1
|
Nishizato Y, Okumura T, Matsumoto K, Ueda M. Recent advances in the chemistry and biology of plant oxylipin hormones. Nat Prod Rep 2025. [PMID: 40275837 DOI: 10.1039/d5np00006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Jasmonates, including jasmonic acid (JA) and its derivatives, are lipid-based signaling molecules critical for plant growth, development, and defense. Among these, jasmonoyl-L-isoleucine (JA-Ile) has been identified as a bioactive plant hormone that mediates various physiological responses. JA-Ile functions in planta as a 'molecular glue' in protein-protein associations to induce the defense-related gene expression for plant-pathogen and plant-insect communications, and it affects many aspects of plant development and stress responses. This review explores the historical journey of jasmonate research, emphasizing the discovery of JA-Ile, its biosynthesis, function as a molecular glue, and the ligand-receptor co-evolutional aspect. The elucidation of the SCFCOI1-JAZ receptor complex and the crystallization of this co-receptor system marked significant advancements in understanding the chemical background of jasmonate biology. This review focuses on the advances in the chemistry and biology of jasmonate bioscience in the past two decades.
Collapse
Affiliation(s)
- Yuho Nishizato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Taichi Okumura
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Kotaro Matsumoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
2
|
Zhang R, Li C, Guo R, Li Z, Zhang B. Harnessing Jasmonate Pathways: PgJAR1's Impact on Ginsenoside Accumulation in Ginseng. PLANTS (BASEL, SWITZERLAND) 2025; 14:847. [PMID: 40265796 PMCID: PMC11945057 DOI: 10.3390/plants14060847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 04/24/2025]
Abstract
Ginsenosides, the most active components in Panax ginseng, exhibit pharmacological and therapeutic properties but are limited by their low abundance. Jasmonates (JAs), a class of stress-induced phytohormones, are integral in modulating plant defense responses and the biosynthesis of secondary metabolites, including ginsenosides. Jasmonoyl-isoleucine (JA-Ile), the primary bioactive JA compound, is biosynthesized by JA-Ile synthase 1 (JAR1). In this study, we cloned the 1555 bp PgJAR1 gene from ginseng roots and analyzed its structure, enzyme activity, and expression pattern. The PgJAR1 protein encompasses all the hallmark elements characteristic of the GH3 family. It exhibits N/C-terminal domains analogous to ANL, three ATP/AMP-binding motifs, and distinct secondary structures: an N-terminal beta-barrel with beta-sheets and alpha-helices, and a C-terminal beta-sheet surrounded by alpha-helices, similarly to AtGH3.11/AtJAR1. The recombinant PgJAR1 enzyme expressed in Escherichia coli BL21 specifically catalyzed jasmonic acid (JA) to JA-Ile. PgJAR1 is predominantly expressed in leaves and is upregulated by MeJA treatment. Moderate transient overexpression of PgJAR1 promoted the biosynthesis of both JA-Ile and ginsenosides, highlighting the crucial role of PgJAR1 in JA-Ile biosynthesis and its positive impact on ginsenoside accumulation. Nevertheless, elevated JA-Ile levels can impede cellular growth, reducing ginsenoside production. Consequently, balancing JA-Ile biosynthesis through PgJAR1 expression is essential for optimizing ginseng cultivation and enhancing its medicinal properties. Modulating endogenous JA-Ile levels offers a strategy for increasing ginsenoside production in ginseng plants.
Collapse
Affiliation(s)
- Ru Zhang
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China; (C.L.); (R.G.); (Z.L.); (B.Z.)
- Innovation Institute of Advanced Functional Materials, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Chao Li
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China; (C.L.); (R.G.); (Z.L.); (B.Z.)
- Innovation Institute of Advanced Functional Materials, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Rui Guo
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China; (C.L.); (R.G.); (Z.L.); (B.Z.)
- Innovation Institute of Advanced Functional Materials, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Zhaoying Li
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China; (C.L.); (R.G.); (Z.L.); (B.Z.)
- Innovation Institute of Advanced Functional Materials, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Bianling Zhang
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China; (C.L.); (R.G.); (Z.L.); (B.Z.)
- Innovation Institute of Advanced Functional Materials, Hunan Institute of Engineering, Xiangtan 411104, China
| |
Collapse
|
3
|
Wu S, Lan K, Wang Q, Su Y, Li D, Ma J, Hu T, Yin X, Wei Q. Comprehensive characterization of the bHLH transcription factor family in Curcuma wenyujin and functional elucidation of CwbHLH27 in jasmonate-regulated sesquiterpenoid biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109527. [PMID: 39862457 DOI: 10.1016/j.plaphy.2025.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Curcuma wenyujin is acknowledged as a crucial medicinal plant containing essential oils, primarily composed of sesquiterpenoids. While numerous sesquiterpenoids exhibit versatile physiological activities, their levels in C. wenyujin are generally low, particularly the pivotal anti-cancer component elemene. Our previous research demonstrated that basic helix-loop-helix (bHLH) is involved in modulating jasmonate-mediated sesquiterpenoid biosynthesis. In this study, a total of 106 CwbHLHs were identified and systematically analyzed. Under MeJA treatment, the expression levels of CwbHLH15, CwbHLH27, CwbHLH58, CwbHLH73, and CwbHLH89 were significantly upregulated, whereas CwbHLH81 was downregulated. Subsequently, CwbHLH27 was selected for further functional characterization. CwbHLH27 overexpression resulted in increased levels of β-elemene, γ-elemene, β-caryophyllene, and curzerene in C. wenyujin leaves. The expression levels of CwHMGS, CwHMGR, CwDXS, CwDXR, CwFPPS, and CwHDR, key enzyme genes in sesquiterpenoid biosynthesis, were upregulated in transgenic lines. Conversely, CwbHLH27 silencing resulted in the opposite effects. Further analysis revealed that CwbHLH27 activated the transcription of CwHMGS, CwHMGR, and CwDXS by directly binding to the E-box cis-elements within their promoters. Moreover, CwbHLH27 interacts with CwJAZ1/17, thereby executing JA signal transduction and regulating sesquiterpenoid biosynthesis in C. wenyujin. Finally, we elucidated the molecular mechanism by which the CwJAZs-CwbHLH27 regulatory module regulates sesquiterpenoid biosynthesis in response to JA signaling. Our research provides a molecular foundation for biotechnological-assisted breeding of varieties with enhanced active ingredient content.
Collapse
Affiliation(s)
- Shiyi Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Kaer Lan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Qian Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yi Su
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Dengyu Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jing Ma
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tianyuan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China; School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200030, China; Xinchang Pharmaceutical Factory, Zhejiang Medicine CO., LTD, China
| | - Xiaopu Yin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qiuhui Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China; School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200030, China; Xinchang Pharmaceutical Factory, Zhejiang Medicine CO., LTD, China.
