1
|
Hu H, Jiang Y, Liu C, Zhang Y, Chen M, Liu Z. Genome-Wide Identification and Characterization of Basic Pentacysteine Transcription Factors in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2025; 14:1136. [PMID: 40219204 PMCID: PMC11991588 DOI: 10.3390/plants14071136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
BARLEY B-RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC), a plant-specific transcription factor family, is a group of GAGA_motif binding factors controlling multiple developmental processes of growth and response to abiotic stresses. BPCs recruit histone remodeling factors for transcriptional repression of downstream targets. However, the information about BnaBPCs from Brassica napus remains unclear. Here, we identified 25 BnaBPC genes that were mainly localized in the nucleus, randomly localized on 16 chromosomes, and grouped into three subfamilies based on phylogenetic analysis. Twenty-five BnaBPC genes exhibit syntenic relationships with AtBPC genes, and the polypeptides encoded by BnaBPC genes within the same subfamily share similar conserved motifs and protein domains. The expansion of BnaBPC genes underwent whole-genome duplication events and purifying selection in genomes, and all the BnaBPC genes had the same conserved GAGA binding domains. Additionally, the promoter of each BnaBPC gene consisted of various cis-elements associated with stresses, phytohormones, and growth and development. Notably, the seed-specific regulatory element was found only in the BnaC04.BPC4 promoter. Further expression pattern analysis showed that BnaBPC members are widely expressed in stems, buds, developing seeds and siliques. These findings provide insights into BnaBPC genes and enrich our understanding of their functional characterization in B. napus.
Collapse
Affiliation(s)
- Huan Hu
- Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, China; (H.H.); (Y.J.); (C.L.)
| | - Yuqin Jiang
- Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, China; (H.H.); (Y.J.); (C.L.)
| | - Chiyuan Liu
- Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, China; (H.H.); (Y.J.); (C.L.)
| | - Ying Zhang
- Department of Ecological and Environmental Engineering, Yangling Vocational & Technical College, Yangling 712100, China;
| | - Mingxun Chen
- Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, China; (H.H.); (Y.J.); (C.L.)
| | - Zijin Liu
- Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, China; (H.H.); (Y.J.); (C.L.)
| |
Collapse
|
2
|
Zhang S, Zhong H, Zhang F, Zheng J, Zhang C, Yadav V, Zhou X, Nocker SV, Wu X, Wang X. Identification of grapevine BASIC PENTACYSTEINE transcription factors and functional characterization of VvBPC1 in ovule development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112491. [PMID: 40189153 DOI: 10.1016/j.plantsci.2025.112491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/17/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Seedless grapes are gaining increasingly attention in the market because of their desirable traits. Therefore, understanding the molecular genetic regulation of seed development and abortion is crucial for the advancement of seedless cultivars. Recent studies have shown that AGAMOUS-LIKE11 (VvAGL11), an ortholog of Arabidopsis SEEDSTICK (STK), plays a key role in grape ovule development, and amino acid substitution mutations result in seed abortion. However, the regulatory pathways involved in this process are poorly understood in grapevines. In this study, we identified four BASIC PENTACYSTEINE (BPC) genes in the grapevine (Vitis vinifera L.) genome and analyzed their evolutionary relationships, subcellular localization, and expression patterns. VvBPC1 was identified as an upstream regulatory factor of VvAGL11 in a yeast one-hybrid assay. Dual-luciferase assays confirmed that VvAGL11 is negatively regulated by VvBPC1, and the production of small seeds by heterologous overexpression of VvBPC1 in tomatoes results from the suppression of VvAGL11 expression. Furthermore, assays in yeast cells demonstrated that VvBPC1 interacts with VvBELL1. Taken together, this study not only establishes the foundation for further exploration of the molecular mechanisms of the VvBPC1-VvBELL1-VvAGL11 module in regulating grape seed development but also provides new insights into the genetic improvement of seedless grapes.
Collapse
Affiliation(s)
- Songlin Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Haixia Zhong
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Fuchun Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Jinling Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chuan Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Vivek Yadav
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xiaoming Zhou
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI, USA.
| | - Xinyu Wu
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xiping Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan, Xinjiang 838000, China.
| |
Collapse
|
3
|
Han X, Peng Y, Yin S, Zhao H, Zong Z, Tan Z, Zhang Y, Ma W, Guo L. Transcriptional regulation of transcription factor genes WRI1 and LAFL during Brassica napus seed development. PLANT PHYSIOLOGY 2025; 197:kiae378. [PMID: 39041422 DOI: 10.1093/plphys/kiae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
The WRINKLED1 (WRI1) and LAFL (LEAFY COTYLEDON1 [LEC1], ABSCISIC ACID INSENSITIVE3 [ABI3], FUSCA3 [FUS3], and LEC2) transcription factors play essential roles in governing seed development and oil biosynthesis. To gain a comprehensive understanding of the transcriptional regulation of WRI1 and LAFL, we conducted genome-wide association studies for the expression profiles of WRI1 and LAFL in developing seeds at 20 and 40 days after flowering (DAF) using 302 rapeseed (Brassica napus) accessions. We identified a total of 237 expression quantitative trait nucleotides (eQTNs) and 51 expression QTN-by-environment interactions (eQEIs) associated with WRI1 and LAFL. Around these eQTNs and eQEIs, we pinpointed 41 and 8 candidate genes with known transcriptional regulations or protein interactions with their expression traits, respectively. Based on RNA-sequencing and assay for transposase-accessible chromatin with high-throughput sequencing data, we employed the Extreme Gradient Boosting and Basenji models which predicted 15 candidate genes potentially regulating the expression of WRI1 and LAFL. We further validated the predictions via tissue expression profile, haplotype analysis, and expression correlation analysis and verified the transcriptional activation activity of BnaC03.MYB56 (R2R3-MYB transcription factor 56) on the expression of BnaA09.LEC1 by dual-luciferase reporter and yeast 1-hybrid assays. BnaA10.AGL15 (AGAMOUS-LIKE 15), BnaC04.VAL1 (VIVIPAROUS1/ABSCISIC ACID INSENSITIVE3-LIKE 1), BnaC03.MYB56, and BnaA10.MYB56 were coexpressed with WRI1 and LAFL at 20 DAF in M35, a key module for seed development and oil biosynthesis. We further validated the positive regulation of MYB56 on seed oil accumulation using Arabidopsis (Arabidopsis thaliana) mutants. This study not only delivers a framework for future eQEI identification but also offers insights into the developmental regulation of seed oil accumulation.
Collapse
Affiliation(s)
- Xu Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Sijie Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhanxiang Zong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zengdong Tan
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Yuting Zhang
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| |
Collapse
|
4
|
Chen J, Liu Z, Yan J. BPC1 and BPC2 positively regulates the waterlogging stress tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 2025; 747:151296. [PMID: 39799863 DOI: 10.1016/j.bbrc.2025.151296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Waterlogging stress is a significant abiotic factor that severely limits plant growth and development. Identifying genes involved in the waterlogging stress response and understanding the mechanisms by which plants resist waterlogging stress are therefore critical. In this study, we identified a specific role for two transcription factors, BPC1 and BPC2, in the waterlogging stress response of Arabidopsis thaliana. Waterlogging stress markedly upregulated the transcripts of BPC1 and BPC2 in Arabidopsis. Loss-of-function mutations in BPC1 and BPC2 decreased tolerance to waterlogging stress during the seedling growth stage. Physiological analyses demonstrated that the mutations of BPC1 and BPC2 aggravated waterlogging-induced increases in electrolyte leakage, malondialdehyde (MDA) content and hydrogen peroxide (H₂O₂) accumulation by modulating POD activity. Furthermore, quantitative real-time PCR (qRT-PCR) and dual-luciferase assays showed that BPC1 and BPC2 up-regulated the expression of peroxidase gene (Prx28). Collectively, our results indicate that BPC1 and BPC2 positively modulate Prx28 expression to affect the POD activity, modulating electrolyte leakage, MDA content and H₂O₂ accumulation under waterlogging stress. This study reveals the molecular mechanisms underlying waterlogging resistance in A. thaliana, providing new insights into this field.
