1
|
Borisjuk L, Neuberger T. The look insight - magnetic resonance imaging (MRI) of the inner life of plants. JOURNAL OF PLANT PHYSIOLOGY 2025; 309:154502. [PMID: 40318317 DOI: 10.1016/j.jplph.2025.154502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Magnetic resonance imaging (MRI) is one of the most versatile and widely used imaging techniques in modern medicine, but its incredible potential remains underutilized in plant science. Many aspects of the inner life of plants are still unknown and are waiting to be discovered by new innovative technological solutions. The ability of MRI to non-invasively explore processes inside living organisms offers an unparalleled opportunity to investigate metabolism, nutrient allocation, growth and development. Enabling the visualization of complex dynamics in living organisms in unprecedented ways could transform how we study and perceive plants. This article highlights the critical advancements and strategies that are paving the way for MRI to become an essential tool in plant research, unlocking new frontiers in biology and agriculture.
Collapse
Affiliation(s)
- Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland-Gatersleben, 06466, Germany.
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, 16802, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, 16802, PA, USA
| |
Collapse
|
2
|
Bagaza C, Ansaf H, Yobi A, Chan YO, Slaten ML, Czymmek K, Joshi T, Mittler R, Mawhinney TP, Cohen DH, Yasuor H, Angelovici R. A multi-omics approach reveals a link between ribosomal protein alterations and proteome rebalancing in Arabidopsis thaliana seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2803-2827. [PMID: 39570765 DOI: 10.1111/tpj.17147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
The ability of seeds to restore their amino acid content and composition after the elimination of the most abundant seed storage proteins (SSPs) is well-documented, yet the underlying mechanisms remain unclear. To better understand how seeds compensate for major proteomic disruptions, we conducted a comprehensive analysis on an Arabidopsis mutant lacking the three most abundant SSPs, the cruciferins. Our initial findings indicated that carbon, nitrogen, and sulfur levels, as well as total protein and oil content, remained unchanged in these mutants suggesting rebalanced seeds. Transcriptomics and proteomics performed during seed maturation of Col-0 and the triple mutant revealed significant modulation in many components of the translational machinery, especially ribosomal proteins (RPs), and in the antioxidation response in the mutant. These findings suggest that RPs play a critical role in facilitating proteomic homeostasis during seed maturation when proteomic perturbation occurs. Biochemical and metabolic analyses of the triple mutant dry seeds revealed increased protein carbonylation and elevated glutathione levels further supporting the link between SSP accumulation and seed redox homeostasis. Overall, we propose that in response to significant proteomic perturbations, changes in the proteome and amino acid composition of seeds are accompanied by a broad remodeling of the translation apparatus. We postulate that these alterations are key elements in seed adaptability and robustness to large proteomic perturbations during seed maturation.
Collapse
Affiliation(s)
- Clement Bagaza
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Huda Ansaf
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Abou Yobi
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Yen On Chan
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, 65211, USA
| | - Marianne L Slaten
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Kirk Czymmek
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Trupti Joshi
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Biomedical Informatics, Biostatistics, and Medical Epidemiology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Ron Mittler
- Department of Plant Science and Technology, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Dan H Cohen
- Gilat Research Center, Agricultural Research Organization (ARO), Rural Delivery, Negev, 85280, Israel
| | - Hagai Yasuor
- Gilat Research Center, Agricultural Research Organization (ARO), Rural Delivery, Negev, 85280, Israel
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
3
|
Manikandan A, Muthusamy S, Wang ES, Ivarson E, Manickam S, Sivakami R, Narayanan MB, Zhu LH, Rajasekaran R, Kanagarajan S. Breeding and biotechnology approaches to enhance the nutritional quality of rapeseed byproducts for sustainable alternative protein sources- a critical review. FRONTIERS IN PLANT SCIENCE 2024; 15:1468675. [PMID: 39588088 PMCID: PMC11586226 DOI: 10.3389/fpls.2024.1468675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Global protein consumption is increasing exponentially, which requires efficient identification of potential, healthy, and simple protein sources to fulfil the demands. The existing sources of animal proteins are high in fat and low in fiber composition, which might cause serious health risks when consumed regularly. Moreover, protein production from animal sources can negatively affect the environment, as it often requires more energy and natural resources and contributes to greenhouse gas emissions. Thus, finding alternative plant-based protein sources becomes indispensable. Rapeseed is an important oilseed crop and the world's third leading oil source. Rapeseed byproducts, such as seed cakes or meals, are considered the best alternative protein source after soybean owing to their promising protein profile (30%-60% crude protein) to supplement dietary requirements. After oil extraction, these rapeseed byproducts can be utilized as food for human consumption and animal feed. However, anti-nutritional factors (ANFs) like glucosinolates, phytic acid, tannins, and sinapines make them unsuitable for direct consumption. Techniques like microbial fermentation, advanced breeding, and genome editing can improve protein quality, reduce ANFs in rapeseed byproducts, and facilitate their usage in the food and feed industry. This review summarizes these approaches and offers the best bio-nutrition breakthroughs to develop nutrient-rich rapeseed byproducts as plant-based protein sources.
