1
|
Liu L, Gong W, Stöckl R, Denninger P, Schwartz U, Johnson MA, Dresselhaus T. Mago nashi controls auxin-mediated embryo patterning in Arabidopsis by regulating transcript abundance. THE NEW PHYTOLOGIST 2025. [PMID: 40251862 DOI: 10.1111/nph.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/22/2025] [Indexed: 04/21/2025]
Affiliation(s)
- Liping Liu
- Cell Biology and Plant Biochemistry, Institute of Plant Sciences, University of Regensburg, Regensburg, D-93053, Germany
| | - Wen Gong
- Cell Biology and Plant Biochemistry, Institute of Plant Sciences, University of Regensburg, Regensburg, D-93053, Germany
| | - Regina Stöckl
- Cell Biology and Plant Biochemistry, Institute of Plant Sciences, University of Regensburg, Regensburg, D-93053, Germany
| | - Philipp Denninger
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, Freising, 85354, Germany
| | - Uwe Schwartz
- NGS Analysis Center, Biology and Pre-ClinicalMedicine, University of Regensburg, Regensburg, D-93053, Germany
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Institute of Plant Sciences, University of Regensburg, Regensburg, D-93053, Germany
| |
Collapse
|
2
|
Yao Y, Zhou J, Wang J, Lei X, Jiang A, Sun Q. H3K36 methylation stamps transcription resistive to preserve development in plants. NATURE PLANTS 2025; 11:808-820. [PMID: 40164787 DOI: 10.1038/s41477-025-01962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025]
Abstract
Eukaryotic euchromatin is the less-compact chromatin and is modified by many histone modifications such as H3 lysine 36 methylation (H3K36me). Here we report a new chromatin state, 'transcription resistive', which is differentiated from activation and silencing. Transcription resistive is stamped by H3K36me with almost undetectable transcription activity but open-chromatin state, and occupies most documented plant essential genes. Mutating SDG8, previously known as the major H3K36 methyltransferase in Arabidopsis, surprisingly elevates 78.7% of H3K36me3-marked resistive loci, which accounts for 39.4% of the coding genome. Genetically, SDG8 prevents H3K36me activity of SDG4 at short and intronless genes to secure plant fertility, while it collaborates with other H3K36me methyltransferases on long and intron-rich genes. Together, our results reveal that SDG8 is the primary sensor that suppresses excessive H3K36me, and uncovered that 'transcription resistive' is a conserved H3K36me-stamped novel transcription state in plants, highlighting the regulatory diversities and biological significance of H3K36 methylation in eukaryotes.
Collapse
Affiliation(s)
- Yao Yao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jiacheng Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Lei
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anjie Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
3
|
Ganguly DR, Li Y, Bhat SS, Tiwari S, Ng PJ, Gregory BD, Sunkar R. mRNA ADENOSINE METHYLASE promotes drought tolerance through N 6-methyladenosine-dependent and independent impacts on mRNA regulation in Arabidopsis. THE NEW PHYTOLOGIST 2025; 245:183-199. [PMID: 39462792 PMCID: PMC11617654 DOI: 10.1111/nph.20227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
Among many mRNA modifications, adenine methylation at the N6 position (N6-methyladenosine, m6A) is known to affect mRNA biology extensively. The influence of m6A has yet to be assessed under drought, one of the most impactful abiotic stresses. We show that Arabidopsis thaliana (L.) Heynh. (Arabidopsis) plants lacking mRNA ADENOSINE METHYLASE (MTA) are drought-sensitive. Subsequently, we comprehensively assess the impacts of MTA-dependent m6A changes during drought on mRNA abundance, stability, and translation in Arabidopsis. During drought, there is a global trend toward hypermethylation of many protein-coding transcripts that does not occur in mta. We also observe complex regulation of m6A at a transcript-specific level, possibly reflecting compensation by other m6A components. Importantly, a subset of transcripts that are hypermethylated in an MTA-dependent manner exhibited reduced turnover and translation in mta, compared with wild-type (WT) plants, during drought. Additionally, MTA impacts transcript stability and translation independently of m6A. We also correlate drought-associated deposition of m6A with increased translation of modulators of drought response, such as RD29A, COR47, COR413, ALDH2B, ERD7, and ABF4 in WT, which is impaired in mta. m6A is dynamic during drought and, alongside MTA, promotes tolerance by regulating drought-responsive changes in transcript turnover and translation.