Collapse
Affiliation(s)
- Jiaying Chen
- Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Zhihui Liu
- Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jingwei Yan
- Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
5
|
Lao Z, Mao J, Chen R, Xu R, Yang Z, Wang Y, Zhou J, Mu Z, Xu H, Li F, Huang D, Xiao Y, Luo J, Xia W. Genome-wide identification and characterization of BASIC PENTACYSTEINE transcription factors and their binding motifs in coconut palm. FRONTIERS IN PLANT SCIENCE 2024; 15:1491139. [PMID: 39719939 PMCID: PMC11666369 DOI: 10.3389/fpls.2024.1491139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024]
Abstract
Introduction BASIC PENTACYSTEINE (BPC) is a small transcription factor family known for its role in various developmental processes in plants, particularly in binding GA motifs and regulating flower and seed development. However, research on the functional characteristics and target genes of BPCs in coconut (Cocos nucifera) is limited. Methods In this study, we systematically characterized the gene structure, conserved protein domains, gene expansion, and target genes of CnBPCs in the coconut genome. We conducted yeast one-hybrid (Y1H) and dual-luciferase assay to explore gene interactions. We identified genes with the GA motif in their promoter regions and combined this information with a weighted gene co-expression network to identify the target genes of CnBPCs. Results Eight CnBPCs were identified, including three Class I CnBPCs from triplication, four Class II CnBPCs (with CnBPC6A and CnBPC6B resulting from segmental duplication), and one Class III CnBPC (CnBPC7). Three conserved DNA-binding motifs were detected, exhibiting variation in certain sites. Widespread BPC gene expansion was detected in coconut and other plant species, while only three BPCs were found in the most basal extant flowering plant. Notably, 92% of protein-coding genes contained at least one GA motif, with the (GA)3 motif being most prevalent. Genes containing the GA motif that exhibit a high expression correlation with CnBPCs, tend to interact strongly with the corresponding CnBPCs. Additionally, promoters rich in the GA motif tend to interact with all members of CnBPC. The dual-luciferase assay showed that CnBPCs could activate or repress the transcriptional activities of promoters containing either (GA)3 or (GA)11 motif but with a bias toward certain genes. Furthermore, we constructed co-expressed networks identifying 426 genes with GA motifs as potential CnBPC targets. Discussion Our findings suggest that CnBPCs may play significant roles in seed germination, flower development, and mesocarp development by interacting with genes such as CnAG1, CnAG2, CnSTK, CnMFT, and CnCS. This study characterized CnBPCs' binding motif and possible target genes, laying a theoretical foundation to reveal CnBPCs' function in flower and seed development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yong Xiao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)/College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan, China
| | - Jie Luo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)/College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan, China
| | - Wei Xia
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)/College of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan, China
| |
Collapse
|
6
|
Schumaker B, Mortensen L, Klein RR, Mandal S, Dykes L, Gladman N, Rooney WL, Burson B, Klein PE. UV-induced reactive oxygen species and transcriptional control of 3-deoxyanthocyanidin biosynthesis in black sorghum pericarp. FRONTIERS IN PLANT SCIENCE 2024; 15:1451215. [PMID: 39435026 PMCID: PMC11491397 DOI: 10.3389/fpls.2024.1451215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Black pericarp sorghum has notable value due to the biosynthesis of 3-deoxyanthocyanidins (3-DOAs), a rare class of bioactive polyphenols valued as antioxidant food additives and as bioactive compounds with cytotoxicity to human cancer cells. A metabolic and transcriptomic study was conducted to ascertain the cellular events leading to the activation of 3-DOA biosynthesis in black sorghum pericarp. Prolonged exposure of pericarp during grain maturation to high-fluence ultraviolet (UV) light resulted in elevated levels of reactive oxygen species (ROS) and the activation of 3-DOA biosynthesis in pericarp tissues. In conjunction with 3-DOA biosynthesis was the transcriptional activation of specific family members of early and late flavonoid biosynthesis pathway genes as well as the downstream activation of defense-related pathways. Promoter analysis of genes highly correlated with 3-DOA biosynthesis in black pericarp were enriched in MYB and HHO5/ARR-B motifs. Light microscopy studies of black pericarp tissues suggest that 3-DOAs are predominantly localized in the epicarp and are associated with the cell wall. A working model of UV-induced 3-DOA biosynthesis in black pericarp is proposed that shares features of plant immunity associated with pathogen attack or mechanical wounding. The present model depicts ROS accumulation, the transcriptional activation of receptor kinases and transcription factors (TFs) including NAC, WRKY, bHLH, AP2, and C2H2 Zinc finger domain. This study identified key biosynthetic and regulatory genes of 3-DOA accumulation in black pericarp and provided a deeper understanding of the gene networks and cellular events controlling this tissue-and genotype-specific trait.
Collapse
Affiliation(s)
- Brooklyn Schumaker
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Lauren Mortensen
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Robert R. Klein
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Sabyasachi Mandal
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Linda Dykes
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Unit, Fargo, ND, United States
| | - Nicholas Gladman
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - William L. Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Byron Burson
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
7
|
Go D, Lu B, Alizadeh M, Gazzarrini S, Song L. Voice from both sides: a molecular dialogue between transcriptional activators and repressors in seed-to-seedling transition and crop adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1416216. [PMID: 39166233 PMCID: PMC11333834 DOI: 10.3389/fpls.2024.1416216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/20/2024] [Indexed: 08/22/2024]
Abstract
High-quality seeds provide valuable nutrients to human society and ensure successful seedling establishment. During maturation, seeds accumulate storage compounds that are required to sustain seedling growth during germination. This review focuses on the epigenetic repression of the embryonic and seed maturation programs in seedlings. We begin with an extensive overview of mutants affecting these processes, illustrating the roles of core proteins and accessory components in the epigenetic machinery by comparing mutants at both phenotypic and molecular levels. We highlight how omics assays help uncover target-specific functional specialization and coordination among various epigenetic mechanisms. Furthermore, we provide an in-depth discussion on the Seed dormancy 4 (Sdr4) transcriptional corepressor family, comparing and contrasting their regulation of seed germination in the dicotyledonous species Arabidopsis and two monocotyledonous crops, rice and wheat. Finally, we compare the similarities in the activation and repression of the embryonic and seed maturation programs through a shared set of cis-regulatory elements and discuss the challenges in applying knowledge largely gained in model species to crops.
Collapse
Affiliation(s)
- Dongeun Go
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sonia Gazzarrini
- Department of Biological Science, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Gazzarrini S, Song L. LAFL Factors in Seed Development and Phase Transitions. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:459-488. [PMID: 38657282 DOI: 10.1146/annurev-arplant-070623-111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.
Collapse
Affiliation(s)
- Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada;
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
9
|
Dang TT, Lalanne D, Ly Vu J, Ly Vu B, Defaye J, Verdier J, Leprince O, Buitink J. BASIC PENTACYSTEINE1 regulates ABI4 by modification of two histone marks H3K27me3 and H3ac during early seed development of Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2024; 15:1395379. [PMID: 38916028 PMCID: PMC11194320 DOI: 10.3389/fpls.2024.1395379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024]
Abstract
Introduction The production of highly vigorous seeds with high longevity is an important lever to increase crop production efficiency, but its acquisition during seed maturation is strongly influenced by the growth environment. Methods An association rule learning approach discovered MtABI4, a known longevity regulator, as a gene with transcript levels associated with the environmentally-induced change in longevity. To understand the environmental sensitivity of MtABI4 transcription, Yeast One-Hybrid identified a class I BASIC PENTACYSTEINE (MtBPC1) transcription factor as a putative upstream regulator. Its role in the regulation of MtABI4 was further characterized. Results and discussion Overexpression of MtBPC1 led to a modulation of MtABI4 transcripts and its downstream targets. We show that MtBPC1 represses MtABI4 transcription at the early stage of seed development through binding in the CT-rich motif in its promoter region. To achieve this, MtBPC1 interacts with SWINGER, a sub-unit of the PRC2 complex, and Sin3-associated peptide 18, a sub-unit of the Sin3-like deacetylation complex. Consistent with this, developmental and heat stress-induced changes in MtABI4 transcript levels correlated with H3K27me3 and H3ac enrichment in the MtABI4 promoter. Our finding reveals the importance of the combination of histone methylation and histone de-acetylation to silence MtABI4 at the early stage of seed development and during heat stress.