Collapse
Affiliation(s)
- Anandhavalli Manikandan
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saraladevi Muthusamy
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Eu Sheng Wang
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Emelie Ivarson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rajeswari Sivakami
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Manikanda Boopathi Narayanan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ravikesavan Rajasekaran
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
4
|
Rolletschek H, Muszynska A, Schwender J, Radchuk V, Heinemann B, Hilo A, Plutenko I, Keil P, Ortleb S, Wagner S, Kalms L, Gündel A, Shi H, Fuchs J, Szymanski JJ, Braun HP, Borisjuk L. Mechanical forces orchestrate the metabolism of the developing oilseed rape embryo. THE NEW PHYTOLOGIST 2024; 244:1328-1344. [PMID: 39044722 DOI: 10.1111/nph.19990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
The initial free expansion of the embryo within a seed is at some point inhibited by its contact with the testa, resulting in its formation of folds and borders. Although less obvious, mechanical forces appear to trigger and accelerate seed maturation. However, the mechanistic basis for this effect remains unclear. Manipulation of the mechanical constraints affecting either the in vivo or in vitro growth of oilseed rape embryos was combined with analytical approaches, including magnetic resonance imaging and computer graphic reconstruction, immunolabelling, flow cytometry, transcriptomic, proteomic, lipidomic and metabolomic profiling. Our data implied that, in vivo, the imposition of mechanical restraints impeded the expansion of testa and endosperm, resulting in the embryo's deformation. An acceleration in embryonic development was implied by the cessation of cell proliferation and the stimulation of lipid and protein storage, characteristic of embryo maturation. The underlying molecular signature included elements of cell cycle control, reactive oxygen species metabolism and transcriptional reprogramming, along with allosteric control of glycolytic flux. Constricting the space allowed for the expansion of in vitro grown embryos induced a similar response. The conclusion is that the imposition of mechanical constraints over the growth of the developing oilseed rape embryo provides an important trigger for its maturation.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Aleksandra Muszynska
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
- Amatera Biosciences, 4 rue Pierre Fontaine, Evry, 91000, France
| | - Jörg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Volodymyr Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Björn Heinemann
- Institut für Pflanzengenetik, Universität Hannover, Herrenhäuser Strasse, Hannover, 30419, Germany
| | - Alexander Hilo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Iaroslav Plutenko
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Peter Keil
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Stefan Ortleb
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Laura Kalms
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - André Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
- Department of Ecology, Environment and Plant Sciences, University of Stockholm, Stockholm, 10691, Sweden
| | - Hai Shi
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jörg Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| | - Jedrzej Jakub Szymanski
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, Forschungszentrum Jülich, Jülich, D-52428, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Düsseldorf, 40225, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Universität Hannover, Herrenhäuser Strasse, Hannover, 30419, Germany
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Seeland, OT Gatersleben, 06466, Germany
| |
Collapse
|
5
|
Borisjuk L, Horn P, Chapman K, Jakob PM, Gündel A, Rolletschek H. Seeing plants as never before. THE NEW PHYTOLOGIST 2023; 238:1775-1794. [PMID: 36895109 DOI: 10.1111/nph.18871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 05/04/2023]
Abstract
Imaging has long supported our ability to understand the inner life of plants, their development, and response to a dynamic environment. While optical microscopy remains the core tool for imaging, a suite of novel technologies is now beginning to make a significant contribution to visualize plant metabolism. The purpose of this review was to provide the scientific community with an overview of current imaging methods, which rely variously on either nuclear magnetic resonance (NMR), mass spectrometry (MS) or infrared (IR) spectroscopy, and to present some examples of their application in order to illustrate their utility. In addition to providing a description of the basic principles underlying these technologies, the review discusses their various advantages and limitations, reveals the current state of the art, and suggests their potential application to experimental practice. Finally, a view is presented as to how the technologies will likely develop, how these developments may encourage the formulation of novel experimental strategies, and how the enormous potential of these technologies can contribute to progress in plant science.