Collapse
Affiliation(s)
- Diep R. Ganguly
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Yongfang Li
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | | | - Shalini Tiwari
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Pei Jia Ng
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Brian D. Gregory
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| |
Collapse
|
4
|
Palos K, Nelson Dittrich AC, Lyons EH, Gregory BD, Nelson ADL. Comparative analyses suggest a link between mRNA splicing, stability, and RNA covalent modifications in flowering plants. BMC PLANT BIOLOGY 2024; 24:768. [PMID: 39134938 PMCID: PMC11318313 DOI: 10.1186/s12870-024-05486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND In recent years, covalent modifications on RNA nucleotides have emerged as pivotal moieties influencing the structure, function, and regulatory processes of RNA Polymerase II transcripts such as mRNAs and lncRNAs. However, our understanding of their biological roles and whether these roles are conserved across eukaryotes remains limited. RESULTS In this study, we leveraged standard polyadenylation-enriched RNA-sequencing data to identify and characterize RNA modifications that introduce base-pairing errors into cDNA reads. Our investigation incorporated data from three Poaceae (Zea mays, Sorghum bicolor, and Setaria italica), as well as publicly available data from a range of stress and genetic contexts in Sorghum and Arabidopsis thaliana. We uncovered a strong enrichment of RNA covalent modifications (RCMs) deposited on a conserved core set of nuclear mRNAs involved in photosynthesis and translation across these species. However, the cohort of modified transcripts changed based on environmental context and developmental program, a pattern that was also conserved across flowering plants. We determined that RCMs can partly explain accession-level differences in drought tolerance in Sorghum, with stress-associated genes receiving a higher level of RCMs in a drought tolerant accession. To address function, we determined that RCMs are significantly enriched near exon junctions within coding regions, suggesting an association with splicing. Intriguingly, we found that these base-pair disrupting RCMs are associated with stable mRNAs, are highly correlated with protein abundance, and thus likely associated with facilitating translation. CONCLUSIONS Our data point to a conserved role for RCMs in mRNA stability and translation across the flowering plant lineage.
Collapse
Affiliation(s)
- Kyle Palos
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA
| | | | - Eric H Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D L Nelson
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Chen L, Xu Z, Huang J, Shu H, Hui Y, Zhu D, Wu Y, Dong S, Wu Z. Plant immunity suppressor SKRP encodes a novel RNA-binding protein that targets exon 3' end of unspliced RNA. THE NEW PHYTOLOGIST 2023; 240:1467-1483. [PMID: 37658678 DOI: 10.1111/nph.19236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
The regulatory roles of RNA splicing in plant immunity are emerging but still largely obscure. We reported previously that Phytophthora pathogen effector Avr3c targets a soybean protein SKRP (serine/lysine/arginine-rich protein) to impair soybean basal immunity by regulating host pre-mRNA alternative splicing, while the biochemical nature of SKRP remains unknown. Here, by using Arabidopsis as a model, we studied the mechanism of SKRP in regulating pre-mRNA splicing and plant immunity. AtSKRP confers impaired plant immunity against Phytophthora capsici and associates with spliceosome component PRP8 and splicing factor SR45, which positively and negatively regulate plant immunity, respectively. Enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP-seq) showed AtSKRP is a novel RNA-binding protein that targets exon 3' end of unspliced RNA. Such position-specific binding of SKRP is associated with its activity in suppressing intron retention, including at positive immune regulatory genes UBP25 and RAR1. In addition, we found AtSKRP self-interact and forms oligomer, and these properties are associated with its function in plant immunity. Overall, our findings reveal that the immune repressor SKRP is a spliceosome-associated protein that targets exon 3' end to regulate pre-mRNA splicing in Arabidopsis.