Collapse
Affiliation(s)
- Thi Thu Dang
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
- LIPME - Laboratoire des interactions plantes-microbes-environnement. UMR CNRS–INRAE, Castanet Tolosan, France
| | - David Lalanne
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Joseph Ly Vu
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Benoit Ly Vu
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Johan Defaye
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Jerome Verdier
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Olivier Leprince
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| | - Julia Buitink
- INRAE, Institut Agro, Univ Angers, Institut de Recherche en Horticulture et Semences, SFR QUASAV, Angers, France
| |
Collapse
|
10
|
Yang F, Sun X, Wu G, He X, Liu W, Wang Y, Sun Q, Zhao Y, Xu D, Dai X, Ma W, Zeng J. Genome-Wide Identification and Expression Profiling of the ABF Transcription Factor Family in Wheat ( Triticum aestivum L.). Int J Mol Sci 2024; 25:3783. [PMID: 38612594 PMCID: PMC11011718 DOI: 10.3390/ijms25073783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Members of the abscisic acid (ABA)-responsive element (ABRE) binding factor (ABF) and ABA-responsive element binding protein (AREB) families play essential roles in the regulation of ABA signaling pathway activity and shape the ability of plants to adapt to a range of stressful environmental conditions. To date, however, systematic genome-wide analyses focused on the ABF/AREB gene family in wheat are lacking. Here, we identified 35 ABF/AREB genes in the wheat genome, designated TaABF1-TaABF35 according to their chromosomal distribution. These genes were further classified, based on their phylogenetic relationships, into three groups (A-C), with the TaABF genes in a given group exhibiting similar motifs and similar numbers of introns/exons. Cis-element analyses of the promoter regions upstream of these TaABFs revealed large numbers of ABREs, with the other predominant elements that were identified differing across these three groups. Patterns of TaABF gene expansion were primarily characterized by allopolyploidization and fragment duplication, with purifying selection having played a significant role in the evolution of this gene family. Further expression profiling indicated that the majority of the TaABF genes from groups A and B were highly expressed in various tissues and upregulated following abiotic stress exposure such as drought, low temperature, low nitrogen, etc., while some of the TaABF genes in group C were specifically expressed in grain tissues. Regulatory network analyses revealed that four of the group A TaABFs (TaABF2, TaABF7, TaABF13, and TaABF19) were centrally located in protein-protein interaction networks, with 13 of these TaABF genes being regulated by 11 known miRNAs, which play important roles in abiotic stress resistance such as drought and salt stress. The two primary upstream transcription factor types found to regulate TaABF gene expression were BBR/BPC and ERF, which have previously been reported to be important in the context of plant abiotic stress responses. Together, these results offer insight into the role that the ABF/AREB genes play in the responses of wheat to abiotic stressors, providing a robust foundation for future functional studies of these genes.
Collapse
Affiliation(s)
- Fuhui Yang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuelian Sun
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Gang Wu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoyan He
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongmei Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingyi Sun
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Zhao
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Dengan Xu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuehuan Dai
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Wujun Ma
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257347, China
| | - Jianbin Zeng
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257347, China
| |
Collapse
|
11
|
Zhao H, Wan S, Huang Y, Li X, Jiao T, Zhang Z, Ma B, Zhu L, Ma F, Li M. The transcription factor MdBPC2 alters apple growth and promotes dwarfing by regulating auxin biosynthesis. THE PLANT CELL 2024; 36:585-604. [PMID: 38019898 PMCID: PMC10896295 DOI: 10.1093/plcell/koad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Auxin plays important roles throughout plant growth and development. However, the mechanisms of auxin regulation of plant structure are poorly understood. In this study, we identified a transcription factor (TF) of the BARLEY B RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family in apple (Malus × domestica), MdBPC2. It was highly expressed in dwarfing rootstocks, and it negatively regulated auxin biosynthesis. Overexpression of MdBPC2 in apple decreased plant height, altered leaf morphology, and inhibited root system development. These phenotypes were due to reduced auxin levels and were restored reversed after exogenous indole acetic acid (IAA) treatment. Silencing of MdBPC2 alone had no obvious phenotypic effect, while silencing both Class I and Class II BPCs in apple significantly increased auxin content in plants. Biochemical analysis demonstrated that MdBPC2 directly bound to the GAGA-rich element in the promoters of the auxin synthesis genes MdYUC2a and MdYUC6b, inhibiting their transcription and reducing auxin accumulation in MdBPC2 overexpression lines. Further studies established that MdBPC2 interacted with the polycomb group (PcG) protein LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) to inhibit MdYUC2a and MdYUC6b expression via methylation of histone 3 lysine 27 (H3K27me3). Silencing MdLHP1 reversed the negative effect of MdBPC2 on auxin accumulation. Our results reveal a dwarfing mechanism in perennial woody plants involving control of auxin biosynthesis by a BPC transcription factor, suggesting its use for genetic improvement of apple rootstock.
Collapse
Affiliation(s)
- Haiyan Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuyuan Wan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yanni Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xiaoqiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tiantian Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Lingcheng Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
12
|
Bascom C. An apple a day: MdBPC2 transcription factor keeps the auxin away and causes dwarfing in Malus domestica. THE PLANT CELL 2024; 36:493-494. [PMID: 38084887 PMCID: PMC10896282 DOI: 10.1093/plcell/koad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/27/2024]
Affiliation(s)
- Carlisle Bascom
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Natural Resources and the Environment Department, University of New Hampshire, Durham, NH, 03824, USA
| |
Collapse
|
13
|
Yuan HY, Kagale S, Ferrie AMR. Multifaceted roles of transcription factors during plant embryogenesis. FRONTIERS IN PLANT SCIENCE 2024; 14:1322728. [PMID: 38235196 PMCID: PMC10791896 DOI: 10.3389/fpls.2023.1322728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Transcription factors (TFs) are diverse groups of regulatory proteins. Through their specific binding domains, TFs bind to their target genes and regulate their expression, therefore TFs play important roles in various growth and developmental processes. Plant embryogenesis is a highly regulated and intricate process during which embryos arise from various sources and undergo development; it can be further divided into zygotic embryogenesis (ZE) and somatic embryogenesis (SE). TFs play a crucial role in the process of plant embryogenesis with a number of them acting as master regulators in both ZE and SE. In this review, we focus on the master TFs involved in embryogenesis such as BABY BOOM (BBM) from the APETALA2/Ethylene-Responsive Factor (AP2/ERF) family, WUSCHEL and WUSCHEL-related homeobox (WOX) from the homeobox family, LEAFY COTYLEDON 2 (LEC2) from the B3 family, AGAMOUS-Like 15 (AGL15) from the MADS family and LEAFY COTYLEDON 1 (LEC1) from the Nuclear Factor Y (NF-Y) family. We aim to present the recent progress pertaining to the diverse roles these master TFs play in both ZE and SE in Arabidopsis, as well as other plant species including crops. We also discuss future perspectives in this context.
Collapse
Affiliation(s)
| | | | - Alison M. R. Ferrie
- Aquatic and Crop Resource Development Research Center, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
14
|
Ma X, Nie Z, Huang H, Yan C, Li S, Hu Z, Wang Y, Yin H. Small RNA profiling reveals that an ovule-specific microRNA, cja-miR5179, targets a B-class MADS-box gene in Camellia japonica. ANNALS OF BOTANY 2023; 132:1007-1020. [PMID: 37831901 PMCID: PMC10808017 DOI: 10.1093/aob/mcad155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND AIMS The functional specialization of microRNA and its target genes is often an important factor in the establishment of spatiotemporal patterns of gene expression that are essential to plant development and growth. In different plant lineages, understanding the functional conservation and divergence of microRNAs remains to be explored. METHODS To identify small regulatory RNAs underlying floral patterning, we performed a tissue-specific profiling of small RNAs in various floral organs from single and double flower varieties (flowers characterized by multiple layers of petals) in Camellia japonica. We identified cja-miR5179, which belongs to a deeply conserved microRNA family that is conserved between angiosperms and basal plants but frequently lost in eudicots. We characterized the molecular function of cja-miR5179 and its target - a B-function MADS-box gene - through gene expression analysis and transient expression assays. KEY RESULTS We showed that cja-miR5179 is exclusively expressed in ovule tissues at the early stage of floral development. We found that cja-miR5179 targets the coding sequences of a DEFICIENS-like B-class gene (CjDEF) mRNA, which is located in the K motif of the MADS-box domain; and the target sites of miR5179/MADS-box were consistent in Camellia and orchids. Furthermore, through a petal transient-expression assay, we showed that the BASIC PENTACYSTEINE proteins bind to the GA-rich motifs in the cja-miR5179 promoter region and suppresses its expression. CONCLUSIONS We propose that the regulation between miR5179 and a B-class MADS-box gene in C. japonica has a deep evolutionary origin before the separation of monocots and dicots. During floral development of C. japonica, cja-miR5179 is specifically expressed in the ovule, which may be required for the inhibition of CjDEF function. This work highlights the evolutionary conservation as well as functional divergence of small RNAs in floral development.
