1
|
Zhang J, Pan B, Yang J, Pan Q, Zhu P, Yang J, Zhang M, Xiao Q. LoniComp: a platform for gene function comparison and analysis between Lonicera japonica and Lonicera macranthoides. BMC Genomics 2025; 26:328. [PMID: 40170166 PMCID: PMC11963319 DOI: 10.1186/s12864-025-11507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
Lonicera japonica and L. macranthoides are popular medicinal plants used for treating various diseases. Recently, new chromosome level genomes of Lonicera have provided a huge resource for understanding gene function. Although LjaFGD was created for analyzing L. japonica gene functions, it is now outdated due to updated genomes and more transcriptome data. Utilizing new chromosome-level genomic and transcriptomic data, we developed co-expression networks of L. japonica and L. macranthoides. Gene annotations were performed by comparing sequences with NR, TAIR, Swissprot, and trEMBL databases. GO and KEGG annotations were predicted using InterProScan and GhostKOALA software, while gene families were identified with iTAK, HMMER, and InParanoid. To fully leverage the utilization value of public resources and data, we developed LoniComp ( www.gzybioinformatics.cn/LoniComp ) as a newer and information-rich alternative, a platform for gene function comparison and analysis by integrating genomic, transcriptomic data and processed functional annotations. It features tools like BLAST, Extract Sequence, Enrichment, Heatmap, DEG, and JBrowse2. We demonstrated its use with examples like LjFT and LjMYB12. It offers superior genomic data, transcriptomic resources, and analysis tools compared to LjaFGD, aiding researchers in gene function studies and comparison.
Collapse
Affiliation(s)
- Jingjie Zhang
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Bingbing Pan
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Jiangxin Yang
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Qi Pan
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Panpan Zhu
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Jiaotong Yang
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Mian Zhang
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Qiaoqiao Xiao
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China.
| |
Collapse
|
2
|
Thoris K, Correa Marrero M, Fiers M, Lai X, Zahn I, Jiang X, Mekken M, Busscher S, Jansma S, Nanao M, de Ridder D, van Dijk AJ, Angenent G, Immink RH, Zubieta C, Bemer M. Uncoupling FRUITFULL's functions through modification of a protein motif identified by co-ortholog analysis. Nucleic Acids Res 2024; 52:13290-13304. [PMID: 39475190 PMCID: PMC11602133 DOI: 10.1093/nar/gkae963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Many plant transcription factors (TFs) are multifunctional and regulate growth and development in more than one tissue. These TFs can generally associate with different protein partners depending on the tissue type, thereby regulating tissue-specific target gene sets. However, how interaction specificity is ensured is still largely unclear. Here, we examine protein-protein interaction specificity using subfunctionalized co-orthologs of the FRUITFULL (FUL) subfamily of MADS-domain TFs. In Arabidopsis, FUL is multifunctional, playing important roles in flowering and fruiting, whereas these functions have partially been divided in the tomato co-orthologs FUL1 and FUL2. By linking protein sequence and function, we discovered a key amino acid motif that determines interaction specificity of MADS-domain TFs, which in Arabidopsis FUL determines the interaction with AGAMOUS and SEPALLATA proteins, linked to the regulation of a subset of targets. This insight offers great opportunities to dissect the biological functions of multifunctional MADS TFs.
Collapse
Affiliation(s)
- Kai Thoris
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Miguel Correa Marrero
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Martijn Fiers
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Xuelei Lai
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, Université Grenoble Alpes, INRAE, IRIG, CEA, 38000 Grenoble, Grenoble, France
| | - Iris E Zahn
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Xiaobing Jiang
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Mark Mekken
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Stefan Busscher
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Stuart Jansma
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Max Nanao
- Structural Biology, European Synchrotron Radiation Facility, 71 ave. des Martyrs, 38000 Grenoble, France
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, Université Grenoble Alpes, INRAE, IRIG, CEA, 38000 Grenoble, Grenoble, France
| | - Marian Bemer
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
3
|
Deng M, Ma F, Zhai L, Zhang X, Zhang N, Zheng Y, Chen W, Zhou W, Pang K, Zhou J, Sun Q, Sun J. The effector SJP3 interferes with pistil development by sustaining SHORT VEGETATIVE PHASE 3 expression in jujube. PLANT PHYSIOLOGY 2024; 196:1923-1938. [PMID: 39189604 DOI: 10.1093/plphys/kiae447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/28/2024]
Abstract
Jujube witches' broom (JWB) is a phytoplasma disease that causes severe damage to jujube (Ziziphus jujuba) crops worldwide. Diseased jujube plants show enhanced vegetative growth after floral reversion, including leafy flower structures (phyllody) and the fourth whorl converting into a vegetative shoot. In previous research, secreted JWB protein 3 (SJP3) was identified as an inducer of phyllody. However, the molecular mechanisms of SJP3-mediated pistil reversion remain unknown. Here, the effector SJP3 was found to interact with the MADS-box protein SHORT VEGETATIVE PHASE 3 (ZjSVP3). ZjSVP3 was expressed in young leaves and during the initial flower bud differentiation of healthy jujube-bearing shoots but was constitutively expressed in JWB phytoplasma-infected flowers until the later stage of floral development. The SJP3 effector showed the same expression pattern in the diseased buds and promoted ZjSVP3 accumulation in SJP3 transgenic jujube calli. The N-terminal domains of ZjSVP3 contributed to its escape from protein degradation in the presence of SJP3. Heterologous expression of ZjSVP3 in Nicotiana benthamiana produced typical pistil abnormalities, including trichome-enriched style and stemlike structures within the leaflike ovary, which were consistent with those in the mildly malformed lines overexpressing SJP3. Furthermore, ectopic expression of ZjSVP3 directly bound to the zinc finger protein 8 (ZjZFP8) and MADS-box gene SHATTERPROOF 1 (ZjSHP1) promoters to regulate their expression, resulting in abnormal pistil development. Overall, effector SJP3-mediated derepression of ZjSVP3 sustained its expression to interfere with pistil development, providing insight into the mechanisms of pistil reversion caused by JWB phytoplasma in specific perennial woody plant species.
Collapse
Affiliation(s)
- Mingsheng Deng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230001, Anhui Province, People's Republic of China
| | - Fuli Ma
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Liping Zhai
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Xinyue Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Ning Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Yunyan Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Wei Chen
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Wenmin Zhou
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Kaixue Pang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Junyong Zhou
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230001, Anhui Province, People's Republic of China
| | - Qibao Sun
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230001, Anhui Province, People's Republic of China
| | - Jun Sun
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| |
Collapse
|
4
|
Song W, Xie Y, Liu B, Huang Y, Cheng Z, Zhao Z, Tian D, Geng Y, Guo J, Li C, She D, Zhong Y, Li M, Liu L, Chen J, Sun C, Zhang X, Zhou Z, Lai J, Xin M, Yan L, Zhao J, Zhang X. Single nucleotide polymorphisms in SEPALLATA 2 underlie fruit length variation in cucurbits. THE PLANT CELL 2024; 36:4607-4621. [PMID: 39133577 PMCID: PMC11448892 DOI: 10.1093/plcell/koae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 10/05/2024]
Abstract
Complete disruption of critical genes is generally accompanied by severe growth and developmental defects, which dramatically hinder its utilization in crop breeding. Identifying subtle changes, such as single-nucleotide polymorphisms (SNPs), in critical genes that specifically modulate a favorable trait is a prerequisite to fulfill breeding potential. Here, we found 2 SNPs in the E-class floral organ identity gene cucumber (Cucumis sativus) SEPALLATA2 (CsSEP2) that specifically regulate fruit length. Haplotype (HAP) 1 (8G2667A) and HAP2 (8G2667T) exist in natural populations, whereas HAP3 (8A2667T) is induced by ethyl methanesulfonate mutagenesis. Phenotypic characterization of 4 near-isogenic lines and a mutant line showed that HAP2 fruits are significantly longer than those of HAP1, and those of HAP3 are 37.8% longer than HAP2 fruit. The increasing fruit length in HAP1-3 was caused by a decreasing inhibitory effect on CRABS CLAW (CsCRC) transcription (a reported positive regulator of fruit length), resulting in enhanced cell expansion. Moreover, a 7638G/A-SNP in melon (Cucumis melo) CmSEP2 modulates fruit length in a natural melon population via the conserved SEP2-CRC module. Our findings provide a strategy for utilizing essential regulators with pleiotropic effects during crop breeding.