Collapse
Affiliation(s)
- Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Patrick Horn
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Kent Chapman
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Peter M Jakob
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andre Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| |
Collapse
|
6
|
Zhu Y, Wang Y, Wei Z, Zhang X, Jiao B, Tian Y, Yan F, Li J, Liu Y, Yang X, Zhang J, Wang X, Mu Z, Wang Q. Analysis of oil synthesis pathway in Cyperus esculentus tubers and identification of oleosin and caleosin genes. JOURNAL OF PLANT PHYSIOLOGY 2023; 284:153961. [PMID: 36933340 DOI: 10.1016/j.jplph.2023.153961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The tubers of the widely distributed Cyperus esculentus are rich in oil, and therefore, the plant is considered to have a high utilization value in the vegetable oil industry. Oleosins and caleosins are lipid-associated proteins found in oil bodies of seeds; however oleosins and caleosins genes have not been identified in C. esculentus. In this study, we performed transcriptome sequencing and lipid metabolome analysis of C. esculentus tubers at four developmental stages to obtain the information on their genetic profile, expression trends, and metabolites in oil accumulation pathways. Overall, 120,881 non-redundant unigenes and 255 lipids were detected; 18 genes belonged to the acetyl-CoA carboxylase (ACC), malonyl-CoA:ACP transacylase (MCAT), β-ketoacyl-ACP synthase (KAS), and fatty acyl-ACP thioesterase (FAT) gene families involved in fatty acid biosynthesis, and 16 genes belonged to the glycerol-3-phosphate acyltransferase (GPAT), diacylglycerol acyltransferase 3 (DGAT3), phospholipid:diacylglycerol acyltransferase (PDAT), FAD2, and lysophosphatidic acid acyltransferase (LPAAT) gene families playing important roles in triacylglycerol synthesis. We also identified 9 oleosin- and 21 caleosin-encoding genes in C. esculentus tubers. These results provide detailed information on the C. esculentus transcriptional and metabolic profiles, which can be used as reference for the development of strategies to increase oil content in C. esculentus tubers.
Collapse
Affiliation(s)
- Youcheng Zhu
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Ying Wang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Zunmiao Wei
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Gongzhuling, 136105, China.
| | - Xiaokai Zhang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Bingyang Jiao
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Yu Tian
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Fan Yan
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Jingwen Li
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Yajing Liu
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Xuguang Yang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Jinhao Zhang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Xinyue Wang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Zhongsheng Mu
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Gongzhuling, 136105, China.
| | - Qingyu Wang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| |
Collapse
|
7
|
Bioengineering of Soybean Oil and Its Impact on Agronomic Traits. Int J Mol Sci 2023; 24:ijms24032256. [PMID: 36768578 PMCID: PMC9916542 DOI: 10.3390/ijms24032256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Soybean is a major oil crop and is also a dominant source of nutritional protein. The 20% seed oil content (SOC) of soybean is much lower than that in most oil crops and the fatty acid composition of its native oil cannot meet the specifications for some applications in the food and industrial sectors. Considerable effort has been expended on soybean bioengineering to tailor fatty acid profiles and improve SOC. Although significant advancements have been made, such as the creation of high-oleic acid soybean oil and high-SOC soybean, those genetic modifications have some negative impacts on soybean production, for instance, impaired germination or low protein content. In this review, we focus on recent advances in the bioengineering of soybean oil and its effects on agronomic traits.