Collapse
Affiliation(s)
- Xianjin Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Ziyan Nie
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Hu Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Chao Yan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- Experimental Center for Subtropical Forestry, Chinese Academy of Forestry, Fenyi, Jiangxi 336600, China
| | - Sijia Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Zhikang Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yupeng Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
15
|
Pan W, Li J, Du Y, Zhao Y, Xin Y, Wang S, Liu C, Lin Z, Fang S, Yang Y, Zaccai M, Zhang X, Yi M, Gazzarrini S, Wu J. Epigenetic silencing of callose synthase by VIL1 promotes bud-growth transition in lily bulbs. NATURE PLANTS 2023; 9:1451-1467. [PMID: 37563458 DOI: 10.1038/s41477-023-01492-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
In plants, restoring intercellular communication is required for cell activity in buds during the growth transition from slow to fast growth after dormancy release. However, the epigenetic regulation of this phenomenon is far from understood. Here we demonstrate that lily VERNALIZATION INSENSITIVE 3-LIKE 1 (LoVIL1) confers growth transition by mediating plasmodesmata opening via epigenetic repression of CALLOSE SYNTHASE 3 (LoCALS3). Moreover, we found that a novel transcription factor, NUCLEAR FACTOR Y, SUBUNIT A7 (LoNFYA7), is capable of recruiting the LoVIL1-Polycomb Repressive Complex 2 (PRC2) and enhancing H3K27me3 at the LoCALS3 locus by recognizing the CCAAT cis-element (Cce) of its promoter. The LoNFYA7-LoVIL1 module serves as a key player in orchestrating the phase transition from slow to fast growth in lily bulbs. These studies also indicate that LoVIL1 is a suitable marker for the bud-growth-transition trait following dormancy release in lily cultivars.
Collapse
Affiliation(s)
- Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jingru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yunpeng Du
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yajie Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yin Xin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Shaokun Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Chang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Zhimin Lin
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shaozhong Fang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yingdong Yang
- Institute of Floriculture, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Michele Zaccai
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Xiuhai Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
16
|
Feng X, Li S, Meng D, Di Q, Zhou M, Yu X, He C, Yan Y, Wang J, Sun M, Li Y. CsBPC2 is a key regulator of root growth and development. PHYSIOLOGIA PLANTARUM 2023; 175:e13977. [PMID: 37616013 DOI: 10.1111/ppl.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023]
Abstract
BASIC PENTACYSTEINE (BPCs) transcription factors are important regulators of plant growth and development. However, the regulatory mechanism of BPC2 in roots remains unclear. In our previous study, we created Csbpc2 cucumber mutants by the CRISPR/Cas9 system, and our studies on the phenotype of Csbpc2 mutants showed that the root growth was inhibited compared with wide-type (WT). Moreover, the surface area, volume and number of roots decreased significantly, with root system architecture changing from dichotomous branching to herringbone branching. Compared with WT, the leaf growth of the Csbpc2 mutants was not affected. However, the palisade and spongy tissue were significantly thinner, which was not beneficial for photosynthesis. The metabolome of root exudates showed that compared with WT, amino acids and their derivatives were significantly decreased, and the enriched pathways were mainly regulated by amino acids and their derivatives, indicating that knockout of CsBPC2 mainly affected the amino acid content in root exudates. Importantly, transcriptome analysis showed that knockout of CsBPC2 mainly affected root gene expression. Knockout of CsBPC2 significantly reduced the gene expression of gibberellins synthesis. However, the expression of genes related to amino acid synthesis, nitrogen fixation and PSII-related photosynthesis increased significantly, which may be due to the effect of knocking out CsBPC2 on gibberellins synthesis, resulting in the inhibition of seedling growth, thus forming negative feedback regulation. Generally, we showed for the first time that BPC2 is a key regulator gene of root growth and development, laying the foundation for future mechanisms of BPC2 regulation in roots.
Collapse
Affiliation(s)
- Xiaojie Feng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuzhen Li
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, China
| | - Di Meng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghua Di
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengdi Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaoxing He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Yan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Sahu A, Singh R, Verma PK. Plant BBR/BPC transcription factors: unlocking multilayered regulation in development, stress and immunity. PLANTA 2023; 258:31. [PMID: 37368167 DOI: 10.1007/s00425-023-04188-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
MAIN CONCLUSION This review provides a detailed structural and functional understanding of BBR/BPC TF, their conservation across the plant lineage, and their comparative study with animal GAFs. Plant-specific Barley B Recombinant/Basic PentaCysteine (BBR/BPC) transcription factor (TF) family binds to "GA" repeats similar to animal GAGA Factors (GAFs). These GAGA binding proteins are among the few TFs that regulate the genes at multiple steps by modulating the chromatin structure. The hallmark of the BBR/BPC TF family is the presence of a conserved C-terminal region with five cysteine residues. In this review, we present: first, the structural distinct yet functional similar relation of plant BBR/BPC TF with animal GAFs, second, the conservation of BBR/BPC across the plant lineage, third, their role in planta, fourth, their potential interacting partners and structural insights. We conclude that BBR/BPC TFs have multifaceted roles in plants. Besides the earliest identified function in homeotic gene regulation and developmental processes, presently BBR/BPC TFs were identified in hormone signaling, stress, circadian oscillation, and sex determination processes. Understanding how plants' development and stress processes are coordinated is central to divulging the growth-immunity trade-off regulation. The BBR/BPC TFs may hold keys to divulge the interactions between development and immunity. Moreover, the conservation of BBR/BPC across plant lineage makes it an evolutionary vital gene family. Consequently, BBR/BPCs are prospective to attract the increasing attention of the scientific communities as they are probably at the crossroads of diverse fundamental processes.
Collapse
Affiliation(s)
- Anubhav Sahu
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
18
|
Zhang S, Wang L, Yao J, Wu N, Ahmad B, van Nocker S, Wu J, Abudureheman R, Li Z, Wang X. Control of ovule development in Vitis vinifera by VvMADS28 and interacting genes. HORTICULTURE RESEARCH 2023; 10:uhad070. [PMID: 37293531 PMCID: PMC10244803 DOI: 10.1093/hr/uhad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/08/2023] [Indexed: 06/10/2023]
Abstract
Seedless grapes are increasingly popular throughout the world, and the development of seedless varieties is a major breeding goal. In this study, we demonstrate an essential role for the grapevine MADS-box gene VvMADS28 in morphogenesis of the ovule. We found that VvMADS28 mRNA accumulated in the ovules of a seeded cultivar, 'Red Globe', throughout the course of ovule and seed development, especially within the integument/seed coat. In contrast, in the seedless cultivar 'Thompson Seedless', VvMADS28 was expressed only weakly in ovules, and this was associated with increased levels of histone H3 lysine 27 trimethylation (H3K27me3) within the VvMADS28 promoter region. RNAi-mediated transient suppression of VvMADS28 expression in 'Red Globe' led to reduced seed size associated with inhibition of episperm and endosperm cell development. Heterologous overexpression of VvMADS28 in transgenic tomatoes interfered with sepal development and resulted in smaller fruit but did not obviously affect seed size. Assays in yeast cells showed that VvMADS28 is subject to regulation by the transcription factor VvERF98, and that VvMADS28 could interact with the Type I/ Mβ MADS-domain protein VvMADS5. Moreover, through DNA-affinity purification-sequencing (DAP-seq), we found that VvMADS28 protein specifically binds to the promoter of the grapevine WUSCHEL (VvWUS) gene, suggesting that maintenance of the VvMADS28-VvMADS5 dimer and VvWUS expression homeostasis influences seed development. Taken together, our results provide insight into regulatory mechanisms of ovule and seed development associated with VvMADS28.
