1
|
Li X, Wan Y, Wang D, Li X, Wu J, Xiao J, Chen K, Han X, Chen Y. Spatiotemporal transcriptomics reveals key gene regulation for grain yield and quality in wheat. Genome Biol 2025; 26:93. [PMID: 40217326 PMCID: PMC11992740 DOI: 10.1186/s13059-025-03569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Cereal grain size and quality are critical agronomic traits in crop production. Wheat grain development is governed by intricate regulatory networks that require precise spatiotemporal coordination of gene expression to establish functional compartments in different cell types. RESULTS Here, we perform a spatial transcriptomics study covering the early stages of wheat grain development, from 4 to 12 days after pollination. We classify the grain into 10 distinct cell types and identify 192 marker genes associated with them. WGCNA analysis reveals that highly expressed genes in different cell types exhibit distinct enrichment patterns, significantly influencing grain development and filling. Through co-expression and motif analyses, we identify a specific group of genes that may regulate wheat grain development, including TaABI3-B1, a transcription factor specifically expressed in the embryo and surrounding endosperm, which negatively affects embryo and grain size. CONCLUSIONS This study presents a comprehensive spatiotemporal transcriptional dataset for understanding wheat grain development. Additionally, it identifies key genetic resources with potential applications for improving wheat yield.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Yiman Wan
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingguo Li
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jiajie Wu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing, 100101, China
| | - Kunming Chen
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Xue Han
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China.
| | - Yuan Chen
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China.
| |
Collapse
|
2
|
Wang H, Huang Y, Li Y, Cui Y, Xiang X, Zhu Y, Wang Q, Wang X, Ma G, Xiao Q, Huang X, Gao X, Wang J, Lu X, Larkins BA, Wang W, Wu Y. An ARF gene mutation creates flint kernel architecture in dent maize. Nat Commun 2024; 15:2565. [PMID: 38519520 PMCID: PMC10960022 DOI: 10.1038/s41467-024-46955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Dent and flint kernel architectures are important characteristics that affect the physical properties of maize kernels and their grain end uses. The genes controlling these traits are unknown, so it is difficult to combine the advantageous kernel traits of both. We found mutation of ARFTF17 in a dent genetic background reduces IAA content in the seed pericarp, creating a flint-like kernel phenotype. ARFTF17 is highly expressed in the pericarp and encodes a protein that interacts with and inhibits MYB40, a transcription factor with the dual functions of repressing PIN1 expression and transactivating genes for flavonoid biosynthesis. Enhanced flavonoid biosynthesis could reduce the metabolic flux responsible for auxin biosynthesis. The decreased IAA content of the dent pericarp appears to reduce cell division and expansion, creating a shorter, denser kernel. Introgression of the ARFTF17 mutation into dent inbreds and hybrids improved their kernel texture, integrity, and desiccation, without affecting yield.
Collapse
Affiliation(s)
- Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongcai Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujie Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yahui Cui
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoli Xiang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yidong Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoqing Wang
- Forestry and Pomology Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, 201403, China
| | - Guangjin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyan Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, 250200, China
| | - Brian A Larkins
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Wenqin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
3
|
Hurst JP, Yobi A, Li A, Sato S, Clemente TE, Angelovici R, Holding DR. Large and stable genome edits at the sorghum alpha kafirin locus result in changes in chromatin accessibility and globally increased expression of genes encoding lysine enrichment. FRONTIERS IN PLANT SCIENCE 2023; 14:1116886. [PMID: 36998682 PMCID: PMC10043997 DOI: 10.3389/fpls.2023.1116886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Sorghum is a resilient and widely cultivated grain crop used for feed and food. However, it's grain is deficient in lysine, an essential amino acid. This is due to the primary seed storage proteins, the alpha-kafirins, lacking lysine. It has been observed that reductions in alpha-kafirin protein results in rebalancing of the seed proteome and a corresponding increase in non-kafirin proteins which leads to an increased lysine content. However, the mechanisms underlying proteome rebalancing are unclear. This study characterizes a previously developed gene edited sorghum line, with deletions at the alpha kafirin locus. METHODS A single consensus guide RNA leads to tandem deletion of multiple members of the gene family in addition to the small target site mutations in remaining genes. RNA-seq and ATAC-seq were utilized to identify changes in gene expression and chromatin accessibility in developing kernels in the absence of most alpha-kafirin expression. RESULTS Several differentially accessible chromatin regions and differentially expressed genes were identified. Additionally, several genes upregulated in the edited sorghum line were common with their syntenic orthologues differentially expressed in maize prolamin mutants. ATAC-seq showed enrichment of the binding motif for ZmOPAQUE 11, perhaps indicating the transcription factor's involvement in the kernel response to reduced prolamins. DISCUSSION Overall, this study provides a resource of genes and chromosomal regions which may be involved in sorghum's response to reduced seed storage proteins and the process of proteome rebalancing.