Collapse
Affiliation(s)
- Ling Chen
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhihui Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haidong Shu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufan Hui
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Danling Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yufeng Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
6
|
Nagarajan VK, Stuart CJ, DiBattista AT, Accerbi M, Caplan JL, Green PJ. RNA degradome analysis reveals DNE1 endoribonuclease is required for the turnover of diverse mRNA substrates in Arabidopsis. THE PLANT CELL 2023; 35:1936-1955. [PMID: 37070465 PMCID: PMC10226599 DOI: 10.1093/plcell/koad085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 05/30/2023]
Abstract
In plants, cytoplasmic mRNA decay is critical for posttranscriptionally controlling gene expression and for maintaining cellular RNA homeostasis. Arabidopsis DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1) is a cytoplasmic mRNA decay factor that interacts with proteins involved in mRNA decapping and nonsense-mediated mRNA decay (NMD). There is limited information on the functional role of DNE1 in RNA turnover, and the identities of its endogenous targets are unknown. In this study, we utilized RNA degradome approaches to globally investigate DNE1 substrates. Monophosphorylated 5' ends, produced by DNE1, should accumulate in mutants lacking the cytoplasmic exoribonuclease XRN4, but be absent from DNE1 and XRN4 double mutants. In seedlings, we identified over 200 such transcripts, most of which reflect cleavage within coding regions. While most DNE1 targets were NMD-insensitive, some were upstream ORF (uORF)-containing and NMD-sensitive transcripts, indicating that this endoribonuclease is required for turnover of a diverse set of mRNAs. Transgenic plants expressing DNE1 cDNA with an active-site mutation in the endoribonuclease domain abolished the in planta cleavage of transcripts, demonstrating that DNE1 endoribonuclease activity is required for cleavage. Our work provides key insights into the identity of DNE1 substrates and enhances our understanding of DNE1-mediated mRNA decay.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Catherine J Stuart
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Anna T DiBattista
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Monica Accerbi
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Jeffrey L Caplan
- Bio-Imaging Center, Delaware Biotechnology Institute, University of
Delaware, Newark, DE 19713-1316, USA
| | - Pamela J Green
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| |
Collapse
|
7
|
Han WY, Hou BH, Lee WC, Chan TC, Lin TH, Chen HM. Arabidopsis mRNA decay landscape shaped by XRN 5'-3' exoribonucleases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:895-913. [PMID: 36987558 DOI: 10.1111/tpj.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 05/27/2023]
Abstract
5'-3' exoribonucleases (XRNs) play crucial roles in the control of RNA processing, quality, and quantity in eukaryotes. Although genome-wide profiling of RNA decay fragments is now feasible, how XRNs shape the plant mRNA degradome remains elusive. Here, we profiled and analyzed the RNA degradomes of Arabidopsis wild-type and mutant plants with defects in XRN activity. Deficiency of nuclear XRN3 or cytoplasmic XRN4 activity but not nuclear XRN2 activity greatly altered Arabidopsis mRNA decay profiles. Short excised linear introns and cleaved pre-mRNA fragments downstream of polyadenylation sites were polyadenylated and stabilized in the xrn3 mutant, demonstrating the unique function of XRN3 in the removal of cleavage remnants from pre-mRNA processing. Further analysis of stabilized XRN3 substrates confirmed that pre-mRNA 3' end cleavage frequently occurs after adenosine. The most abundant decay intermediates in wild-type plants include not only the primary substrates of XRN4 but also the products of XRN4-mediated cytoplasmic decay. An increase in decay intermediates with 5' ends upstream of a consensus motif in the xrn4 mutant suggests that there is an endonucleolytic cleavage mechanism targeting the 3' untranslated regions of many Arabidopsis mRNAs. However, analysis of decay fragments in the xrn4 mutant indicated that, except for microRNA-directed slicing, endonucleolytic cleavage events in the coding sequence rarely result in major decay intermediates. Together, these findings reveal the major substrates and products of nuclear and cytoplasmic XRNs along Arabidopsis transcripts and provide a basis for precise interpretation of RNA degradome data.