| |
Collapse
|
4
|
Deng H, Wu M, Wu Y, Xiao X, Gao Z, Li H, Hu N, Gao Y, Grierson D, Liu M. SlMYC2-SlMYB12 module orchestrates a hierarchical transcriptional cascade that regulates fruit flavonoid metabolism in tomato. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:477-479. [PMID: 39506604 PMCID: PMC11772319 DOI: 10.1111/pbi.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Affiliation(s)
- Heng Deng
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
- School of Life Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
| | - Mengbo Wu
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Yi Wu
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Xiangxia Xiao
- School of Life Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
| | - Zhuo Gao
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Huirong Li
- College of Chemistry, Biology and EnvironmentYuxi Normal UniversityYuxiChina
| | - Nan Hu
- College of Biology and Food EngineeringAnyang Institute of TechnologyAnyangChina
| | - Yongfeng Gao
- School of Life Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
| | - Don Grierson
- School of BiosciencesUniversity of NottinghamLoughboroughUK
| | - Mingchun Liu
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
5
|
Rai S, Lemke MD, Arias AM, Gomez Mendez MF, Dehesh K, Woodson JD. Transcript profiling of plastid ferrochelatase two mutants reveals that chloroplast singlet oxygen signals lead to global changes in RNA profiles and are mediated by Plant U-Box 4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593788. [PMID: 38798329 PMCID: PMC11118471 DOI: 10.1101/2024.05.13.593788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background In response to environmental stresses, chloroplasts generate reactive oxygen species, including singlet oxygen (1O2), an excited state of oxygen that regulates chloroplast-to-nucleus (retrograde) signaling, chloroplast turnover, and programmed cell death (PCD). Yet, the central signaling mechanisms and downstream responses remain poorly understood. The Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant conditionally accumulates 1O2 and Plant U-Box 4 (PUB4), a cytoplasmic E3 ubiquitin ligase, is involved in propagating 1O2 signals for chloroplast turnover and cellular degradation. Thus, the fc2 and fc2 pub4 mutants are useful genetic tools to elucidate these signaling pathways. Previous studies have focused on the role of 1O2 in promoting cellular degradation in fc2 mutants, but its impact on retrograde signaling from mature chloroplasts (the major site of 1O2 production) is poorly understood. Results To gain mechanistic insights into 1O2 signaling pathways, we compared transcriptomes of adult wt, fc2, and fc2 pub4 plants. The accumulation of 1O2 in fc2 plants broadly repressed genes involved in chloroplast function and photosynthesis, while inducing genes and transcription factors involved in abiotic and biotic stress, the biosynthesis of jasmonic acid (JA) and salicylic acid (SA), microautophagy, and senescence. Elevated JA and SA levels were observed in 1O2-stressed fc2 plants. pub4 reversed most of this 1O2-induced gene expression and reduced the JA content in fc2 plants. The pub4 mutation also blocked JA-induced senescence pathways in the dark. However, fc2 pub4 plants maintained constitutively elevated levels of SA even in the absence of bulk 1O2 accumulation. Conclusions Together, this work demonstrates that in fc2 plants, 1O2 leads to a robust retrograde signal that may protect cells by downregulating photosynthesis and ROS production while simultaneously mounting a stress response involving SA and JA. The induction of microautophagy and senescence pathways indicate that 1O2-induced cellular degradation is a genetic response to this stress, and the bulk of this transcriptional response is modulated by the PUB4 protein. However, the effect of pub4 on hormone synthesis and signaling is complex and indicates that an intricate interplay of SA and JA are involved in promoting stress responses and programmed cell death during photo-oxidative damage.
Collapse
Affiliation(s)
- Snigdha Rai
- The School of Plant Sciences, University of Arizona, Tucson, AZ
| | | | - Anika M. Arias
- The School of Plant Sciences, University of Arizona, Tucson, AZ
| | - Maria F. Gomez Mendez
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA
| | | |
Collapse
|
6
|
Hernández-Esquivel AA, Torres-Olmos JA, Méndez-Gómez M, Castro-Mercado E, Flores-Cortéz I, Peña-Uribe CA, Campos-García J, López-Bucio J, Reyes-de la Cruz H, Valencia-Cantero E, García-Pineda E. Hydrogen peroxide modulates the expression of the target of rapamycin (TOR) and cell division in Arabidopsis thaliana. PROTOPLASMA 2024; 261:1147-1158. [PMID: 38802622 DOI: 10.1007/s00709-024-01959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Hydrogen peroxide (H2O2) is naturally produced by plant cells during normal development and serves as a messenger that regulates cell metabolism. Despite its importance, the relationship between hydrogen peroxide and the target of rapamycin (TOR) pathway, as well as its impact on cell division, has been poorly analyzed. In this study, we explore the interaction of H2O2 with TOR, a serine/threonine protein kinase that plays a central role in controlling cell growth, size, and metabolism in Arabidopsis thaliana. By applying two concentrations of H2O2 exogenously (0.5 and 1 mM), we could correlate developmental traits, such as primary root growth, lateral root formation, and fresh weight, with the expression of the cell cycle gene CYCB1;1, as well as TOR expression. When assessing the expression of the ribosome biogenesis-related gene RPS27B, an increase of 94.34% was noted following exposure to 1 mM H2O2 treatment. This increase was suppressed by the TOR inhibitor torin 2. The elimination of H2O2 accumulation with ascorbic acid (AA) resulted in decreased cell division as well as TOR expression. The potential molecular mechanisms associated with the effects of H2O2 on the cell cycle and TOR expression in roots are discussed in the context of the results.
Collapse
Affiliation(s)
- Alma Alejandra Hernández-Esquivel
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B1, Morelia, Michoacán, CP 58040, México
| | - Jorge Alejandro Torres-Olmos
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B1, Morelia, Michoacán, CP 58040, México
| | - Manuel Méndez-Gómez
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Unidad Irapuato, 36821, Irapuato, Gto., México
| | - Elda Castro-Mercado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B1, Morelia, Michoacán, CP 58040, México
| | - Idolina Flores-Cortéz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B1, Morelia, Michoacán, CP 58040, México
| | - César Arturo Peña-Uribe
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B1, Morelia, Michoacán, CP 58040, México
| | - Jesús Campos-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B1, Morelia, Michoacán, CP 58040, México
| | - José López-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B1, Morelia, Michoacán, CP 58040, México
| | - Homero Reyes-de la Cruz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B1, Morelia, Michoacán, CP 58040, México
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B1, Morelia, Michoacán, CP 58040, México
| | - Ernesto García-Pineda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B1, Morelia, Michoacán, CP 58040, México.
| |
Collapse
|
7
|
Jia Y, Chen L, Kang L, Fu X, Zheng S, Wu Y, Wu T, Cai R, Wan X, Wang P, Yin X, Pan C. Nano-Selenium and Glutathione Enhance Cucumber Resistance to Botrytis cinerea by Promoting Jasmonic Acid-Mediated Cucurbitacin Biosynthesis. ACS NANO 2024. [PMID: 39047071 DOI: 10.1021/acsnano.4c05827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Nano-selenium (Nano-Se), as a biological stimulant, promotes plant growth and development, as well as defense against biotic and abiotic stresses. Glutathione (GSH) is a crucial antioxidant and is also involved in the plant defense response to various stresses. In this study, the efficacy of combined treatment of Nano-Se and GSH (SeG) on the resistance of cucumber plants to Botrytis cinerea was investigated in terms of the plant phenotype, gene expression, and levels of accumulated metabolites using transcriptomic and metabolomic analyses. The exogenous application of SeG significantly enhanced plant growth and increased photosynthetic pigment contents and capacity. Notably, B. cinerea infection was reduced markedly by 41.9% after SeG treatment. At the molecular level, the SeG treatment activated the alpha-linolenic acid metabolic pathway and upregulated the expression of genes responsible for jasmonic acid (JA) synthesis, including LOX (210%), LOX4 (430%), AOS1 (100%), and AOC2 (120%), therefore promoting JA accumulation in cucumber. Intriguingly, the level of cucurbitacin, an important phytoalexin in cucurbitaceous plants, was found to be increased in SeG-treated cucumber plants, as was the expression of cucurbitacin biosynthesis-related genes OSC (107.5%), P450 (440.8%,31.6%), and ACT (414.0%). These genes were also upregulated by JA treatment, suggesting that JA may be an upstream regulator of cucurbitacin biosynthesis. Taken together, this study demonstrated that pretreatment of cucumber plants with SeG could activate the JA signaling pathway and promote cucurbitacin biosynthesis to enhance the resistance of the plants to B. cinerea infection. The findings also indicate that SeG is a promising biostimulant for protecting cucumber plants from B. cinerea infection without growth loss.