Collapse
Affiliation(s)
- J. Preston Hurst
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Abou Yobi
- School of Life Sciences, Ministry of Education, Shandong University, Jinan, China
| | - Aixia Li
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Shirley Sato
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Thomas E. Clemente
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Ruthie Angelovici
- School of Life Sciences, Ministry of Education, Shandong University, Jinan, China
| | - David R. Holding
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
Ning L, Wang Y, Shi X, Zhou L, Ge M, Liang S, Wu Y, Zhang T, Zhao H. Nitrogen-dependent binding of the transcription factor PBF1 contributes to the balance of protein and carbohydrate storage in maize endosperm. THE PLANT CELL 2023; 35:409-434. [PMID: 36222567 PMCID: PMC9806651 DOI: 10.1093/plcell/koac302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Fluctuations in nitrogen (N) availability influence protein and starch levels in maize (Zea mays) seeds, yet the underlying mechanism is not well understood. Here, we report that N limitation impacted the expression of many key genes in N and carbon (C) metabolism in the developing endosperm of maize. Notably, the promoter regions of those genes were enriched for P-box sequences, the binding motif of the transcription factor prolamin-box binding factor 1 (PBF1). Loss of PBF1 altered accumulation of starch and proteins in endosperm. Under different N conditions, PBF1 protein levels remained stable but PBF1 bound different sets of target genes, especially genes related to the biosynthesis and accumulation of N and C storage products. Upon N-starvation, the absence of PBF1 from the promoters of some zein genes coincided with their reduced expression, suggesting that PBF1 promotes zein accumulation in the endosperm. In addition, PBF1 repressed the expression of sugary1 (Su1) and starch branching enzyme 2b (Sbe2b) under normal N supply, suggesting that, under N-deficiency, PBF1 redirects the flow of C skeletons for zein toward the formation of C compounds. Overall, our study demonstrates that PBF1 modulates C and N metabolism during endosperm development in an N-dependent manner.
Collapse
Affiliation(s)
| | | | - Xi Shi
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Ling Zhou
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Min Ge
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Shuaiqiang Liang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Yibo Wu
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Tifu Zhang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | | |
Collapse
|
5
|
Jing X, Zhang H, Huai X, An Q, Qiao Y. Identification and characterization of miRNAs and PHAS loci related to the early development of the embryo and endosperm in Fragaria × ananassa. BMC Genomics 2022; 23:638. [PMID: 36076187 PMCID: PMC9454143 DOI: 10.1186/s12864-022-08864-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The strawberry fleshy fruit is actually enlarged receptacle tissue, and the successful development of the embryo and endosperm is essential for receptacle fruit set. MicroRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs) play indispensable regulatory roles in plant growth and development. However, miRNAs and phasiRNAs participating in the regulation of strawberry embryo and endosperm development have yet to be explored. RESULTS Here, we performed genome-wide identification of miRNA and phasiRNA-producing loci (PHAS) in strawberry seeds with a focus on those involved in the development of the early embryo and endosperm. We found that embryos and endosperm have different levels of small RNAs. After bioinformatics analysis, the results showed that a total of 404 miRNAs (352 known and 52 novel) and 156 PHAS genes (81 21-nt and 75 24-nt genes) could be found in strawberry seed-related tissues, of which four and nine conserved miRNA families displayed conserved expression in the endosperm and embryo, respectively. Based on refined putative annotation of PHAS loci, some auxin signal-related genes, such as CM3, TAR2, AFB2, ASA1, NAC and TAS3, were found, which demonstrates that IAA biosynthesis is important for endosperm and embryo development during early fruit growth. Additionally, some auxin signal-related conserved (miR390-TAS3) and novel (miR156-ASA1) trigger-PHAS pairs were identified. CONCLUSIONS Taken together, these results expand our understanding of sRNAs in strawberry embryo and endosperm development and provide a genomic resource for early-stage fruit development.