Collapse
Affiliation(s)
- Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Agriculture Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | - Jiuyun Wu
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, Xinjiang, China
| | - Riziwangguli Abudureheman
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, Xinjiang, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, Xinjiang, China
| |
Collapse
|
19
|
Liang JH, Li JR, Liu C, Pan WQ, Wu WJ, Shi WJ, Wang LJ, Yi MF, Wu J. GhbZIP30-GhCCCH17 module accelerates corm dormancy release by reducing endogenous ABA under cold storage in Gladiolus. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37128741 DOI: 10.1111/pce.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Gladiolus hybridus is one of the most popular flowers worldwide. However, its corm dormancy characteristic largely limits its off-season production. Long-term cold treatment (LT), which increases sugar content and reduces abscisic acid (ABA), is an efficient approach to accelerate corm dormancy release (CDR). Here, we identified a GhbZIP30-GhCCCH17 module that mediates the antagonism between sugars and ABA during CDR. We showed that sugars promoted CDR by reducing ABA levels in Gladiolus. Our data demonstrated that GhbZIP30 transcription factor directly binds the GhCCCH17 zinc finger promoter and activates its transcription, confirmed by yeast one-hybrid, dual-luciferase (Dual-LUC), chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA). GhCCCH17 is a transcriptional activator, and its nuclear localisation is altered by glucose and cytokinin treatments. Both GhbZIP30 and GhCCCH17 positively respond to LT, sugars, and cytokinin treatments. Silencing GhbZIP30 or GhCCCH17 resulted in delayed CDR by regulating ABA metabolic genes, while their overexpression promoted CDR. Taken together, we propose that the GhbZIP30-GhCCCH17 module is involved in cold- and glucose-induced CDR by regulating ABA metabolic genes.
Collapse
Affiliation(s)
- Jia-Hui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing-Ru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Chang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Wen-Qiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Wen-Jing Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Wen-Jing Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Lu-Jia Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Ming-Fang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Li J, Pan W, Liang J, Liu C, Li D, Yang Y, Qu L, Gazzarrini S, Yi M, Wu J. BASIC PENTACYSTEINE2 fine-tunes corm dormancy release in Gladiolus. PLANT PHYSIOLOGY 2023; 191:2489-2505. [PMID: 36659854 PMCID: PMC10069901 DOI: 10.1093/plphys/kiad026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Bud dormancy is an important trait in geophytes that largely affects their flowering process and vegetative growth after dormancy release. Compared with seed dormancy, the regulation of bud dormancy is still largely unclear. Abscisic acid (ABA) acts as the predominant hormone that regulates the whole dormancy process. In Gladiolus (Gladiolus hybridus), cold storage promotes corm dormancy release (CDR) by repressing ABA biosynthesis and signaling. However, the mechanisms governing ABA-related processes during CDR via epigenetics are poorly understood. Here, we show that class I BASIC PENTACYSTEINE2, (GhBPC2) directly binds to 9-CIS-EPOXYCAROTENOID DIOXYGENASE (GhNCED) and ABA INSENSITIVE5 (GhABI5) loci and down-regulates their expression to accelerate CDR. During CDR, histone modifications change dramatically at the GhBPC2-binding loci of GhABI5 with an increase in H3K27me3 and a decrease in H3K4me3. GhBPC2 is involved in both H3K27me3 and H3K4me3 and fine-tunes GhABI5 expression by recruiting polycomb repressive complex 2 (PRC2) and the chromatin remodeling factor EARLY BOLTING IN SHORT DAYS (GhEBS). These results show GhBPC2 epigenetically regulates CDR in Gladiolus by mediating GhABI5 expression with PRC2 and GhEBS.
Collapse
Affiliation(s)
- Jingru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiahui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Institute of Landscape Architecture, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yingdong Yang
- Institute of Floriculture, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Lianwei Qu
- Institute of Floriculture, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON Canada
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Baud S, Corso M, Debeaujon I, Dubreucq B, Job D, Marion-Poll A, Miquel M, North H, Rajjou L, Lepiniec L. Recent progress in molecular genetics and omics-driven research in seed biology. C R Biol 2023; 345:61-110. [PMID: 36847120 DOI: 10.5802/crbiol.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Elucidating the mechanisms that control seed development, metabolism, and physiology is a fundamental issue in biology. Michel Caboche had long been a catalyst for seed biology research in France up until his untimely passing away last year. To honour his memory, we have updated a review written under his coordination in 2010 entitled "Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research". This review encompassed different molecular aspects of seed development, reserve accumulation, dormancy and germination, that are studied in the lab created by M. Caboche. We have extended the scope of this review to highlight original experimental approaches implemented in the field over the past decade such as omics approaches aimed at investigating the control of gene expression, protein modifications, primary and specialized metabolites at the tissue or even cellular level, as well as seed biodiversity and the impact of the environment on seed quality.
Collapse
|
22
|
Kim ED, Dorrity MW, Fitzgerald BA, Seo H, Sepuru KM, Queitsch C, Mitsuda N, Han SK, Torii KU. Dynamic chromatin accessibility deploys heterotypic cis/trans-acting factors driving stomatal cell-fate commitment. NATURE PLANTS 2022; 8:1453-1466. [PMID: 36522450 PMCID: PMC9788986 DOI: 10.1038/s41477-022-01304-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/28/2022] [Indexed: 05/12/2023]
Abstract
Chromatin architecture and transcription factor (TF) binding underpin cell-fate specification during development, but their mutual regulatory relationships remain unclear. Here we report an atlas of dynamic chromatin landscapes during stomatal cell-lineage progression, in which sequential cell-state transitions are governed by lineage-specific bHLH TFs. Major reprogramming of chromatin accessibility occurs at the proliferation-to-differentiation transition. We discover novel co-cis regulatory elements (CREs) signifying the early precursor stage, BBR/BPC (GAGA) and bHLH (E-box) motifs, where master-regulatory bHLH TFs, SPEECHLESS and MUTE, consecutively bind to initiate and terminate the proliferative state, respectively. BPC TFs complex with MUTE to repress SPEECHLESS expression through a local deposition of repressive histone marks. We elucidate the mechanism by which cell-state-specific heterotypic TF complexes facilitate cell-fate commitment by recruiting chromatin modifiers via key co-CREs.
Collapse
Affiliation(s)
- Eun-Deok Kim
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Bridget A Fitzgerald
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hyemin Seo
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Krishna Mohan Sepuru
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Soon-Ki Han
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Keiko U Torii
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
23
|
Characterizations of a Class-I BASIC PENTACYSTEINE Gene Reveal Conserved Roles in the Transcriptional Repression of Genes Involved in Seed Development. Curr Issues Mol Biol 2022; 44:4059-4069. [PMID: 36135190 PMCID: PMC9497819 DOI: 10.3390/cimb44090278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The developmental regulation of flower organs involves the spatio-temporal regulation of floral homeotic genes. BASIC PENTACYSTEINE genes are plant-specific transcription factors that is involved in many aspects of plant development through gene transcriptional regulation. Although studies have shown that the BPC genes are involved in the developmental regulation of flower organs, little is known about their role in the formation of double-flower due. Here we characterized a Class I BPC gene (CjBPC1) from an ornamental flower—Camellia japonica. We showed that CjBPC1 is highly expressed in the central whorls of flowers in both single and doubled varieties. Overexpression of CjBPC1 in Arabidopsis thaliana caused severe defects in siliques and seeds. We found that genes involved in ovule and seed development, including SEEDSTICK, LEAFY COTYLEDON2, ABSCISIC ACID INSENSITIVE 3 and FUSCA3, were significantly down-regulated in transgenic lines. We showed that the histone 3 lysine 27 methylation levels of these downstream genes were enhanced in the transgenic plants, indicating conserved roles of CjBPC1 in recruiting the Polycomb Repression Complex for gene suppression.
