATP in order to fuel stomatal movements. Here the authors show that guard cell photosynthesis is limited, mitochondria are the main source of ATP and that guard cell chloroplasts import ATP via nucleotide transporters.
Collapse
Affiliation(s)
- Shey-Li Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Sabrina Flütsch
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Jinhong Liu
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Luca Distefano
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China. .,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China. .,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
47
|
Cândido-Sobrinho SA, Lima VF, Freire FBS, de Souza LP, Gago J, Fernie AR, Daloso DM. Metabolism-mediated mechanisms underpin the differential stomatal speediness regulation among ferns and angiosperms. PLANT, CELL & ENVIRONMENT 2022; 45:296-311. [PMID: 34800300 DOI: 10.1111/pce.14232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Recent results suggest that metabolism-mediated stomatal closure mechanisms are important to regulate differentially the stomatal speediness between ferns and angiosperms. However, evidence directly linking mesophyll metabolism and the slower stomatal conductance (gs ) in ferns is missing. Here, we investigated the effect of exogenous application of abscisic acid (ABA), sucrose and mannitol on stomatal kinetics and carried out a metabolic fingerprinting analysis of ferns and angiosperms leaves harvested throughout a diel course. Fern stomata did not respond to ABA in the time period analysed. No differences in the relative decrease in gs was observed between ferns and the angiosperm following provision of sucrose or mannitol. However, ferns have slower gs responses to these compounds than angiosperms. Metabolomics analysis highlights that ferns have a higher accumulation of secondary rather than primary metabolites throughout the diel course, with the opposite being observed in angiosperms. Our results indicate that metabolism-mediated stomatal closure mechanisms underpin the differential stomatal speediness regulation among ferns and angiosperms, in which the slower stomatal closure in ferns is associated with the lack of ABA-responsiveness, to a reduced capacity to respond to mesophyll-derived sucrose and to a higher carbon allocation toward secondary metabolism, which likely modulates both photosynthesis-gs and growth-stress tolerance trade-offs.
Collapse
Affiliation(s)
- Silvio A Cândido-Sobrinho
- Departamento de Bioquímica e Biologia Molecular, LabPlant, Universidade Federal do Ceará, Fortaleza-CE, Brasil
| | - Valéria F Lima
- Departamento de Bioquímica e Biologia Molecular, LabPlant, Universidade Federal do Ceará, Fortaleza-CE, Brasil
| | - Francisco B S Freire
- Departamento de Bioquímica e Biologia Molecular, LabPlant, Universidade Federal do Ceará, Fortaleza-CE, Brasil
| | - Leonardo P de Souza
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Jorge Gago
- Research Group On Plant Biology Under Mediterranean Conditions, Instituto de investigaciones Agroambientales y de la Economía del Agua (INAGEA), Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, LabPlant, Universidade Federal do Ceará, Fortaleza-CE, Brasil
| |
Collapse
|
48
|
Blatt MR, Jezek M, Lew VL, Hills A. What can mechanistic models tell us about guard cells, photosynthesis, and water use efficiency? TRENDS IN PLANT SCIENCE 2022; 27:166-179. [PMID: 34565672 DOI: 10.1016/j.tplants.2021.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Stomatal pores facilitate gaseous exchange between the inner air spaces of the leaf and the atmosphere. The pores open to enable CO2 entry for photosynthesis and close to reduce transpirational water loss. How stomata respond to the environment has long attracted interest in modeling as a tool to understand the consequences for the plant and for the ecosystem. Models that focus on stomatal conductance for gas exchange make intuitive sense, but such models need also to connect with the mechanics of the guard cells that regulate pore aperture if we are to understand the 'decisions made' by stomata, their impacts on the plant and on the global environment.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK.
| | - Mareike Jezek
- Journal of Experimental Botany, Lancaster University, Lancaster LA1 4YW, UK
| | - Virgilio L Lew
- The Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, UK
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
49
|
David LC, Lee SK, Bruderer E, Abt MR, Fischer-Stettler M, Tschopp MA, Solhaug EM, Sanchez K, Zeeman SC. BETA-AMYLASE9 is a plastidial nonenzymatic regulator of leaf starch degradation. PLANT PHYSIOLOGY 2022; 188:191-207. [PMID: 34662400 PMCID: PMC8774843 DOI: 10.1093/plphys/kiab468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
β-Amylases (BAMs) are key enzymes of transitory starch degradation in chloroplasts, a process that buffers the availability of photosynthetically fixed carbon over the diel cycle to maintain energy levels and plant growth at night. However, during vascular plant evolution, the BAM gene family diversified, giving rise to isoforms with different compartmentation and biological activities. Here, we characterized BETA-AMYLASE 9 (BAM9) of Arabidopsis (Arabidopsis thaliana). Among the BAMs, BAM9 is most closely related to BAM4 but is more widely conserved in plants. BAM9 and BAM4 share features including their plastidial localization and lack of measurable α-1,4-glucan hydrolyzing capacity. BAM4 is a regulator of starch degradation, and bam4 mutants display a starch-excess phenotype. Although bam9 single mutants resemble the wild-type (WT), genetic experiments reveal that the loss of BAM9 markedly enhances the starch-excess phenotypes of mutants already impaired in starch degradation. Thus, BAM9 also regulates starch breakdown, but in a different way. Interestingly, BAM9 gene expression is responsive to several environmental changes, while that of BAM4 is not. Furthermore, overexpression of BAM9 in the WT reduced leaf starch content, but overexpression in bam4 failed to complement fully that mutant's starch-excess phenotype, suggesting that BAM9 and BAM4 are not redundant. We propose that BAM9 activates starch degradation, helping to manage carbohydrate availability in response to fluctuations in environmental conditions. As such, BAM9 represents an interesting gene target to explore in crop species.
Collapse
Affiliation(s)
- Laure C David
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Sang-Kyu Lee
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Eduard Bruderer
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Melanie R Abt
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Michaela Fischer-Stettler
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Marie-Aude Tschopp
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Erik M Solhaug
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Katarzyna Sanchez
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| |
Collapse
|
50
|
Ribeiro C, Stitt M, Hotta CT. How Stress Affects Your Budget-Stress Impacts on Starch Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:774060. [PMID: 35222460 PMCID: PMC8874198 DOI: 10.3389/fpls.2022.774060] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/12/2022] [Indexed: 05/16/2023]
Abstract
Starch is a polysaccharide that is stored to be used in different timescales. Transitory starch is used during nighttime when photosynthesis is unavailable. Long-term starch is stored to support vegetative or reproductive growth, reproduction, or stress responses. Starch is not just a reserve of energy for most plants but also has many other roles, such as promoting rapid stomatal opening, making osmoprotectants, cryoprotectants, scavengers of free radicals and signals, and reverting embolised vessels. Biotic and abiotic stress vary according to their nature, strength, duration, developmental stage of the plant, time of the day, and how gradually they develop. The impact of stress on starch metabolism depends on many factors: how the stress impacts the rate of photosynthesis, the affected organs, how the stress impacts carbon allocation, and the energy requirements involved in response to stress. Under abiotic stresses, starch degradation is usually activated, but starch accumulation may also be observed when growth is inhibited more than photosynthesis. Under biotic stresses, starch is usually accumulated, but the molecular mechanisms involved are largely unknown. In this mini-review, we explore what has been learned about starch metabolism and plant stress responses and discuss the current obstacles to fully understanding their interactions.
Collapse
Affiliation(s)
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Carlos Takeshi Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Carlos Takeshi Hotta,
| |
Collapse
|