Collapse
Affiliation(s)
- Xiaotong Jing
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Hong Zhang
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Xinjia Huai
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Qi An
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yushan Qiao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
6
|
Yang T, Wang H, Guo L, Wu X, Xiao Q, Wang J, Wang Q, Ma G, Wang W, Wu Y. ABA-induced phosphorylation of basic leucine zipper 29, ABSCISIC ACID INSENSITIVE 19, and Opaque2 by SnRK2.2 enhances gene transactivation for endosperm filling in maize. THE PLANT CELL 2022; 34:1933-1956. [PMID: 35157077 PMCID: PMC9048887 DOI: 10.1093/plcell/koac044] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 05/23/2023]
Abstract
Opaque2 (O2) functions as a central regulator of the synthesis of starch and storage proteins and the O2 gene is transcriptionally regulated by a hub coordinator of seed development and grain filling, ABSCISIC ACID INSENSITIVE 19 (ZmABI19), in maize (Zea mays). Here, we identified a second hub coordinator, basic Leucine Zipper 29 (ZmbZIP29) that interacts with ZmABI19 to regulate O2 expression. Like zmabi19, zmbzip29 mutations resulted in a dramatic decrease of transcript and protein levels of O2 and thus a significant reduction of starch and storage proteins. zmbzip29 seeds developed slower and had a smaller size at maturity than those of the wild type. The zmbzip29;zmabi19 double mutant displayed more severe seed phenotypes and a greater reduction of storage reserves compared to the single mutants, whereas overexpression of the two transcription factors enhanced O2 expression, storage-reserve accumulation, and kernel weight. ZmbZIP29, ZmABI19, and O2 expression was induced by abscisic acid (ABA). With ABA treatment, ZmbZIP29 and ZmABI19 synergistically transactivated the O2 promoter. Through liquid chromatography tandem-mass spectrometry analysis, we established that the residues threonine(T) 57 in ZmABI19, T75 in ZmbZIP29, and T387 in O2 were phosphorylated, and that SnRK2.2 was responsible for the phosphorylation. The ABA-induced phosphorylation at these sites was essential for maximum transactivation of downstream target genes for endosperm filling in maize.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haonan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liangxing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xingguo Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guangjin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | | |
Collapse
|
7
|
Wang T, Chang Y, Zhao K, Dong Q, Yang J. Maize RNA 3'-terminal phosphate cyclase-like protein promotes 18S pre-rRNA cleavage and is important for kernel development. THE PLANT CELL 2022; 34:1957-1979. [PMID: 35167702 PMCID: PMC9048941 DOI: 10.1093/plcell/koac052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Plant ribosomes contain four specialized ribonucleic acids, the 5S, 5.8S, 18S, and 25S ribosomal RNAs (rRNAs). Maturation of the latter three rRNAs requires cooperative processing of a single transcript by several endonucleases and exonucleases at specific sites. In maize (Zea mays), the exact nucleases and components required for rRNA processing remain poorly understood. Here, we characterized a conserved RNA 3'-terminal phosphate cyclase (RCL)-like protein, RCL1, that functions in 18S rRNA maturation. RCL1 is highly expressed in the embryo and endosperm during early seed development. Loss of RCL1 function resulted in lethality due to aborted embryo cell differentiation. We also observed pleiotropic defects in the rcl1 endosperm, including abnormal basal transfer cell layer growth and aleurone cell identity, and reduced storage reserve accumulation. The rcl1 seeds had lower levels of mature 18S rRNA and the related precursors were altered in abundance compared with wild type. Analysis of transcript levels and protein accumulation in rcl1 revealed that the observed lower levels of zein and starch synthesis enzymes mainly resulted from effects at the transcriptional and translational levels, respectively. These results demonstrate that RCL1-mediated 18S pre-rRNA processing is essential for ribosome function and messenger RNA translation during maize seed development.