Collapse
|
8
|
Shen B, Schmidt MA, Collet KH, Liu ZB, Coy M, Abbitt S, Molloy L, Frank M, Everard JD, Booth R, Samadar PP, He Y, Kinney A, Herman EM. RNAi and CRISPR-Cas silencing E3-RING ubiquitin ligase AIP2 enhances soybean seed protein content. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7285-7297. [PMID: 36112496 DOI: 10.1093/jxb/erac376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
The majority of plant protein in the world's food supply is derived from soybean (Glycine max). Soybean is a key protein source for global animal feed and is incorporated into plant-based foods for people, including meat alternatives. Soybean protein content is genetically variable and is usually inversely related to seed oil content. ABI3-interacting protein 2 (AIP2) is an E3-RING ubiquitin ligase that targets the seed-specific transcription factor ABI3. Silencing both soybean AIP2 genes (AIP2a and AIP2b) by RNAi enhanced seed protein content by up to seven percentage points, with no significant decrease in seed oil content. The protein content enhancement did not alter the composition of the seed storage proteins. Inactivation of either AIP2a or AIP2b by a CRISPR-Cas9-mediated mutation increased seed protein content, and this effect was greater when both genes were inactivated. Transactivation assays in transfected soybean hypocotyl protoplasts indicated that ABI3 changes the expression of glycinin, conglycinin, 2S albumin, and oleosin genes, indicating that AIP2 depletion increased seed protein content by regulating activity of the ABI3 transcription factor protein. These results provide an example of a gene-editing prototype directed to improve global food security and protein availability in soybean that may also be applicable to other protein-source crops.
Collapse
Affiliation(s)
- Bo Shen
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Monica A Schmidt
- School of Plant Sciences and Bio5 Institute, 1657 E Helen St, University of Arizona, Tucson, AZ, USA
| | | | - Zhan-Bin Liu
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Monique Coy
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Shane Abbitt
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Lynda Molloy
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Mary Frank
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - John D Everard
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Russ Booth
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Partha P Samadar
- School of Plant Sciences and Bio5 Institute, 1657 E Helen St, University of Arizona, Tucson, AZ, USA
| | - Yonghua He
- School of Plant Sciences and Bio5 Institute, 1657 E Helen St, University of Arizona, Tucson, AZ, USA
| | - Anthony Kinney
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Eliot M Herman
- School of Plant Sciences and Bio5 Institute, 1657 E Helen St, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
9
|
Assou J, Zhang D, Roth KDR, Steinke S, Hust M, Reinard T, Winkelmann T, Boch J. Removing the major allergen Bra j I from brown mustard (Brassica juncea) by CRISPR/Cas9. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:649-663. [PMID: 34784073 DOI: 10.1111/tpj.15584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 05/21/2023]
Abstract
Food allergies are a major health issue worldwide. Modern breeding techniques such as genome editing via CRISPR/Cas9 have the potential to mitigate this by targeting allergens in plants. This study addressed the major allergen Bra j I, a seed storage protein of the 2S albumin class, in the allotetraploid brown mustard (Brassica juncea). Cotyledon explants of an Indian gene bank accession (CR2664) and the German variety Terratop were transformed using Agrobacterium tumefaciens harboring binary vectors with multiple single guide RNAs to induce either large deletions or frameshift mutations in both Bra j I homoeologs. A total of 49 T0 lines were obtained with up to 3.8% transformation efficiency. Four lines had large deletions of 566 up to 790 bp in the Bra j IB allele. Among 18 Terratop T0 lines, nine carried indels in the targeted regions. From 16 analyzed CR2664 T0 lines, 14 held indels and three had all four Bra j I alleles mutated. The majority of the CRISPR/Cas9-induced mutations were heritable to T1 progenies. In some edited lines, seed formation and viability were reduced and seeds showed a precocious development of the embryo leading to a rupture of the testa already in the siliques. Immunoblotting using newly developed Bra j I-specific antibodies revealed the amount of Bra j I protein to be reduced or absent in seed extracts of selected lines. Removing an allergenic determinant from mustard is an important first step towards the development of safer food crops.