Collapse
Affiliation(s)
- Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Lanqi Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Lu Kang
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Xiaorui Fu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Shuyang Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Yangliu Wu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Tong Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Runze Cai
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xiaoying Wan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Ping Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xuebin Yin
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Wu Y, Dong G, Luo F, Xie H, Li X, Yan J. TkJAZs-TkMYC2-TkSRPP/REF Regulates the Biosynthesis of Natural Rubber in Taraxacum kok-saghyz. PLANTS (BASEL, SWITZERLAND) 2024; 13:2034. [PMID: 39124151 PMCID: PMC11314035 DOI: 10.3390/plants13152034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Taraxacum kok-saghyz (TKS) is a natural rubber (NR)-producing plant and a model plant for studying the biosynthesis of NR. Analyzing and studying the biosynthetic mechanism of NR is an important way to cultivate high-yield rubber TKS varieties. JAZ proteins, which belong to the Jasmonate ZIM domain family, function as negative regulators in the jasmonic acid (JA) signal transduction pathway. MYC2 is typically regarded as a regulatory factor for the target genes of JAZ proteins; JAZ proteins indirectly influence the gene expression regulated by MYC2 by modulating its activity. Theoretically, JAZ is expected to participate in growth, development, and responses to environmental cues related to rubber and biomass accumulation in TKS, all of which rely on the interaction between JAZ and MYC2. In this study, we identified 11 TkJAZs through homology searching of the TKS genomes and bioinformatics analyses. Subcellular localization, Y2H, and BiFC analysis demonstrate that TkJAZs and TkMYC2 are localized in the nucleus, with all TkJAZs and TkMYC2 showing nuclear colocalization interactions. Overexpression of TkMYC2 in TKS inhibited leaf development, promoted root growth, and simultaneously increased NR production. RNA-seq and qRT-PCR analysis revealed that the TkSRPP/REF genes exhibit varying degrees of upregulation compared to the wild type, upregulating the TkREF1 gene by 3.7-fold, suggesting that TkMYC2 regulates the synthesis of NR by modulating the TkSRPP/REF genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Yan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.W.); (G.D.); (F.L.); (H.X.); (X.L.)
| |
Collapse
|
9
|
Li Y, Cheng Y, Wei F, Liu Y, Zhu R, Zhao P, Zhang J, Xiang C, Kang E, Shang Z. Arabidopsis thaliana MYC2 and MYC3 Are Involved in Ethylene-Regulated Hypocotyl Growth as Negative Regulators. Int J Mol Sci 2024; 25:8022. [PMID: 39125592 PMCID: PMC11311335 DOI: 10.3390/ijms25158022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The ethylene-regulated hypocotyl elongation of Arabidopsis thaliana involves many transcription factors. The specific role of MYC transcription factors in ethylene signal transduction is not completely understood. The results here revealed that two MYCs, MYC2 and MYC3, act as negative regulators in ethylene-suppressed hypocotyl elongation. Etiolated seedlings of the loss-of-function mutant of MYC2 or MYC3 were significantly longer than wild-type seedlings. Single- or double-null mutants of MYC2 and MYC3 displayed remarkably enhanced response to ACC(1-aminocyclopropane-1-carboxylate), the ethylene precursor, compared to wild-type seedlings. MYC2 and MYC3 directly bind to the promoter zone of ERF1, strongly suppressing its expression. Additionally, EIN3, a key component in ethylene signaling, interacts with MYC2 or MYC3 and significantly suppresses their binding to ERF1's promoter. MYC2 and MYC3 play crucial roles in the ethylene-regulated expression of functional genes. The results revealed the novel role and functional mechanism of these transcription factors in ethylene signal transduction. The findings provide valuable information for deepening our understanding of their role in regulating plant growth and responding to stress.
Collapse
Affiliation(s)
- Yuke Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.L.); (Y.C.); (F.W.); (Y.L.)
| | - Ying Cheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.L.); (Y.C.); (F.W.); (Y.L.)
| | - Fan Wei
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.L.); (Y.C.); (F.W.); (Y.L.)
| | - Yingxiao Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.L.); (Y.C.); (F.W.); (Y.L.)
| | - Ruojia Zhu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
| | - Pingxia Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230026, China; (P.Z.); (J.Z.); (C.X.)
| | - Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230026, China; (P.Z.); (J.Z.); (C.X.)
| | - Chengbin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230026, China; (P.Z.); (J.Z.); (C.X.)
| | - Erfang Kang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.L.); (Y.C.); (F.W.); (Y.L.)
| | - Zhonglin Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.L.); (Y.C.); (F.W.); (Y.L.)
| |
Collapse
|
10
|
Liu L, Zhang Y, Tang C, Wu J, Fu J, Wang Q. Genome-wide identification of ZmMYC2 binding sites and target genes in maize. BMC Genomics 2024; 25:397. [PMID: 38654166 PMCID: PMC11036654 DOI: 10.1186/s12864-024-10297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Jasmonate (JA) is the important phytohormone to regulate plant growth and adaption to stress signals. MYC2, an bHLH transcription factor, is the master regulator of JA signaling. Although MYC2 in maize has been identified, its function remains to be clarified. RESULTS To understand the function and regulatory mechanism of MYC2 in maize, the joint analysis of DAP-seq and RNA-seq is conducted to identify the binding sites and target genes of ZmMYC2. A total of 3183 genes are detected both in DAP-seq and RNA-seq data, potentially as the directly regulating genes of ZmMYC2. These genes are involved in various biological processes including plant growth and stress response. Besides the classic cis-elements like the G-box and E-box that are bound by MYC2, some new motifs are also revealed to be recognized by ZmMYC2, such as nGCATGCAnn, AAAAAAAA, CACGTGCGTGCG. The binding sites of many ZmMYC2 regulating genes are identified by IGV-sRNA. CONCLUSIONS All together, abundant target genes of ZmMYC2 are characterized with their binding sites, providing the basis to construct the regulatory network of ZmMYC2 and better understanding for JA signaling in maize.
Collapse
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, China
- College of Life Science, Sichuan Agricultural University, 625014, Yaan, China
| | - Yuhan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, China
| | - Chen Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, China
| | - Jine Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, China
| | - Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, China.
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, China.
| |
Collapse
|
11
|
Furuta Y, Yamamoto H, Hirakawa T, Uemura A, Pelayo MA, Iimura H, Katagiri N, Takeda-Kamiya N, Kumaishi K, Shirakawa M, Ishiguro S, Ichihashi Y, Suzuki T, Goh T, Toyooka K, Ito T, Yamaguchi N. Petal abscission is promoted by jasmonic acid-induced autophagy at Arabidopsis petal bases. Nat Commun 2024; 15:1098. [PMID: 38321030 PMCID: PMC10847506 DOI: 10.1038/s41467-024-45371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
In angiosperms, the transition from floral-organ maintenance to abscission determines reproductive success and seed dispersion. For petal abscission, cell-fate decisions specifically at the petal-cell base are more important than organ-level senescence or cell death in petals. However, how this transition is regulated remains unclear. Here, we identify a jasmonic acid (JA)-regulated chromatin-state switch at the base of Arabidopsis petals that directs local cell-fate determination via autophagy. During petal maintenance, co-repressors of JA signaling accumulate at the base of petals to block MYC activity, leading to lower levels of ROS. JA acts as an airborne signaling molecule transmitted from stamens to petals, accumulating primarily in petal bases to trigger chromatin remodeling. This allows MYC transcription factors to promote chromatin accessibility for downstream targets, including NAC DOMAIN-CONTAINING PROTEIN102 (ANAC102). ANAC102 accumulates specifically at the petal base prior to abscission and triggers ROS accumulation and cell death via AUTOPHAGY-RELATED GENEs induction. Developmentally induced autophagy at the petal base causes maturation, vacuolar delivery, and breakdown of autophagosomes for terminal cell differentiation. Dynamic changes in vesicles and cytoplasmic components in the vacuole occur in many plants, suggesting JA-NAC-mediated local cell-fate determination by autophagy may be conserved in angiosperms.