Collapse
|
24
|
Zhang S, Yao J, Wang L, Wu N, van Nocker S, Li Z, Gao M, Wang X. Role of grapevine SEPALLATA-related MADS-box gene VvMADS39 in flower and ovule development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1565-1579. [PMID: 35830211 DOI: 10.1111/tpj.15907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Seedlessness is one of the most important breeding goals for table grapes; thus, understanding the molecular genetic regulation of seed development and abortion is critical for the development of seedless cultivars. In the present study, we characterized VvMADS39, a class E MADS-box gene of grapevine (Vitis vinifera) orthologous to Arabidopsis SEP2. Heterologous overexpression of VvMADS39 in tomato reduced the fruit and seed size and seed number. Targeted mutagenesis of the homologous SlMADS39 in tomato induced various floral and fruit defects. It could reasonable to suppose that active VvMADS39 expression in "Thompson Seedless" may restrict cellular expansion, resulting in the development of smaller fruits and seeds, VvMADS39 may play a role in the regulation of ovule development in grapevine and contributes to seedless fruit formation. In contrast, VvMADS39 suppression in "Red Globe" was associated with enhanced histone H3 lysine 27 trimethylation in the promoter region of VvMADS39, allowing normal ovule and fruit development; Meanwhile, VvMADS39 interacts with VvAGAMOUS, and the activity of the VvMADS39-VvAGAMOUS dimer to induce integument development requires the activation and maintenance of VvINO expression. The synergistic cooperation between VvMADS39 and related proteins plays an important role in maintaining floral meristem characteristics, and fruit and ovule development.
Collapse
Affiliation(s)
- Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Na Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
25
|
Lee YC, Tsai PT, Huang XX, Tsai HL. Family Members Additively Repress the Ectopic Expression of BASIC PENTACYSTEINE3 to Prevent Disorders in Arabidopsis Circadian Vegetative Development. FRONTIERS IN PLANT SCIENCE 2022; 13:919946. [PMID: 35693178 PMCID: PMC9182635 DOI: 10.3389/fpls.2022.919946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BARLEY B-RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family members are plant-specific GAGA-motif binding factors (GAFs) controlling multiple developmental processes of growth and propagation. BPCs recruit histone remodeling factors for transcriptional repression of downstream targets. It has been revealed that BPCs have an overlapping and antagonistic relationship in regulating development. In this study, we showed disturbances interfering with the homeostasis of BPC expressions impede growth and development. The ectopic expression of BPC3 results in the daily growth defect shown by higher-order bpc mutants. Oscillations of multiple circadian clock genes are phase-delayed in the quadruple mutant of bpc1 bpc2 bpc4 bpc6 (bpc1,2,4,6). By introducing the overexpression of BPC3 into wild-type Arabidopsis, we found that BPC3 is a repressor participating in its repression and repressing multiple regulators essential to the circadian clock. However, the induction of BPC3 overexpression did not fully replicate clock defects shown by the quadruple mutant, indicating that in addition to the BPC3 antagonization, BPC members also cofunction in the circadian clock regulation. A leaf edge defect similar to that shown by bpc1,2,4,6 is also observed under BPC3 induction, accompanied by repression of a subset of TCPs required for the edge formation. This proves that BPC3 is a repressor that must be confined during the vegetative phase. Our findings demonstrate that BPCs form a meticulous repressor network for restricting their repressive functions to molecular mechanisms controlling plant growth and development.
Collapse
|
26
|
Godwin J, Farrona S. The Importance of Networking: Plant Polycomb Repressive Complex 2 and Its Interactors. EPIGENOMES 2022; 6:epigenomes6010008. [PMID: 35323212 PMCID: PMC8948837 DOI: 10.3390/epigenomes6010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2) is arguably the best-known plant complex of the Polycomb Group (PcG) pathway, formed by a group of proteins that epigenetically represses gene expression. PRC2-mediated deposition of H3K27me3 has amply been studied in Arabidopsis and, more recently, data from other plant model species has also been published, allowing for an increasing knowledge of PRC2 activities and target genes. How PRC2 molecular functions are regulated and how PRC2 is recruited to discrete chromatin regions are questions that have brought more attention in recent years. A mechanism to modulate PRC2-mediated activity is through its interaction with other protein partners or accessory proteins. Current evidence for PRC2 interactors has demonstrated the complexity of its protein network and how far we are from fully understanding the impact of these interactions on the activities of PRC2 core subunits and on the formation of new PRC2 versions. This review presents a list of PRC2 interactors, emphasizing their mechanistic action upon PRC2 functions and their effects on transcriptional regulation.
Collapse
|
27
|
Aslam M, Huang X, Yan M, She Z, Lu X, Fakher B, Chen Y, Li G, Qin Y. TRM61 is essential for Arabidopsis embryo and endosperm development. PLANT REPRODUCTION 2022; 35:31-46. [PMID: 34406456 DOI: 10.1007/s00497-021-00428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Post-transcriptional modifications of tRNA molecules play crucial roles in gene expression and protein biosynthesis. Across the genera, methylation of tRNAs at N1 of adenosine 58 (A58) by AtTRM61/AtTRM6 complex plays a critical role in maintaining the stability of initiator methionyl-tRNA (tRNAiMet). Recently, it was shown that mutation in AtTRM61 or AtTRM6 leads to seed abortion. However, a detailed study about the AtTRM61/AtTRM6 function in plants remains vague. Here, we found that AtTRM61 has a conserved functional structure and possesses conserved binding motifs for cofactor S-adenosyl-L-methionine (AdoMet). Mutations of the complex subunits AtTRM61/AtTRM6 result in embryo and endosperm developmental defects. The endosperm and embryo developmental defects were conditionally complemented by Attrm61-1/ + FIS2pro::AtTRM61 and Attrm61-1/ + ABI3pro::AtTRM61 indicating that AtTRM61 is required for early embryo and endosperm development. Besides, the rescue of the fertility defects in trm61/ + by overexpression of initiator tRNA suggests that AtTRM61 mutation could diminish tRNAiMet stability. Moreover, using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays, we showed that AtMPK4 physically interacts with AtTRM61. The data presented here suggest that AtTRM61 has a conserved structure and function in Arabidopsis. Also, AtTRM61 may be required for tRNAiMet stability, embryo and endosperm development.
Collapse
Affiliation(s)
- Mohammad Aslam
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xiaoyi Huang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Maokai Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Zeyuan She
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xiangyu Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Beenish Fakher
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yingzhi Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Gang Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yuan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
28
|
Li Q, Wang M, Fang L. BASIC PENTACYSTEINE2 negatively regulates osmotic stress tolerance by modulating LEA4-5 expression in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:373-380. [PMID: 34710757 DOI: 10.1016/j.plaphy.2021.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 05/28/2023]
Abstract
Osmotic stress substantially affects plant growth and development. Study of plant transcription factors involved in osmotic stress can enhance our understanding of the mechanisms of plant osmotic stress tolerance and how the tolerance of plants to osmotic stress can be improved. Here, we identified the specific function of Arabidopsis thaliana BARLEY B RECOMBINANT/BASIC PENTACYSTEINE transcription factor, BPC2, in the osmotic stress response. Phenotypic analysis showed that loss-of-function of BPC2 led to an increase in osmotic stress tolerance in the seedling growth stage. Physiological analysis showed that mutation of BPC2 in Arabidopsis alleviated osmotic-induced increases in H2O2 accumulation, the malondialdehyde (MDA) content, and percent electrolyte leakage. BPC2 was localized in the nucleus. RNA-seq and qRT-PCR analysis showed that BPC2 could negatively regulate the expression of late embryogenesis abundant (LEA) genes (LEA3, LEA4-2, and LEA4-5). Further analysis showed that BPC2 could directly bind to the promoter of LEA4-5 in vitro and in vivo. Overexpression of BPC2 enhanced hypersensitivity to osmotic stress in the seedling growth stage. Overexpression of BPC2 led to decreases in LEA4-5 expression and aggravated osmotic-induced increases in H2O2 accumulation, the MDA content, and percent electrolyte leakage. Overall, our results indicate that BPC2 negatively regulates LEA4-5 expression to modulate osmotic-induced H2O2 accumulation, the MDA content, and percent electrolyte leakage, all of which affect the osmotic stress response in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Qiaolu Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Mengmeng Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China.