Collapse
Affiliation(s)
- Weiyuan Song
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yang Xie
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Yuxiang Huang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zhihua Cheng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zilong Zhao
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Di Tian
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yan Geng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jingyu Guo
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chuang Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Daixi She
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yanting Zhong
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Min Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Liu Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jiacai Chen
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chengzhen Sun
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Xuejun Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Zhaoyang Zhou
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jinsheng Lai
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Ming Xin
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin 150030, P. R.China
| | - Liying Yan
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| |
Collapse
|
5
|
Hugouvieux V, Blanc-Mathieu R, Janeau A, Paul M, Lucas J, Xu X, Ye H, Lai X, Le Hir S, Guillotin A, Galien A, Yan W, Nanao M, Kaufmann K, Parcy F, Zubieta C. SEPALLATA-driven MADS transcription factor tetramerization is required for inner whorl floral organ development. THE PLANT CELL 2024; 36:3435-3450. [PMID: 38771250 PMCID: PMC11371193 DOI: 10.1093/plcell/koae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 05/22/2024]
Abstract
MADS transcription factors are master regulators of plant reproduction and flower development. The SEPALLATA (SEP) subfamily of MADS transcription factors is required for the development of floral organs and plays roles in inflorescence architecture and development of the floral meristem. SEPALLATAs act as organizers of MADS complexes, forming both heterodimers and heterotetramers in vitro. To date, the MADS complexes characterized in angiosperm floral organ development contain at least 1 SEPALLATA protein. Whether DNA binding by SEPALLATA-containing dimeric MADS complexes is sufficient for launching floral organ identity programs, however, is not clear as only defects in floral meristem determinacy were observed in tetramerization-impaired SEPALLATA mutant proteins. Here, we used a combination of genome-wide-binding studies, high-resolution structural studies of the SEP3/AGAMOUS (AG) tetramerization domain, structure-based mutagenesis and complementation experiments in Arabidopsis (Arabidopsis thaliana) sep1 sep2 sep3 and sep1 sep2 sep3 ag-4 plants transformed with versions of SEP3 encoding tetramerization mutants. We demonstrate that while SEP3 heterodimers can bind DNA both in vitro and in vivo and recognize the majority of SEP3 wild-type-binding sites genome-wide, tetramerization is required not only for floral meristem determinacy but also for floral organ identity in the second, third, and fourth whorls.
Collapse
Affiliation(s)
- Veronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Romain Blanc-Mathieu
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Aline Janeau
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Michel Paul
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Jeremy Lucas
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Xiaocai Xu
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Hailong Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuelei Lai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Sarah Le Hir
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Audrey Guillotin
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Antonin Galien
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Wenhao Yan
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Max Nanao
- Structural Biology Group, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - François Parcy
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 17 rue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
6
|
Yang Q, Luo L, Jiao X, Chen X, Liu Y, Liu Z. APETALA2-like Floral Homeotic Protein Up-Regulating FaesAP1_2 Gene Involved in Floral Development in Long-Homostyle Common Buckwheat. Int J Mol Sci 2024; 25:7193. [PMID: 39000299 PMCID: PMC11241573 DOI: 10.3390/ijms25137193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
In the rosid species Arabidopsis thaliana, the AP2-type AP2 transcription factor (TF) is required for specifying the sepals and petals identities and confers a major A-function to antagonize the C-function in the outer floral whorls. In the asterid species Petunia, the AP2-type ROB TFs are required for perianth and pistil development, as well as repressing the B-function together with TOE-type TF BEN. In Long-homostyle (LH) Fagopyrum esculentum, VIGS-silencing showed that FaesAP2 is mainly involved in controlling filament and style length, but FaesTOE is mainly involved in regulating filament length and pollen grain development. Both FaesAP2 (AP2-type) and FaesTOE (TOE-type) are redundantly involved in style and/or filament length determination instead of perianth development. However, neither FaesAP2 nor FaesTOE could directly repress the B and/or C class genes in common buckwheat. Moreover, the FaesAP1_2 silenced flower showed tepal numbers, and filament length decreased obviously. Interestingly, yeast one-hybrid (Y1H) and dual-luciferase reporter (DR) further suggested that FaesTOE directly up-regulates FaesAP1_2 to be involved in filament length determination in LH common buckwheat. Moreover, the knockdown of FaesTOE expression could result in expression down-regulation of the directly target FaesAP1_2 in the FaesTOE-silenced LH plants. Our findings uncover a stamen development pathway in common buckwheat and offer deeper insight into the functional evolution of AP2 orthologs in the early-diverging core eudicots.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhixiong Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (Q.Y.); (L.L.); (X.J.); (X.C.); (Y.L.)
| |
Collapse
|
7
|
Martínez-Fernández I, Fourquin C, Lindsay D, Berbel A, Balanzà V, Huang S, Dalmais M, LeSignor C, Bendahmane A, Warkentin TD, Madueño F, Ferrándiz C. Analysis of pea mutants reveals the conserved role of FRUITFULL controlling the end of flowering and its potential to boost yield. Proc Natl Acad Sci U S A 2024; 121:e2321975121. [PMID: 38557190 PMCID: PMC11009629 DOI: 10.1073/pnas.2321975121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Monocarpic plants have a single reproductive phase in their life. Therefore, flower and fruit production are restricted to the length of this period. This reproductive strategy involves the regulation of flowering cessation by a coordinated arrest of the growth of the inflorescence meristems, optimizing resource allocation to ensure seed filling. Flowering cessation appears to be a regulated phenomenon in all monocarpic plants. Early studies in several species identified seed production as a major factor triggering inflorescence proliferative arrest. Recently, genetic factors controlling inflorescence arrest, in parallel to the putative signals elicited by seed production, have started to be uncovered in Arabidopsis, with the MADS-box gene FRUITFULL (FUL) playing a central role in the process. However, whether the genetic network regulating arrest is also at play in other species is completely unknown. Here, we show that this role of FUL is not restricted to Arabidopsis but is conserved in another monocarpic species with a different inflorescence structure, field pea, strongly suggesting that the network controlling the end of flowering is common to other plants. Moreover, field trials with lines carrying mutations in pea FUL genes show that they could be used to boost crop yield.
Collapse
Affiliation(s)
- Irene Martínez-Fernández
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Chloe Fourquin
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Donna Lindsay
- Department of Plant Sciences, College of Agriculture and Bio-Resources, University of Saskatchewan, Saskatoon, SKS7N5A8, Canada
| | - Ana Berbel
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Vicente Balanzà
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Shaoming Huang
- Department of Plant Sciences, College of Agriculture and Bio-Resources, University of Saskatchewan, Saskatoon, SKS7N5A8, Canada
| | - Marion Dalmais
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette91190, France
| | - Christine LeSignor
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Dijon21000, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette91190, France
| | - Thomas D. Warkentin
- Department of Plant Sciences, College of Agriculture and Bio-Resources, University of Saskatchewan, Saskatoon, SKS7N5A8, Canada
| | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia46022, Spain
| |
Collapse
|
8
|
Yang L, Qiao X, He HE, Yi WW, Gao YN, Tan XM, Cheng H, Hou XF, Ma YY, Wang HL, Huang X, Ma YQ, Xu ZQ. IiAGL6 participates in the regulation of stamen development and pollen formation in Isatis indigotica. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111974. [PMID: 38199385 DOI: 10.1016/j.plantsci.2024.111974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
The AGL6 (AGMOUSE LIKE 6) gene is a member of the SEP subfamily and functions as an E-class floral homeotic gene in the development of floral organs. In this study, we cloned IiAGL6, the orthologous gene of AGL6 in Isatis indigotica. The constitutive expression of IiAGL6 in Arabidopsis thaliana resulted in a late-flowering phenotype and the development of curly leaves during the vegetative growth period. Abnormal changes in floral organ development were observed during the reproductive stage. In woad plants, suppression of IiAGL6 using TRV-VIGS (tobacco rattle virus-mediated virus-induced gene silencing) decreased the number of stamens and led to the formation of aberrant anthers. Similar changes in stamen development were also observed in miRNA-AGL6 transgenic Arabidopsis plants. Yeast two-hybrid and BiFC tests showed that IiAGL6 can interact with other MADS-box proteins in woad; thus, playing a key role in defining the identities of floral organs, particularly during stamen formation. These findings might provide novel insights and help investigate the biological roles of MADS transcription factors in I. indigotica.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Xin Qiao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Hao-En He
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Wei-Wei Yi
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Ya-Nan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Xiao-Min Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Hao Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Xiao-Fang Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Ye-Ye Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Hong-Li Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Xuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Yan-Qin Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China; Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions Key Laboratory of Ministry of Agriculture and Rural Affairs, Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, People's Republic of China.