Collapse
Affiliation(s)
- Juvenal Assou
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
| | - Dingbo Zhang
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Kristian D R Roth
- Department of Biotechnology, Institute of Biochemistry, Biotechnology, and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Department of Biotechnology, Institute of Biochemistry, Biotechnology, and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Department of Biotechnology, Institute of Biochemistry, Biotechnology, and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Reinard
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
| | - Jens Boch
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
10
|
Kumari A, Singh P, Kaladhar VC, Paul D, Pathak PK, Gupta KJ. Phytoglobin-NO cycle and AOX pathway play a role in anaerobic germination and growth of deepwater rice. PLANT, CELL & ENVIRONMENT 2022; 45:178-190. [PMID: 34633089 DOI: 10.1111/pce.14198] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
An important and interesting feature of rice is that it can germinate under anoxic conditions. Though several biochemical adaptive mechanisms play an important role in the anaerobic germination of rice but the role of phytoglobin-nitric oxide cycle and alternative oxidase pathway is not known, therefore in this study we investigated the role of these pathways in anaerobic germination. Under anoxic conditions, deepwater rice germinated much higher and rapidly than aerobic condition and the anaerobic germination and growth were much higher in the presence of nitrite. The addition of nitrite stimulated NR activity and NO production. Important components of phytoglobin-NO cycle such as methaemoglobin reductase activity, expression of Phytoglobin1, NIA1 were elevated under anaerobic conditions in the presence of nitrite. The operation of phytoglobin-NO cycle also enhanced anaerobic ATP generation, LDH, ADH activities and in parallel ethylene levels were also enhanced. Interestingly nitrite suppressed the ROS production and lipid peroxidation. The reduction of ROS was accompanied by enhanced expression of mitochondrial alternative oxidase protein and its capacity. Application of AOX inhibitor SHAM inhibited the anoxic growth mediated by nitrite. In addition, nitrite improved the submergence tolerance of seedlings. Our study revealed that nitrite driven phytoglobin-NO cycle and AOX are crucial players in anaerobic germination and growth of deepwater rice.
Collapse
Affiliation(s)
- Aprajita Kumari
- National Institute for Plant Genome Research, New Delhi, India
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Pooja Singh
- National Institute for Plant Genome Research, New Delhi, India
| | | | - Debarati Paul
- Amity Institute of Biotechnology, Amity University, Noida, India
| | | | | |
Collapse
|
11
|
Breeding Canola ( Brassica napus L.) for Protein in Feed and Food. PLANTS 2021; 10:plants10102220. [PMID: 34686029 PMCID: PMC8539702 DOI: 10.3390/plants10102220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 01/12/2023]
Abstract
Interest in canola (Brassica napus L.). In response to this interest, scientists have been tasked with altering and optimizing the protein production chain to ensure canola proteins are safe for consumption and economical to produce. Specifically, the role of plant breeders in developing suitable varieties with the necessary protein profiles is crucial to this interdisciplinary endeavour. In this article, we aim to provide an overarching review of the canola protein chain from the perspective of a plant breeder, spanning from the genetic regulation of seed storage proteins in the crop to advancements of novel breeding technologies and their application in improving protein quality in canola. A review on the current uses of canola meal in animal husbandry is presented to underscore potential limitations for the consumption of canola meal in mammals. General discussions on the allergenic potential of canola proteins and the regulation of novel food products are provided to highlight some of the challenges that will be encountered on the road to commercialization and general acceptance of canola protein as a dietary protein source.
Collapse
|
12
|
Rolletschek H, Mayer S, Boughton B, Wagner S, Ortleb S, Kiel C, Roessner U, Borisjuk L. The metabolic environment of the developing embryo: A multidisciplinary approach on oilseed rapeseed. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153505. [PMID: 34481359 DOI: 10.1016/j.jplph.2021.153505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Brassicaceae seeds consist of three genetically distinct structures: the embryo, endosperm and seed coat, all of which are involved in assimilate allocation during seed development. The complexity of their metabolic interrelations remains unresolved to date. In the present study, we apply state-of-the-art imaging and analytical approaches to assess the metabolic environment of the Brassica napus embryo. Nuclear magnetic resonance imaging (MRI) provided volumetric data on the living embryo and endosperm, revealing how the endosperm envelops the embryo, determining endosperm's priority in assimilate uptake from the seed coat during early development. MRI analysis showed higher levels of sugars in the peripheral endosperm facing the seed coat, but a lower sugar content within the central vacuole and the region surrounding the embryo. Feeding intact siliques with 13C-labeled sucrose allowed tracing of the post-phloem route of sucrose transfer within the seed at the heart stage of embryogenesis, by means of mass spectrometry imaging. Quantification of over 70 organic and inorganic compounds in the endosperm revealed shifts in their abundance over different stages of development, while sugars and potassium were the main determinants of osmolality throughout these stages. Our multidisciplinary approach allows access to the hidden aspects of endosperm metabolism, a task which remains unattainable for the small-seeded model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Simon Mayer
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Berin Boughton
- Australian National Phenome Centre, Murdoch University, Western Australia, 6150, Australia.