Collapse
Affiliation(s)
- Yuki Furuta
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Haruka Yamamoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takeshi Hirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Akira Uemura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Margaret Anne Pelayo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
- Smurfit Institute of Genetics, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | - Hideaki Iimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Naoya Katagiri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Noriko Takeda-Kamiya
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kie Kumaishi
- RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Makoto Shirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi-shi, Japan
| | - Sumie Ishiguro
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tatsuaki Goh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
12
|
Dwivedi S, Singh D, Singh N, Trivedi PK. Advances in regulatory mechanism(s) and biotechnological approaches to modulate nicotine content in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108397. [PMID: 38316099 DOI: 10.1016/j.plaphy.2024.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
More than 8 million deaths are caused by tobacco-related diseases every year. A staggering 1.2 million of those fatalities occur due to second-hand smoke exposure among non-smokers, but more than 7 million are due to direct tobacco use among smokers. Nicotine acts as the key ingredient triggering the addiction. The United States Food and Drug Administration (FDA) has classified more than 90 chemical components of tobacco and related smoke as hazardous or potentially hazardous leading to cancer, cardiovascular, respiratory, and reproductive disorders. Hence, reducing nicotine content has been the foremost objective to reduce health and death risks. Therefore, various biotechnological approaches for developing tobacco varieties with low nicotine concentrations are urgently required for the welfare of humankind. In recent years, numerous advancements have been made in nicotine-based tobacco research, suggesting regulatory components involved in nicotine biosynthesis and developing nicotine-less tobacco varieties through biotechnological approaches. This review highlights the various regulatory components and major approaches used to modulate nicotine content in tobacco cultivars.
Collapse
Affiliation(s)
- Shambhavi Dwivedi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Deeksha Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nivedita Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Prabodh Kumar Trivedi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Liu Y, Wu S, Lan K, Wang Q, Ye T, Jin H, Hu T, Xie T, Wei Q, Yin X. An Investigation of the JAZ Family and the CwMYC2-like Protein to Reveal Their Regulation Roles in the MeJA-Induced Biosynthesis of β-Elemene in Curcuma wenyujin. Int J Mol Sci 2023; 24:15004. [PMID: 37834452 PMCID: PMC10573570 DOI: 10.3390/ijms241915004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
β-Elemene (C15H24), a sesquiterpenoid compound isolated from the volatile oil of Curcuma wenyujin, has been proven to be effective for multiple cancers and is widely used in clinical treatment. Unfortunately, the β-elemene content in C. wenyujin is very low, which cannot meet market demands. Our previous research showed that methyl jasmonate (MeJA) induced the accumulation of β-elemene in C. wenyujin. However, the regulatory mechanism is unclear. In this study, 20 jasmonate ZIM-domain (JAZ) proteins in C. wenyujin were identified, which are the core regulatory factors of the JA signaling pathway. Then, the conservative domains, motifs composition, and evolutionary relationships of CwJAZs were analyzed comprehensively and systematically. The interaction analysis indicated that CwJAZs can form homodimers or heterodimers. Fifteen out of twenty CwJAZs were significantly induced via MeJA treatment. As the master switch of the JA signaling pathway, the CwMYC2-like protein has also been identified and demonstrated to interact with CwJAZ2/3/4/5/7/15/17/20. Further research found that the overexpression of the CwMYC2-like gene increased the accumulation of β-elemene in C. wenyujin leaves. Simultaneously, the expressions of HMGR, HMGS, DXS, DXR, MCT, HDS, HDR, and FPPS related to β-elemene biosynthesis were also up-regulated by the CwMYC2-like protein. These results indicate that CwJAZs and the CwMYC2-like protein respond to the JA signal to regulate the biosynthesis of β-elemene in C. wenyujin.
Collapse
Affiliation(s)
- Yuyang Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Shiyi Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
| | - Kaer Lan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
| | - Qian Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
| | - Tingyu Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
| | - Huanan Jin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianyuan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiuhui Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaopu Yin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (S.W.); (K.L.); (Q.W.); (T.Y.); (H.J.); (T.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
14
|
Wu Q, Zheng D, Lian N, Zhu X, Wu J. Hormonal Regulation and Stimulation Response of Jatropha curcas L. Homolog Overexpression on Tobacco Leaf Growth by Transcriptome Analysis. Int J Mol Sci 2023; 24:13183. [PMID: 37685991 PMCID: PMC10487882 DOI: 10.3390/ijms241713183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
The Flowering locus T (FT) gene encodes the florigen protein, which primarily regulates the flowering time in plants. Recent studies have shown that FT genes also significantly affect plant growth and development. The FT gene overexpression in plants promotes flowering and suppresses leaf and stem development. This study aimed to conduct a transcriptome analysis to investigate the multiple effects of Jatropha curcas L. homolog (JcFT) overexpression on leaf growth in tobacco plants. The findings revealed that JcFT overexpression affected various biological processes during leaf development, including plant hormone levels and signal transduction, lipid oxidation metabolism, terpenoid metabolism, and the jasmonic-acid-mediated signaling pathway. These results suggested that the effects of FT overexpression in plants were complex and multifaceted, and the combination of these factors might contribute to a reduction in the leaf size. This study comprehensively analyzed the effects of JcFT on leaf development at the transcriptome level and provided new insights into the function of FT and its homologous genes.
Collapse
Affiliation(s)
- Qiuhong Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.W.); (N.L.)
| | - Dongchao Zheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Na Lian
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.W.); (N.L.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| | - Xuli Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.W.); (N.L.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| | - Jun Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
- Sichuan-Chongqing Key Laboratory of Characteristic Biological Resources Research and Utilization, Chengdu 610065, China
| |
Collapse
|
15
|
Zou J, Chen X, Liu C, Guo M, Kanwar MK, Qi Z, Yang P, Wang G, Bao Y, Bassham DC, Yu J, Zhou J. Autophagy promotes jasmonate-mediated defense against nematodes. Nat Commun 2023; 14:4769. [PMID: 37553319 PMCID: PMC10409745 DOI: 10.1038/s41467-023-40472-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Autophagy, as an intracellular degradation system, plays a critical role in plant immunity. However, the involvement of autophagy in the plant immune system and its function in plant nematode resistance are largely unknown. Here, we show that root-knot nematode (RKN; Meloidogyne incognita) infection induces autophagy in tomato (Solanum lycopersicum) and different atg mutants exhibit high sensitivity to RKNs. The jasmonate (JA) signaling negative regulators JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2 and JAM3 interact with ATG8s via an ATG8-interacting motif (AIM), and JAM1 is degraded by autophagy during RKN infection. JAM1 impairs the formation of a transcriptional activation complex between ETHYLENE RESPONSE FACTOR 1 (ERF1) and MEDIATOR 25 (MED25) and interferes with transcriptional regulation of JA-mediated defense-related genes by ERF1. Furthermore, ERF1 acts in a positive feedback loop and regulates autophagy activity by transcriptionally activating ATG expression in response to RKN infection. Therefore, autophagy promotes JA-mediated defense against RKNs via forming a positive feedback circuit in the degradation of JAMs and transcriptional activation by ERF1.
Collapse
Affiliation(s)
- Jinping Zou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Xinlin Chen
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Chenxu Liu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Mingyue Guo
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- Agricultural Experiment Station, Zhejiang University, 310058, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, 310058, Hangzhou, China
| | - Guanghui Wang
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, 276000, Linyi, China
| | - Yan Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China.
- Hainan Institute, Zhejiang University, 572000, Sanya, China.
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China.
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, 276000, Linyi, China.
| |
Collapse
|
16
|
Zhao X, Jiang X, Li Z, Song Q, Xu C, Luo K. Jasmonic acid regulates lignin deposition in poplar through JAZ5-MYB/NAC interaction. FRONTIERS IN PLANT SCIENCE 2023; 14:1232880. [PMID: 37546258 PMCID: PMC10401599 DOI: 10.3389/fpls.2023.1232880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
Jasmonic acid (JA) is a phytohormone involved in plant defense, growth, and development, etc. However, the regulatory mechanisms underlying JA-mediated lignin deposition and secondary cell wall (SCW) formation remain poorly understood. In this study, we found that JA can inhibit lignin deposition and SCW thickening in poplar trees through exogenous MeJA treatment and observation of the phenotypes of a JA synthesis mutant, opdat1. Hence, we identified a JA signal inhibitor PtoJAZ5, belonging to the TIFY gene family, which is involved in the regulation of secondary vascular development of Populus tomentosa. RT-qPCR and GUS staining revealed that PtoJAZ5 was highly expressed in poplar stems, particularly in developing xylem. Overexpression of PtoJAZ5 inhibited SCW thickening and down-regulated the expression of SCW biosynthesis-related genes. Further biochemical analysis showed that PtoJAZ5 interacted with multiple SCW switches NAC/MYB transcription factors, including MYB3 and WND6A, through yeast two-hybrid and bimolecular fluorescent complementation experiments. Transcriptional activation assays demonstrated that MYB3-PtoJAZ5 and WND6A-PtoJAZ5 complexes regulated the expression of lignin synthetic genes. Our results suggest that PtoJAZ5 plays a negative role in JA-induced lignin deposition and SCW thickening in poplar and provide new insights into the molecular mechanisms underlying JA-mediated regulation of SCW formation.