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China.
| |
Collapse
|
9
|
Chopy M, Cavallini-Speisser Q, Chambrier P, Morel P, Just J, Hugouvieux V, Rodrigues Bento S, Zubieta C, Vandenbussche M, Monniaux M. Cell layer-specific expression of the homeotic MADS-box transcription factor PhDEF contributes to modular petal morphogenesis in petunia. THE PLANT CELL 2024; 36:324-345. [PMID: 37804091 PMCID: PMC10827313 DOI: 10.1093/plcell/koad258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Floral homeotic MADS-box transcription factors ensure the correct morphogenesis of floral organs, which are organized in different cell layers deriving from distinct meristematic layers. How cells from these distinct layers acquire their respective identities and coordinate their growth to ensure normal floral organ morphogenesis is unresolved. Here, we studied petunia (Petunia × hybrida) petals that form a limb and tube through congenital fusion. We identified petunia mutants (periclinal chimeras) expressing the B-class MADS-box gene DEFICIENS in the petal epidermis or in the petal mesophyll, called wico and star, respectively. Strikingly, wico flowers form a strongly reduced tube while their limbs are almost normal, while star flowers form a normal tube but greatly reduced and unpigmented limbs, showing that petunia petal morphogenesis is highly modular. These mutants highlight the layer-specific roles of PhDEF during petal development. We explored the link between PhDEF and petal pigmentation, a well-characterized limb epidermal trait. The anthocyanin biosynthesis pathway was strongly downregulated in star petals, including its major regulator ANTHOCYANIN2 (AN2). We established that PhDEF directly binds to the AN2 terminator in vitro and in vivo, suggesting that PhDEF might regulate AN2 expression and therefore petal epidermis pigmentation. Altogether, we show that cell layer-specific homeotic activity in petunia petals differently impacts tube and limb development, revealing the relative importance of the different cell layers in the modular architecture of petunia petals.
Collapse
Affiliation(s)
- Mathilde Chopy
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Quentin Cavallini-Speisser
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Pierre Chambrier
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Patrice Morel
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Jérémy Just
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Véronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble 38000, France
| | - Suzanne Rodrigues Bento
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble 38000, France
| | - Michiel Vandenbussche
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Marie Monniaux
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| |
Collapse
|
10
|
Xie P, Wu Y, Xie Q. Evolution of cereal floral architecture and threshability. TRENDS IN PLANT SCIENCE 2023; 28:1438-1450. [PMID: 37673701 DOI: 10.1016/j.tplants.2023.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Hulled grains, while providing natural protection for seeds, pose a challenge to manual threshing due to the pair of glumes tightly encasing them. Based on natural evolution and artificial domestication, gramineous crops evolved various hull-like floral organs. Recently, progress has been made in uncovering novel domesticated genes associated with cereal threshability and deciphering common regulatory modules pertinent to the specification of hull-like floral organs. Here we review morphological similarities, principal regulators, and common mechanisms implicated in the easy-threshing traits of crops. Understanding the shared and unique features in the developmental process of cereal threshability may not only shed light on the convergent evolution of cereals but also facilitate the de novo domestication of wild cereal germplasm resources through genome-editing technologies.
Collapse
Affiliation(s)
- Peng Xie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yaorong Wu
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, National Center of Technology Innovation for Maize, Syngenta Group China, Beijing 102206, China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
11
|
Colbert JB, Coleman HD. Functional Diversification and the Plant Secondary Cell Wall. J Mol Evol 2023; 91:761-772. [PMID: 37979044 DOI: 10.1007/s00239-023-10145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Much evidence exists suggesting the presence of genetic functional diversification in plants, though literature associated with the role of functional diversification in the evolution of the plant secondary cell wall (SCW) has sparsely been compiled and reviewed in a recent context. This review aims to elucidate, through the examination of gene phylogenies associated with its biosynthesis and maintenance, the role of functional diversification in shaping the critical, dynamic, and characteristic organelle, the secondary cell wall. It will be asserted that gene families resulting from gene duplication and subsequent functional divergence are present and are heavily involved in SCW biosynthesis and maintenance. Furthermore, diversification will be presented as a significant driver behind the evolution of the many functional characteristics of the SCW. The structure and function of the plant cell wall and its constituents will first be explored, followed by a discussion on the phenomenon of gene duplication and the resulting genetic functional divergence that can emerge. Finally, the major constituents of the SCW and their individual relationships with duplication and divergence will be reviewed to the extent of current knowledge on the subject.
Collapse
Affiliation(s)
- Joseph B Colbert
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Heather D Coleman
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
12
|
Cheng JL, Wei XP, Chen Y, Qi YD, Zhang BG, Liu HT. Comparative transcriptome analysis reveals candidate genes related to the sex differentiation of Schisandra chinensis. Funct Integr Genomics 2023; 23:344. [PMID: 37991590 DOI: 10.1007/s10142-023-01264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Schisandra chinensis is a monoecious plant with unisex flowers. The fruit of S. chinensis is of high medical with economic value. The yield of S. chinensis fruit is related to the ratio of its female and male flowers. However, there is little research on its floral development and sex differentiation. To elucidate the possible mechanism for the sex differentiation of S. chinensis, we collected 18 samples of female and male flowers from three developmental stages and performed a comparative RNA-seq analysis aimed at identifying differentially expressed genes (DEGs) that may be related to sex differentiation. The results showed 936, 7179, and 6890 differentially expressed genes between female and male flowers at three developmental stages, respectively, and 466 candidate genes may play roles in sex differentiation. KEGG analysis showed genes involved in the flavonoid biosynthesis pathway and DNA replication pathway were essential for the development of female flowers. 51 MADS-box genes and 10 YABBY genes were identified in S. chinensis. The DEGs analysis indicated that MADS-box and YABBY genes were strongly related to the sex determination of S. chinensis. RT-qPCR confirmed the RNA-seq results of 20 differentially expressed genes, including three male-biased genes and 17 female-biased genes. A possible regulatory model of sex differentiation in S. chinensis was proposed according to our results. This study helps reveal the sex-differentiation mechanism of S. chinensis and lays the foundation for regulating the male-female ratio of S. chinensis in the future.
Collapse
Affiliation(s)
- Ji-Long Cheng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Ping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yu Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yao-Dong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ben-Gang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Tao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Rieu P, Arnoux-Courseaux M, Tichtinsky G, Parcy F. Thinking outside the F-box: how UFO controls angiosperm development. THE NEW PHYTOLOGIST 2023; 240:945-959. [PMID: 37664990 DOI: 10.1111/nph.19234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023]
Abstract
The formation of inflorescences and flowers is essential for the successful reproduction of angiosperms. In the past few decades, genetic studies have identified the LEAFY transcription factor and the UNUSUAL FLORAL ORGANS (UFO) F-box protein as two major regulators of flower development in a broad range of angiosperm species. Recent research has revealed that UFO acts as a transcriptional cofactor, redirecting the LEAFY floral regulator to novel cis-elements. In this review, we summarize the various roles of UFO across species, analyze past results in light of new discoveries and highlight the key questions that remain to be solved.