| | - Steffen Wagner
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Stefan Ortleb
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Christina Kiel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia.
| | - Ljudmilla Borisjuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| |
Collapse
|
13
|
Kambhampati S, Aznar-Moreno JA, Bailey SR, Arp JJ, Chu KL, Bilyeu KD, Durrett TP, Allen DK. Temporal changes in metabolism late in seed development affect biomass composition. PLANT PHYSIOLOGY 2021; 186:874-890. [PMID: 33693938 PMCID: PMC8195533 DOI: 10.1093/plphys/kiab116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 05/23/2023]
Abstract
The negative association between protein and oil production in soybean (Glycine max) seed is well-documented. However, this inverse relationship is based primarily on the composition of mature seed, which reflects the cumulative result of events over the course of soybean seed development and therefore does not convey information specific to metabolic fluctuations during developmental growth regimes. In this study, we assessed maternal nutrient supply via measurement of seed coat exudates and metabolite levels within the cotyledon throughout development to identify trends in the accumulation of central carbon and nitrogen metabolic intermediates. Active metabolic activity during late seed development was probed through transient labeling with 13C substrates. The results indicated: (1) a drop in lipid contents during seed maturation with a concomitant increase in carbohydrates, (2) a transition from seed filling to maturation phases characterized by quantitatively balanced changes in carbon use and CO2 release, (3) changes in measured carbon and nitrogen resources supplied maternally throughout development, (4) 13C metabolite production through gluconeogenic steps for sustained carbohydrate accumulation as the maternal nutrient supply diminishes, and (5) oligosaccharide biosynthesis within the seed coat during the maturation phase. These results highlight temporal engineering targets for altering final biomass composition to increase the value of soybeans and a path to breaking the inverse correlation between seed protein and oil content.
Collapse
Affiliation(s)
| | - Jose A Aznar-Moreno
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Sally R Bailey
- United States Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132, USA
| | - Jennifer J Arp
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Kevin L Chu
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- United States Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132, USA
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Kristin D Bilyeu
- United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri 65211, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- United States Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132, USA
| |
Collapse
|
14
|
Jarvis BA, Romsdahl TB, McGinn MG, Nazarenus TJ, Cahoon EB, Chapman KD, Sedbrook JC. CRISPR/Cas9-Induced fad2 and rod1 Mutations Stacked With fae1 Confer High Oleic Acid Seed Oil in Pennycress ( Thlaspi arvense L.). FRONTIERS IN PLANT SCIENCE 2021; 12:652319. [PMID: 33968108 PMCID: PMC8100250 DOI: 10.3389/fpls.2021.652319] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/23/2021] [Indexed: 05/05/2023]
Abstract
Pennycress (Thlaspi arvense L.) is being domesticated as an oilseed cash cover crop to be grown in the off-season throughout temperate regions of the world. With its diploid genome and ease of directed mutagenesis using molecular approaches, pennycress seed oil composition can be rapidly tailored for a plethora of food, feed, oleochemical and fuel uses. Here, we utilized Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology to produce knockout mutations in the FATTY ACID DESATURASE2 (FAD2) and REDUCED OLEATE DESATURATION1 (ROD1) genes to increase oleic acid content. High oleic acid (18:1) oil is valued for its oxidative stability that is superior to the polyunsaturated fatty acids (PUFAs) linoleic (18:2) and linolenic (18:3), and better cold flow properties than the very long chain fatty acid (VLCFA) erucic (22:1). When combined with a FATTY ACID ELONGATION1 (fae1) knockout mutation, fad2 fae1 and rod1 fae1 double mutants produced ∼90% and ∼60% oleic acid in