Collapse
Affiliation(s)
- Tao Wang
- School of Life Sciences, The National Engineering Laboratory of Crop Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yumei Chang
- School of Life Sciences, The National Engineering Laboratory of Crop Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Kai Zhao
- School of Life Sciences, The National Engineering Laboratory of Crop Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Qing Dong
- Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | | |
Collapse
|
8
|
Shrestha V, Yobi A, Slaten ML, Chan YO, Holden S, Gyawali A, Flint-Garcia S, Lipka AE, Angelovici R. Multiomics approach reveals a role of translational machinery in shaping maize kernel amino acid composition. PLANT PHYSIOLOGY 2022; 188:111-133. [PMID: 34618082 PMCID: PMC8774818 DOI: 10.1093/plphys/kiab390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Maize (Zea mays) seeds are a good source of protein, despite being deficient in several essential amino acids. However, eliminating the highly abundant but poorly balanced seed storage proteins has revealed that the regulation of seed amino acids is complex and does not rely on only a handful of proteins. In this study, we used two complementary omics-based approaches to shed light on the genes and biological processes that underlie the regulation of seed amino acid composition. We first conducted a genome-wide association study to identify candidate genes involved in the natural variation of seed protein-bound amino acids. We then used weighted gene correlation network analysis to associate protein expression with seed amino acid composition dynamics during kernel development and maturation. We found that almost half of the proteome was significantly reduced during kernel development and maturation, including several translational machinery components such as ribosomal proteins, which strongly suggests translational reprogramming. The reduction was significantly associated with a decrease in several amino acids, including lysine and methionine, pointing to their role in shaping the seed amino acid composition. When we compared the candidate gene lists generated from both approaches, we found a nonrandom overlap of 80 genes. A functional analysis of these genes showed a tight interconnected cluster dominated by translational machinery genes, especially ribosomal proteins, further supporting the role of translation dynamics in shaping seed amino acid composition. These findings strongly suggest that seed biofortification strategies that target the translation machinery dynamics should be considered and explored further.
Collapse
Affiliation(s)
- Vivek Shrestha
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - Abou Yobi
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - Marianne L Slaten
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - Yen On Chan
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - Samuel Holden
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - Abiskar Gyawali
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - Sherry Flint-Garcia
- U.S. Department of Agriculture-Agricultural Research Service, Columbia, Missouri 65211, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | - Ruthie Angelovici
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
9
|
Tao Y, Mohi Ud Din A, An L, Chen H, Li G, Ding Y, Liu Z. Metabolic Disturbance Induced by the Embryo Contributes to the Formation of Chalky Endosperm of a Notched-Belly Rice Mutant. FRONTIERS IN PLANT SCIENCE 2022; 12:760597. [PMID: 35069619 PMCID: PMC8767064 DOI: 10.3389/fpls.2021.760597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Grain chalkiness is a key quality trait of the rice grain, whereas its underlying mechanism is still not thoroughly understood because of the complex genetic and environmental interactions. We identified a notched-belly (NB) mutant that has a notched-line on the belly of grains. The line dissects the endosperm into two distinct parts, the upper translucent part, and the bottom chalky part in the vicinity of the embryo. Using this mutant, our previous studies clued the negative influence of embryo on the biochemical makeup of the endosperm, suggesting the need for the in-depth study of the embryo effect on the metabolome of developing endosperm. This study continued to use the NB mutant to evolve a novel comparison method to clarify the role of embryo in the formation of a chalky endosperm. Grain samples of the wild-type (WT) and NB were harvested at 10, 20, and 30 days after fertilization (DAF), and then divided into subsamples of the embryo, the upper endosperm, and the bottom endosperm. Using non-targeted metabolomics and whole-genome RNA sequencing (RNA-seq), a nearly complete catalog of expressed metabolites and genes was generated. Results showed that the embryo impaired the storage of sucrose, amino acid, starch, and storage proteins in the bottom endosperm of NB by enhancing the expression of sugar, amino acids, and peptide transporters, and declining the expression of starch, prolamin, and glutelin synthesis-related genes. Importantly, the competitive advantage of the developing embryo in extracting the nutrients from the endosperm, transformed the bottom endosperm into an "exhaustive source" by diverting the carbon (C) and nitrogen (N) metabolism from synthetic storage to secondary pathways, resulting in impaired filling of the bottom endosperm and subsequently the formation of chalky tissue. In summary, this study reveals that embryo-induced metabolic shift in the endosperm is associated with the occurrence of grain chalkiness, which is of relevance to the development of high-quality rice by balancing the embryo-endosperm interaction.