Collapse
Affiliation(s)
- Xin Zhao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xuemei Jiang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Zeyu Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Changzhen Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Luo D, Sun W, Cai J, Hu G, Zhang D, Zhang X, Larkin RM, Zhang J, Yang C, Ye Z, Wang T. SlBBX20 attenuates JA signalling and regulates resistance to Botrytis cinerea by inhibiting SlMED25 in tomato. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:792-805. [PMID: 36582069 PMCID: PMC10037119 DOI: 10.1111/pbi.13997] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Jasmonic acid (JA) plays an important role in regulating plant growth and defence responses. Here, we show that a transcription factor that belongs to the B-box (BBX) family named SlBBX20 regulates resistance to Botrytis cinerea in tomato by modulating JA signalling. The response to JA was significantly suppressed when SlBBX20 was overexpressed in tomato. By contrast, the JA response was enhanced in SlBBX20 knockout lines. RNA sequencing analysis provided more evidence that SlBBX20 modulates the expression of genes that are involved in JA signalling. We found that SlBBX20 interacts with SlMED25, a subunit of the Mediator transcriptional co-activator complex, and prevents the accumulation of the SlMED25 protein and transcription of JA-responsive genes. JA contributes to the defence response against necrotrophic pathogens. Knocking out SlBBX20 or overexpressing SlMED25 enhanced tomato resistance to B. cinerea. The resistance was impaired when SlBBX20 was overexpressed in plants that also overexpressed SlMED25. These data show that SlBBX20 attenuates JA signalling by regulating SlMED25. Interestingly, in addition to developing enhanced resistance to B. cinerea, SlBBX20-KO plants also produced higher fruit yields. SlBBX20 is a potential target gene for efforts that aim to develop elite crop varieties using gene editing technologies.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Wenhui Sun
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Jun Cai
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Guoyu Hu
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Danqiu Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Xiaoyan Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Robert M. Larkin
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Junhong Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Changxian Yang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Zhibiao Ye
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Taotao Wang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| |
Collapse
|
18
|
Wang N, Shu X, Zhang F, Wang Z. Transcriptome-wide characterization of bHLH transcription factor genes in Lycoris radiata and functional analysis of their response to MeJA. FRONTIERS IN PLANT SCIENCE 2023; 13:975530. [PMID: 36704164 PMCID: PMC9872026 DOI: 10.3389/fpls.2022.975530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
As one of the biggest plant specific transcription factor (TF) families, basic helix-loop-helix (bHLH) protein, plays significant roles in plant growth, development, and abiotic stress responses. However, there has been minimal research about the effects of methyl jasmonate (MeJA) treatment on the bHLH gene family in Lycoris radiata (L'Her.) Herb. In this study, based on transcriptome sequencing data, 50 putative L. radiata bHLH (LrbHLH) genes with complete open reading frames (ORFs), which were divided into 20 bHLH subfamilies, were identified. The protein motif analyses showed that a total of 10 conserved motifs were found in LrbHLH proteins and motif 1 and motif 2 were the most highly conserved motifs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of LrbHLH genes revealed their involvement in regulation of plant growth, jasmonic acid (JA) mediated signaling pathway, photoperiodism, and flowering. Furthermore, subcellular localization revealed that most LrbHLHs were located in the nucleus. Expression pattern analysis of LrbHLH genes in different tissues and at flower developmental stages suggested that their expression differed across lineages and might be important for plant growth and organ development in Lycoris. In addition, all LrbHLH genes exhibited specific spatial and temporal expression patterns under MeJA treatment. Moreover, protein-protein interaction (PPI) network analysis and yeast two-hybrid assay showed that numerous LrbHLHs could interact with jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins. This research provides a theoretical basis for further investigation of LrbHLHs to find their functions and insights for their regulatory mechanisms involved in JA signaling pathway.
Collapse
|
19
|
Li TY, Ye C, Zhang YJ, Zhang JX, Yang M, He XH, Mei XY, Liu YX, Zhu YY, Huang HC, Zhu SS. 2,3-Butanediol from the leachates of pine needles induces the resistance of Panax notoginseng to the leaf pathogen Alternaria panax. PLANT DIVERSITY 2023; 45:104-116. [PMID: 36876306 PMCID: PMC9975478 DOI: 10.1016/j.pld.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 06/03/2023]
Abstract
Compared with the use of monocultures in the field, cultivation of medicinal herbs in forests is an effective strategy to alleviate disease. Chemical interactions between herbs and trees play an important role in disease suppression in forests. We evaluated the ability of leachates from needles of Pinus armandii to induce resistance in Panax notoginseng leaves, identified the components via gas chromatography-mass spectrometry (GC-MS), and then deciphered the mechanism of 2,3-Butanediol as the main component in the leachates responsible for resistance induction via RNA sequencing (RNA-seq). Prespraying leachates and 2,3-Butanediol onto leaves could induce the resistance of P. notoginseng to Alternaria panax. The RNA-seq results showed that prespraying 2,3-Butanediol onto leaves with or without A. panax infection upregulated the expression of large number of genes, many of which are involved in transcription factor activity and the mitogen-activated protein kinase (MAPK) signaling pathway. Specifically, 2,3-Butanediol spraying resulted in jasmonic acid (JA) -mediated induced systemic resistance (ISR) by activating MYC2 and ERF1. Moreover, 2,3-Butanediol induced systemic acquired resistance (SAR) by upregulating pattern-triggered immunity (PTI)- and effector-triggered immunity (ETI)-related genes and activated camalexin biosynthesis through activation of WRKY33. Overall, 2,3-Butanediol from the leachates of pine needles could activate the resistance of P. notoginseng to leaf disease infection through ISR, SAR and camalexin biosynthesis. Thus, 2,3-Butanediol is worth developing as a chemical inducer for agricultural production.
Collapse
Affiliation(s)
- Tian-Yao Li
- School of Agriculture, Yunnan University, Kunming, 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Yi-Jie Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Xing Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Xia-Hong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
- Southwest Forestry University, Kunming, 650224, China
| | - Xin-Yue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Yi-Xiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - You-Yong Zhu
- School of Agriculture, Yunnan University, Kunming, 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Hui-Chuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Shu-Sheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
20
|
Zhang Y, Xing H, Wang H, Yu L, Yang Z, Meng X, Hu P, Fan H, Yu Y, Cui N. SlMYC2 interacted with the SlTOR promoter and mediated JA signaling to regulate growth and fruit quality in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1013445. [PMID: 36388521 PMCID: PMC9647163 DOI: 10.3389/fpls.2022.1013445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Tomato (Solanum lycopersicum) is a major vegetable crop cultivated worldwide. The regulation of tomato growth and fruit quality has long been a popular research topic. MYC2 is a key regulator of the interaction between jasmonic acid (JA) signaling and other signaling pathways, and MYC2 can integrate the interaction between JA signaling and other hormone signals to regulate plant growth and development. TOR signaling is also an essential regulator of plant growth and development. However, it is unclear whether MYC2 can integrate JA signaling and TOR signaling during growth and development in tomato. Here, MeJA treatment and SlMYC2 overexpression inhibited the growth and development of tomato seedlings and photosynthesis, but increased the sugar-acid ratio and the contents of lycopene, carotenoid, soluble sugar, total phenol and flavonoids, indicating that JA signaling inhibited the growth of tomato seedlings and altered fruit quality. When TOR signaling was inhibited by RAP, the JA content increased, and the growth and photosynthesis of tomato seedlings decreased, indicating that TOR signaling positively regulated the growth and development of tomato seedlings. Further yeast one-hybrid assays showed that SlMYC2 could bind directly to the SlTOR promoter. Based on GUS staining analysis, SlMYC2 regulated the transcription of SlTOR, indicating that SlMYC2 mediated the interaction between JA and TOR signaling by acting on the promoter of SlTOR. This study provides a new strategy and some theoretical basis for tomato breeding.