Collapse
Affiliation(s)
- Philippe Rieu
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - Moïra Arnoux-Courseaux
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - Gabrielle Tichtinsky
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| |
Collapse
|
14
|
Gui FF, Jiang GG, Bin Dong, Zhong SW, Xiao Z, Qiu Fang, Wang YG, Yang LY, Zhao H. Genome-wide identification and analysis of MIKC-type MADS-box genes expression in Chimonanthus salicifolius. Genes Genomics 2023; 45:1127-1141. [PMID: 37438657 DOI: 10.1007/s13258-023-01420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND MIKC type MADS-box transcription factors are one of the largest gene families and play a pivotal role in flowering time and flower development. Chimonanthus salicifolius belongs to the family Calycanthaceae and has a unique flowering time and flowering morphology compared to other Chimonanthus species, but the research on MIKC type MADS-box gene family of C. salicifolius has not been reported. OBJECTIVE Identification, comprehensive bioinformatic analysis, the expression pattern of MIKC-type MADS-box gene family from different tissues of C. salicifolius. METHODS Genome-wide investigation and expression pattern under different tissues of the MIKC-type MADS-box gene family in C. salicifolius, and their phylogenetic relationships, evolutionary characteristics, gene structure, motif distribution, promoter cis-acting element were performed. RESULTS A total of 29 MIKC-type MADS-box genes were identified from the whole genome sequencing. Interspecies synteny analysis revealed more significant collinearity between C. salicifolius and the magnoliids species compared to eudicots and monocots. MIKC-type MADS-box genes from the same subfamily share similar distribution patterns, gene structure, and expression patterns. Compared with Arabidopsis thaliana, Nymphaea colorata, and Chimonanthus praecox, the FLC genes were absent in C. salicifolius, while the AGL6 subfamily was expanded in C. salicifolius. The selectively expanded promoter (AGL6) and lack of repressor (FLC) genes may explain the earlier flowering in C. salicifolius. The loss of the AP3 homologous gene in C. salicifolius is probably the primary cause of the morphological distinction between C. salicifolius and C. praecox. The csAGL6a gene is specifically expressed in the flowering process and indicates the potential function of promoting flowering. CONCLUSION This study offers a genome-wide identification and expression profiling of the MIKC-types MADS-box genes in the C. salicifolius, and establishes the foundation for screening flowering development genes and understanding the potential function of the MIKC-types MADS-box genes in the C. salicifolius.
Collapse
Affiliation(s)
- Fang-Fang Gui
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Ge-Ge Jiang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Bin Dong
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Shi-Wei Zhong
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Zheng Xiao
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Qiu Fang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Yi-Guang Wang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Li-Yuan Yang
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| | - Hongbo Zhao
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
15
|
Zhang S, Zhou Q, Yang X, Wang J, Jiang J, Sun M, Liu Y, Nie C, Bao M, Liu G. Functional characterization of three TERMINAL FLOWER 1-like genes from Platanus acerifolia. PLANT CELL REPORTS 2023; 42:1071-1088. [PMID: 37024635 DOI: 10.1007/s00299-023-03014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/28/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE TFL1-like genes of the basal eudicot Platanus acerifolia have conserved roles in maintaining vegetative growth and inhibiting flowering, but may act through distinct regulatory mechanism. Three TERMINAL FLOWER 1 (TFL1)-like genes were isolated and characterized from London plane tree (Platanus acerifolia). All genes have conserved genomic organization and characteristic of the phosphatidylethanolamine-binding protein (PEBP) family. Sequence alignment and phylogenetic analysis indicated that two genes belong to the TFL1 clade, designated as PlacTFL1a and PlacTFL1b, while another one was grouped in the BFT clade, named as PlacBFT. qRT-PCR analysis showed that all three genes primarily expressed in vegetative phase, but the expression of PlacTFL1a was much higher and wider than that of PlacTFL1b, with the latter only detected at relatively low expression levels in apical and lateral buds in April. PlacBFT was mainly expressed in young stems of adult trees followed by juvenile tissues. Ectopic expression of any TFL1-like gene in Arabidopsis showed phenotypes of delayed or repressed flowering. Furthermore, overexpression of PlacTFL1a gene in petunia also resulted in extremely delayed flowering. In non-flowering 35:PlacTFL1a transgenic petunia plants, the FT-like gene (PhFT) gene was significantly upregulated and AP1 homologues PFG, FBP26 and FBP29 were significantly down-regulated in leaves. Yeast two-hybrid analysis indicated that only weak interactions were detected between PlacTFL1a and PlacFDL, and PlacTFL1a showed no interaction with PhFDL1/2. These results indicated that the TFL1-like genes of Platanus have conserved roles in repressing flowering, but probably via a distinct regulatory mechanism.
Collapse
Affiliation(s)
- Sisi Zhang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Qin Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Jianqiang Wang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Jie Jiang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Miaomiao Sun
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, Guangdong, China
| | - Yanjun Liu
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Chaoren Nie
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Guofeng Liu
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
16
|
Du Q, Wu Z, Liu P, Qing J, He F, Du L, Sun Z, Zhu L, Zheng H, Sun Z, Yang L, Wang L, Du H. The chromosome-level genome of Eucommia ulmoides provides insights into sex differentiation and α-linolenic acid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1118363. [PMID: 37063180 PMCID: PMC10102601 DOI: 10.3389/fpls.2023.1118363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Eucommia ulmoides Oliver is a typical dioecious plant endemic to China that has great medicinal and economic value. Here, we report a high-quality chromosome-level female genome of E. ulmoides obtained by PacBio and Hi-C technologies. The size of the female genome assembly was 1.01 Gb with 17 pseudochromosomes and 31,665 protein coding genes. In addition, Hi-C technology was used to reassemble the male genome released in 2018. The reassembled male genome was 1.24 Gb with the superscaffold N50 (48.30 Mb), which was increased 25.69 times, and the number of predicted genes increased by 11,266. Genome evolution analysis indicated that E. ulmoides has undergone two whole-genome duplication events before the divergence of female and male, including core eudicot γ whole-genome triplication event (γ-WGT) and a recent whole genome duplication (WGD) at approximately 27.3 million years ago (Mya). Based on transcriptome analysis, EuAP3 and EuAG may be the key genes involved in regulating the sex differentiation of E. ulmoides. Pathway analysis showed that the high expression of ω-3 fatty acid desaturase coding gene EU0103017 was an important reason for the high α-linolenic acid content in E. ulmoides. The genome of female and male E. ulmoides presented here is a valuable resource for the molecular biological study of sex differentiation of E. ulmoides and also will provide assistance for the breeding of superior varieties.
Collapse
Affiliation(s)
- Qingxin Du
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Zixian Wu
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Panfeng Liu
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Jun Qing
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Feng He
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Lanying Du
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Zhiqiang Sun
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Lili Zhu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongchu Zheng
- Product Department, Henan Jinduzhong Agricultural Science and Technology Co., Ltd., Yanling, China
| | - Zongyi Sun
- Operation Department, Grandomics Biosciences Co., Ltd., Wuhan, China
| | - Long Yang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Lu Wang
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Hongyan Du
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| |
Collapse
|
17
|
Hou H, Tian M, Liu N, Huo J, Sui S, Li Z. Genome-wide analysis of MIKC C-type MADS-box genes and roles of CpFUL/SEP/AGL6 superclade in dormancy breaking and bud formation of Chimonanthus praecox. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:893-902. [PMID: 36878163 DOI: 10.1016/j.plaphy.2023.02.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Wintersweet (Chimonanthus praecox), a Magnoliidae tree, is popular for its unique fragrant aroma and winter-flowering characteristics, which is widely used in gardens and pots, or for cut flowers, essential oil, medicine, and edible products. MIKCC-type of MADS-box gene family play a crucial role in plant growth and development process, particularly in controlling flowering time and floral organ development. Although MIKCC-type genes have been well studied in many plant species, the study of MIKCC-type is poorly in C. praecox. In this study, we identified 30 MIKCC-type genes of C. praecox on gene structures, chromosomal location, conserved motifs, phylogenetic relationships based on bioinformatics tools. Phylogenetic relationships analysis with Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa Japonica), Amborella trichopoda and tomato (Solanum lycopersicum) showed that CpMIKCCs were divided into 13 subclasses, each subclass containing 1 to 4 MIKCC-type genes. The Flowering locus C (FLC) subfamily was absent in C. praecox genome. CpMIKCCs were randomly distributed into eleven chromosomes of C. praecox. Besides, the quantitative RT-PCR (qPCR) was performed for the expression pattern of several MIKCC-type genes (CpFUL, CpSEPs and CpAGL6s) in seven bud differentiation stages and indicated that they were involved in dormancy breaking and bud formation. Additionally, overexpression of CpFUL in Arabidopsis Columbia-0 (Col-0) resulted in early flowering and showed difference in floral organs, leaves and fruits. These data could provide conducive information for understanding the roles of MIKCC-type genes in the floral development and lay a foundation for screening candidate genes to validate function.