Collapse
Affiliation(s)
- Wan-Yin Han
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University, Taichung 40227, Taiwan, and Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Bo-Han Hou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Chi Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tze-Ching Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Hsiang Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ho-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University, Taichung 40227, Taiwan, and Academia Sinica, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
8
|
He PC, Wei J, Dou X, Harada BT, Zhang Z, Ge R, Liu C, Zhang LS, Yu X, Wang S, Lyu R, Zou Z, Chen M, He C. Exon architecture controls mRNA m 6A suppression and gene expression. Science 2023; 379:677-682. [PMID: 36705538 PMCID: PMC9990141 DOI: 10.1126/science.abj9090] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant messenger RNA (mRNA) modification and plays crucial roles in diverse physiological processes. Using a massively parallel assay for m6A (MPm6A), we discover that m6A specificity is globally regulated by suppressors that prevent m6A deposition in unmethylated transcriptome regions. We identify exon junction complexes (EJCs) as m6A suppressors that protect exon junction-proximal RNA within coding sequences from methylation and regulate mRNA stability through m6A suppression. EJC suppression of m6A underlies multiple global characteristics of mRNA m6A specificity, with the local range of EJC protection sufficient to suppress m6A deposition in average-length internal exons but not in long internal and terminal exons. EJC-suppressed methylation sites colocalize with EJC-suppressed splice sites, which suggests that exon architecture broadly determines local mRNA accessibility to regulatory complexes.
Collapse
Affiliation(s)
- P. Cody He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyang Dou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Bryan T. Harada
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Zijie Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
- State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Ruiqi Ge
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Chang Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Li-Sheng Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xianbin Yu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Shuai Wang
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Ruitu Lyu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Zhongyu Zou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Mengjie Chen
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Bernardi Y, Ponso MA, Belén F, Vegetti AC, Dotto MC. MicroRNA miR394 regulates flowering time in Arabidopsis thaliana. PLANT CELL REPORTS 2022; 41:1375-1388. [PMID: 35333960 DOI: 10.1007/s00299-022-02863-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
miR394 regulates Arabidopsis flowering time in a LCR-independent manner. Arabidopsis plants harboring mutations in theMIR394 genes exhibit early flowering, lower expression of floral repressor FLC and higher expression of floral integrators FT and SOC1. Plant development occurs throughout its entire life cycle and involves a phase transition between vegetative and reproductive phases, leading to the flowering process, fruit formation and ultimately seed production. It has been shown that the microRNA394 (miR394) regulates the accumulation of the transcript coding for LEAF CURLING RESPONSIVENESS, a member of a family of F-Box proteins. The miR394 pathway regulates several processes including leaf morphology and development of the shoot apical meristem during embryogenesis, as well as having been assigned a role in the response to biotic and abiotic stress in Arabidopsis thaliana and other species. Here, we characterized plants harboring mutations in MIR394 precursor genes and demonstrate that mir394a mir394b double mutants display an early flowering phenotype which correlates with a lower expression of FLOWERING LOCUS C earlier in development and higher expression of the floral integrators FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1. Consequently, mutant plants produce fewer branches and exhibit lower seed production. Our work reveals previously unknown developmental aspects regulated by the miR394 pathway, in an LCR-independent manner, contributing to the characterization of the multiple roles of this versatile plant regulatory miRNA.
Collapse
Affiliation(s)
- Yanel Bernardi
- Instituto de Ciencias Agropecuarias del Litoral (ICIAGRO-Litoral, UNL-CONICET), Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina
- Instituto Tecnológico de Chascomús (INTECH, CONICET-UNSAM), Chascomús, Argentina
| | - María Agustina Ponso
- Instituto de Ciencias Agropecuarias del Litoral (ICIAGRO-Litoral, UNL-CONICET), Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, UNVM-CONICET). Instituto de Ciencias Básicas, Villa María, Córdoba, Argentina
| | - Federico Belén
- Instituto de Ciencias Agropecuarias del Litoral (ICIAGRO-Litoral, UNL-CONICET), Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina
| | - Abelardo C Vegetti
- Instituto de Ciencias Agropecuarias del Litoral (ICIAGRO-Litoral, UNL-CONICET), Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina
| | - Marcela C Dotto
- Instituto de Ciencias Agropecuarias del Litoral (ICIAGRO-Litoral, UNL-CONICET), Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina.
| |
Collapse
|
10
|
Ueno D, Yamasaki S, Kato K. Methods for detecting RNA degradation intermediates in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111241. [PMID: 35351296 DOI: 10.1016/j.plantsci.2022.111241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/12/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
RNA degradation is an important process for controlling gene expression and is mediated by decapping / deadenylation-dependent or endonucleolytic cleavage-dependent RNA degradation mechanisms. High-throughput sequencing of RNA degradation intermediates was initially developed in Arabidopsis thaliana and similar RNA degradome sequencing methods were conducted in other eukaryotes. However, interpreting results obtained by these sequencing methods is fragmented, and an overview is needed. Here we review the findings and limitations of these sequencing methods and discuss the missing experiments needed to understand RNA degradation intermediates accurately. This review provides direction for future research on RNA degradation and is a reference for RNA degradome studies in other species.