Collapse
Affiliation(s)
- Yujiao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongyun Xing
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Haoran Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lan Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Zhi Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Pengpeng Hu
- Department of Foreign Language Teaching, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
21
|
Xu BQ, Wang JJ, Peng Y, Huang H, Sun LL, Yang R, Suo LN, Wang SH, Zhao WC. SlMYC2 mediates stomatal movement in response to drought stress by repressing SlCHS1 expression. FRONTIERS IN PLANT SCIENCE 2022; 13:952758. [PMID: 35937339 PMCID: PMC9354244 DOI: 10.3389/fpls.2022.952758] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/04/2022] [Indexed: 05/27/2023]
Abstract
Drought stress limits plant development and reproduction. Multiple mechanisms in plants are activated to respond to stress. The MYC2 transcription factor is a core regulator of the jasmonate (JA) pathway and plays a vital role in the crosstalk between abscisic acid (ABA) and JA. In this study, we found that SlMYC2 responded to drought stress and regulated stomatal aperture in tomato (Solanum lycopersicum). Overexpression of SlMYC2 repressed SlCHS1 expression and decreased the flavonol content, increased the reactive oxygen species (ROS) content in guard cells and promoted the accumulation of JA and ABA in leaves. Additionally, silencing the SlCHS1 gene produced a phenotype that was similar to that of the MYC2-overexpressing (MYC2-OE) strain, especially in terms of stomatal dynamics and ROS levels. Finally, we confirmed that SlMYC2 directly repressed the expression of SlCHS1. Our study revealed that SlMYC2 drove stomatal closure by modulating the accumulation of flavonol and the JA and ABA contents, helping us decipher the mechanism of stomatal movement under drought stress.
Collapse
Affiliation(s)
- Bing-Qin Xu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Bei Jing Bei Nong Enterprise Management Co., Ltd., Beijing, China
| | - Jing-Jing Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yi Peng
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Huang Huang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Lu-Lu Sun
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Rui Yang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Lin-Na Suo
- Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Shao-Hui Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Wen-Chao Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
22
|
Chen J, Yang S, Fan B, Zhu C, Chen Z. The Mediator Complex: A Central Coordinator of Plant Adaptive Responses to Environmental Stresses. Int J Mol Sci 2022; 23:ijms23116170. [PMID: 35682844 PMCID: PMC9181133 DOI: 10.3390/ijms23116170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 01/25/2023] Open
Abstract
As sessile organisms, plants are constantly exposed to a variety of environmental stresses and have evolved adaptive mechanisms, including transcriptional reprogramming, in order to survive or acclimate under adverse conditions. Over the past several decades, a large number of gene-specific transcription factors have been identified in the transcriptional regulation of plant adaptive responses. The Mediator complex plays a key role in transducing signals from gene-specific transcription factors to the transcription machinery to activate or repress target gene expression. Since its first purification about 15 years ago, plant Mediator complex has been extensively analyzed for its composition and biological functions. Mutants of many plant Mediator subunits are not lethal but are compromised in growth, development and response to biotic and abiotic stress, underscoring a particularly important role in plant adaptive responses. Plant Mediator subunits also interact with partners other than transcription factors and components of the transcription machinery, indicating the complexity of the regulation of gene expression by plant Mediator complex. Here, we present a comprehensive discussion of recent analyses of the structure and function of plant Mediator complex, with a particular focus on its roles in plant adaptive responses to a wide spectrum of environmental stresses and associated biological processes.
Collapse
Affiliation(s)
- Jialuo Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
| | - Su Yang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| |
Collapse
|
23
|
Genome-wide analysis of JAZ family genes expression patterns during fig (Ficus carica L.) fruit development and in response to hormone treatment. BMC Genomics 2022; 23:170. [PMID: 35236292 PMCID: PMC8889711 DOI: 10.1186/s12864-022-08420-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Jasmonate-ZIM domain (JAZ) repressors negatively regulate signal transduction of jasmonates, which regulate plant development and immunity. However, no comprehensive analysis of the JAZ gene family members has been done in the common fig (Ficus carica L.) during fruit development and hormonal treatment. RESULTS In this study, 10 non-redundant fig JAZ family genes (FcJAZs) distributed on 7 chromosomes were identified in the fig genome. Phylogenetic and structural analysis showed that FcJAZ genes can be grouped into 5 classes. All the classes contained relatively complete TIFY and Jas domains. Yeast two hybrid (Y2H) results showed that all FcJAZs proteins may interact with the identified transcription factor, FcMYC2. Tissue-specific expression analysis showed that FcJAZs were highly expressed in the female flowers and roots. Expression patterns of FcJAZs during the fruit development were analyzed by RNA-Seq and qRT-PCR. The findings showed that, most FcJAZs were significantly downregulated from stage 3 to 5 in the female flower, whereas downregulation of these genes was observed in the fruit peel from stage 4 to 5. Weighted-gene co-expression network analysis (WGCNA) showed the expression pattern of FcJAZs was correlated with hormone signal transduction and plant-pathogen interaction. Putative cis-elements analysis of FcJAZs and expression patterns of FcJAZs which respond to hormone treatments revealed that FcJAZs may regulate fig fruit development by modulating the effect of ethylene or gibberellin. CONCLUSIONS This study provides a comprehensive analysis of the FcJAZ family members and provides information on FcJAZs contributions and their role in regulating the common fig fruit development.
Collapse
|
24
|
Liu Q, Li L, Cheng H, Yao L, Wu J, Huang H, Ning W, Kai G. The basic helix-loop-helix transcription factor TabHLH1 increases chlorogenic acid and luteolin biosynthesis in Taraxacum antungense Kitag. HORTICULTURE RESEARCH 2021; 8:195. [PMID: 34465735 PMCID: PMC8408231 DOI: 10.1038/s41438-021-00630-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
Polyphenols are the main active components of the anti-inflammatory compounds in dandelion, and chlorogenic acid (CGA) is one of the primary polyphenols. However, the molecular mechanism underlying the transcriptional regulation of CGA biosynthesis remains unclear. Hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase (HQT2) is the last rate-limiting enzyme in chlorogenic acid biosynthesis in Taraxacum antungense. Therefore, using the TaHQT2 gene promoter as a probe, a yeast one-hybrid library was performed, and a basic helix-loop-helix (bHLH) transcription factor, TabHLH1, was identified that shared substantial homology with Gynura bicolor DC bHLH1. The TabHLH1 transcript was highly induced by salt stress, and the TabHLH1 protein was localized in the nucleus. CGA and luteolin concentrations in TabHLH1-overexpression transgenic lines were significantly higher than those in the wild type, while CGA and luteolin concentrations in TabHLH1-RNA interference (RNAi) transgenic lines were significantly lower. Quantitative real-time polymerase chain reaction demonstrated that overexpression and RNAi of TabHLH1 in T. antungense significantly affected CGA and luteolin concentrations by upregulating or downregulating CGA and luteolin biosynthesis pathway genes, especially TaHQT2, 4-coumarate-CoA ligase (Ta4CL), chalcone isomerase (TaCHI), and flavonoid-3'-hydroxylase (TaF3'H). Dual-luciferase, yeast one-hybrid, and electrophoretic mobility shift assays indicated that TabHLH1 directly bound to the bHLH-binding motifs of proTaHQT2 and proTa4CL. This study suggests that TabHLH1 participates in the regulatory network of CGA and luteolin biosynthesis in T. antungense and might be useful for metabolic engineering to promote plant polyphenol biosynthesis.