Collapse
Affiliation(s)
- Huifang Hou
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Mingkang Tian
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Ning Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Juntao Huo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Zhineng Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
18
|
Genome-Wide Identification of MADS-Box Family Genes in Safflower ( Carthamus tinctorius L.) and Functional Analysis of CtMADS24 during Flowering. Int J Mol Sci 2023; 24:ijms24021026. [PMID: 36674539 PMCID: PMC9862418 DOI: 10.3390/ijms24021026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
Safflower is an important economic crop with a plethora of industrial and medicinal applications around the world. The bioactive components of safflower petals are known to have pharmacological activity that promotes blood circulation and reduces blood stasis. However, fine-tuning the genetic mechanism of flower development in safflower is still required. In this study, we report the genome-wide identification of MADS-box transcription factors in safflower and the functional characterization of a putative CtMADS24 during vegetative and reproductive growth. In total, 77 members of MADS-box-encoding genes were identified from the safflower genome. The phylogenetic analysis divided CtMADS genes into two types and 15 subfamilies. Similarly, bioinformatic analysis, such as of conserved protein motifs, gene structures, and cis-regulatory elements, also revealed structural conservation of MADS-box genes in safflower. Furthermore, the differential expression pattern of CtMADS genes by RNA-seq data indicated that type II genes might play important regulatory roles in floral development. Similarly, the qRT-PCR analysis also revealed the transcript abundance of 12 CtMADS genes exhibiting tissue-specific expression in different flower organs. The nucleus-localized CtMADS24 of the AP1 subfamily was validated by transient transformation in tobacco using GFP translational fusion. Moreover, CtMADS24-overexpressed transgenic Arabidopsis exhibited early flowering and an abnormal phenotype, suggesting that CtMADS24 mediated the expression of genes involved in floral organ development. Taken together, these findings provide valuable information on the regulatory role of CtMADS24 during flower development in safflower and for the selection of important genes for future molecular breeding programs.
Collapse
|
19
|
Monniaux M, Vandenbussche M. Flower Development in the Solanaceae. Methods Mol Biol 2023; 2686:39-58. [PMID: 37540353 DOI: 10.1007/978-1-0716-3299-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Flower development is the process leading from a reproductive meristem to a mature flower with fully developed floral organs. This multi-step process is complex and involves thousands of genes in intertwined regulatory pathways; navigating through the FLOR-ID website will give an impression of this complexity and of the astonishing amount of work that has been carried on the topic (Bouché et al., Nucleic Acids Res 44:D1167-D1171, 2016). Our understanding of flower development mostly comes from the model species Arabidopsis thaliana, but numerous other studies outside of Brassicaceae have helped apprehend the conservation of these mechanisms in a large evolutionary context (Moyroud and Glover, Curr Biol 27:R941-R951, 2017; Smyth, New Phytol 220:70-86, 2018; Soltis et al., Ann Bot 100:155-163, 2007). Integrating additional species and families to the research on this topic can only advance our understanding of flower development and its evolution.In this chapter, we review the contribution that the Solanaceae family has made to the comprehension of flower development. While many of the general features of flower development (i.e., the key molecular players involved in flower meristem identity, inflorescence architecture or floral organ development) are similar to Arabidopsis, our main objective in this chapter is to highlight the points of divergence and emphasize specificities of the Solanaceae. We will not discuss the large topics of flowering time regulation, inflorescence architecture and fruit development, and we will restrict ourselves to the mechanisms included in a time window after the floral transition and before the fertilization. Moreover, this review will not be exhaustive of the large amount of work carried on the topic, and the choices that we made to describe in large details some stories from the literature are based on the soundness of the functional work performed, and surely as well on our own preferences and expertise.First, we will give a brief overview of the Solanaceae family and some of its specificities. Then, our focus will be on the molecular mechanisms controlling floral organ identity, for which extended functional work in petunia led to substantial revisions to the famous ABC model. Finally, after reviewing some studies on floral organ initiation and growth, we will discuss floral organ maturation, using the examples of the inflated calyx of the Chinese lantern Physalis and petunia petal pigmentation.
Collapse
Affiliation(s)
- Marie Monniaux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| |
Collapse
|
20
|
Cross-Talk between Transcriptome Analysis and Dynamic Changes of Carbohydrates Identifies Stage-Specific Genes during the Flower Bud Differentiation Process of Chinese Cherry ( Prunus pseudocerasus L.). Int J Mol Sci 2022; 23:ijms232415562. [PMID: 36555203 PMCID: PMC9778666 DOI: 10.3390/ijms232415562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Flower bud differentiation is crucial to reproductive success in plants. In the present study, RNA-Seq and nutrients quantification were used to identify the stage-specific genes for flower bud differentiation with buds which characterize the marked change during flower bud formation from a widely grown Chinese cherry (Prunus pseudocerasus L.) cultivar 'Manaohong'. A KEGG enrichment analysis revealed that the sugar metabolism pathways dynamically changed. The gradually decreasing trend in the contents of total sugar, soluble sugar and protein implies that the differentiation was an energy-consuming process. Changes in the contents of D-glucose and sorbitol were conformed with the gene expression trends of bglX and SORD, respectively, which at least partially reflects a key role of the two substances in the transition from physiological to morphological differentiation. Further, the WRKY and SBP families were also significantly differentially expressed during the vegetative-to-reproductive transition. In addition, floral meristem identity genes, e.g., AP1, AP3, PI, AGL6, SEP1, LFY, and UFO demonstrate involvement in the specification of the petal and stamen primordia, and FPF1 might promote the onset of morphological differentiation. Conclusively, the available evidence justifies the involvement of sugar metabolism in the flower bud differentiation of Chinese cherry, and the uncovered candidate genes are beneficial to further elucidate flower bud differentiation in cherries.
Collapse
|
21
|
Chen L, Yan Y, Ke H, Zhang Z, Meng C, Ma L, Sun Z, Chen B, Liu Z, Wang G, Yang J, Wu J, Li Z, Wu L, Zhang G, Zhang Y, Wang X, Ma Z. SEP-like genes of Gossypium hirsutum promote flowering via targeting different loci in a concentration-dependent manner. FRONTIERS IN PLANT SCIENCE 2022; 13:990221. [PMID: 36531379 PMCID: PMC9752867 DOI: 10.3389/fpls.2022.990221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
SEP genes are famous for their function in the morphological novelty of bisexual flowers. Although the diverse functions of SEP genes were reported, only the regulatory mechanisms underlying floral organ development have been addressed. In this study, we identified SEP-like genes in Gossypium and found that SEP3 genes were duplicated in diploid cotton varieties. GhSEP4.1 and GhSEP4.2 were abundantly transcribed in the shoot apical meristem (SAM), but only GhSEP4.2 was expressed in the leaf vasculature. The expression pattern of GhSEPs in floral organs was conserved with that of homologs in Arabidopsis, except for GhSEP2 that was preponderantly expressed in ovules and fibers. The overexpression and silencing of each single GhSEP gene suggested their distinct role in promoting flowering via direct binding to GhAP1 and GhLFY genomic regions. The curly leaf and floral defects in overexpression lines with a higher expression of GhSEP genes revealed the concentration-dependent target gene regulation of GhSEP proteins. Moreover, GhSEP proteins were able to dimerize and interact with flowering time regulators. Together, our results suggest the dominant role of GhSEP4.2 in leaves to promote flowering via GhAP1-A04, and differently accumulated GhSEP proteins in the SAM alternately participate in forming the dynamic tetramer complexes to target at the different loci of GhAP1 and GhLFY to maintain reproductive growth. The regulatory roles of cotton SEP genes reveal their conserved and diversified functions.
Collapse
|
22
|
Tang N, Cao Z, Wu P, Zhang X, Lou J, Liu Y, Wang Q, Hu Y, Si S, Sun X, Chen Z. Genome-wide identification, interaction of the MADS-box proteins in Zanthoxylum armatum and functional characterization of ZaMADS80 in floral development. FRONTIERS IN PLANT SCIENCE 2022; 13:1038828. [PMID: 36507394 PMCID: PMC9732391 DOI: 10.3389/fpls.2022.1038828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
As a typical dioecious species, Zanthoxylum armatum establishes apomictic reproduction, hence only female trees are cultivated. However, male and hermaphrodite flowers have recently appeared in female plants, resulting in a dramatic yield reduction. To date, the genetic basis underlying sex determination and apomixis in Z. armatum has been largely unknown. Here, we observed abortion of the stamen or carpel prior to primordium initiation, thus corroborating the potential regulation of MADS-box in sex determination. In Z. armatum, a total of 105 MADS-box genes were identified, harboring 86 MIKC-type MADSs with lack of FLC orthologues. Transcriptome analysis revealed candidate MADSs involved in floral organ identity, including ten male-biased MADSs, represented by ZaMADS92/81/75(AP3/PI-like), and twenty-six female-specified, represented by ZaMADS80/49 (STK/AGL11-like) and ZaMADS42 (AG-like). Overexpressing ZaMADS92 resulted in earlier flowering, while ZaMADS80 overexpression triggered precocious fruit set and parthenocarpy as well as dramatic modifications in floral organs. To characterize their regulatory mechanisms, a comprehensive protein-protein interaction network of the represented MADSs was constructed based on yeast two-hybrid and bimolecular fluorescence complementation assays. Compared with model plants, the protein interaction patterns in Z. armatum exhibited both conservation and divergence. ZaMADS70 (SEP3-like) interacted with ZaMADS42 and ZaMADS48 (AP3-like) but not ZaMADS40 (AP1-like), facilitating the loss of petals in Z. armatum. The ZaMADS92/ZaMADS40 heterodimer could be responsible for accelerating flowering in ZaMADS92-OX lines. Moreover, the interactions between ZaMADS80 and ZaMADS67(AGL32-like) might contribute to apomixis. This work provides new insight into the molecular mechanisms of MADS-boxes in sex organ identity in Z. armatum.