| |
Collapse
|
29
|
Rolletschek H, Mayer S, Boughton B, Wagner S, Ortleb S, Kiel C, Roessner U, Borisjuk L. The metabolic environment of the developing embryo: A multidisciplinary approach on oilseed rapeseed. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153505. [PMID: 34481359 DOI: 10.1016/j.jplph.2021.153505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Brassicaceae seeds consist of three genetically distinct structures: the embryo, endosperm and seed coat, all of which are involved in assimilate allocation during seed development. The complexity of their metabolic interrelations remains unresolved to date. In the present study, we apply state-of-the-art imaging and analytical approaches to assess the metabolic environment of the Brassica napus embryo. Nuclear magnetic resonance imaging (MRI) provided volumetric data on the living embryo and endosperm, revealing how the endosperm envelops the embryo, determining endosperm's priority in assimilate uptake from the seed coat during early development. MRI analysis showed higher levels of sugars in the peripheral endosperm facing the seed coat, but a lower sugar content within the central vacuole and the region surrounding the embryo. Feeding intact siliques with 13C-labeled sucrose allowed tracing of the post-phloem route of sucrose transfer within the seed at the heart stage of embryogenesis, by means of mass spectrometry imaging. Quantification of over 70 organic and inorganic compounds in the endosperm revealed shifts in their abundance over different stages of development, while sugars and potassium were the main determinants of osmolality throughout these stages. Our multidisciplinary approach allows access to the hidden aspects of endosperm metabolism, a task which remains unattainable for the small-seeded model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Simon Mayer
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Berin Boughton
- Australian National Phenome Centre, Murdoch University, Western Australia, 6150, Australia.
| | - Steffen Wagner
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Stefan Ortleb
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Christina Kiel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia.
| | - Ljudmilla Borisjuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| |
Collapse
|
30
|
Alizadeh M, Hoy R, Lu B, Song L. Team effort: Combinatorial control of seed maturation by transcription factors. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102091. [PMID: 34343847 DOI: 10.1016/j.pbi.2021.102091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/07/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Seed development is under tight spatiotemporal regulation. Here, we summarize how transcriptional regulation helps shape the major traits during seed maturation, which include storage reserve accumulation, dormancy, desiccation tolerance, and longevity. The regulation is rarely a solo task by an individual transcription factor (TF). Rather, it often involves coordinated recruitment or replacement of multiple TFs to achieve combinatorial regulation. We highlight recent progress on the transcriptional integration of activation and repression of seed maturation genes, and discuss potential research directions to further understand the TF networks of seed maturation.
Collapse
Affiliation(s)
- Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ryan Hoy
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
31
|
Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Temporal Control of Seed Development in Dicots: Molecular Bases, Ecological Impact and Possible Evolutionary Ramifications. Int J Mol Sci 2021; 22:ijms22179252. [PMID: 34502157 PMCID: PMC8430901 DOI: 10.3390/ijms22179252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, seeds serve as organs of both propagation and dispersal. The developing seed passes through several consecutive stages, following a conserved general outline. The overall time needed for a seed to develop, however, may vary both within and between plant species, and these temporal developmental properties remain poorly understood. In the present paper, we summarize the existing data for seed development alterations in dicot plants. For genetic mutations, the reported cases were grouped in respect of the key processes distorted in the mutant specimens. Similar phenotypes arising from the environmental influence, either biotic or abiotic, were also considered. Based on these data, we suggest several general trends of timing alterations and how respective mechanisms might add to the ecological plasticity of the families considered. We also propose that the developmental timing alterations may be perceived as an evolutionary substrate for heterochronic events. Given the current lack of plausible models describing timing control in plant seeds, the presented suggestions might provide certain insights for future studies in this field.
Collapse
Affiliation(s)
- Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
32
|
Song J, Xie X, Chen C, Shu J, Thapa RK, Nguyen V, Bian S, Kohalmi SE, Marsolais F, Zou J, Cui Y. LEAFY COTYLEDON1 expression in the endosperm enables embryo maturation in Arabidopsis. Nat Commun 2021; 12:3963. [PMID: 34172749 PMCID: PMC8233312 DOI: 10.1038/s41467-021-24234-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
The endosperm provides nutrients and growth regulators to the embryo during seed development. LEAFY COTYLEDON1 (LEC1) has long been known to be essential for embryo maturation. LEC1 is expressed in both the embryo and the endosperm; however, the functional relevance of the endosperm-expressed LEC1 for seed development is unclear. Here, we provide genetic and transgenic evidence demonstrating that endosperm-expressed LEC1 is necessary and sufficient for embryo maturation. We show that endosperm-synthesized LEC1 is capable of orchestrating full seed maturation in the absence of embryo-expressed LEC1. Inversely, without LEC1 expression in the endosperm, embryo development arrests even in the presence of functional LEC1 alleles in the embryo. We further reveal that LEC1 expression in the endosperm begins at the zygote stage and the LEC1 protein is then trafficked to the embryo to activate processes of seed maturation. Our findings thus establish a key role for endosperm in regulating embryo development.
Collapse
Affiliation(s)
- Jingpu Song
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada. .,Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada. .,Department of Biology, Western University, London, ON, Canada.
| | - Xin Xie
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada
| | - Chen Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada.,Molecular Analysis and Genetic Improvement Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jie Shu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada.,Molecular Analysis and Genetic Improvement Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Raj K Thapa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada
| | - Vi Nguyen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Shaomin Bian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,College of Plant Science, Jilin University, Changchun, China
| | | | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada.
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada. .,Department of Biology, Western University, London, ON, Canada.
| |
Collapse
|
33
|
Shen Q, Lin Y, Li Y, Wang G. Dynamics of H3K27me3 Modification on Plant Adaptation to Environmental Cues. PLANTS 2021; 10:plants10061165. [PMID: 34201297 PMCID: PMC8228231 DOI: 10.3390/plants10061165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Given their sessile nature, plants have evolved sophisticated regulatory networks to confer developmental plasticity for adaptation to fluctuating environments. Epigenetic codes, like tri-methylation of histone H3 on Lys27 (H3K27me3), are evidenced to account for this evolutionary benefit. Polycomb repressive complex 2 (PRC2) and PRC1 implement and maintain the H3K27me3-mediated gene repression in most eukaryotic cells. Plants take advantage of this epigenetic machinery to reprogram gene expression in development and environmental adaption. Recent studies have uncovered a number of new players involved in the establishment, erasure, and regulation of H3K27me3 mark in plants, particularly highlighting new roles in plants’ responses to environmental cues. Here, we review current knowledge on PRC2-H3K27me3 dynamics occurring during plant growth and development, including its writers, erasers, and readers, as well as targeting mechanisms, and summarize the emerging roles of H3K27me3 mark in plant adaptation to environmental stresses.