Collapse
Affiliation(s)
- Daishin Ueno
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shotaro Yamasaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Ko Kato
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
11
|
Zhang X, Huang Q, Wang P, Liu F, Luo M, Li X, Wang Z, Wan L, Yang G, Hong D. A 24,482-bp deletion is associated with increased seed weight in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2653-2669. [PMID: 34002254 DOI: 10.1007/s00122-021-03850-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
A major QTL for seed weight was fine-mapped in rapeseed, and a 24,482-bp deletion likely mediates the effect through multiple pathways. Exploration of the genes controlling seed weight is critical to the improvement of crop yield and elucidation of the mechanisms underlying seed formation in rapeseed (Brassica napus L.). We previously identified the quantitative trait locus (QTL) qSW.C9 for the thousand-seed weight (TSW) in a double haploid population constructed from F1 hybrids between the parental accessions HZ396 and Y106. Here, we confirmed the phenotypic effects associated with qSW.C9 in BC3F2 populations and fine-mapped the candidate causal locus to a 266-kb interval. Sequence and expression analyses revealed that a 24,482-bp deletion in HZ396 containing six predicted genes most likely underlies qSW.C9. Differential gene expression analysis and cytological observations suggested that qSW.C9 affects both cell proliferation and cell expansion through multiple signaling pathways. After genotyping of a rapeseed diversity panel to define the haplotype structure, it could be concluded that the selection of germplasm with two specific markers may be effective in improving the seed weight of rapeseed. This study provides a solid foundation for the identification of the causal gene of qSW.C9 and offers a promising target for the breeding of higher-yielding rapeseed.
Collapse
Affiliation(s)
- Xiaohui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiyang Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Feiyang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mudan Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhuanrong Wang
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Lili Wan
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
12
|
Auth M, Nyikó T, Auber A, Silhavy D. The role of RST1 and RIPR proteins in plant RNA quality control systems. PLANT MOLECULAR BIOLOGY 2021; 106:271-284. [PMID: 33864582 PMCID: PMC8116306 DOI: 10.1007/s11103-021-01145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
To keep mRNA homeostasis, the RNA degradation, quality control and silencing systems should act in balance in plants. Degradation of normal mRNA starts with deadenylation, then deadenylated transcripts are degraded by the SKI-exosome 3'-5' and/or XRN4 5'-3' exonucleases. RNA quality control systems identify and decay different aberrant transcripts. RNA silencing degrades double-stranded transcripts and homologous mRNAs. It also targets aberrant and silencing prone transcripts. The SKI-exosome is essential for mRNA homeostasis, it functions in normal mRNA degradation and different RNA quality control systems, and in its absence silencing targets normal transcripts. It is highly conserved in eukaryotes, thus recent reports that the plant SKI-exosome is associated with RST1 and RIPR proteins and that, they are required for SKI-exosome-mediated decay of silencing prone transcripts were unexpected. To clarify whether RST1 and RIPR are essential for all SKI-exosome functions or only for the elimination of silencing prone transcripts, degradation of different reporter transcripts was studied in RST1 and RIPR inactivated Nicotiana benthamiana plants. As RST1 and RIPR, like the SKI-exosome, were essential for Non-stop and No-go decay quality control systems, and for RNA silencing- and minimum ORF-mediated decay, we propose that RST1 and RIPR are essential components of plant SKI-exosome supercomplex.
Collapse
Affiliation(s)
- Mariann Auth
- Biological Research Centre, Institute of Plant Biology, ELKH, Temesvári krt 62, 6726, Szeged, Hungary
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary
| | - Tünde Nyikó
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary
| | - Andor Auber
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary
| | - Dániel Silhavy
- Biological Research Centre, Institute of Plant Biology, ELKH, Temesvári krt 62, 6726, Szeged, Hungary.