Collapse
Affiliation(s)
- Qun Liu
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmacy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem.Sun Yat-Sen), Nanjing, 210014, China
| | - Li Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haitao Cheng
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lixiang Yao
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, PR China
| | - Jie Wu
- College of Life Sciences and Engineering, Shenyang University, Shenyang, 110044, PR China
| | - Hui Huang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmacy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Wei Ning
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmacy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| |
Collapse
|
25
|
Martínez-Arias C, Sobrino-Plata J, Gil L, Rodríguez-Calcerrada J, Martín JA. Priming of Plant Defenses against Ophiostoma novo-ulmi by Elm ( Ulmus minor Mill.) Fungal Endophytes. J Fungi (Basel) 2021; 7:687. [PMID: 34575725 PMCID: PMC8469682 DOI: 10.3390/jof7090687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/28/2022] Open
Abstract
Some fungal endophytes of forest trees are recognized as beneficial symbionts against stresses. In previous works, two elm endophytes from the classes Cystobasidiomycetes and Eurotiomycetes promoted host resistance to abiotic stress, and another elm endophyte from Dothideomycetes enhanced host resistance to Dutch elm disease (DED). Here, we hypothesize that the combined effect of these endophytes activate the plant immune and/or antioxidant system, leading to a defense priming and/or increased oxidative protection when exposed to the DED pathogen Ophiostoma novo-ulmi. To test this hypothesis, the short-term defense gene activation and antioxidant response were evaluated in DED-susceptible (MDV1) and DED-resistant (VAD2 and MDV2.3) Ulmus minor genotypes inoculated with O. novo-ulmi, as well as two weeks earlier with a mixture of the above-mentioned endophytes. Endophyte inoculation induced a generalized transient defense activation mediated primarily by salicylic acid (SA). Subsequent pathogen inoculation resulted in a primed defense response of variable intensity among genotypes. Genotypes MDV1 and VAD2 displayed a defense priming driven by SA, jasmonic acid (JA), and ethylene (ET), causing a reduced pathogen spread in MDV1. Meanwhile, the genotype MDV2.3 showed lower defense priming but a stronger and earlier antioxidant response. The defense priming stimulated by elm fungal endophytes broadens our current knowledge of the ecological functions of endophytic fungi in forest trees and opens new prospects for their use in the biocontrol of plant diseases.
Collapse
Affiliation(s)
- Clara Martínez-Arias
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.S.-P.); (L.G.); (J.R.-C.); (J.A.M.)
| | | | | | | | | |
Collapse
|
26
|
Son S, Kwon M, Im JH. A New Approach for Wounding Research: MYC2 Gene Expression and Protein Stability in Wounded Arabidopsis Protoplasts. PLANTS 2021; 10:plants10081518. [PMID: 34451563 PMCID: PMC8399638 DOI: 10.3390/plants10081518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
Wounding is a constant threat to plant survival throughout their lifespan; therefore, understanding the biological responses to wounds at the cellular level is important. The protoplast system is versatile for molecular biology, however, no wounding studies on this system have been reported. We established a new approach for wounding research using mechanically damaged Arabidopsis mesophyll protoplasts. Wounded protoplasts showed typical wounding responses, such as increased MPK6 kinase activity and upregulated JAZ1 expression. We also assessed expression profiles and protein stability of the basic helix-loop-helix transcription factor MYC2 in wounded protoplasts. Promoter activity, gene expression, and protein stability of MYC2 were compromised, but recovered in the early stage of wounding. In the late stage, the promoter activity and expression of MYC2 were increased, but the protein stability was not changed. According to the results of the present study, this new cell-based approach will be of use in various molecular studies on plant wounding.
Collapse
Affiliation(s)
- Seungmin Son
- Department of Life Sciences, Korea University, 145 Anamro, Sungbuk-gu, Seoul 136701, Korea;
- National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Korea
| | - Miye Kwon
- Jeju Biodiversity Research Institute (JBRI), Jeju Technopark (JTP), Jeju 63608, Korea
- Correspondence: (M.K.); (J.H.I.); Tel.: +82-64-720-2817 (M.K.); +1-517-353-0458 (J.H.I.)
| | - Jong Hee Im
- Department of Life Sciences, Korea University, 145 Anamro, Sungbuk-gu, Seoul 136701, Korea;
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (M.K.); (J.H.I.); Tel.: +82-64-720-2817 (M.K.); +1-517-353-0458 (J.H.I.)
| |
Collapse
|
27
|
Zhang T, Yuan Y, Zhan Y, Cao X, Liu C, Zhang Y, Gai S. Metabolomics analysis reveals Embden Meyerhof Parnas pathway activation and flavonoids accumulation during dormancy transition in tree peony. BMC PLANT BIOLOGY 2020; 20:484. [PMID: 33096979 PMCID: PMC7583197 DOI: 10.1186/s12870-020-02692-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/08/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Bud dormancy is a sophisticated strategy which plants evolve to survive in tough environments. Endodormancy is a key obstacle for anti-season culture of tree peony, and sufficient chilling exposure is an effective method to promote dormancy release in perennial plants including tree peony. However, the mechanism of dormancy release is still poorly understood, and there are few systematic studies on the metabolomics during chilling induced dormancy transition. RESULTS The tree peony buds were treated with artificial chilling, and the metabolmics analysis was employed at five time points after 0-4 °C treatment for 0, 7, 14, 21 and 28 d, respectively. A total of 535 metabolites were obtained and devided into 11 groups including flavonoids, amino acid and its derivatives, lipids, organic acids and its derivates, nucleotide and its derivates, alkaloids, hydroxycinnamoyl derivatives, carbohydrates and alcohols, phytohormones, coumarins and vitamins. Totally, 118 differential metabolites (VIP ≥ 1, P < 0.05) during chilling treatment process were detected, and their KEGG pathways involved in several metabolic pathways related to dormancy. Sucrose was the most abundant carbohydrate in peony bud. Starch was degradation and Embden Meyerhof Parnas (EMP) activity were increased during the dormancy release process, according to the variations of sugar contents, related enzyme activities and key genes expression. Flavonoids synthesis and accumulation were also promoted by prolonged chilling. Moreover, the variations of phytohormones (salicylic acid, jasmonic acid, abscisic acid, and indole-3-acetic acid) indicated they played different roles in dormancy transition. CONCLUSION Our study suggested that starch degradation, EMP activation, and flavonoids accumulation were crucial and associated with bud dormancy transition in tree peony.