Collapse
|
34
|
Yang T, Guo L, Ji C, Wang H, Wang J, Zheng X, Xiao Q, Wu Y. The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling. THE PLANT CELL 2021; 33:104-128. [PMID: 33751093 PMCID: PMC8136913 DOI: 10.1093/plcell/koaa008] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Grain filling in maize (Zea mays) is regulated by a group of spatiotemporally synchronized transcription factors (TFs), but the factors that coordinate their expression remain unknown. We used the promoter of the grain filling-specific TF gene Opaque2 (O2) to screen upstream regulatory factors and identified a B3 domain TF, ZmABI19, that directly binds to the O2 promoter for transactivation. zmabi19 mutants displayed developmental defects in the endosperm and embryo, and mature kernels were opaque and reduced in size. The accumulation of zeins, starch and lipids dramatically decreased in zmabi19 mutants. RNA sequencing revealed an alteration of the nutrient reservoir activity and starch and sucrose metabolism in zmabi19 endosperms, and plant phytohormone signal transduction and lipid metabolism in zmabi19 embryos. Chromatin immunoprecipitation followed by sequencing coupled with differential expression analysis identified 106 high-confidence direct ZmABI19 targets. ZmABI19 directly regulates multiple key grain filling TFs including O2, Prolamine-box binding factor 1, ZmbZIP22, NAC130, and Opaque11 in the endosperm and Viviparous1 in the embryo. A number of phytohormone-related genes were also bound and regulated by ZmABI19. Our results demonstrate that ZmABI19 functions as a grain filling initiation regulator. ZmABI19 roles in coupling early endosperm and embryo development are also discussed.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liangxing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xixi Zheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Author for communication:
| |
Collapse
|
35
|
Yan J, Liu Y, Yang L, He H, Huang Y, Fang L, Scheller HV, Jiang M, Zhang A. Cell wall β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana. MOLECULAR PLANT 2021; 14:411-425. [PMID: 33276159 DOI: 10.1016/j.molp.2020.11.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Salinity severely reduces plant growth and limits agricultural productivity. Dynamic changes and rearrangement of the plant cell wall is an important response to salt stress, but relatively little is known about the biological importance of specific cell wall components in the response. Here, we demonstrate a specific function of β-1,4-galactan in salt hypersensitivity. We found that salt stress induces the accumulation of β-1,4-galactan in root cell walls by up regulating the expression of GALACTAN SYNTHASE 1 (GALS1), which encodes a β-1,4-galactan synthase. The accumulation of β-1,4-galactan negatively affects salt tolerance. Exogenous application of D-galactose (D-Gal) causes an increase in β-1,4-galactan levels in the wild type and GALS1 mutants, especially in GALS1 overexpressors, which correlated with the aggravated salt hypersensitivity. Furthermore, we discovered that the BARLEY B RECOMBINANT/BASIC PENTACYSTEINE transcription factors BPC1/BPC2 positively regulate plant salt tolerance by repressing GALS1 expression and β-1,4-galactan accumulation. Genetic analysis suggested that GALS1 is genetically epistatic to BPC1/BPC2 with respect to the control of salt sensitivity as well as accumulation of β-1,4-galactan. Taken together, our results reveal a new regulatory mechanism by which β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lan Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huan He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yun Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Henrik Vibe Scheller
- Joint Bioenergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
36
|
Zhang H, Lu Y, Ma Y, Fu J, Wang G. Genetic and molecular control of grain yield in maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:18. [PMID: 37309425 PMCID: PMC10236077 DOI: 10.1007/s11032-021-01214-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/07/2021] [Indexed: 06/14/2023]
Abstract
Understanding the genetic and molecular basis of grain yield is important for maize improvement. Here, we identified 49 consensus quantitative trait loci (cQTL) controlling maize yield-related traits using QTL meta-analysis. Then, we collected yield-related traits associated SNPs detected by association mapping and identified 17 consensus significant loci. Comparing the physical positions of cQTL with those of significant SNPs revealed that 47 significant SNPs were located within 20 cQTL regions. Furthermore, intensive reviews of 31 genes regulating maize yield-related traits found that the functions of many genes were conservative in maize and other plant species. The functional conservation indicated that some of the 575 maize genes (orthologous to 247 genes controlling yield or seed traits in other plant species) might be functionally related to maize yield-related traits, especially the 49 maize orthologous genes in cQTL regions, and 41 orthologous genes close to the physical positions of significant SNPs. In the end, we prospected on the integration of the public sources for exploring the genetic and molecular mechanisms of maize yield-related traits, and on the utilization of genetic and molecular mechanisms for maize improvement. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01214-3.
Collapse
Affiliation(s)
- Hongwei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Yantian Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Yuting Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Junjie Fu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Guoying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| |
Collapse
|
37
|
Gomez MD, Barro-Trastoy D, Fuster-Almunia C, Tornero P, Alonso JM, Perez-Amador MA. Gibberellin-mediated RGA-LIKE1 degradation regulates embryo sac development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7059-7072. [PMID: 32845309 PMCID: PMC7906783 DOI: 10.1093/jxb/eraa395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/21/2020] [Indexed: 05/03/2023]
Abstract
Ovule development is essential for plant survival, as it allows correct embryo and seed development upon fertilization. The female gametophyte is formed in the central area of the nucellus during ovule development, in a complex developmental programme that involves key regulatory genes and the plant hormones auxins and brassinosteroids. Here we provide novel evidence of the role of gibberellins (GAs) in the control of megagametogenesis and embryo sac development, via the GA-dependent degradation of RGA-LIKE1 (RGL1) in the ovule primordia. YPet-rgl1Δ17 plants, which express a dominant version of RGL1, showed reduced fertility, mainly due to altered embryo sac formation that varied from partial to total ablation. YPet-rgl1Δ17 ovules followed normal development of the megaspore mother cell, meiosis, and formation of the functional megaspore, but YPet-rgl1Δ17 plants had impaired mitotic divisions of the functional megaspore. This phenotype is RGL1-specific, as it is not observed in any other dominant mutants of the DELLA proteins. Expression analysis of YPet-rgl1Δ17 coupled to in situ localization of bioactive GAs in ovule primordia led us to propose a mechanism of GA-mediated RGL1 degradation that allows proper embryo sac development. Taken together, our data unravel a novel specific role of GAs in the control of female gametophyte development.
Collapse
Affiliation(s)
- Maria Dolores Gomez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)–Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación, Ed. 8E, Ingeniero Fausto Elio s/n, Valencia, Spain
| | - Daniela Barro-Trastoy
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)–Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación, Ed. 8E, Ingeniero Fausto Elio s/n, Valencia, Spain
| | - Clara Fuster-Almunia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)–Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación, Ed. 8E, Ingeniero Fausto Elio s/n, Valencia, Spain
| | - Pablo Tornero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)–Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación, Ed. 8E, Ingeniero Fausto Elio s/n, Valencia, Spain
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC, USA
| | - Miguel A Perez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)–Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación, Ed. 8E, Ingeniero Fausto Elio s/n, Valencia, Spain
- Correspondence:
| |
Collapse
|
38
|
The complexity of PRC2 catalysts CLF and SWN in plants. Biochem Soc Trans 2020; 48:2779-2789. [PMID: 33170267 DOI: 10.1042/bst20200660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022]
Abstract
Polycomb repressive complex 2 (PRC2) is an evolutionally conserved multisubunit complex essential for the development of eukaryotes. In Arabidopsis thaliana (Arabidopsis), CURLY LEAF (CLF) and SWINGER (SWN) are PRC2 catalytic subunits that repress gene expression through trimethylating histone H3 at lysine 27 (H3K27me3). CLF and SWN function to safeguard the appropriate expression of key developmental regulators throughout the plant life cycle. Recent researches have advanced our knowledge of the biological roles and the regulation of the activity of CLF and SWN. In this review, we summarize these recent findings and highlight the redundant and differential roles of CLF and SWN in plant development. Further, we discuss the molecular mechanisms underlying CLF and SWN recruitment to specific genomic loci, as well as their interplays with Trithorax-group (TrxG) proteins in plants.
Collapse
|
39
|
Yan B, Lv Y, Zhao C, Wang X. Knowing When to Silence: Roles of Polycomb-Group Proteins in SAM Maintenance, Root Development, and Developmental Phase Transition. Int J Mol Sci 2020; 21:E5871. [PMID: 32824274 PMCID: PMC7461556 DOI: 10.3390/ijms21165871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) and PRC2 are the major complexes composed of polycomb-group (PcG) proteins in plants. PRC2 catalyzes trimethylation of lysine 27 on histone 3 to silence target genes. Like Heterochromatin Protein 1/Terminal Flower 2 (LHP1/TFL2) recognizes and binds to H3K27me3 generated by PRC2 activities and enrolls PRC1 complex to further silence the chromatin through depositing monoubiquitylation of lysine 119 on H2A. Mutations in PcG genes display diverse developmental defects during shoot apical meristem (SAM) maintenance and differentiation, seed development and germination, floral transition, and so on so forth. PcG proteins play essential roles in regulating plant development through repressing gene expression. In this review, we are focusing on recent discovery about the regulatory roles of PcG proteins in SAM maintenance, root development, embryo development to seedling phase transition, and vegetative to reproductive phase transition.
Collapse
Affiliation(s)
| | | | | | - Xiaoxue Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (B.Y.); (Y.L.); (C.Z.)
| |
Collapse
|
40
|
Carella P. Stop the FUSS: BPCs Restrict FUSCA3 Transcription to Promote Ovule and Seed Development. THE PLANT CELL 2020; 32:1779-1780. [PMID: 32303661 PMCID: PMC7268798 DOI: 10.1105/tpc.20.00295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Philip Carella
- Sainsbury LaboratoryUniversity of CambridgeCambridge, United Kingdom
| |
Collapse
|