Collapse
Affiliation(s)
- Ning Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zhengyan Cao
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Peiyin Wu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Xian Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Juan Lou
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yanni Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
- College of Biology and Food Engineering, Chongqing Three Georges University, Chongqing, China
| | - Qiyao Wang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yang Hu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Shuo Si
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Xiaofan Sun
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zexiong Chen
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
23
|
Dreni L, Ferrándiz C. Tracing the Evolution of the SEPALLATA Subfamily across Angiosperms Associated with Neo- and Sub-Functionalization for Reproductive and Agronomically Relevant Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:2934. [PMID: 36365387 PMCID: PMC9656651 DOI: 10.3390/plants11212934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
SEPALLATA transcription factors (SEP TFs) have been extensively studied in angiosperms as pivotal components of virtually all the MADS-box tetrameric complex master regulators of floral organ identities. However, there are published reports that suggest that some SEP members also regulate earlier reproductive events, such as inflorescence meristem determinacy and inflorescence architecture, with potential for application in breeding programs in crops. The SEP subfamily underwent a quite complex pattern of duplications during the radiation of the angiosperms. Taking advantage of the many whole genomic sequences now available, we present a revised and expanded SEP phylogeny and link it to the known functions of previously characterized genes. This snapshot supports the evidence that the major SEP3 clade is highly specialized for the specification of the three innermost floral whorls, while its sister LOFSEP clade is functionally more versatile and has been recruited for diverse roles, such as the regulation of extra-floral bract formation and inflorescence determinacy and shape. This larger pool of angiosperm SEP genes confirms previous evidence that their evolution was driven by whole-genome duplications rather than small-scale duplication events. Our work may help to identify those SEP lineages that are the best candidates for the improvement of inflorescence traits, even in far distantly related crops.
Collapse
|
24
|
Zhang X, Ren Z, Hu G, Zhao S, Wei H, Fan S, Ma Q. Functional divergence of GhAP1.1 and GhFUL2 associated with flowering regulation in upland cotton (Gossypium hirsutum L.). JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153757. [PMID: 35777126 DOI: 10.1016/j.jplph.2022.153757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The AP1/FUL transcription factors are important for floral development, but the underlying molecular mechanisms remain unclear. In this study, we cloned and identified two AP1/FUL-like genes, GhAP1.1 and GhFUL2, in upland cotton, which is a commonly cultivated economically valuable crop. Sequence alignment and phylogenetic analysis indicated that GhAP1.1 and GhFUL2, which are encoded by genes in the AP1/FUL clade, have conserved N-terminal regions but diverse C-terminal domains. Quantitative real-time PCR analysis revealed that GhAP1.1 and GhFUL2 were expressed in the flower and root, and showed opposite expression patterns during shoot apical meristem development. The upregulated expression of GhAP1.1 in Arabidopsis did not result in significant changes to the flowering time or floral organ development, and the transcript levels of the florigen FT increased and those of LFY decreased. Overexpression of GhFUL2 in Arabidopsis delayed flowering and promoted bolting by decreasing FT and LFY transcript levels. Silencing GhFUL2 in cotton dramatically increased the expression of GhFT and GhAP1.3 and promoted flowering. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated that GhAP1.1 could interact with the SVP homolog GhSVP2.2, whereas GhFUL2 formed heterodimers with GhSEP3/GhSEP4 homologs and GhSVP2.2. The present results demonstrated that the functional divergence of GhAP1.1 and GhFUL2, which involved changes in sequences and expression patterns, influenced the regulation of cotton flower development.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China
| | - Genhai Hu
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Shilei Zhao
- Sanmenxia Academy of Agricultural Sciences, Sanmenxia, 472000, PR China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China.
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China.
| |
Collapse
|
25
|
Cheng H, Xie X, Ren M, Yang S, Zhao X, Mahna N, Liu Y, Xu Y, Xiang Y, Chai H, Zheng L, Ge H, Jia R. Characterization of Three SEPALLATA-Like MADS-Box Genes Associated With Floral Development in Paphiopedilum henryanum (Orchidaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:916081. [PMID: 35693163 PMCID: PMC9178235 DOI: 10.3389/fpls.2022.916081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Paphiopedilum (Orchidaceae) is one of the world's most popular orchids that is found in tropical and subtropical forests and has an enormous ornamental value. SEPALLATA-like (SEP-like) MADS-box genes are responsible for floral organ specification. In this study, three SEP-like MADS-box genes, PhSEP1, PhSEP2, and PhSEP3, were identified in Paphiopedilum henryanum. These genes were 732-916 bp, with conserved SEPI and SEPII motifs. Phylogenetic analysis revealed that PhSEP genes were evolutionarily closer to the core eudicot SEP3 lineage, whereas none of them belonged to core eudicot SEP1/2/4 clades. PhSEP genes displayed non-ubiquitous expression, which was detectable across all floral organs at all developmental stages of the flower buds. Furthermore, subcellular localization experiments revealed the localization of PhSEP proteins in the nucleus. Yeast two-hybrid assays revealed no self-activation of PhSEPs. The protein-protein interactions revealed that PhSEPs possibly interact with B-class DEFICIENS-like and E-class MADS-box proteins. Our study suggests that the three SEP-like genes may play key roles in flower development in P. henryanum, which will improve our understanding of the roles of the SEP-like MADS-box gene family and provide crucial insights into the mechanisms underlying floral development in orchids.
Collapse
Affiliation(s)
- Hao Cheng
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xiulan Xie
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Maozhi Ren
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Shuhua Yang
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhao
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Yi Liu
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Yufeng Xu
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yukai Xiang
- Department of High-Performance Computing, National Supercomputing Center in Chengdu, Chengdu, China
| | - Hua Chai
- Department of High-Performance Computing, National Supercomputing Center in Chengdu, Chengdu, China
| | - Liang Zheng
- Department of High-Performance Computing, National Supercomputing Center in Chengdu, Chengdu, China
| | - Hong Ge
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruidong Jia
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Jiang X, Lubini G, Hernandes-Lopes J, Rijnsburger K, Veltkamp V, de Maagd RA, Angenent GC, Bemer M. FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. THE PLANT CELL 2022; 34:1002-1019. [PMID: 34893888 PMCID: PMC8894982 DOI: 10.1093/plcell/koab298] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 05/23/2023]
Abstract
The timing of flowering and the inflorescence architecture are critical for the reproductive success of tomato (Solanum lycopersicum), but the gene regulatory networks underlying these traits have not been fully explored. Here, we show that the tomato FRUITFULL-like (FUL-like) genes FUL2 and MADS-BOX PROTEIN 20 (MBP20) promote the vegetative-to-reproductive transition and repress inflorescence branching by inducing floral meristem (FM) maturation. FUL1 fulfils a less prominent role and appears to depend on FUL2 and MBP20 for its upregulation in the inflorescence- and floral meristems. MBP10, the fourth tomato FUL-like gene, has probably lost its function. The tomato FUL-like proteins cannot homodimerize in in vitro assays, but heterodimerize with various other MADS-domain proteins, potentially forming distinct complexes in the transition meristem and FM. Transcriptome analysis of the primary shoot meristems revealed various interesting downstream targets, including four repressors of cytokinin signaling that are upregulated during the floral transition in ful1 ful2 mbp10 mbp20 mutants. FUL2 and MBP20 can also bind in vitro to the upstream regions of these genes, thereby probably directly stimulating cell division in the meristem upon the transition to flowering. The control of inflorescence branching does not occur via the cytokinin oxidase/dehydrogenases (CKXs) but may be regulated by repression of transcription factors such as TOMATO MADS-box gene 3 (TM3) and APETALA 2b (AP2b).