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary.
| |
Collapse
|
13
|
Martins-Dias P, Romão L. Nonsense suppression therapies in human genetic diseases. Cell Mol Life Sci 2021; 78:4677-4701. [PMID: 33751142 PMCID: PMC11073055 DOI: 10.1007/s00018-021-03809-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/06/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
About 11% of all human disease-associated gene lesions are nonsense mutations, resulting in the introduction of an in-frame premature translation-termination codon (PTC) into the protein-coding gene sequence. When translated, PTC-containing mRNAs originate truncated and often dysfunctional proteins that might be non-functional or have gain-of-function or dominant-negative effects. Therapeutic strategies aimed at suppressing PTCs to restore deficient protein function-the so-called nonsense suppression (or PTC readthrough) therapies-have the potential to provide a therapeutic benefit for many patients and in a broad range of genetic disorders, including cancer. These therapeutic approaches comprise the use of translational readthrough-inducing compounds that make the translational machinery recode an in-frame PTC into a sense codon. However, most of the mRNAs carrying a PTC can be rapidly degraded by the surveillance mechanism of nonsense-mediated decay (NMD), thus decreasing the levels of PTC-containing mRNAs in the cell and their availability for PTC readthrough. Accordingly, the use of NMD inhibitors, or readthrough-compound potentiators, may enhance the efficiency of PTC suppression. Here, we review the mechanisms of PTC readthrough and their regulation, as well as the recent advances in the development of novel approaches for PTC suppression, and their role in personalized medicine.
Collapse
Affiliation(s)
- Patrícia Martins-Dias
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
14
|
Ueno D, Mikami M, Yamasaki S, Kaneko M, Mukuta T, Demura T, Kato K. Changes in mRNA Degradation Efficiencies under Varying Conditions Are Regulated by Multiple Determinants in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2021; 62:143-155. [PMID: 33289533 DOI: 10.1093/pcp/pcaa147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Multiple mechanisms are involved in gene expression, with mRNA degradation being critical for the control of mRNA accumulation. In plants, although some trans-acting factors and motif sequences have been identified in deadenylation-dependent mRNA degradation, endonucleolytic cleavage-dependent mRNA degradation has not been studied in detail. Previously, we developed truncated RNA-end sequencing (TREseq) in Arabidopsis thaliana and detected G-rich sequence motifs around 5' degradation intermediates. However, it remained to be elucidated whether degradation efficiencies of 5' degradation intermediates in A. thaliana vary among growth conditions and developmental stages. To address this issue, we conducted TREseq of cultured cells under heat stress and at three developmental stages (seedlings, expanding leaves and expanded leaves) and compared 5' degradation intermediates data among the samples. Although some 5' degradation intermediates had almost identical degradation efficiencies, others differed among conditions. We focused on the genes and sites whose degradation efficiencies differed. Changes in degradation efficiencies at the gene and site levels revealed an effect on mRNA accumulation in all comparisons. These changes in degradation efficiencies involved multiple determinants, including mRNA length and translation efficiency. These results suggest that several determinants govern the efficiency of mRNA degradation in plants, helping the organism to adapt to varying conditions by controlling mRNA accumulation.
Collapse
Affiliation(s)
- Daishin Ueno
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Maki Mikami
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Shotaro Yamasaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Miho Kaneko
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Takafumi Mukuta
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Ko Kato
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| |
Collapse
|
15
|
Carpentier MC, Bousquet-Antonelli C, Merret R. Fast and Efficient 5'P Degradome Library Preparation for Analysis of Co-Translational Decay in Arabidopsis. PLANTS 2021; 10:plants10030466. [PMID: 33804539 PMCID: PMC7998949 DOI: 10.3390/plants10030466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
The recent development of high-throughput technologies based on RNA sequencing has allowed a better description of the role of post-transcriptional regulation in gene expression. In particular, the development of degradome approaches based on the capture of 5′monophosphate decay intermediates allows the discovery of a new decay pathway called co-translational mRNA decay. Thanks to these approaches, ribosome dynamics could now be revealed by analysis of 5′P reads accumulation. However, library preparation could be difficult to set-up for non-specialists. Here, we present a fast and efficient 5′P degradome library preparation for Arabidopsis samples. Our protocol was designed without commercial kit and gel purification and can be easily done in one working day. We demonstrated the robustness and the reproducibility of our protocol. Finally, we present the bioinformatic reads-outs necessary to assess library quality control.