seed oil, respectively, with PUFAs in fad2 fae1 as well as fad2 single mutants reduced to less than 5%. MALDI-MS spatial imaging analyses of phosphatidylcholine (PC) and triacylglycerol (TAG) molecular species in wild-type pennycress embryo sections from mature seeds revealed that erucic acid is highly enriched in cotyledons which serve as storage organs, suggestive of a role in providing energy for the germinating seedling. In contrast, PUFA-containing TAGs are enriched in the embryonic axis, which may be utilized for cellular membrane expansion during seed germination and seedling emergence. Under standard growth chamber conditions, rod1 fae1 plants grew like wild type whereas fad2 single and fad2 fae1 double mutant plants exhibited delayed growth and overall reduced heights and seed yields, suggesting that reducing PUFAs below a threshold in pennycress had negative physiological effects. Taken together, our results suggest that combinatorial knockout of ROD1 and FAE1 may be a viable route to commercially increase oleic acid content in pennycress seed oil whereas mutations in FAD2 will likely require at least partial function to avoid fitness trade-offs.
Collapse
Affiliation(s)
- Brice A. Jarvis
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Trevor B. Romsdahl
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Michaela G. McGinn
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Tara J. Nazarenus
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Edgar B. Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Kent D. Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - John C. Sedbrook
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| |
Collapse
|
15
|
Romsdahl TB, Kambhampati S, Koley S, Yadav UP, Alonso AP, Allen DK, Chapman KD. Analyzing Mass Spectrometry Imaging Data of 13C-Labeled Phospholipids in Camelina sativa and Thlaspi arvense (Pennycress) Embryos. Metabolites 2021; 11:metabo11030148. [PMID: 33806402 PMCID: PMC7999836 DOI: 10.3390/metabo11030148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
The combination of 13C-isotopic labeling and mass spectrometry imaging (MSI) offers an approach to analyze metabolic flux in situ. However, combining isotopic labeling and MSI presents technical challenges ranging from sample preparation, label incorporation, data collection, and analysis. Isotopic labeling and MSI individually create large, complex data sets, and this is compounded when both methods are combined. Therefore, analyzing isotopically labeled MSI data requires streamlined procedures to support biologically meaningful interpretations. Using currently available software and techniques, here we describe a workflow to analyze 13C-labeled isotopologues of the membrane lipid and storage oil lipid intermediate―phosphatidylcholine (PC). Our results with embryos of the oilseed crops, Camelina sativa and Thlaspi arvense (pennycress), demonstrated greater 13C-isotopic labeling in the cotyledons of developing embryos compared with the embryonic axis. Greater isotopic enrichment in PC molecular species with more saturated and longer chain fatty acids suggest different flux patterns related to fatty acid desaturation and elongation pathways. The ability to evaluate MSI data of isotopically labeled plant embryos will facilitate the potential to investigate spatial aspects of metabolic flux in situ.
Collapse
Affiliation(s)
- Trevor B. Romsdahl
- Department of Biological Sciences & BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA; (T.B.R.); (U.P.Y.); (A.P.A.)
| | | | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (S.K.); (S.K.)
| | - Umesh P. Yadav
- Department of Biological Sciences & BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA; (T.B.R.); (U.P.Y.); (A.P.A.)
| | - Ana Paula Alonso
- Department of Biological Sciences & BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA; (T.B.R.); (U.P.Y.); (A.P.A.)
| | - Doug K. Allen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (S.K.); (S.K.)
- United States Department of Agriculture, Agriculture Research Service, St. Louis, MO 63132, USA
- Correspondence: (D.K.A.); or (K.D.C.); Tel.: +1-940-565-2969 (K.D.C.)
| | - Kent D. Chapman
- Department of Biological Sciences & BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA; (T.B.R.); (U.P.Y.); (A.P.A.)