Collapse
Affiliation(s)
- Xiaobing Jiang
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Greice Lubini
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - José Hernandes-Lopes
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090 São Paulo, Brazil
| | - Kim Rijnsburger
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Vera Veltkamp
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud A de Maagd
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
27
|
Cai Y, Wang L, Ogutu CO, Yang Q, Luo B, Liao L, Zheng B, Zhang R, Han Y. The MADS-box gene PpPI is a key regulator of the double-flower trait in peach. PHYSIOLOGIA PLANTARUM 2021; 173:2119-2129. [PMID: 34537956 DOI: 10.1111/ppl.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Double flower is an invaluable trait in ornamental peach, but the mechanism underlying its development remains largely unknown. Here, we report the roles of ABCE model genes in double flower development in peach. A total of nine ABCE regulatory genes, including eight MADS-box genes and one AP2/EREBP gene, were identified in the peach genome. Subcellular localization assay showed that all the ABCE proteins were localized in the nucleus. Four genes, PpAP1, PpAP3, PpSEP3, and PpPI, showed a difference in expression levels between single and double flowers. Ectopic overexpression of PpPI increased petal number in Arabidopsis, while transgenic lines overexpressing PpAP3 or PpSEP3 were morphologically similar to wild-type. Ectopic overexpression of PpAP1 resulted in a significant decrease in the number of basal leaves and caused early flowering. These results suggest that PpPI is likely crucial for double flower development in peach. In addition, double flowers have petaloid sepals and stamens, and single flower could occasionally change to be double flower by converting stamens to petals in peach, suggesting that the double-flower trait is likely to have evolved from an ancestral single-flower structure. Our results provide new insights into mechanisms underlying the double-flower trait in peach.
Collapse
Affiliation(s)
- Yaming Cai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Collins Otieno Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Qiurui Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Binwen Luo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ruoxi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Yang F, Gao J, Wei Y, Ren R, Zhang G, Lu C, Jin J, Ai Y, Wang Y, Chen L, Ahmad S, Zhang D, Sun W, Tsai W, Liu Z, Zhu G. The genome of Cymbidium sinense revealed the evolution of orchid traits. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2501-2516. [PMID: 34342129 PMCID: PMC8633513 DOI: 10.1111/pbi.13676] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 05/04/2023]
Abstract
The Orchidaceae is of economic and ecological importance and constitutes ˜10% of all seed plant species. Here, we report a genome physical map for Cymbidium sinense, a well-known species belonging to genus Cymbidium that has thousands of natural variation varieties of flower organs, flower and leaf colours and also referred as the King of Fragrance, which make it arose into a unique cultural symbol in China. The high-quality chromosome-scale genome assembly was 3.52 Gb in size, 29 638 protein-coding genes were predicted, and evidence for whole-genome duplication shared with other orchids was provided. Marked amplification of cytochrome- and photosystem-related genes was observed, which was consistent with the shade tolerance and dark green leaves of C. sinense. Extensive duplication of MADS-box genes, and the resulting subfunctional and expressional differentiation, was associated with regulation of species-specific flower traits, including wild-type and mutant-type floral patterning, seasonal flowering and ecological adaption. CsSEP4 was originally found to positively regulate gynostemium development. The CsSVP genes and their interaction proteins CsAP1 and CsSOC1 were significantly expanded and involved in the regulation of low-temperature-dependent flowering. Important genetic clues to the colourful leaf traits, purple-black flowers and volatile trait in C. sinense were also found. The results provide new insights into the molecular mechanisms of important phenotypic traits of Cymbidium and its evolution and serve as a powerful platform for future evolutionary studies and molecular breeding of orchids.
Collapse
Affiliation(s)
- Feng‐Xi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Yong‐Lu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Rui Ren
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Guo‐Qiang Zhang
- Laboratory for Orchid Conservation and UtilizationThe Orchid Conservation and Research Center of ShenzhenThe National Orchid Conservation Center of ChinaShenzhenChina
| | - Chu‐Qiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jian‐Peng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Ye Ai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ya‐Qin Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Li‐Jun Chen
- Laboratory for Orchid Conservation and UtilizationThe Orchid Conservation and Research Center of ShenzhenThe National Orchid Conservation Center of ChinaShenzhenChina
| | - Sagheer Ahmad
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Di‐Yang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wei‐Hong Sun
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wen‐Chieh Tsai
- Orchid Research and Development CenterNational Cheng Kung UniversityTainanTaiwan
- Institute of Tropical Plant Sciences and MicrobiologyNational Cheng Kung UniversityTainanTaiwan
| | - Zhong‐Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Gen‐Fa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| |
Collapse
|
29
|
Lu J, Luo M, Wang L, Li K, Yu Y, Yang W, Gong P, Gao H, Li Q, Zhao J, Wu L, Zhang M, Liu X, Zhang X, Zhang X, Kang J, Yu T, Li Z, Jiao Y, Wang H, He C. The Physalis floridana genome provides insights into the biochemical and morphological evolution of Physalis fruits. HORTICULTURE RESEARCH 2021; 8:244. [PMID: 34795210 PMCID: PMC8602270 DOI: 10.1038/s41438-021-00705-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 05/04/2023]
Abstract
The fruits of Physalis (Solanaceae) have a unique structure, a lantern-like fruiting calyx known as inflated calyx syndrome (ICS) or the Chinese lantern, and are rich in steroid-related compounds. However, the genetic variations underlying the origin of these characteristic traits and diversity in Physalis remain largely unknown. Here, we present a high-quality chromosome-level reference genome assembly of Physalis floridana (~1.40 Gb in size) with a contig N50 of ~4.87 Mb. Through evolutionary genomics and experimental approaches, we found that the loss of the SEP-like MADS-box gene MBP21 subclade is likely a key mutation that, together with the previously revealed mutation affecting floral MPF2 expression, might have contributed to the origination of ICS in Physaleae, suggesting that the origination of a morphological novelty may have resulted from an evolutionary scenario in which one mutation compensated for another deleterious mutation. Moreover, the significant expansion of squalene epoxidase genes is potentially associated with the natural variation of steroid-related compounds in Physalis fruits. The results reveal the importance of gene gains (duplication) and/or subsequent losses as genetic bases of the evolution of distinct fruit traits, and the data serve as a valuable resource for the evolutionary genetics and breeding of solanaceous crops.
Collapse
Affiliation(s)
- Jiangjie Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, 100093, Xiangshan, Beijing, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, 310036, Hangzhou, China
| | - Meifang Luo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, 100093, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China
| | - Li Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, 100093, Xiangshan, Beijing, China
| | - Kunpeng Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, 100093, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China
| | - Yongyi Yu
- Annoroad Gene Technology (Beijing) Co, Ltd, 100176, Beijing, China
| | - Weifei Yang
- Annoroad Gene Technology (Beijing) Co, Ltd, 100176, Beijing, China
| | - Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, 100093, Xiangshan, Beijing, China
| | - Huihui Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, 100093, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China
| | - Qiaoru Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, 100093, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China
| | - Jing Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, 100093, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China
| | - Lanfeng Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, 100093, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China
| | - Mingshu Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, 100093, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China
| | - Xueyang Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, 100093, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China
| | - Xuemei Zhang
- Annoroad Gene Technology (Beijing) Co, Ltd, 100176, Beijing, China
| | - Xian Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, 310036, Hangzhou, China
| | - Jieyu Kang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, 310036, Hangzhou, China
| | - Tongyuan Yu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, 310036, Hangzhou, China
| | - Zhimin Li
- Annoroad Gene Technology (Beijing) Co, Ltd, 100176, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, 100093, Xiangshan, Beijing, China.
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China.
| | - Huizhong Wang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, 310036, Hangzhou, China.
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, 100093, Xiangshan, Beijing, China.