Collapse
Affiliation(s)
- Yang Tao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Atta Mohi Ud Din
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lu An
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hao Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ganghua Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zhenghui Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Rida S, Maafi O, López-Malvar A, Revilla P, Riache M, Djemel A. Genetics of Germination and Seedling Traits under Drought Stress in a MAGIC Population of Maize. PLANTS (BASEL, SWITZERLAND) 2021; 10:1786. [PMID: 34579319 PMCID: PMC8468063 DOI: 10.3390/plants10091786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/31/2023]
Abstract
Drought is one of the most detrimental abiotic stresses hampering seed germination, development, and productivity. Maize is more sensitive to drought than other cereals, especially at seedling stage. Our objective was to study genetic regulation of drought tolerance at germination and during seedling growth in maize. We evaluated 420 RIL with their parents from a multi-parent advanced generation inter-cross (MAGIC) population with PEG-induced drought at germination and seedling establishment. A genome-wide association study (GWAS) was carried out to identify genomic regions associated with drought tolerance. GWAS identified 28 and 16 SNPs significantly associated with germination and seedling traits under stress and well-watered conditions, respectively. Among the SNPs detected, two SNPs had significant associations with several traits with high positive correlations, suggesting a pleiotropic genetic control. Other SNPs were located in regions that harbored major QTLs in previous studies, and co-located with QTLs for cold tolerance previously published for this MAGIC population. The genomic regions comprised several candidate genes related to stresses and plant development. These included numerous drought-responsive genes and transcription factors implicated in germination, seedling traits, and drought tolerance. The current analyses provide information and tools for subsequent studies and breeding programs for improving drought tolerance.
Collapse
Affiliation(s)
- Soumeya Rida
- Higher National Agronomic School (ENSA), L-RGB, Hassan Badi, El Harrach, Algiers 16004, Algeria; (S.R.); (O.M.); (M.R.); (A.D.)
| | - Oula Maafi
- Higher National Agronomic School (ENSA), L-RGB, Hassan Badi, El Harrach, Algiers 16004, Algeria; (S.R.); (O.M.); (M.R.); (A.D.)
| | - Ana López-Malvar
- Facultad de Biología, Departamento de Biología Vegetal y Ciencias del Suelo, Agrobiología Ambiental, Calidad de Suelos y Plantas, Universidad de Vigo, As Lagoas Marcosende, 36310 Vigo, Spain
| | - Pedro Revilla
- Misión Biológica de Galicia (CSIC), Apartado 28, E-36080 Pontevedra, Spain;
| | - Meriem Riache
- Higher National Agronomic School (ENSA), L-RGB, Hassan Badi, El Harrach, Algiers 16004, Algeria; (S.R.); (O.M.); (M.R.); (A.D.)
| | - Abderahmane Djemel
- Higher National Agronomic School (ENSA), L-RGB, Hassan Badi, El Harrach, Algiers 16004, Algeria; (S.R.); (O.M.); (M.R.); (A.D.)
| |
Collapse
|
11
|
Yang T, Guo L, Ji C, Wang H, Wang J, Zheng X, Xiao Q, Wu Y. The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling. THE PLANT CELL 2021; 33:104-128. [PMID: 33751093 PMCID: PMC8136913 DOI: 10.1093/plcell/koaa008] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Grain filling in maize (Zea mays) is regulated by a group of spatiotemporally synchronized transcription factors (TFs), but the factors that coordinate their expression remain unknown. We used the promoter of the grain filling-specific TF gene Opaque2 (O2) to screen upstream regulatory factors and identified a B3 domain TF, ZmABI19, that directly binds to the O2 promoter for transactivation. zmabi19 mutants displayed developmental defects in the endosperm and embryo, and mature kernels were opaque and reduced in size. The accumulation of zeins, starch and lipids dramatically decreased in zmabi19 mutants. RNA sequencing revealed an alteration of the nutrient reservoir activity and starch and sucrose metabolism in zmabi19 endosperms, and plant phytohormone signal transduction and lipid metabolism in zmabi19 embryos. Chromatin immunoprecipitation followed by sequencing coupled with differential expression analysis identified 106 high-confidence direct ZmABI19 targets. ZmABI19 directly regulates multiple key grain filling TFs including O2, Prolamine-box binding factor 1, ZmbZIP22, NAC130, and Opaque11 in the endosperm and Viviparous1 in the embryo. A number of phytohormone-related genes were also bound and regulated by ZmABI19. Our results demonstrate that ZmABI19 functions as a grain filling initiation regulator. ZmABI19 roles in coupling early endosperm and embryo development are also discussed.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liangxing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xixi Zheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Author for communication:
| |
Collapse
|
12
|
Armenta-Medina A, Gillmor CS, Gao P, Mora-Macias J, Kochian LV, Xiang D, Datla R. Developmental and genomic architecture of plant embryogenesis: from model plant to crops. PLANT COMMUNICATIONS 2021; 2:100136. [PMID: 33511346 PMCID: PMC7816075 DOI: 10.1016/j.xplc.2020.100136] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 05/08/2023]
Abstract
Embryonic development represents an important reproductive phase of sexually reproducing plant species. The fusion of egg and sperm produces the plant zygote, a totipotent cell that, through cell division and cell identity specification in early embryogenesis, establishes the major cell lineages and tissues of the adult plant. The subsequent morphogenesis phase produces the full-sized embryo, while the late embryogenesis maturation process prepares the seed for dormancy and subsequent germination, ensuring continuation of the plant life cycle. In this review on embryogenesis, we compare the model eudicot Arabidopsis thaliana with monocot crops, focusing on genome activation, paternal and maternal regulation of early zygote development, and key organizers of patterning, such as auxin and WOX transcription factors. While the early stages of embryo development are apparently conserved among plant species, embryo maturation programs have diversified between eudicots and monocots. This diversification in crop species reflects the likely effects of domestication on seed quality traits that are determined during embryo maturation, and also assures seed germination in different environmental conditions. This review describes the most important features of embryonic development in plants, and the scope and applications of genomics in plant embryo studies.