- Correspondence: (D.K.A.); or (K.D.C.); Tel.: +1-940-565-2969 (K.D.C.)
| |
Collapse
|
16
|
Armenta-Medina A, Gillmor CS, Gao P, Mora-Macias J, Kochian LV, Xiang D, Datla R. Developmental and genomic architecture of plant embryogenesis: from model plant to crops. PLANT COMMUNICATIONS 2021; 2:100136. [PMID: 33511346 PMCID: PMC7816075 DOI: 10.1016/j.xplc.2020.100136] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 05/08/2023]
Abstract
Embryonic development represents an important reproductive phase of sexually reproducing plant species. The fusion of egg and sperm produces the plant zygote, a totipotent cell that, through cell division and cell identity specification in early embryogenesis, establishes the major cell lineages and tissues of the adult plant. The subsequent morphogenesis phase produces the full-sized embryo, while the late embryogenesis maturation process prepares the seed for dormancy and subsequent germination, ensuring continuation of the plant life cycle. In this review on embryogenesis, we compare the model eudicot Arabidopsis thaliana with monocot crops, focusing on genome activation, paternal and maternal regulation of early zygote development, and key organizers of patterning, such as auxin and WOX transcription factors. While the early stages of embryo development are apparently conserved among plant species, embryo maturation programs have diversified between eudicots and monocots. This diversification in crop species reflects the likely effects of domestication on seed quality traits that are determined during embryo maturation, and also assures seed germination in different environmental conditions. This review describes the most important features of embryonic development in plants, and the scope and applications of genomics in plant embryo studies.
Collapse
Affiliation(s)
- Alma Armenta-Medina
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - C. Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Javier Mora-Macias
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Daoquan Xiang
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| |
Collapse
|
17
|
Wang J, Chen Z, Zhang Q, Meng S, Wei C. The NAC Transcription Factors OsNAC20 and OsNAC26 Regulate Starch and Storage Protein Synthesis. PLANT PHYSIOLOGY 2020; 184:1775-1791. [PMID: 32989010 PMCID: PMC7723083 DOI: 10.1104/pp.20.00984] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Starch and storage proteins determine the weight and quality of cereal grains. Synthesis of these two grain components has been comprehensively investigated, but the transcription factors responsible for their regulation remain largely unknown. In this study, we investigated the roles of NAM, ATAF, and CUC (NAC) transcription factors, OsNAC20, and OsNAC26 in starch and storage protein synthesis in rice (Oryza sativa) endosperm. OsNAC20 and OsNAC26 showed high levels of amino acid sequence similarity. Both were localized in the aleurone layer, starchy endosperm, and embryo. Mutation of OsNAC20 or OsNAC26 alone had no effect on the grain, while the osnac20/26 double mutant had significantly decreased starch and storage protein content. OsNAC20 and OsNAC26 alone could directly transactivate the expression of starch synthaseI (SSI), pullulanase (Pul), glutelin A1 (GluA1), glutelin B4/5 (GluB4/5), α-globulin, and 16 kD prolamin and indirectly influenced plastidial disproportionating enzyme1 (DPE1) expression to regulate starch and storage protein synthesis. Although they could also bind to the promoters of ADP-Glc pyrophosphorylase small subunit 2b (AGPS2b), ADP-Glc pyrophosphorylase large subunit 2 (AGPL2), and starch branching enzymeI (SBEI), and the expression of the three genes was largely decreased in the osnac20/26 mutant, ADP-Glc pyrophosphorylase and starch branching enzyme activities were unchanged in this double mutant. In addition, OsNAC20 and OsNAC26 are main regulators of Pul, GluB4, α-globulin, and 16 kD prolamin In conclusion, OsNAC20 and OsNAC26 play an essential and redundant role in the regulation of starch and storage protein synthesis.
Collapse
Affiliation(s)
- Juan Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zichun Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qing Zhang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Shanshan Meng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Cunxu Wei
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
18
|
O'Leary BM. Breaking the Mold: Reduced Protein Storage in Brassica napus Seed Triggers Unexpected Structural Changes. THE PLANT CELL 2020; 32:2077-2078. [PMID: 32385104 PMCID: PMC7346561 DOI: 10.1105/tpc.20.00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Brendan M O'Leary
- ARC Centre of Excellence in Plant Energy BiologyUniversity of Western Australia
| |
Collapse
|