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
30
|
Transcriptome Profiling of Cu Stressed Petunia Petals Reveals Candidate Genes Involved in Fe and Cu Crosstalk. Int J Mol Sci 2021; 22:ijms222111604. [PMID: 34769033 PMCID: PMC8583722 DOI: 10.3390/ijms222111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
Copper (Cu) is an essential element for most living plants, but it is toxic for plants when present in excess. To better understand the response mechanism under excess Cu in plants, especially in flowers, transcriptome sequencing on petunia buds and opened flowers under excess Cu was performed. Interestingly, the transcript level of FIT-independent Fe deficiency response genes was significantly affected in Cu stressed petals, probably regulated by basic-helix-loop-helix 121 (bHLH121), while no difference was found in Fe content. Notably, the expression level of bHLH121 was significantly down-regulated in petals under excess Cu. In addition, the expression level of genes related to photosystem II (PSII), photosystem I (PSI), cytochrome b6/f complex, the light-harvesting chlorophyll II complex and electron carriers showed disordered expression profiles in petals under excess Cu, thus photosynthesis parameters, including the maximum PSII efficiency (FV/FM), nonphotochemical quenching (NPQ), quantum yield of the PSII (ΦPS(II)) and photochemical quenching coefficient (qP), were reduced in Cu stressed petals. Moreover, the chlorophyll a content was significantly reduced, while the chlorophyll b content was not affected, probably caused by the increased expression of chlorophyllide a oxygenase (CAO). Together, we provide new insight into excess Cu response and the Cu–Fe crosstalk in flowers.
Collapse
|
31
|
Zhou Q, Shi J, Li Z, Zhang S, Zhang S, Zhang J, Bao M, Liu G. miR156/157 Targets SPLs to Regulate Flowering Transition, Plant Architecture and Flower Organ Size in Petunia. PLANT & CELL PHYSIOLOGY 2021; 62:839-857. [PMID: 33768247 DOI: 10.1093/pcp/pcab041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/19/2021] [Indexed: 05/15/2023]
Abstract
miR156/157 plays multiple pivotal roles during plant growth and development. In this study, we identified 11 miR156- and 5 miR157-encoding loci from the genome of Petunia axillaris and Petunia inflata, designated as PaMIR0156/157s and PiMIR0156/157s, respectively. Real-time quantitative reverse transcription PCR (qRT-PCR) analysis indicated that PhmiR156/157 was expressed predominantly in cotyledons, germinating seeds, flower buds, young fruits and seedlings. PhmiR156/157 levels declined in shoot apical buds and leaves of petunia before flowering as the plant ages; moreover, the temporal expression patterns of most miR156/157-targeted PhSPLs were complementary to that of PhmiR156/157. Ectopic expression of PhMIR0157a in Arabidopsis and petunia resulted in delayed flowering, dwarf plant stature, increased branches and reduced organ size. However, PhMIR0156f-overexpressing Arabidopsis and petunia plants showed only delayed flowering. In addition, downregulation of PhmiR156/157 level by overexpressing STTM156/157 led to taller plants with less branches, longer internodes and precocious flowering. qRT-PCR analysis indicated that PhmiR156/157 modulates these traits mainly by downregulating their PhSPL targets and subsequently decreasing the expression of flowering regulatory genes. Our results demonstrate that the PhmiR156/157-PhSPL module has conserved but also divergent functions in growth and development, which will help us decipher the genetic basis for the improvement of flower transition, plant architecture and organ development in petunia.
Collapse
Affiliation(s)
- Qin Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiewei Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhineng Li
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Sisi Zhang
- Wuhan Institute of Landscape Architecture, Peace Avenue No. 1240, Wuhan 430081, China
| | - Shuting Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Guofeng Liu
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, China
| |
Collapse
|
32
|
Liu Z, Zhang D, Zhang W, Xiong L, Liu Q, Liu F, Li H, An X, Cui L, Tian D. Molecular Cloning and Expression Profile of Class E Genes Related to Sepal Development in Nelumbo nucifera. PLANTS 2021; 10:plants10081629. [PMID: 34451674 PMCID: PMC8398900 DOI: 10.3390/plants10081629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
The lotus (Nelumbo Adans.) is an important aquatic plant with ornamental, medicinal and edible values and cultural connotations. It has single-, semi-double-, double- and thousand-petalled types of flower shape and is an ideal material for developmental research of flower doubling. The lotus is a basal eudicot species without a morphological difference between the sepals and petals and occupies a critical phylogenetic position in flowering plants. In order to investigate the genetic relationship between the sepals and petals in the lotus, the class E genes which affect sepal formation were focused on and analyzed. Here, SEPALLATA 1(NnSEP1) and its homologous genes AGAMOUS-LIKE MADS-BOXAGL9 (NnAGL9) and MADS-BOX TRANSCRIPTION FACTOR 6-like (NnMADS6-like) of the class E gene family were isolated from the flower buds of the Asian lotus (Nelumbo nucifera Gaertn.). The protein structure, subcellular localization and expression patterns of these three genes were investigated. All three genes were verified to locate in the nucleus and had typical MADS-box characteristics. NnSEP1 and NnMADS6-like were specifically expressed in the sepals, while NnAGL9 was highly expressed in the petals, suggesting that different developmental mechanisms exist in the formation of the sepals and petals in the lotus. The significant functional differences between NnSEP1, NnMADS6-like and NnAGL9 were also confirmed by a yeast two-hybrid assay. These results expand our knowledge on the class E gene family in sepal formation and will benefit fundamental research on the development of floral organs in Nelumbo.
Collapse
Affiliation(s)
- Zhuoxing Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Z.L.); (D.Z.); (L.X.); (Q.L.); (H.L.); (X.A.)
- Development Center of Plant Germplam Resources, College of Life Science, Shanghai Normal University, Shanghai 200234, China;
| | - Dasheng Zhang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Z.L.); (D.Z.); (L.X.); (Q.L.); (H.L.); (X.A.)
| | - Weiwei Zhang
- Department of Plant Science and Technology, Shanghai Vocational College of Agriculture and Forestry, Shanghai 201699, China;
| | - Lei Xiong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Z.L.); (D.Z.); (L.X.); (Q.L.); (H.L.); (X.A.)
- Development Center of Plant Germplam Resources, College of Life Science, Shanghai Normal University, Shanghai 200234, China;
| | - Qingqing Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Z.L.); (D.Z.); (L.X.); (Q.L.); (H.L.); (X.A.)
| | - Fengluan Liu
- Development Center of Plant Germplam Resources, College of Life Science, Shanghai Normal University, Shanghai 200234, China;
| | - Hanchun Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Z.L.); (D.Z.); (L.X.); (Q.L.); (H.L.); (X.A.)
| | - Xiangjie An
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Z.L.); (D.Z.); (L.X.); (Q.L.); (H.L.); (X.A.)
| | - Lijie Cui
- Development Center of Plant Germplam Resources, College of Life Science, Shanghai Normal University, Shanghai 200234, China;
- Correspondence: (L.C.); (D.T.); Tel.: +86-21-37792288-932; Fax: +86-21-57762652
| | - Daike Tian
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Z.L.); (D.Z.); (L.X.); (Q.L.); (H.L.); (X.A.)
- Correspondence: (L.C.); (D.T.); Tel.: +86-21-37792288-932; Fax: +86-21-57762652
| |
Collapse
|
33
|
Hsu HF, Chen WH, Shen YH, Hsu WH, Mao WT, Yang CH. Multifunctional evolution of B and AGL6 MADS box genes in orchids. Nat Commun 2021; 12:902. [PMID: 33568671 PMCID: PMC7876132 DOI: 10.1038/s41467-021-21229-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023] Open
Abstract
We previously found that B and AGL6 proteins form L (OAP3-2/OAGL6-2/OPI) and SP (OAP3-1/OAGL6-1/OPI) complexes to determine lip/sepal/petal identities in orchids. Here, we show that the functional L' (OAP3-1/OAGL6-2/OPI) and SP' (OAP3-2/OAGL6-1/OPI) complexes likely exist and AP3/PI/AGL6 genes have acquired additional functions during evolution. We demonstrate that the presumed L' complex changes the structure of the lower lateral sepals and helps the lips fit properly in the center of the flower. In addition, we find that OAP3-1/OAGL6-1/OPI in SP along with presumed SP' complexes regulate anthocyanin accumulation and pigmentation, whereas presumed L' along with OAP3-2/OAGL6-2/OPI in L complexes promotes red spot formation in the perianth. Furthermore, the B functional proteins OAP3-1/OPI and OAGL6-1 in the SP complex could function separately to suppress sepal/petal senescence and promote pedicel abscission, respectively. These findings expand the current knowledge behind the multifunctional evolution of the B and AGL6 genes in plants.
Collapse
Affiliation(s)
- Hsing-Fun Hsu
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Wei-Han Chen
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Yi-Hsuan Shen
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Wei-Han Hsu
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Wan-Ting Mao
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Chang-Hsien Yang
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC ,grid.260542.70000 0004 0532 3749Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| |
Collapse
|