Collapse
Affiliation(s)
- Alma Armenta-Medina
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - C. Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Javier Mora-Macias
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Daoquan Xiang
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| |
Collapse
|
13
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
14
|
Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity. Nat Commun 2020; 11:5346. [PMID: 33093471 PMCID: PMC7582188 DOI: 10.1038/s41467-020-19196-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
The mechanism that creates vitreous endosperm in the mature maize kernel is poorly understood. We identified Vitreous endosperm 1 (Ven1) as a major QTL influencing this process. Ven1 encodes β-carotene hydroxylase 3, an enzyme that modulates carotenoid composition in the amyloplast envelope. The A619 inbred contains a nonfunctional Ven1 allele, leading to a decrease in polar and an increase in non-polar carotenoids in the amyloplast. Coincidently, the stability of amyloplast membranes is increased during kernel desiccation. The lipid composition in endosperm cells in A619 is altered, giving rise to a persistent amyloplast envelope. These changes impede the gathering of protein bodies and prevent them from interacting with starch grains, creating air spaces that cause an opaque kernel phenotype. Genetic modifiers were identified that alter the effect of Ven1A619, while maintaining a high β-carotene level. These studies provide insight for breeding vitreous kernel varieties and high vitamin A content in maize. Very little is known about how vitreous endosperm in the mature maize kernel is created. Here, via map-based cloning, the authors find that mutation of a β-carotene hydroxylase 3 encoding gene Ven1 affects carotenoids and lipids composition, which consequently influences amyloplast envelope integrity.
Collapse
|
15
|
An L, Tao Y, Chen H, He M, Xiao F, Li G, Ding Y, Liu Z. Embryo-Endosperm Interaction and Its Agronomic Relevance to Rice Quality. FRONTIERS IN PLANT SCIENCE 2020; 11:587641. [PMID: 33424883 PMCID: PMC7793959 DOI: 10.3389/fpls.2020.587641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/09/2020] [Indexed: 05/07/2023]
Abstract
Embryo-endosperm interaction is the dominant process controlling grain filling, thus being crucial for yield and quality formation of the three most important cereals worldwide, rice, wheat, and maize. Fundamental science of functional genomics has uncovered several key genetic programs for embryo and endosperm development, but the interaction or communication between the two tissues is largely elusive. Further, the significance of this interaction for grain filling remains open. This review starts with the morphological and developmental aspects of rice grain, providing a spatial and temporal context. Then, it offers a comprehensive and integrative view of this intercompartmental interaction, focusing on (i) apoplastic nutrient flow from endosperm to the developing embryo, (ii) dependence of embryo development on endosperm, (iii) regulation of endosperm development by embryo, and (iv) bidirectional dialogues between embryo and endosperm. From perspective of embryo-endosperm interaction, the mechanisms underlying the complex quality traits are explored, with grain chalkiness as an example. The review ends with three open questions with scientific and agronomic importance that should be addressed in the future. Notably, current knowledge and future prospects of this hot research topic are reviewed from a viewpoint of crop physiology, which should be helpful for bridging the knowledge gap between the fundamental plant sciences and the practical technologies.
Collapse
Affiliation(s)
- Lu An
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yang Tao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hao Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Mingjie He
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Feng Xiao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ganghua Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Zhenghui Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Zhenghui Liu,
| |
Collapse
|