Collapse
Affiliation(s)
- Tao Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Yanchao Yuan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Yu Zhan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Xinzhe Cao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109 China
| |
Collapse
|
28
|
Zhai Q, Deng L, Li C. Mediator subunit MED25: at the nexus of jasmonate signaling. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:78-86. [PMID: 32777679 DOI: 10.1016/j.pbi.2020.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 05/26/2023]
Abstract
Upon perception by plant cells, the immunity hormone jasmonate (JA) triggers a genome-wide transcriptional program, which is largely regulated by the master transcription factor MYC2. The function of MYC2 depends on its physical and functional interaction with MED25, a subunit of the Mediator transcriptional co-activator complex. In addition to interacting with MYC2 and RNA polymerase II for preinitiation complex formation, MED25 also interacts with multiple genetic and epigenetic regulators and controls almost every step of MYC2-dependent transcription, including nuclear hormone receptor activation, epigenetic regulation, mRNA processing, transcriptional termination, and chromatin loop formation. These diversified functions have ascribed MED25 to a signal-processing and signal-integrating center during JA-regulated gene transcription. This review is focused on the interactions of MED25 with diverse transcriptional regulators and how these mechanistic interactions contribute to the initiation, amplification, and fine tuning of the transcriptional output of JA signaling.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Methyl Jasmonate Affects Photosynthesis Efficiency, Expression of HvTIP Genes and Nitrogen Homeostasis in Barley. Int J Mol Sci 2020; 21:ijms21124335. [PMID: 32570736 PMCID: PMC7352393 DOI: 10.3390/ijms21124335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
Jasmonates modulate many growth and developmental processes and act as stress hormones that play an important role in plant tolerance to biotic and abiotic stresses. Therefore, there is a need to identify the genes that are regulated through the jasmonate signalling pathway. Aquaporins, and among them the Tonoplast Intrinsic Proteins (TIPs), form the channels in cell membranes that are responsible for the precise regulation of the movement of water and other substrates between cell compartments. We identified the cis-regulatory motifs for the methyl jasmonate (MeJA)-induced genes in the promoter regions of all the HvTIP genes, which are active in barley seedlings, and thus we hypothesised that the HvTIP expression could be a response to jasmonate signalling. In the presented study, we determined the effect of methyl jasmonate on the growth parameters and photosynthesis efficiency of barley seedlings that had been exposed to different doses of MeJA (15–1000 µM × 120 h) in a hydroponic solution. All of the applied MeJA concentrations caused a significant reduction of barley seedling growth, which was most evident in the length of the first leaf sheath and dry leaf weight. The observed decrease of the PSII parameters after the exposure to high doses of MeJA (500 µM or higher) was associated with the downregulation of HvPsbR gene encoding one of the extrinsic proteins of the Oxygen Evolving Complex. The reduced expression of HvPsbR might lead to the impairment of the OEC action, manifested by the occurrence of the K-band in an analysis of fluorescence kinetics after MeJA treatment as well as reduced photosynthesis efficiency. Furthermore, methyl jasmonate treatment caused a decrease in the nitrogen content in barley leaves, which was associated with an increased expression the four tonoplast aquaporin genes (HvTIP1;2, HvTIP2;2, HvTIP4;1 and HvTIP4;2) predicted to transport the nitrogen compounds from the vacuole to the cytosol. The upregulation of the nitrogen-transporting HvTIPs might suggest their involvement in the vacuolar unloading of ammonia and urea, which both could be remobilised when the nitrogen content in the leaves decreases. Our research provides tips on physiological role of the individual TIP subfamily members of aquaporins under methyl jasmonate action.
Collapse
|
30
|
Wu Q, Gao H, Zhang Z, Li T, Qu H, Jiang Y, Yun Z. Deciphering the Metabolic Pathways of Pitaya Peel after Postharvest Red Light Irradiation. Metabolites 2020; 10:metabo10030108. [PMID: 32183356 PMCID: PMC7143668 DOI: 10.3390/metabo10030108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Red light irradiation can effectively prolong the shelf-life of many fruit. However, little is known about red light-induced metabolite and enzyme activities. In this study, pitaya fruit was treated with 100 Lux red light for 24 h. Red light irradiation significantly attenuated the variation trend of senescence traits, such as the decrease of total soluble solid (TSS) and TSS/acidity (titratable acidity, TA) ratio, the increase of TA, and respiratory rate. In addition, the reactive oxygen species (ROS) related characters, primary metabolites profiling, and volatile compounds profiling were determined. A total of 71 primary metabolites and 67 volatile compounds were detected and successfully identified by using gas chromatography mass spectrometry (GC-MS). Red light irradiation enhanced glycolysis, tricarboxylic acid (TCA) cycle, aldehydes metabolism, and antioxidant enzymes activities at early stage of postharvest storage, leading to the reduction of H2O2, soluble sugars, organic acids, and C-6 and C-7 aldehydes. At a later stage of postharvest storage, a larger number of resistance-related metabolites and enzyme activities were induced in red light-treated pitaya peel, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical-scavenging, reducing power, fatty acids, and volatile aroma.
Collapse
Affiliation(s)
- Qixian Wu
- Center of Economic Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.W.); (T.L.); (H.Q.); (Y.J.)
| | - Huijun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510600, China;
| | - Zhengke Zhang
- College of Food Science and Technology, Hainan University, Haikou 570228, China;
| | - Taotao Li
- Center of Economic Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.W.); (T.L.); (H.Q.); (Y.J.)
| | - Hongxia Qu
- Center of Economic Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.W.); (T.L.); (H.Q.); (Y.J.)
| | - Yueming Jiang
- Center of Economic Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.W.); (T.L.); (H.Q.); (Y.J.)
| | - Ze Yun
- Center of Economic Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.W.); (T.L.); (H.Q.); (Y.J.)
- Correspondence: ; Tel.: +86-20-37252525
| |
Collapse
|
31
|
Comprehensive Analysis of the TIFY Gene Family and Its Expression Profiles under Phytohormone Treatment and Abiotic Stresses in Roots of Populus trichocarpa. FORESTS 2020. [DOI: 10.3390/f11030315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The TIFY gene family is specific to land plants, exerting immense influence on plant growth and development as well as responses to biotic and abiotic stresses. Here, we identify 25 TIFY genes in the poplar (Populus trichocarpa) genome. Phylogenetic tree analysis revealed these PtrTIFY genes were divided into four subfamilies within two groups. Promoter cis-element analysis indicated most PtrTIFY genes possess stress- and phytohormone-related cis-elements. Quantitative real-time reverse transcription polymerase chain reaction (qRT–PCR) analysis showed that PtrTIFY genes displayed different expression patterns in roots under abscisic acid, methyl jasmonate, and salicylic acid treatments, and drought, heat, and cold stresses. The protein interaction network indicated that members of the PtrTIFY family may interact with COI1, MYC2/3, and NINJA. Our results provide important information and new insights into the evolution and functions of TIFY genes in P. trichocarpa.
Collapse
|
32
|
Zhao XY, Qi CH, Jiang H, Zhong MS, You CX, Li YY, Hao YJ. MdHIR4 transcription and translation levels associated with disease in apple are regulated by MdWRKY31. PLANT MOLECULAR BIOLOGY 2019; 101:149-162. [PMID: 31267255 DOI: 10.1007/s11103-019-00898-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/26/2019] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE Here we describe that the regulation of MdWRKY31 on MdHIR4 in transcription and translation levels associated with disease in apple. The phytohormone salicylic acid (SA) is a main factor in apple (Malus domestica) production due to its function in disease resistance. WRKY transcription factors play a vital role in response to stress. An RNA-seq analysis was conducted with 'Royal Gala' seedlings treated with SA to identify the WRKY regulatory mechanism of disease resistance in apple. The analysis indicated that MdWRKY31 was induced. A quantitative real-time polymerase chain reaction (qPCR) analysis demonstrated that the expression of MdWRKY31 was induced by SA and flg22. Ectopic expression of MdWRKY31 in Arabidopsis and Nicotiana benthamiana increased the resistance to flg22 and Pseudomonas syringae tomato (Pst DC3000). A yeast two-hybrid screen was conducted to further analyze the function of MdWRKY31. As a result, hypersensitive-induced reaction (HIR) protein MdHIR4 interacted with MdWRKY31. Biomolecular fluorescence complementation, yeast two-hybrid, and pull-down assays demonstrated the interaction. In our previous study, MdHIR4 conferred decreased resistance to Botryosphaeria dothidea (B. dothidea). A viral vector-based transformation assay indicated that MdWRKY31 evaluated the transcription of SA-related genes, including MdPR1, MdPR5, and MdNPR1 in an MdHIR4-dependent way. A GUS analysis demonstrated that the w-box, particularly w-box2, of the MdHIR4 promoter played a major role in the responses to SA and B. dothidea. Electrophoretic mobility shift assays, yeast one-hybrid assay, and chromatin immunoprecipitation-qPCR demonstrated that MdWRKY31 directly bound to the w-box2 motif in the MdHIR4 promoter. GUS staining activity and a protein intensity analysis further showed that MdWRKY31 repressed MdHIR4 expression. Taken together, our findings reveal that MdWRKY31 regulated plant resistance to B. dothidea through the SA signaling pathway by interacting with MdHIR4.
Collapse
Affiliation(s)
- Xian-Yan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chen-Hui Qi
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming-Shuang Zhong
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yuan-Yuan Li
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|