Collapse
Affiliation(s)
- Marie-Christine Carpentier
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France; (M.-C.C.); (C.B.-A.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Cécile Bousquet-Antonelli
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France; (M.-C.C.); (C.B.-A.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Rémy Merret
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France; (M.-C.C.); (C.B.-A.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Correspondence:
| |
Collapse
|
16
|
Nersisyan L, Ropat M, Pelechano V. Improved computational analysis of ribosome dynamics from 5'P degradome data using fivepseq. NAR Genom Bioinform 2020; 2:lqaa099. [PMID: 33575643 PMCID: PMC7685019 DOI: 10.1093/nargab/lqaa099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, 5′–3′ co-translation degradation machinery follows the last translating ribosome providing an in vivo footprint of its position. Thus, 5′ monophosphorylated (5′P) degradome sequencing, in addition to informing about RNA decay, also provides information regarding ribosome dynamics. Multiple experimental methods have been developed to investigate the mRNA degradome; however, computational tools for their reproducible analysis are lacking. Here, we present fivepseq: an easy-to-use application for analysis and interactive visualization of 5′P degradome data. This tool performs both metagene- and gene-specific analysis, and enables easy investigation of codon-specific ribosome pauses. To demonstrate its ability to provide new biological information, we investigate gene-specific ribosome pauses in Saccharomyces cerevisiae after eIF5A depletion. In addition to identifying pauses at expected codon motifs, we identify multiple genes with strain-specific degradation frameshifts. To show its wide applicability, we investigate 5′P degradome from Arabidopsis thaliana and discover both motif-specific ribosome protection associated with particular developmental stages and generally increased ribosome protection at termination level associated with age. Our work shows how the use of improved analysis tools for the study of 5′P degradome can significantly increase the biological information that can be derived from such datasets and facilitate its reproducible analysis.
Collapse
Affiliation(s)
- Lilit Nersisyan
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna 171 65, Sweden
| | - Maria Ropat
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna 171 65, Sweden
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna 171 65, Sweden
| |
Collapse
|
17
|
Carpentier MC, Deragon JM, Jean V, Be SHV, Bousquet-Antonelli C, Merret R. Monitoring of XRN4 Targets Reveals the Importance of Cotranslational Decay during Arabidopsis Development. PLANT PHYSIOLOGY 2020; 184:1251-1262. [PMID: 32913043 PMCID: PMC7608176 DOI: 10.1104/pp.20.00942] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/02/2020] [Indexed: 05/31/2023]
Abstract
RNA turnover is a general process that maintains appropriate mRNA abundance at the posttranscriptional level. Although long thought to be antagonistic to translation, discovery of the 5' to 3' cotranslational mRNA decay pathway demonstrated that both processes are intertwined. Cotranslational mRNA decay globally shapes the transcriptome in different organisms and in response to stress; however, the dynamics of this process during plant development is poorly understood. In this study, we used a multiomics approach to reveal the global landscape of cotranslational mRNA decay during Arabidopsis (Arabidopsis thaliana) seedling development. We demonstrated that cotranslational mRNA decay is regulated by developmental cues. Using the EXORIBONUCLEASE4 (XRN4) loss-of-function mutant, we showed that XRN4 poly(A+) mRNA targets are largely subject to cotranslational decay during plant development. As cotranslational mRNA decay is interconnected with translation, we also assessed its role in translation efficiency. We discovered that clusters of transcripts were specifically subjected to cotranslational decay in a developmental-dependent manner to modulate their translation efficiency. Our approach allowed the determination of a cotranslational decay efficiency that could be an alternative to other methods to assess transcript translation efficiency. Thus, our results demonstrate the prevalence of cotranslational mRNA decay in plant development and its role in translational control.
Collapse
Affiliation(s)
- Marie-Christine Carpentier
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Jean-Marc Deragon
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
- Institut Universitaire de France, 75231 Paris cedex 05, France
| | - Viviane Jean
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Seng Hour Vichet Be
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Cécile Bousquet-Antonelli
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Rémy Merret
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| |
Collapse
|
18
|
Hõrak H. Telling Footprints: Exon Junction Complexes Mark Targets of Nonsense- and miRNA-Mediated mRNA Decay. THE PLANT CELL 2020; 32:787-788. [PMID: 32051215 PMCID: PMC7145472 DOI: 10.1105/tpc.20.00090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Hanna Hõrak
- Institute of TechnologyUniversity of Tartu, Estonia
| |
Collapse
|